
Published in Transactions on Machine Learning Research (06/2022)

Multi-Agent Off-Policy TDC with Near-Optimal Sample and
Communication Complexities

Ziyi Chen u1276972@utha.edu
Department of Electrical and Computer Engineering
University of Utah

Yi Zhou yi.zhou@utah.edu
Department of Electrical and Computer Engineering
University of Utah

Rong-Rong Chen rchen@ece.utah.edu
Department of Electrical and Computer Engineering
University of Utah

Reviewed on OpenReview: https: // openreview. net/ forum? id= tnPjQpYk7D

Abstract

The finite-time convergence of off-policy temporal difference (TD) learning has been compre-
hensively studied recently. However, such a type of convergence has not been established for
off-policy TD learning in the multi-agent setting, which covers broader reinforcement learning
applications and is fundamentally more challenging. This work develops a decentralized TD
with correction (TDC) algorithm for multi-agent off-policy TD learning under Markovian
sampling. In particular, our algorithm avoids sharing the actions, policies and rewards of the
agents, and adopts mini-batch sampling to reduce the sampling variance and communication
frequency. Under Markovian sampling and linear function approximation, we proved that
the finite-time sample complexity of our algorithm for achieving an ε-accurate solution is in
the order of O

(
M ln ε−1

ε(1−σ2)2

)
, where M denotes the total number of agents and σ2 is a network

parameter. This matches the sample complexity of the centralized TDC. Moreover, our
algorithm achieves the optimal communication complexity O

(√
M ln ε−1

1−σ2

)
for synchronizing

the value function parameters, which is order-wise lower than the communication complexity
of the existing decentralized TD(0). Numerical simulations corroborate our theoretical
findings.

1 Introduction

Multi-agent reinforcement learning (MARL) is an emerging technique that has broad applications in control
Yanmaz et al. (2017); Chalaki & Malikopoulos (2020), wireless sensor networks Krishnamurthy et al. (2008);
Yuan et al. (2020), robotics Yan et al. (2013), etc. In MARL, agents cooperatively interact with an environment
and follow their own policies to collect local rewards. In particular, policy evaluation is a fundamental problem
in MARL that aims to learn a multi-agent value function associated with the policies of the agents. This
motivates the development of convergent and communication-efficient multi-agent TD learning algorithms.

For single-agent on-policy evaluation (i.e., samples are collected by target policy), the conventional TD(0)
algorithm Sutton (1988); Sutton & Barto (2018) and Q-learning algorithm Dayan (1992) have been developed
with asymptotic convergence guarantee. Recently, their finite-time (i.e., non-asymptotic) convergence has
been established under Markovian sampling (i.e., the samples are obtained from Markovian decision process
and thus are not i.i.d.) and linear approximation Bhandari et al. (2018); Zou et al. (2019). However, these
algorithms may diverge in the off-policy setting Baird (1995), where samples are collected by a different

1

https://openreview.net/forum?id=tnPjQpYk7D

Published in Transactions on Machine Learning Research (06/2022)

behavior policy. To address this important issue, a family of gradient-based TD (GTD) algorithms were
developed for off-policy evaluation with asymptotic convergence guarantee Sutton et al. (2008; 2009); Maei
(2011). In particular, the TD with gradient correction (TDC) algorithm has been shown to have superior
performance and its finite-time convergence has been established recently under Markovian sampling Xu
et al. (2019); Gupta et al. (2019); Kaledin et al. (2020).

For multi-agent on-policy evaluation, various decentralized TD learning algorithms have been developed. For
example, the finite-time convergence of decentralized TD(0) was established with i.i.d samples Wai et al.
(2018); Doan et al. (2019) and Markovian samples Sun et al. (2020), respectively, under linear function
approximation, and an improved result is further obtained in Wang et al. (2020) by leveraging gradient
tracking. However, these algorithms do not apply to the off-policy setting. In the existing literature,
decentralized off-policy TD learning has been studied only in simplified settings, for example, agents obtain
independent MDP trajectories Macua et al. (2014); Stanković & Stanković (2016); Cassano et al. (2020) or
share their behavior and target policies with each other Cassano et al. (2020), and the data samples are
either i.i.d. or have a finite sample size. These MARL settings either are impractical or reveal the agents’
policies that may be sensitive. Therefore, we want to ask the following question:

• Q1: Can we develop a decentralized off-policy TD algorithm for MARL with interdependent agents and
avoids sharing local actions, policies and rewards of the agents?

In fact, developing such a desired decentralized off-policy TD learning algorithm requires overcoming two
major challenges. First, to perform decentralized off-policy TD learning, all the agents need to obtain a
global importance sampling ratio (see Section 3.2). In Cassano et al. (2020), the authors obtained this ratio
by sharing all local policies among the agents, which may lead to information leakage. Therefore, we aim
to develop a safer scheme to synchronize the global importance sampling ratio among the agents without
sharing any sensitive local information. Second, the existing decentralized TD-type algorithm achieves a
communication complexity (number of communication rounds) of O

((
ε−1 +

√
M√

ε(1−σ2)
)

ln ε−1) for networks
with M agents and parameter σ2 (See Assumption 5 in Section 4 for the definition of σ2) Sun et al. (2020).
This induces much communication overhead when the target accuracy ε is small. Hence, we want to ask the
following theoretical question:

• Q2: Can we develop a decentralized off-policy TD learning algorithm that achieves a near-optimal finite-time
sample complexity and a near-optimal communication complexity under Markovian sampling?

In this work, we provide affirmative answers to these questions by developing a decentralized TDC algorithm
that avoids sharing the sensitive information of the agents and achieves the near-optimal sample complexity
as well as a significantly reduced communication complexity. We summarize our contributions as follows.

1.1 Summary of Contribution

To perform multi-agent off-policy evaluation, we develop a decentralized TDC algorithm with linear function
approximation. In every iteration, agents perform two-timescale TDC updates locally and exchange model
parameters with their neighbors. In particular, our algorithm adopts the following designs to avoid sharing
agents’ local sensitive information and reduce communication load.

• We let the agents perform local averaging on their local importance sampling ratios to obtain approximated
global importance sampling ratios.

• All the agents use a mini-batch of samples to update their model parameters in each iteration. The
mini-batch sampling reduces the sampling variance and the communication frequency, leading to an
improved communication complexity over that of the existing decentralized TD(0).

• After the decentralized TDC iterations, our algorithm performs additional local averaging steps to achieve
a global consensus on the model parameters. This turns out to be critical for achieving the near-optimal
complexity bounds.

Theoretically, we analyze the finite-time convergence of this decentralized TDC algorithm with Markovian
samples and show that it attains a fast linear convergence. The overall sample complexity for achieving

2

Published in Transactions on Machine Learning Research (06/2022)

an ε-accurate solution is in the order of O
(
M ln ε−1

ε(1−σ2)2

)
. When there is a single agent (M = 1), this sample

complexity result matches that of centralized TDC Xu et al. (2019) and matches the theoretical lower bound
O(ε−1) Kaledin et al. (2020) up to a logarithm factor. In addition, the sample complexity is proportional
to M , which matches the theoretical lower bound of decentralized strongly convex optimization Scaman
et al. (2017). Moreover, the communication complexity of our algorithm for synchronizing value function
parameters is in the order of O

(√
M ln ε−1

1−σ2

)
, which is significantly lower than the communication complexity

O
(
ε−1 +

√
M√

ε(1−σ2) ln ε−1) of the decentralized TD(0) Sun et al. (2020) and matches the communication
complexity lower bound Scaman et al. (2017).

Technically, our analysis is a nontrivial generalization of the analysis of centralized off-policy TDC to the
decentralized case. In particular, our analysis establishes tight bounds of the consensus error caused by
synchronizing the global importance sampling ratio, especially under the Markovian sampling where the
data samples are correlated. Moreover, we strategically bound the estimation error of the global importance
sampling logarithm-ratio. Please refer to the proof sketch at the end of Section 4 for details.

1.2 Other Related Work

Centralized policy evaluation. TD(0) with linear function approximation Sutton (1988) is popular for
on-policy evaluation. The asymptotic and non-asymptotic convergence results of TD(0) have been established
in Sutton (1988); Dayan (1992); Jaakkola et al. (1993); Gordon (1995); Baird (1995); Tsitsiklis & Van Roy
(1997); Tadić (2001); Hu & Syed (2019) and Korda & La (2015); Liu et al. (2015); Bhandari et al. (2018);
Dalal et al. (2018b); Lakshminarayanan & Szepesvari (2018); Wang et al. (2019); Srikant & Ying (2019); Xu
et al. (2020b) respectively. Sutton et al. (2009) proposed TDC for off-policy evaluation. The finite-sample
convergence of TDC has been established in Dalal et al. (2018a; 2020) with i.i.d. samples and in Xu et al.
(2019); Gupta et al. (2019); Kaledin et al. (2020) with Markovian samples.

Decentralized policy evaluation. Mathkar & Borkar (2016) proposed the decentralized TD(0) algorithm.
The asymptotic and non-asymptotic convergence rate of decentralized TD have been obtained in Borkar
(2009) and Sun et al. (2020); Wang et al. (2020) respectively. Exisitng decentralized off-policy evaluation
studies considered simplified settings. Macua et al. (2014); Stanković & Stanković (2016) obtained asymptotic
result for decentralized off-policy evaluation where the agents obtained independent MDPs. Cassano et al.
(2020) obtained linear convergence rate also with independent MDPs by applying variance reduction and
extended to the case where the individual behavior policies and the joint target policy are shared among the
agents.

Decentralized policy control. Decentralized policy control is also an important MARL problem where
the goal is to learn the optimal policy for each agent. Many algorithms have been proposed for decentralized
policy control, including policy gradient Chen et al. (2021) and actor-critic Qu et al. (2020); Zhang et al.
(2021).

2 Policy Evaluation in Multi-Agent RL

In this section, we introduce multi-agent reinforcement learning (MARL) and define the policy evaluation
problem. Consider a fully decentralized multi-agent network that consists of M agents. The network
topology is specified by an undirected graph G = (M, E), whereM = {1, 2, · · · ,M} denotes the set of agents
and E denotes the set of communication links. In other words, each agent m only communicates with its
neighborhood Nm := {m′ ∈M : (m,m′) ∈ E} . In MARL, the agents interact with a dynamic environment
through a multi-agent Markov decision process (MMDP) specified as {S, {A(m)}Mm=1, P, {R(m)}Mm=1, γ}. To
elaborate, S denotes a global state space that is shared by all the agents, A(m) corresponds to the action
space of agent m, P is the state transition kernel and R(m) denotes the reward function of agent m. All the
state and action spaces have finite cardinality. γ ∈ (0, 1] is a discount factor.

At any time t, assume that all the agents are in the global state st ∈ S. Then, each agent m takes a certain
action a(m)

t ∈ A(m) following its own stationary policy π(m), i.e., a(m)
t ∼ π(m)(·|st). After all the actions are

taken, the global state transfers to a new state st+1 according to the transition kernel P , i.e., st+1 ∼ P (·|st, at)

3

Published in Transactions on Machine Learning Research (06/2022)

where at := {a(m)
t }Mm=1. At the same time, each agent m receives a local reward R(m)

t := R(m)(st, at, st+1)
from the environment for this action-state transition. Throughout the MMDP, each agent m has access to
only the global state {st}t and its own actions {a(m)

t }t and rewards {R(m)
t }t. The goal of policy evaluation

in MARL is to evaluate the following value function associated with all the local policies π := {π(m)}Mm=1 for
any global state s.

V π(s) = E
[+∞∑
t=0

γt
(1
M

M∑
m=1

R
(m)
t

)∣∣∣s0 = s, π
]
. (1)

A popular algorithm for policy evaluation in MARL is the decentralized TD(0) Sun et al. (2020). Specifically,
consider a popular linear function approximation of the value function Vθ(s) := θ>φ(s), where θ ∈ Rd
contains the model parameters and φ(s) is a feature vector that corresponds to the state s. In decentralized
TD(0), each agent m collects a single Markovian sample {st, a(m)

t , st+1, R
(m)
t } at time t (a(m)

t ∼ π(m)(·|st),
st+1 ∼ P (·|st, at), R(m)

t := R(m)(st, at, st+1)) and updates its own model parameters θ(m)
t with learning rate

α > 0 as follows.

θ
(m)
t+1 =

∑
m′∈Nm

Um,m′θ
(m′)
t + α

(
Atθ

(m)
t + b

(m)
t

)
, (2)

where U corresponds to a doubly stochastic communication matrix, each agent m only communicates with
its neighborhood Nm, and At = φ(st)(γφ(st+1)− φ(st))>, b(m)

t = R
(m)
t φ(st). The above update rule applies

the local TD error to update the parameters and synchronize the parameters among neighboring agents
through the network. It can be inferred that θ(m)

t obtained by this decentralized TD(0) algorithm is ε-close
to the optimal solution with both sample complexity (the number of required samples) and communication
complexity (the number of communication rounds) being O(ε−1 +

√
M/ε(1− σ2)−1) ln(ε−1). 1

3 Two-Timescale Decentralized TDC for Off-Policy Evaluation

3.1 Centralized TDC

In this subsection, we review the centralized TD with gradient correction (TDC) algorithm Sutton et al.
(2009). In RL, the agent may not have enough samples that are collected following the target policy π.
Instead, it may have some data samples that are collected under a different behavior policy πb. Therefore, in
this off-policy setting, the agent would like to utilize the historical data to help evaluate the value function
V π associated with the target policy π.

In Sutton et al. (2009), a family of gradient-based TD (GTD) learning algorithms have been proposed
for off-policy evaluation. In particular, the TDC algorithm has been shown to have superior performance.
To explain, consider the linear approximation Vθ(s) = θ>φ(s) and suppose the state space includes states
s1, ..., sn, we can define a total value function Vθ := [Vθ(s1), ..., Vθ(sn)]>. The goal of TDC is to minimize the
following mean square projected Bellman error (MSPBE).

MSPBE(θ) := Eµb‖Vθ −ΠTπVθ‖2,

where µb is the stationary distribution under the behavior policy πb, Tπ is the Bellman operator and
Π(V) := arg minVθ ‖Vθ −V ‖2 is a projection operator of any state value function V : S → R onto the space of
linear value functions {Vθ : Vθ(s) = θ>φ(s)}. Given the i-th sample (si, ai, si+1, Ri) obtained by the behavior
policy, we define the following terms

ρi := π(ai|si)
πb(ai|si)

, bi := ρiRiφ(si), Ai := ρiφ(si)(γφ(si+1)− φ(si))>,

Bi := −γρiφ(si+1)φ(si)>, Ci := −φ(si)φ(si)>, (3)
1Sun et al. (2020) does not report sample complexity and communication complexity, so we calculated them based on their

finite-time error bound in proposition 2.

4

Published in Transactions on Machine Learning Research (06/2022)

where ρi is referred to as the importance sampling ratio. Then, with learning rates α, β > 0 and initialization
parameters θ0, w0, the-two timescale off-policy TDC algorithm takes the following recursive updates for
iterations t = 0, 1, 2, ...

(TDC):
{
θt+1 = θt + α(Atθt + bt +Btwt),
wt+1 = wt + β(Atθt + bt + Ctwt).

(4)

Xu et al. (2019); Xu & Liang (2020) study slight variations of the above TDC algorithm by using projection
and minibatch technique respectively, and obtain that both variants obtain an ε-approximation of the optimal
model parameter θ∗ = −A−1b (A := Eπb [Ai], b := Eπb [bi]) with sample complexity O(ε−1 ln ε−1).

3.2 Decentralized Mini-batch TDC

In this subsection, we propose a decentralized TDC algorithm for off-policy evaluation in MARL. In the
multi-agent setting, without loss of generality, we assume that each agent m has a target policy π(m) and
its samples are collected by a different behavior policy π(m)

b . In particular, if agent m is on-policy, then we
have π(m)

b = π(m). In this multi-agent off-policy setting, the agents aim to utilize the data collected by the
behavior policies πb = {π(m)

b }Mm=1 to help evaluate the value function V π associated with the target policies
π = {π(m)}Mm=1.

However, directly generalizing the centralized TDC algorithm to the decentralized setting will encounter
several challenges. First, the centralized TDC in eq. (4) consumes one sample per-iteration and achieves
the sample complexity O(ε−1 log ε−1) Xu et al. (2019). Therefore, the corresponding decentralized TDC
would perform one local communication per-iteration and is expected to have a communication complexity
in the order of O(ε−1 log ε−1), which induces large communication overhead. Second, in the multi-agent
off-policy setting, every agent m has a local importance sampling ratio ρ(m)

i := π(m)(a(m)
i |si)/π(m)

b (a(m)
i |si).

However, to correctly perform off-policy updates, every agent needs to know all the other agents’ local
importance sampling ratios in order to obtain the global importance sampling ratio ρi :=

∏M
m=1 ρ

(m)
i .

To address these challenges that are not seen in decentralized TD(0) and centralized TDC , we next propose
a decentralized TDC algorithm that takes mini-batch stochastic updates.

To elaborate, note that ρi can be rewritten as

ρi = exp
(
M · 1

M

∑M
m=1 ln ρ(m)

i

)
.

Therefore, all the agents just need to obtain the average 1
M

∑M
m=1 ln ρ(m)

i , which can be computed via local
communication of the logarithm-ratios {ln ρ(m)

i }Mm=1 for L rounds. Specifically, every agent m initializes
ρ̃

(m)
i,0 = ln ρ(m)

i and for iterations ` = 0, ..., L− 1 do

ρ̃
(m)
i,`+1 =

∑
m′∈Nm

Um,m′ ρ̃
(m′)
i,` , (5)

(Output) : ρ̂
(m)
i = exp(M · ρ̃(m)

i,L). (6)

In Corollary 2 (see the appendix), we prove that all of these local estimates {ρ̂(m)
i }Mm=1 converge exponentially

fast to the desired quantity ρi as L increases. Then, every agent m performs the following two-timescale
TDC updates

θ
(m)
t+1 =

∑
m′∈Nm

Um,m′θ
(m′)
t + α

N

(t+1)N−1∑
i=tN

(
A

(m)
i θ

(m)
t + b̂

(m)
i +B

(m)
i w

(m)
t

)
, (7)

w
(m)
t+1 =

∑
m′∈Nm

Um,m′w
(m′)
t + β

N

(t+1)N−1∑
i=tN

(
A

(m)
i θ

(m)
t + b̂

(m)
i + Ciw

(m)
t

)
, (8)

5

Published in Transactions on Machine Learning Research (06/2022)

where A(m)
i , B

(m)
i , b̂

(m)
i are defined by replacing the global variables ρi and Ri involved in Ai, Bi, b(m)

i (see
eq. (3)) with local variables ρ̂(m)

i and R(m)
i respectively. To summarize, every TDC iteration of Algorithm 1

consumes N Markovian samples, and requires two vector communication rounds for synchronizing the
parameter vectors θ(m)

t , w
(m)
t , and L scalar communication rounds for estimating the global importance

sampling ratio ({ρ(m)
i,` : i = tN, . . . , (t+ 1)N − 1,m ∈M} are shared in the `-th communication round). We

summarize these update rules in Algorithm 1. Moreover, after the decentralized TDC updates, the agents
perform additional T ′ local averaging steps to reach a global consensus on the model parameters.

Algorithm 1 Decentralized mini-batch TDC.
Input: Batch size N , iterations T, T ′, learning rates α, β.
Initialize: θ(m)

0 , w
(m)
0 for all agents m ∈M.

for iteration t = 0, 1, . . . , T − 1 do
Each agent collects N Markovian samples and computes their local importance sampling ratios ρ(m)

i .
for communication round ` = 0, 1, . . . , L− 1 do

for agent m ∈M in parallel do
Communicate ρ̃(m)

i,` via eq. (5) for the N samples i = tN, . . . , (t+ 1)N − 1.
end

end
for agent m ∈M in parallel do

Agent m estimates global importance sampling ratios ρ̂(m)
i via eq. (6) for i = tN, . . . , (t+ 1)N − 1,

and then performs the updates in eqs. (7) and (8).
end

end
for iteration t = T, T + 1, . . . , T + T ′ − 1 do

for agent m ∈M in parallel do
θ

(m)
t+1 =

∑
m′∈Nm Um,m′θ

(m′)
t .

end
end
Output: {θ(m)

T+T ′}Mm=1.

4 Finite-Time Analysis of Decentralized TDC

In this section, we analyze the finite-time convergence of Algorithm 1. Denote µπb as the stationary distribution
of the Markov chain {st}t induced by the collection of agents’ behavioral policies πb. Throughout the analysis,
we define the following notations.

A := Eπb [Ai], B := Eπb [Bi], C := Eπb [Ci], bi := 1
M

∑M
m=1 b

(m)
i , b : =Eπb

[
bi
]
,

θt := 1
M

∑M
m=1 θ

(m)
t , θ∗ := −A−1b, w∗t := −C−1(Aθt + b),

where Eπb denotes the expectation when st ∼ µπb , a
(m)
t ∼ π

(m)
b (st) and st+1 ∼ P (·|st, at), Ai, Bi, Ci are

defined in eq. (3) with exact global importance sampling ratio ρi, θ∗ is the optimal model parameter, and w∗t
is the optimal auxiliary parameter corresponding to θt . It is well-known that the optimal model parameter
is θ∗ = −A−1b Xu et al. (2020b); Xu & Liang (2020). We make the following standard assumptions.
Assumption 1. There exist constants ν > 0 and δ ∈ (0, 1) such that for all t ≥ 0,

sup
s∈S

dTV (Pπb (st | s0 = s) , µπb) ≤ νδt, (9)

where dTV denotes the total-variation distance.
Assumption 2. The matrices A and C are invertible.
Assumption 3. The feature vectors satisfy ‖φ(s)‖ ≤ 1,∀s.

6

Published in Transactions on Machine Learning Research (06/2022)

Assumption 4. There exist Rmax, ρmax > 0 such that for all m ∈ M: maxs,a,s′ R(m)(s, a, s′) < Rmax and
maxs,a(m) ρ(m)(s, a(m)) < ρmax where ρ(m)(s, a(m)) := π(m)(a(m)|s)

π
(m)
b

(a(m)|s)
denotes the global importance sampling

ratio .

Assumption 5. The communication matrix U is doubly stochastic, (i.e., the entries of each row and those
of each column sum up to 1.) , and its second largest singular value satisfies σ2 ∈ [0, 1).

Assumption 1 has been widely adopted in the existing literature Bhandari et al. (2018); Xu et al. (2019);
Xu & Liang (2020); Shaocong et al. (2020; 2021). It holds for all homogeneous Markov chains with finite
state-space and all uniformly ergodic Markov chains. Assumptions 2 – 4 are widely adopted in the analysis
of TD learning algorithms Xu et al. (2019); Xu & Liang (2020). In particular, Assumption 2 implies that
λ1 := −λmax(A>C−1A) > 0, λ2 := −λmax(C) > 0 where λmax(C) denotes the largest eigenvalue of matrix C.
Assumption 3 can always hold by normalizing the feature vectors. Assumption 4 holds for any uniformly
lower bounded behavior policy, i.e., inf(s,a,m) π

(m)
b (s, a) > 0, which ensures that every state-action pair (s, a)

is visited infinitely often. Assumption 5 is standard in decentralized optimization Singh et al. (2020); Saha
et al. (2020) and TD learning Sun et al. (2020); Wang et al. (2020). σ2 is an important measure that reflects
communication topology. For example, densely connected network tends to have smaller σ2 than sparse
network.

We obtain the following finite-time error bound as well as the sample complexity (the number of required
samples) and communication complexity (the number of communication rounds) for Algorithm 1 with
Markovian samples.
Theorem 1. Let Assumptions 1–5 hold. Run Algorithm 1 for T iterations with learning rates α ≤
min{O(β),O(1−σ2√

M
)}, β ≤ O(1), batch size N ≥ max{O(1),O(βα)} and L ≥ O(lnM+M ln ρmax

lnσ−1
2

) (see eq. (35)-
(38) for the full expressions). Then, we have the following convergence rate (see eq. (28) for its full
expression)

E
[∥∥θT − θ∗∥∥2] ≤ (1− αλ1

6

)T (∥∥θ0 − θ∗
∥∥2 + ‖w0 − w∗0‖2)+O

(β

Nα
+ βσ

L/4
2 2T

M

)
. (10)

Furthermore, after T ′ iterations of local averaging, the local models of all agents m = 1, ...,M has the following
consensus error (see eq. (34) for its full expression) :

E
[
‖θ(m)
T+T ′ − θT ‖

2] ≤ σ2T ′
2 O

(
1 + M4βα

(1− σ2)2 + Mβασ
L/4
2 2T

1− σ2

)
. (11)

Consequently, by choosing α = O(1−σ2√
M

), β = O(1), T = O
(√

M ln ε−1

1−σ2

)
, N = O

(√
M

ε(1−σ2)
)
, L = O

(√
M ln ε−1

(1−σ2)2 +
M

1−σ2

)
, T ′ = O

(1
1−σ2

ln M
ε(1−σ2)

)
(See the end of Appendix B for the full expressions of these hyperparameters)

, we obtain that E(‖θ(m)
T+T ′ − θ∗‖2) ≤ ε for all m. The overall communication complexities for synchronizing

θ
(m)
t and imporance sampling ratio ρ are respectively T + T ′ = O

(√
M ln ε−1

1−σ2

)
and TL = O

((√
M ln ε−1

(1−σ2)3 +
M

(1−σ2)2

)
ln M

ε(1−σ2)
)
. The total sample complexity is NT = O

(
M ln ε−1

ε(1−σ2)2

)
.

The above theorem shows that our decentralized TDC achieves the sample complexity O
(
M ln ε−1

ε(1−σ2)2

)
, which, in

the centralized setting (M = 1, σ2 = 0), matches O(ε−1 ln ε−1) of centralized TDC for Markovian samples
Xu et al. (2019); Xu & Liang (2020) and matches the theoretical lower bound O(ε−1) given in Kaledin et al.
(2020) up to a logarithm factor. In addition, the sample complexity is proportional to M , which matches the
theoretical lower bound of decentralized strongly convex optimization in Scaman et al. (2017). Importantly, the
communication complexity O

(√
M ln ε−1

1−σ2

)
for synchronizing θ(m)

t is substantially lower than the communication
complexity O

((
ε−1 +

√
M√

ε(1−σ2)
)

ln ε−1) of decentralized TD(0) Sun et al. (2020) 2 Intuitively, this is because
our algorithm adopts mini-batch sampling that significantly reduces the communication frequency, since

2Since on-policy evaluation does not involve importance sampling ratio ρ, we only compare the communication complexity
for synchronizing θ(m)

t which is involved in both on-policy and off-policy evaluation.

7

Published in Transactions on Machine Learning Research (06/2022)

communication occurs after collecting a mini-batch of samples to compute the mini-batch updates. Moreover,
the communication complexity has a logarithm dependence ln ε−1 on the target accuracy, and this matches
the theoretical lower bound of decentralized strongly convex optimization in Scaman et al. (2017). Note
that both communication complexity and sample complexity decrease with smaller σ2 > 0. Hence, the
communication matrix U can be selected with minimum possible σ2, under network topology constraint in
practice. In addition, our stepsizes α = O

(1−σ2√
M

)
and β = O(1) do not scale with ε. Although α can be small

when σ2 ≈ 1 and M is large, it is much larger than α = min
[
O(ε),O

(√
ε
M (1− σ2)

)]
in decentralized TD (0)

Sun et al. (2020) with small ε. 3

Taking a deeper look, Theorem 1 shows that the average model θT converges to a small neighborhood
of the optimal solution θ∗ at a fast linear convergence rate (10) that matches the convergence rate of
centralized TDC Xu et al. (2019); Xu & Liang (2020). In particular, the convergence error is in the order of
O
(
β
Nα + βσ

L/4
2 2T
M

)
, which can be driven arbitrarily close to zero by choosing a sufficiently large mini-batch size

N and communication rounds L (with T fixed), and choosing constant-level learning rates α, β. Moreover,
the T ′ steps of extra local model averaging further help all the agents achieve a small consensus error at
a linear convergence rate (11). Eqs. (10) and (11) together ensure the fast convergence of all the local
model parameters. We want to point out that the T ′ local averaging steps are critical for establishing fast
convergence of local model parameters. Specifically, without the T ′ local averaging steps, the consensus error
E
[
‖θ(m)
T − θT ‖2] would be in the order of at least O(1), which is constant-level and hence cannot guarantee

the local model parameters converge arbitrarily close to the true solution.

Proof sketch of Theorem 1. The proof of the theorem is a nontrivial generalization of the analysis of
centralized off-policy TDC to the decentralized case. Below, we sketch the technical proof and elaborate on
the technical novelties.

• Step 1. We first consider an ideal case where the agents can access the exact global importance sampling
ratio ρt at iteration t. In this ideal case, every agent m can replace the estimated global importance
sampling ratio ρ̂(m)

i involved in A(m)
i , B(m)

i , b̂(m)
i in the update rules (7) and (8) by the exact value ρi

(so A(m)
i , B(m)

i , b̂(m)
i become Ai, Bi, b(m)

i respectively) . Then, with the notations defined in Table 1 in
Appendix A, the averaged update rules (14) and (15) become

θ̃t+1 =θt + α
(
Ãtθt + b̃t + B̃twt

)
, (12)

w̃t+1 =wt + β
(
Ãtθt + b̃t + C̃twt

)
, (13)

This can be seen as one step of centralized TDC. Hence, we can bound its optimization error terms
E
[
‖w̃t+1 − w∗t ‖2] and E

[
‖θ̃t+1 − θ∗‖2].

• Step 2. We return to Algorithm 1 and bound its optimization error terms E
[
‖wt+1−w∗t+1‖2] (by bounding

E
[
‖wt+1 − w∗t ‖2] first) and E

[
‖θt+1 − θ∗‖2]. This is done by bounding the gap between the centralized

updates (12) and (13) (with exact ρt) and the decentralized updates (14) and (15) (with inexact ρt). The
key is to establish Corollary 2, which strategically controls the gap between the inexact global importance
sampling ratio ρ̂(m)

t and the exact value ρt. Such a challenge in bounding the importance sampling ratio
gap is not seen in the analysis of decentralized TD(0) and centralized TDC.

To elaborate, note that the locally-averaged importance sampling ratios ρ̃(m)
t,` in eq. (5) exponentially

converges to the value ln ρt. However, the initial gap | ln ρ(m)
t − ln ρt| can be numerically large since ρ(m)

t

may be a numerically small positive number. To avoid such divergence issue, our proof discusses two
complementary cases. Case 1: the quantity ρmin := minm∈M ρ

(m)
t ∈ [σL/2

2 , ρmax]. In this case, the proof is
straightforward as the initial gap is bounded. Case 2: the quantity ρmin ∈ (0, σL/2

2]. In this case, we show
that the locally-averaged logarithm-ratio ρ̃(m)

t,L is below a large negative number O
(ln ρmin

M

)
� 0 (See eq.

(65)). which implies that both the global importance sampling ratio ρt and its estimation ρ̂(m)
t are close

3α = min
[
O(ε),O

(√
ε
M

(1− σ2)
)]

is obtained by letting the convergence rate in proposition 2 from Sun et al. (2020) to be
smaller than ε.

8

Published in Transactions on Machine Learning Research (06/2022)

to zero. In both cases, {ρ̂(m)
t }Mm=1 converge exponentially fast to ρt as L increases. This prove eq. (10).

To the best of our knowledge, this technique for bounding the estimation error of the global importance
sampling ratio has not been developed in the existing literature.

• Step 3. Finally, we prove the consensus error (11). Although the consensus error exponentially decays
during the T ′ extra local average steps in Algorithm 1, it is non-trivial to bound the initial consensus
error ‖∆ΘT ‖F of the T ′ local average iterations (see eq. (34)), which is caused by the T decentralized
TDC steps. To bound this error, note that each decentralized TDC step consists of both local averaging
and TDC update, which makes the consensus error ‖∆Θt‖F diminishes geometrically fast with a noise
term

∑M
m=1 ‖hm‖ (see eq. (30)). Such a noise term is induced by the TDC update and hence its bound

depends on both the consensus error and the model estimation error in eq. (10). We need to apply these
correlated bounds iteratively for T iterations to bound the initial consensus error ‖∆ΘT ‖F .

5 Experiments

5.1 Simulated Multi-Agent Networks

We simulate a multi-agent MDP with 10 decentralized agents. The shared state space contains 10 states and
each agent can take 2 actions. All behavior policies are uniform policies (i.e., each agent takes all actions with
equal probability), and the target policies are obtained by first perturbing the corresponding behavior policies
with Gaussian noises sampled from N (0, 0.05) and then performing a proper normalization. The entries of
the transition kernel and the reward functions are independently generated from the uniform distribution on
[0, 1] (with proper normalization for the transition kernel). We generate all state features with dimension 5
independently from the standard Gaussian distribution and normalize them to have unit norm. The discount
factor is γ = 0.95.

We consider two types of network topologies: a fully connected network with communication matrix U having
diagonal entries 0.8 and off-diagonal entries 1/45, and a ring network with communication matrix U having
diagonal entries 0.8 and entries 0.1 for adjacent agents. We implement and compare two algorithms in these
networks: the decentralized TD(0) with batch size N = 1 (used in Sun et al. (2020)) and our decentralized
TDC with batch sizes N = 1, 10, 20, 50, 100. Note that the original decentralized TD(0) is simply eq. (7)
with setting w(m)

t ≡ 0 and ρi ≡ 1 in the definition of A(m)
i , B(m)

i and b̂(m)
i , which only works for on-policy

evaluation. To adapt decentralized TD(0) to off-policy evaluation, we simply use ρ̂(m)
i computed by eqs. (5)

and (6) with L = 3.

Effect of Batch size: We test these algorithms with varying batch size N and compare their sample and
communication complexities. We set learning rate α = 0.2 for the decentralized TD(0) and α = 0.2 ∗ N ,
β = 0.002 ∗N for our decentralized TDC with varying batch sizes N = 1, 10, 20, 50, 100. Both algorithms
use L = 3 communication rounds for synchronizing ρ̂(m)

t . All algorithms are repeated 100 times using a fixed
set of 100 MDP trajectories, each of which has 20k Markovian samples.

We first implement these algorithms in the fully connected network. Figure 1 plots the relative convergence
error ‖θt − θ∗‖/‖θ∗‖ v.s. the number of samples (tN) and the number of communication rounds (t) . For
each curve, its upper and lower envelopes denote the 95% and 5% percentiles of the 100 convergence errors,
respectively. It can be seen that our decentralized TDC with different batch sizes achieve comparable sample
complexity to that of the decentralized TD(0), demonstrating the sample-efficiency of our algorithms. On the
other hand, our decentralized TDC requires much less communication complexities than the decentralized
TD(0) with N ≥ 10 , and the required communication becomes lighter as batch size increases. All these
results match our theoretical analysis well.

We further implement these algorithms in the ring network. The comparison results are exactly the same
as those in Figure 1, since the update rule of θt does not rely on the network topology under exact global
importance sampling.

Effect of Communication Rounds: We test our decentralized TDC using varying communication rounds
L = 1, 3, 5, 7. We use a fixed batch size N = 100 and set learning rates α = 5, β = 0.05, and repeat each

9

Published in Transactions on Machine Learning Research (06/2022)

Figure 1: Comparison between decentralized TDC with varying batch sizes and decentralized TD(0).

algorithm 100 times using the set of 100 MDP trajectories. We also implement the decentralized TDC with
exact global importance sampling ratios as a baseline. Figure 2 plots the relative convergence error v.s. the
number of communication rounds (t) in the fully-connected network (Left) and ring network (Right). It can
be seen that in both networks, the asymptotic convergence error of the decentralized TDC with inexact ρ
decreases as the number of communication rounds L for synchronizing the global importance sampling ratio
increases. In particular, with L = 1, decentralized TDC diverges asymptotically due to inaccurate estimation
of the global importance sampling ratio. As L increases to more than 5, the convergence error is as small as
that under exact global importance sampling.

Figure 2: Effect of communication rounds L on asymptotic convergence error.

We further plot the maximum relative consensus error among all agents maxm ‖θ(m)
t − θt‖/‖θ

∗‖ v.s. the
number of communication rounds (t) in the fully-connected network (Left) and ring network (Right) in
Figure 3, where the tails in both figures correspond to the extra T ′ = 20 local model averaging steps. In both
networks, one can see that the consensus error decreases as L increases, and the extra local model averaging
steps are necessary to achieve consensus. Moreover, it can be seen that the consensus errors achieved in the
fully connected network are slightly smaller than those achieved in the ring network, as denser connections
facilitate achieving the global consensus.

5.2 Two-Agent Cliff Navigation Problem

In this subsection, we test our algorithms in solving a two-agent Cliff Navigation problem Qiu et al. (2021) in
a grid-world environment. This problem is adapted from its single-agent version (see Example 6.6 of Sutton

10

Published in Transactions on Machine Learning Research (06/2022)

Figure 3: Effect of communication rounds L on consensus error.

Figure 4: Two-agent cliff navigation. (“S”, “X”, “D” denote starting point, cliff and destination respectively.
The optimal path is shown in red.)

Figure 5: Results on two-agent cliff navigation problem.

& Barto (2018)). As illustrated in Figure 4, two agents start from the starting point “S” on a 3× 4 grid and
aim to reach the destination “D”. Here, global state is defined as the joint location of the two agents, and
there are in total (3× 4)2 = 144 global states. In most states, an agent can choose to move up, down, left or
right by one step and receives −1 reward. However, once an agent falls into the cliff “X”, it will return to the
starting point “S” and receive −100 reward. When an agent reaches “D”, it will always stay at “D”, and

11

Published in Transactions on Machine Learning Research (06/2022)

receives 0 reward if the other agent also reaches/stays at “D”, or receives −0.5 reward otherwise. If an agent
is not at “X” or “D” and selects a direction that points outside the grid, then it stays in the previous location
and receives −1 reward.

We apply the aforementioned algorithms with different batchsizes N to solve this problem. The hyperparam-
eters and the ways to generate behavior policy and target policy are the same as the previous simulation
experiment, except that the communication matrix U has diagonal entries 0.7 and off-diagonals 0.3. All
algorithms are repeated 100 times using a fixed set of 100 MDP trajectories, each of which has 20k Markovian
samples. Figure 5 plots the relative convergence error ‖θt − θ∗‖/‖θ∗‖ v.s. the number of samples (tN)
and the number of communication rounds (t) . We can see that compared with the decentralized TD(0),
our decentralized TDC achieve comparable sample complexities with different batch sizes and much lower
communication complexities with N ≥ 10 . Moreover, the required communication becomes lighter as batch
size increases. These properties are similar to those shown in the simulation and thus have generality.

Figure 6: The map for path finding problem. (“S1”, “S2”, “S3” denote the starting points of the 3 agents.
“D1”, “D2”, “D3” denote their destinations. “X” denotes an obstacle.)

Figure 7: Results on path finding problem.

12

Published in Transactions on Machine Learning Research (06/2022)

5.3 Application to Path Finding Problem

In this subsection, we test our algorithms in solving a multi-agent path finding problem Ma et al. (2021),
which has broad real-world applications including aircraft-towing vehicles Morris et al. (2016), ware-house
and office robots Wurman et al. (2008); Veloso et al. (2015), and video games Silver (2005); Ma et al. (2017).
As illustrated in Figure 6, three agents start fron the points “S1”, “S2”, “S3” on a 10× 10 grid and aim to
reach the destination “D1”, “D2”, “D3”, respectively. In most cases, an agent can choose to move up, down,
left or right by one step or stay and receives -0.075 reward. However, when an agent reaches its destination,
it always stay and receives 3 reward if all the agents reach their destinations, or receives 0 reward otherwise.
If an agent has not reached its destination and collides with an obstacle “X” or another agent, it receives -0.5
reward.

We apply the aforementioned algorithms with different batchsizes N to solve this problem. The implementation
details are mostly the same as those of the previous two-agent cliff navigation problem, with the following
differences. (1) The behavior policy selects from all available actions uniformly at random, and the target
policy selects from available actions that avoid obstacles uniformly at random; (2) The communication
matrix U has diagonal entries 0.6 and off-diagonals 0.2; (3) We use α = 0.08 ∗N obtained by tuning while
β = 0.002 ∗N is the same as aforementioned. (4) The feature vector of any state s (all the agents’ locations)
is φ(s) = [φ(1)(s), φ(2)(s), φ(3)(s)] where φ(m) ∈ {0, 1}5 is defined as follows: φ(m)

1 (s) = 1, φ(m)
2 (s) = 1 or

φ
(m)
3 (s) = 1 if and only if the m-th agent reaches its goal, is 1 step away from its goal, or is 1 horizontal step

and 1 vertical step away from its goal, respectively. φ(m)
4 (s) = 1 if and only if the m-th agent has not reached

its goal and there is at least one obstacle or other agents in its 8 surrounding grids. φ(m)
5 (s) = 1 if and only if

the m-th agent has not reached its goal and collides with an obstacle “X” or another agent.

Figure 7 plots the value function at the target state where all the agents reach the goal (i.e., the sum of entries
(θt)1 + (θt)6 + (θt)11) v.s. the number of samples (tN) and the number of communication rounds (t). We
can see that all the algorithms converge to the true value 3/(1− γ) = 60. Compared with the decentralized
TD(0), our decentralized TDC achieve comparable sample complexities with different batch sizes and much
lower communication complexities with N ≥ 10. Moreover, the required communication becomes lighter as
batch size increases. These properties are similar to those shown in the simulation and thus have generality.

6 Conclusion

In this paper, we develop a sample-efficient and communication-efficient decentralized TDC algorithm for
multi-agent off-policy evaluation. Our algorithm synchronizes the local importance sampling ratios among
the agents and adopts mini-batch stochastic updates to save communication. In particular, it avoids sharing
agents’ sensitive local information. We prove that the proposed decentralized TDC algorithms achieve a
near-optimal sample complexity as well as an optimal communication complexity that improves over the
existing decentralized TD(0). In the future, we expect that our algorithm can serve as a fundamental
component in the design of advanced policy optimization algorithms for MARL.

Acknowledgments

The work of Z. Chen and Y. Zhou was supported in part by U.S. National Science Foundation under the
Grants CCF-2106216 and DMS-2134223.

13

Published in Transactions on Machine Learning Research (06/2022)

References
Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Proc. Interna-
tional Conference on Machine Learning (ICML), pp. 30–37, 1995.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learning
with linear function approximation. In Proc. Conference on Learning Theory (COLT), volume 75, pp.
1691–1692, 2018.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. 2009.

Lucas Cassano, Kun Yuan, and Ali H Sayed. Multi-agent fully decentralized value function learning with
linear convergence rates. IEEE Transactions on Automatic Control, 2020.

Behdad Chalaki and Andreas A Malikopoulos. A hysteretic q-learning coordination framework for emerging
mobility systems in smart cities. ArXiv:2011.03137, 2020.

Tianyi Chen, Kaiqing Zhang, Georgios B Giannakis, and Tamer Basar. Communication-efficient policy
gradient methods for distributed reinforcement learning. IEEE Transactions on Control of Network Systems,
2021.

Gal Dalal, Balazs Szorenyi, Gugan Thoppe, and Shie Mannor. Finite sample analysis of two-timescale
stochastic approximation with applications to reinforcement learning. In Proc. Conference on Learning
Theory (COLT), 2018a.

Gal Dalal, Balázs Szörényi, Gugan Thoppe, and Shie Mannor. Finite sample analyses for td (0) with function
approximation. In Proc. Association for the Advancement of Artificial Intelligence (AAAI), volume 32,
2018b.

Gal Dalal, Balazs Szorenyi, and Gugan Thoppe. A tale of two-timescale reinforcement learning with the
tightest finite-time bound. In Proc. Association for the Advancement of Artificial Intelligence (AAAI),
volume 34, pp. 3701–3708, 2020.

Peter Dayan. The convergence of td (λ) for general λ. Machine learning, 8(3-4):341–362, 1992.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed TD(0) with linear
function approximation on multi-agent reinforcement learning. In Proc. International Conference on
Machine Learning (ICML), volume 97, pp. 1626–1635, 09–15 Jun 2019.

Geoffrey J Gordon. Stable function approximation in dynamic programming. In Machine Learning Proceedings
1995, pp. 261–268. 1995.

Harsh Gupta, R. Srikant, and Lei Ying. Finite-time performance bounds and adaptive learning rate selection
for two time-scale reinforcement learning. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pp. 4704–4713, 2019.

Bin Hu and Usman Ahmed Syed. Characterizing the exact behaviors of temporal difference learning algorithms
using markov jump linear system theory. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), pp. 8479–8490, 2019.

Tommi Jaakkola, Michael Jordan, and Satinder Singh. Convergence of stochastic iterative dynamic pro-
gramming algorithms. In Proc. Advances in Neural Information Processing Systems (NIPS), volume 6, pp.
703–710, 1993.

Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, and Hoi-To Wai. Finite time analysis of
linear two-timescale stochastic approximation with markovian noise. In Proc. Conference on Learning
Theory (COLT), pp. 2144–2203, 2020.

Nathaniel Korda and Prashanth La. On td (0) with function approximation: Concentration bounds and a
centered variant with exponential convergence. In Proc. International Conference on Machine Learning
(ICML), pp. 626–634, 2015.

14

Published in Transactions on Machine Learning Research (06/2022)

Vikram Krishnamurthy, Michael Maskery, and George Yin. Decentralized adaptive filtering algorithms for
sensor activation in an unattended ground sensor network. IEEE Transactions on Signal Processing, 56
(12):6086–6101, 2008.

Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: How far does
constant step-size and iterate averaging go? In Proc. International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 1347–1355, 2018.

Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-sample analysis of
proximal gradient td algorithms. In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pp.
504–513, 2015.

Hang Ma, Jingxing Yang, Liron Cohen, TK Kumar, and Sven Koenig. Feasibility study: Moving non-
homogeneous teams in congested video game environments. In Proc. the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 13, pp. 270–272, 2017.

Ziyuan Ma, Yudong Luo, and Hang Ma. Distributed heuristic multi-agent path finding with communication.
In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 8699–8705. IEEE, 2021.

Sergio Valcarcel Macua, Jianshu Chen, Santiago Zazo, and Ali H Sayed. Distributed policy evaluation under
multiple behavior strategies. IEEE Transactions on Automatic Control, 60(5):1260–1274, 2014.

Hamid Reza Maei. Gradient temporal-difference learning algorithms. PhD thesis, University of Alberta, 2011.

Adwaitvedant Mathkar and Vivek S Borkar. Distributed reinforcement learning via gossip. IEEE Transactions
on Automatic Control, 62(3):1465–1470, 2016.

Robert Morris, Corina S Pasareanu, Kasper Luckow, Waqar Malik, Hang Ma, TK Satish Kumar, and Sven
Koenig. Planning, scheduling and monitoring for airport surface operations. In Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova, and Zinovi
Rabinovich. Rmix: Learning risk-sensitive policies for cooperative reinforcement learning agents. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE Transactions
on Control of Network Systems, 5(3):1245–1260, 2017.

Guannan Qu, Adam Wierman, and Na Li. Scalable reinforcement learning of localized policies for multi-agent
networked systems. In Learning for Dynamics and Control (L4DC), pp. 256–266, 2020.

Rajarshi Saha, Stefano Rini, Milind Rao, and Andrea Goldsmith. Decentralized optimization over noisy,
rate-constrained networks: How to agree by talking about how we disagree. ArXiv:2010.11292, 2020.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algorithms
for smooth and strongly convex distributed optimization in networks. In Proc. International Conference on
Machine Learning (ICML), volume 70, pp. 3027–3036, 2017.

Ma Shaocong, Zhou Yi, and Zou Shaofeng. Variance-reduced off-policy tdc learning: Non-asymptotic
convergence analysis. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Ma Shaocong, Chen Ziyi, Zhou Yi, and Zou Shaofeng. Greedy-{gq} with variance reduction: Finite-time
analysis and improved complexity. In Proc. International Conference on Learning Representations (ICLR),
2021.

David Silver. Cooperative pathfinding. In Proc. the AAAI conference on artificial intelligence and interactive
digital entertainment, volume 1, pp. 117–122, 2005.

Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Squarm-sgd: Communication-efficient
momentum sgd for decentralized optimization. ArXiv:2005.07041, 2020.

15

Published in Transactions on Machine Learning Research (06/2022)

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation and td
learning. In Proc. Conference on Learning Theory (COLT), pp. 2803–2830, 2019.

Miloš S Stanković and Srdjan S Stanković. Multi-agent temporal-difference learning with linear function
approximation: Weak convergence under time-varying network topologies. In Proc. American Control
Conference (ACC), pp. 167–172, 2016.

Jun Sun, Gang Wang, Georgios B Giannakis, Qinmin Yang, and Zaiyue Yang. Finite-sample analysis of
decentralized temporal-difference learning with linear function approximation. In Proc. International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 4485–4495, 2020.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44,
1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei. A convergent o(n) algorithm for off-policy
temporal-difference learning with linear function approximation. In Proc. Advances in Neural Information
Processing Systems (NIPS), volume 21, pp. 1609–1616, 2008.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári,
and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear function
approximation. In Proc. International Conference on Machine Learning (ICML), pp. 993–1000, 2009.

Vladislav Tadić. On the convergence of temporal-difference learning with linear function approximation.
Machine learning, 42(3):241–267, 2001.

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE transactions on automatic control, 42(5):674–690, 1997.

Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. Cobots: Robust symbiotic au-
tonomous mobile service robots. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforcement learning via
double averaging primal-dual optimization. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), pp. 9672–9683, 2018.

Gang Wang, Bingcong Li, and Georgios B Giannakis. A multistep lyapunov approach for finite-time analysis
of biased stochastic approximation. ArXiv:1909.04299, 2019.

Gang Wang, Songtao Lu, Georgios Giannakis, Gerald Tesauro, and Jian Sun. Decentralized td tracking
with linear function approximation and its finite-time analysis. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), volume 33, 2020.

Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooperative, autonomous
vehicles in warehouses. AI magazine, 29(1):9–9, 2008.

Tengyu Xu and Yingbin Liang. Sample complexity bounds for two timescale value-based reinforcement
learning algorithms. ArXiv:2011.05053, 2020.

Tengyu Xu, Shaofeng Zou, and Yingbin Liang. Two time-scale off-policy td learning: Non-asymptotic analysis
over markovian samples. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp.
10634–10644, 2019.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-critic
algorithms. In Proc. Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020a.

Tengyu Xu, Zhe Wang, Yi Zhou, and Yingbin Liang. Reanalysis of variance reduced temporal difference
learning. In Proc. International Conference on Learning Representations (ICLR), 2020b.

16

Published in Transactions on Machine Learning Research (06/2022)

Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-robot coordination.
International Journal of Advanced Robotic Systems, 10(12):399, 2013.

Evşen Yanmaz, Markus Quaritsch, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and Christian
Bettstetter. Communication and coordination for drone networks. In Proc. International Conference on
Ad Hoc Networks, pp. 79–91, 2017.

Mingqi Yuan, Qi Cao, Man-on Pun, and Yi Chen. Towards user scheduling for 6g: A fairness-oriented
scheduler using multi-agent reinforcement learning. ArXiv:2012.15081, 2020.

Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Marl with general utilities via decentralized
shadow reward actor-critic. ArXiv:2106.00543, 2021.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. In Proc. Advances in Neural Information Processing Systems, pp. 8665–8675, 2019.

A Notations and Filtration

A.1 Notations to rewrite update rules in Algorithm 1

We introduce the notations in Table 1 that will be used throughout our proof .

Table 1: List of notations

Notations Explanation
ρi, Ai, Bi, Ci (defined in eq. (3)), These quantities of the i-th sample

b
(m)
i = ρiR

(m)
i φ(si) use exact global importance sampling ratio ρi.

A
(m)
i := ρ̂

(m)
i φ(si)(γφ(si+1)− φ(si))> Replace ρi and Ri in Ai, Bi (see eq. (3))

B
(m)
i := ρ̂

(m)
i φ(si+1)φ(si))> with ρ̂(m)

i and R(m)
i respectively.

b̂
(m)
i := ρ̂

(m)
i R

(m)
i φ(si) Replace ρi in b(m)

i with ρ̂(m)
i (defined by eqs. (5) and (6)).

θt = 1
M

∑M
m=1 θ

(m)
t

Agents’ average model parameter.
wt and bi are defined similarly.

Ãt = 1
N

∑(t+1)N−1
i=tN Ai

Minibatch average of global quantity.
B̃t and C̃t are defined similarly.

Ã
(m)
t = 1

N

∑(t+1)N−1
i=tN A

(m)
i

Average local quantity over the minibatch at the t-th iteration.

B̃
(m)
t , b̃(m)

t and ˜̂b(m)

t are defined similarly.
b̃t = 1

N

∑(t+1)N−1
i=tN bi = 1

M

∑M
m=1 b̃

(m)
t Average over both agents and minibatch.

A := Eπb [Ai], B := Eπb [Bi] Expected quantities.
C := Eπb [Ci], b : =Eπb

[
bi
]

θ∗ = −A−1b The optimal model parameter
w∗t = −C−1(Aθt + b) The optimal auxiliary parameter corresponding to θt.
‖A‖F :=

(∑
i,j A

2
i,j

)1/2 Frobenius norm.

Then, by averaging the update rules (7) and (8) over m, we obtain the following update rules of the model
average θt, wt.

θt+1 =θt + α

M

M∑
m=1

(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + B̃
(m)
t w

(m)
t

)
, (14)

wt+1 =wt + β

M

M∑
m=1

(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + C̃tw
(m)
t

)
. (15)

17

Published in Transactions on Machine Learning Research (06/2022)

A.2 Filtration

Define the filtration Ft = σ
(
{st′ , at′}tN−1

t′=1 ∪ {stN}
)
. Then,

Ãt, B̃t, C̃t, b̃
(m)
t , b̃t, Ã

(m)
t , B̃

(m)
t ,

˜̂
b

(m)

t ∈ Ft+1/Ft, θ
(m)
t , θt, w

(m)
t , wt, w

∗
t ∈ Ft/Ft−1.

B Proof of Theorem 1

Step 1: Bounding optimization error for ideal case. We first consider an ideal case where the agents
can access the exact global importance sampling ratio ρt at iteration t. In this ideal case, every agent m can
replace the estimated global importance sampling ratio ρ̂(m)

i involved in A(m)
i , B(m)

i , b̂(m)
i in the update rules

(7) and (8) by the exact value ρi. Then, with the notations defined in Appendix A, the averaged update rules
(14) and (15) respectively become eqs. (12) and (13) as repeated below

θ̃t+1 =θt + α
(
Ãtθt + b̃t + B̃twt

)
,

w̃t+1 =wt + β
(
Ãtθt + b̃t + C̃twt

)
.

The aim of Step 1 is to bound the following optimization errors of w̃t+1, θ̃t+1 obtained by the centralized
update rules (13) and (12) respectively.

E
[
‖w̃t+1 − w∗t ‖2∣∣Ft]

= ‖wt − w∗t ‖2 + 2β (wt − w∗t)>E
[
Ãtθt + b̃t + C̃twt

∣∣Ft]︸ ︷︷ ︸
(I)

+β2 E
[∥∥Ãtθt + b̃t + C̃twt

∥∥2∣∣Ft]︸ ︷︷ ︸
(II)

, (16)

E
[
‖θ̃t+1 − θ∗‖2∣∣Ft]

= ‖θt − θ∗‖2 + 2α
(
θt − θ∗

)>E[Ãtθt + b̃t + B̃twt
∣∣Ft]︸ ︷︷ ︸

(III)

+α2 E
[∥∥Ãtθt + b̃t + B̃twt

∥∥2∣∣Ft]︸ ︷︷ ︸
(IV)

. (17)

The above four terms (I)-(IV) are respectively bounded below.

(I) = (wt − w∗t)>E
[
Ãtθt + b̃t + C̃twt

∣∣Ft]
(i)= 2(wt − w∗t)>E

[
C̃t − C

∣∣Ft](wt − w∗t) + 2(wt − w∗t)>C(wt − w∗t) + 2(wt − w∗t)>

E
[
(Ãt − C̃tC−1A)θt + b̃t − C̃tC−1b

∣∣Ft]
(ii)
≤ 2

∥∥E[C̃t − C∣∣Ft]∥∥F∥∥wt − w∗t ∥∥2 − 2λ2
∥∥wt − w∗t ∥∥2 + λ2‖wt − w∗t ‖2 + 3

λ2
E
[∥∥b̃t − C̃tC−1b

∥∥2∣∣Ft]
+ 3
λ2

E
[∥∥(Ãt − C̃tC−1A)

∥∥2
F

∣∣Ft]∥∥θt − θ∗∥∥2 + 3
λ2

E
[∥∥Ãt − C̃tC−1A

∥∥2
F

∣∣Ft]∥∥θ∗∥∥2

(iii)
≤
(4νρmax

N(1− δ) − λ2

)∥∥wt − w∗t ∥∥2 + 96ρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2(∥∥θt − θ∗∥∥2 +
∥∥θ∗∥∥2 +R2

max
)

(18)

where (i) uses the notation that w∗t = −C−1(Aθt + b), (ii) uses λ2 = −λmax(C), the inequality that
‖Ax‖ ≤ ‖A‖F ‖x‖ for any matrix A and vector x , and the inequality that 2a>1 a2 ≤ σ−1‖a1‖2 + σ‖a2‖2 for
any a1, a2 ∈ Rd and σ > 0, and applies Jensen’s inequality to convex functions ‖ · ‖ and ‖ · ‖2 and uses eq.
(44), (iv) uses eqs. (47) and (48).

(II) = E
[∥∥Ãtθt + b̃t + C̃twt

∥∥2∣∣Ft]
18

Published in Transactions on Machine Learning Research (06/2022)

(i)= E
[∥∥(Ãt − C̃tC−1A)(θt − θ∗) + (Ãt − C̃tC−1A)θ∗ + b̃t + C̃t(wt − w∗t)− C̃tC−1b

∥∥2∣∣Ft]
(ii)
≤ 4E

[
‖Ãt − C̃tC−1A‖2

F

∣∣Ft]‖θt − θ∗‖2 + 4‖wt − w∗t ‖2

+ 4E
[
‖Ãt − C̃tC−1A‖2

F

∣∣Ft]‖θ∗‖2 + 4E
[
‖b̃t − C̃tC−1b‖2∣∣Ft]

(iii)
≤ 128ρ2

max(ν + 1)
N(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

+ 4
∥∥wt − w∗t ∥∥2 (19)

where (i) uses the notation that w∗t = −C−1(Aθt + b), (ii) uses ‖
∑4
k=1 ak‖2 ≤ 4

∑4
k=1 ‖ak‖2 for any

a1, a2, a3, a4 ∈ Rd and eq. (41), and ‖Ax‖ ≤ ‖A‖F ‖x‖ for any matrix A and vector x , (iii) uses eqs. (47)
and (48).

(III) =
(
θt − θ∗

)>E[Ãtθt + b̃t + B̃twt
∣∣Ft]

(i)= 2
(
θt − θ∗

)>E[(Ãt − B̃tC−1A−A>C−1A)(θt − θ∗) +A>C−1A(θt − θ∗)

+ (Ãt − B̃tC−1A−A>C−1A)θ∗ + B̃t(wt − w∗t) + b̃t − b− (B̃t −B)C−1b
∣∣Ft]

(ii)
≤ 2E

[∥∥Ãt − B̃tC−1A−A>C−1A
∥∥∣∣Ft]∥∥θt − θ∗∥∥2 − 2λ1

∥∥θt − θ∗∥∥2 + λ1‖θt − θ∗‖2 +
∥∥B̃t(wt − w∗t)

∥∥2

+ 4
λ1

E
[∥∥Ãt − B̃tC−1A−A>C−1A

∥∥2∥∥θ∗∥∥2 +
∥∥b̃t − b∥∥2 +

∥∥(B̃t −B)C−1b
∥∥2∣∣Ft]

(iii)
≤
(64ρ2

max(ν + 1)
N(1− δ)

(
1 + ρmax

λ2

)2
− λ1

)∥∥θt − θ∗∥∥2 + 4ρ2
max
λ1

∥∥wt − w∗t ∥∥2

+ 32ρ2
max(ν + 1)

Nλ1(1− δ)

(
4
(

1 + ρmax

λ2

)2∥∥θ∗∥∥2 +R2
max + ρmaxRmax

λ2

)
(20)

where (i) uses the notations that w∗t = −C−1(Aθt+ b) and that b = −Aθ∗, and the relation that C−B = A>,
(ii) uses the notation that λ1 = −λmax(A>C−1A) and the inequality that 2a>1 a2 ≤ σ−1‖a1‖2 + σ‖a2‖2 for
any a1, a2 ∈ Rd and σ > 0, and applies Jensen’s inequality to the convex functions ‖ · ‖ and ‖ · ‖2, (iii) uses
eqs. (40), (42), (43), (45), (46) and (49).

(IV) = E
[∥∥Ãtθt + b̃t + B̃twt

∥∥2∣∣Ft]
(i)= E

[∥∥(Ãt − B̃tC−1A)(θt − θ∗) + b̃t − b+ B̃t(wt − w∗t)

+ (Ãt − B̃tC−1A−A>C−1A)θ∗ − (B̃t −B)C−1b
∥∥2∣∣Ft]

(ii)
≤ 10E

[∥∥Ãt∥∥2
F

+
∥∥B̃tC−1A

∥∥2
F

∣∣Ft]∥∥θt − θ∗∥∥2 + 5E
[∥∥Ãt − B̃tC−1A−A>C−1A

∥∥2
F

∣∣Ft]∥∥θ∗∥∥2

+ 5E
[∥∥b̃t − b∥∥2∣∣Ft]+ 5E

[∥∥B̃t∥∥2
F

∣∣Ft]∥∥wt − w∗t ∥∥2 + 5E
[∥∥B̃t −B∥∥2

F

∣∣Ft]∥∥C−1b
∥∥2

(iii)
≤ 40ρ2

max

(
1 + ρmax

λ2

)2∥∥θt − θ∗∥∥2 + 5ρ2
max
∥∥wt − w∗t ∥∥2

+ 160ρ2
max(ν + 1)

N(1− δ)

(
1 + ρmax

λ2

)2(∥∥θ∗∥∥2 +R2
max
)

(21)

where (i) uses the notations that w∗t = −C−1(Aθt+ b) and that b = −Aθ∗, and the relation that C−B = A>,
(ii) uses ‖Ax‖ ≤ ‖A‖F ‖x‖ for any matrix A and vector x and ‖

∑K
k=1 ak‖2 ≤ K

∑K
k=1 ‖ak‖2 for any

ak ∈ Rd and eqs. (40), (45), (46) and (49), (iii) uses eqs. (39), (40), (42) and (43) and (1 + ρ2
max/λ

2
2) ≤

(1 + ρmax/λ2)2. Substituting the above terms (18)-(21) into eqs. (16) and (17) gives the following upper
bounds of E

[
‖w̃t+1 − w∗t ‖2

∣∣Ft] and E
[
‖θ̃t+1 − θ∗‖2

∣∣Ft].
E
[
‖w̃t+1 − w∗t ‖2∣∣Ft]
≤
[
1 + 2β

(4νρmax

N(1− δ) − λ2

)
+ 4β2

]∥∥wt − w∗t ∥∥2

19

Published in Transactions on Machine Learning Research (06/2022)

+ 64ρ2
max(ν + 1)
N(1− δ)

(
1 + 1

λ2

)2(3β
λ2

+ 2β2
)(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

(i)
≤
(

1− βλ2

2

)∥∥wt − w∗t ∥∥2 + 320βρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)
, (22)

where (i) uses N ≥ 8νρmax
λ2(1−δ) and β ≤ min

(
λ2
8 ,

1
λ2

)
.

E
[
‖θ̃t+1 − θ∗‖2∣∣Ft]
≤
(

1 + 128αρ2
max(ν + 1)

N(1− δ)

(
1 + ρmax

λ2

)2
− 2αλ1 + 40α2ρ2

max

(
1 + ρmax

λ2

)2)∥∥θt − θ∗∥∥2

+ αρ2
max

(8
λ1

+ 5α
)∥∥wt − w∗t ∥∥2 + 64αρ2

max(ν + 1)
Nλ1(1− δ)

(
4
(

1 + ρmax

λ2

)2∥∥θ∗∥∥2 +R2
max + ρmaxRmax

λ2

)
+ 160α2ρ2

max(ν + 1)
N(1− δ)

(
1 + ρmax

λ2

)2(∥∥θ∗∥∥2 +R2
max
)

(i)
≤
(

1− αλ1

2

)∥∥θt − θ∗∥∥2 + 13αρ2
max

λ1

∥∥wt − w∗t ∥∥2 + 224αρ2
max(ν + 1)

Nλ1(1− δ)

(
1 + ρmax

λ2

)2(
4
∥∥θ∗∥∥2 + 2R2

max + 1
)
,

(23)

where (i) uses N≥ 128ρ2
max(ν+1)

λ1(1−δ)
(
1+ ρmax

λ2

)2,α≤min
[

λ1
40ρ2

max

(
1+ ρmax

λ2

)−2
, 1
λ1

]
and ρmaxRmax

λ2
≤
(
1+ ρmax

λ2

)2+R2
max.

Step 2: Bounding optimization error of Algorithm 1. With the above upper bounds (22) and (23),
we derive the upper bounds of E

[
‖wt+1−w∗t ‖2

∣∣Ft], E[‖wt+1−w∗t+1‖2
∣∣Ft] and E

[
‖θt+1− θ∗‖2

∣∣Ft] as follows.
E
[
‖wt+1 − w∗t ‖2∣∣Ft]

(i)
≤
(

1 + 1
6/(βλ2)− 3

)
E
(
‖w̃t − w∗t ‖2∣∣Ft)+

(
1 + 6

βλ2
− 3
)
E
(∥∥wt − w̃t∥∥2∣∣Ft)

(ii)
≤ 6− 2βλ2

6− 3βλ2

[(
1− βλ2

2

)∥∥wt − w∗t ∥∥2 + 320βρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)]

+ 6
βλ2

E
[∥∥∥ β
M

M∑
m=1

[
(Ã(m)

t − Ãt)θ(m)
t + ˜̂b(m)

t − b̃(m)
t

]∥∥∥2∣∣∣Ft]
(iii)
≤
(

1− βλ2

3

)∥∥wt − w∗t ∥∥2 + 4
3

320βρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

+ 6β
λ2

E
[1
M

M∑
m=1

(∥∥(Ã(m)
t − Ãt)θ(m)

t + ˜̂b(m)

t − b̃(m)
t

∥∥2
)∣∣∣Ft]

(iv)
≤
(

1− βλ2

3

)
‖wt − w∗t ‖2 + 427βρ2

max(ν + 1)
Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

+ 12βσL/4
2

Mλ2

(
16 max

m∈M
(‖θ(m)

0 ‖+ ‖w(m)
0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t +R2

max

)
, (24)

where (i) uses the inequality that ‖a1 + a2‖2 ≤ (1 + σ)‖a1‖2 + (1 + σ−1)‖a2‖2 for any a1, a2 ∈ Rd and
σ > 0, (ii) uses eqs. (15), (13) and (22), (iii) applies Jensen’s inequality to the convex function ‖ · ‖2 and
uses β ≤ 1

λ2
, (iv) uses the condition that β ≤ 1

λ2
which implies that 1 + 1

6/(βλ2)−3 ≤ 2, the inequality that
‖a1 + a2‖2 ≤ 2‖a1‖2 + 2‖a2‖2 for any a1, a2 ∈ Rd, and eqs. (52), (54) and (68).

E
[
‖wt+1 − w∗t+1‖2∣∣Ft]

(i)
≤
(

1 + 1
2[3/(βλ2)− 1]

)
E
[
‖wt+1 − w∗t ‖2∣∣Ft]+

[
1 + 2

(
3/(βλ2)− 1

)]
E
[
‖w∗t+1 − w∗t ‖2∣∣Ft]

20

Published in Transactions on Machine Learning Research (06/2022)

(ii)
≤ 6/(βλ2)− 1

2[3/(βλ2)− 1]

[(
1− βλ2

3

)
‖wt − w∗t ‖2 + 427βρ2

max(ν + 1)
Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

+ 12βσL/4
2

Mλ2

(
16 max

m∈M
(‖θ(m)

0 ‖+ ‖w(m)
0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t +R2

max

)]
+ 6
βλ2

E
[
‖C−1A(θt+1 − θt)‖2∣∣Ft]

(iii)
≤
(

1− βλ2

6

)
‖wt − w∗t ‖2 + 534βρ2

max(ν + 1)
Nλ2(1− δ)

(
1 + 1

λ2

)2(
‖θt − θ∗‖2 + ‖θ∗‖2 +R2

max
)

+ 15βσL/4
2

Mλ2

(
17 max

m∈M
(‖θ(m)

0 ‖+ ‖w(m)
0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t

)
+ 24α2ρ2

max
βλ3

2
E
[∥∥∥ 1
M

M∑
m=1

(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + B̃
(m)
t w

(m)
t

)∥∥∥2∣∣∣Ft]︸ ︷︷ ︸
(V)

, (25)

where (i) uses the inequality that ‖a1 + a2‖2 ≤ (1 + σ)‖a1‖2 + (1 + σ−1)‖a2‖2 for any a1, a2 ∈ Rd and σ > 0,
(ii) uses eq. (24) as well as the notation that w∗t = −C−1(Aθt + b), (iii) uses β ≤ 1

λ2
(this implies that

6/(βλ2)−1
2[3/(βλ2)−1] ≤

5
4) and eqs. (14), (39) and (43). The above term (V) can be upper bounded as follows.

(V) = E
[∥∥∥ 1
M

M∑
m=1

(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + B̃
(m)
t w

(m)
t

)∥∥∥2∣∣∣Ft]
(i)
≤ 2E

[∥∥∥ 1
M

M∑
m=1

(
(Ã(m)

t − Ãt)θ(m)
t + (̃̂b

(m)

t − b̃(m)
t) + (B̃(m)

t − B̃t)w(m)
t

)∥∥∥2∣∣∣Ft]
+ 2E

[∥∥∥ 1
M

M∑
m=1

(
Ãtθ

(m)
t + b̃

(m)
t + B̃tw

(m)
t

)∥∥∥2∣∣∣Ft]
(ii)
≤ 2

M

M∑
m=1

E
[∥∥((Ã(m)

t − Ãt)θ(m)
t + (̃̂b

(m)

t − b̃(m)
t) + (B̃(m)

t − B̃t)w(m)
t

)∥∥2∣∣Ft]+ 2E
(∥∥Ãtθt + b̃t + B̃twt

∥∥2∣∣Ft)
(iii)
≤ 6

M

M∑
m=1

E
[∥∥Ã(m)

t − Ãt
∥∥2∥∥θ(m)

t

∥∥2 +
∥∥˜̂b(m)

t − b̃(m)
t

∥∥2 +
∥∥B̃(m)

t − B̃t
∥∥2∥∥w(m)

t

∥∥2∣∣Ft]
+ 2
(

40ρ2
max

(
1 + ρmax

λ2

)2∥∥θt − θ∗∥∥2 + 5ρ2
max
∥∥wt − w∗t ∥∥2 + 160ρ2

max(ν + 1)
N(1− δ)

(
1 + ρmax

λ2

)2(∥∥θ∗∥∥2 +R2
max
))

(iv)
≤ 6σL/4

2
M

(
20 max

m∈M
(‖θ(m)

0 ‖+ ‖w(m)
0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t +R2

max

)
+ 2
(

40ρ2
max

(
1 + ρmax

λ2

)2∥∥θt − θ∗∥∥2 + 5ρ2
max
∥∥wt − w∗t ∥∥2 + 160ρ2

max(ν + 1)
N(1− δ)

(
1 + ρmax

λ2

)2(∥∥θ∗∥∥2 +R2
max
))

where (i) uses the inequality that ‖a1 + a2‖2 ≤ 2‖a1‖2 + 2‖a2‖2 for any a1, a2 ∈ Rd, (ii) applies Jensen’s
inequality to the convex function ‖·‖2, (iii) uses eq. (21) and the inequality that ‖a1+a2+a3‖2 ≤ 3

∑3
k=1 ‖ak‖2

for any a1, a2, a3 ∈ Rd, (iv) uses eqs. (52), (53), (54) and (68). Substituting the above inequality into eq.
(25) yields that

E
[
‖wt+1 − w∗t+1‖2∣∣Ft]
≤
(

1− βλ2

6 + 120α2ρ4
max

βλ3
2

)
‖wt − w∗t ‖2+

[534βρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2
+ 1920α2ρ4

max
βλ3

2

(
1 + ρmax

λ2

)2]
‖θt − θ∗‖2

+ 3840ρ2
max(ν + 1)

N(1− δ)

[β
λ2

(
1+ 1

λ2

)2
+α2ρ2

max
βλ3

2

(
1+ ρmax

λ2

)2](
‖θ∗‖2 +R2

max
)

21

Published in Transactions on Machine Learning Research (06/2022)

+ 255σL/4
2

Mλ2

(
β + 12α2ρ2

max
βλ2

2

)
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t. (26)

E
[
‖θt+1 − θ∗‖2∣∣Ft]

(i)
≤
(

1 + 1
6/(αλ1)− 3

)
E
[
θ̃t+1 − θ∗

∣∣Ft]+
(

1 + 6
αλ1

− 3
)
E
[
θt+1 − θ̃t+1

∣∣Ft]
(ii)
≤ 6−2αλ1

6−3αλ1

[(
1− αλ1

2

)∥∥θt − θ∗∥∥2+ 13αρ2
max

λ1

∥∥wt − w∗t ∥∥2

+ 224αρ2
max(ν + 1)

Nλ1(1− δ)
(
4
∥∥θ∗∥∥2 + 2R2

max + 1
)(

1 + ρmax

λ2

)2]
+ 6
αλ1

E
[∥∥∥ α
M

M∑
m=1

[
(Ã(m)

t − Ãt)θ(m)
t + ˜̂b(m)

t − b̃(m)
t + (B̃(m)

t − B̃t)w(m)
t

]∥∥∥2∣∣∣Ft]
(iii)
≤
(

1− αλ1

3

)∥∥θt − θ∗∥∥2 + 18αρ2
max

λ1

∥∥wt − w∗t ∥∥2 + 300αρ2
max(ν + 1)

Nλ1(1− δ)
(
4
∥∥θ∗∥∥2 + 2R2

max + 1
)(

1 + ρmax

λ2

)2

+ 6α
Mλ1

M∑
m=1

E
[∥∥(Ã(m)

t − Ãt)θ(m)
t + ˜̂b(m)

t − b̃(m)
t + (B̃(m)

t − B̃t)w(m)
t

∥∥2∣∣Ft]
(iv)
≤
(

1− αλ1

3

)∥∥θt − θ∗∥∥2 + 18αρ2
max

λ1

∥∥wt − w∗t ∥∥2 + 300αρ2
max(ν + 1)

Nλ1(1− δ)
(
4
∥∥θ∗∥∥2 + 2R2

max + 1
)(

1 + ρmax

λ2

)2

+ 18ασL/4
2

Mλ1

[
20 max

m∈M
(‖θ(m)

0 ‖+ ‖w(m)
0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t +R2

max

]
, (27)

where (i) uses the inequality that ‖a1 + a2‖2 ≤ (1 + σ)‖a1‖2 + (1 + σ−1)‖a2‖2 for any a1, a2 ∈ Rd and σ > 0,
(ii) uses eqs. (14), (12) and (23), (iii) uses α ≤ 1/λ1 and applies Jensen’s inequality to the convex function
‖ · ‖2, and (iv) uses the inequality that ‖a1 + a2 + a3‖2 ≤ 3

∑3
k=1 ‖ak‖2 for any a1, a2, a3 ∈ Rd and then uses

eqs. (52)-(54).

Taking expectation on both sides of eqs. (26) and (27) and summing up the two inequalities yields that

E(‖θt+1 − θ∗‖2) + E(‖wt+1 − w∗t+1‖2)
(i)
≤
(

1− βλ2

6 + 120α2ρ4
max

βλ3
2

+ 18αρ2
max

λ1

)
E(‖wt − w∗t ‖2)

+
[
1− αλ1

3 + 534βρ2
max(ν + 1)

Nλ2(1− δ)

(
1 + 1

λ2

)2
+ 1920α2ρ4

max
βλ3

2

(
1 + ρmax

λ2

)2]
E(‖θt − θ∗‖2)

+ 3840ρ2
max(ν + 1)

N(1− δ)

[β
λ2

(
1+ 1

λ2

)2
+α2ρ2

max
βλ3

2

(
1+ ρmax

λ2

)2
+ α

λ1

](
‖θ∗‖2 +R2

max + 1
)

+ 255σL/4
2

Mλ2

(
β + 12α2ρ2

max
βλ2

2
+ αλ2

λ1

)
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t

(i)
≤
(

1− αλ1

6

)[
E(‖θt − θ∗‖2) + E(‖wt − w∗t ‖2)

]
+ 6000βρ2

max(ν + 1)
Nλ2(1− δ)

(
1+ ρmax

λ2

)2(
‖θ∗‖2 +R2

max + 1
)

+ 574βσL/4
2

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t,

where (i) uses the conditions that N ≥ 6408βρ2
max(ν+1)

αλ1λ2(1−δ)
(
1 + 1

λ2

)2,

α ≤ min
(βλ1λ

3
2

23040ρ4
max

,
βλ2

2
53ρ2

max
, βλ1λ2

432ρ2
max

, βλ2
2λ1

, βλ1
2λ2

, βλ2
4ρmax

)
. Iterating the inequality above yields the following

convergence rate of the optimization error E
[
‖wt+1 − w∗t+1‖2

∣∣Ft] and E
[
‖θt+1 − θ∗‖2

∣∣Ft]
E(
∥∥θT − θ∗∥∥2 +

∥∥wT − w∗∥∥2)

22

Published in Transactions on Machine Learning Research (06/2022)

≤
(

1− αλ1

6

)T (∥∥θ0 − θ∗
∥∥2 + ‖w0 − w∗0‖2)

+
T−1∑
t=0

(
1− αλ1

6

)T−1−t[6000βρ2
max(ν + 1)

Nλ2(1− δ)

(
1+ ρmax

λ2

)2(
‖θ∗‖2 +R2

max + 1
)

+ 574βσL/4
2

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2[1 + β(2ρmax + 3)]2t
]

(i)
≤
(

1− αλ1

6

)T (∥∥θ0 − θ∗
∥∥2 + ‖w0 − w∗0‖2)+ 36000βρ2

max(ν + 1)
αNλ1λ2(1− δ)

(
1+ ρmax

λ2

)2(
‖θ∗‖2 +R2

max + 1
)

+ 574βσL/4
2 2T

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2

=
(

1− αλ1

6

)T (∥∥θ0 − θ∗
∥∥2 + ‖w0 − w∗0‖2)+O

(β

Nα
+ βσ

L/4
2 2T

M

)
, (28)

where (i) uses the conditions that α ≤ 1
λ1

and β ≤ 2
5(2ρmax+3) which respectively imply that 1− αλ1

6 ≥
5
6 and

that 1 + β(2ρmax + 3) ≤
√

2. This proves eq. (10).

Step 3: Proof of consensus error (11). Note that the local model averaging iterations can be rewritten
into the matrix-vector form as Θt+1 = UΘt where T ≤ t ≤ T + T ′ and Θt

4= [θ(1)
t ; θ(2)

t ; . . . ; θ(M)
t]>. Hence, it

can be derived from Lemma C.3 that

‖∆ΘT+T ′‖F = ‖∆UT
′
ΘT ‖F = ‖UT

′
∆ΘT ‖F ≤ σT

′

2 ‖∆ΘT ‖F . (29)

Hence, we only need to obtain an upper bound of the initial consensus error E‖∆ΘT ‖2. Subtracting eq. (14)
from the local update rule yields that for any 0 ≤ t ≤ T − 1,

θ
(m)
t+1 − θt+1 =

∑
m′∈Nm

Um,m′(θ(m′)
t − θt) + M − 1

M
α
(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + B̃
(m)
t w

(m)
t

)
− α

M

M∑
m′=1,m′ 6=m

(
Ã

(m′)
t θ

(m′)
t + b̃

(m′)
t + B̃

(m′)
t w

(m′)
t

)
.

This can be rewritten into the following matrix-vector form,

∆Θt+1 = U∆Θt + [h1;h2; . . . ;hM]>,

where hm
4= M−1

M α
(
Ã

(m)
t θ

(m)
t + ˜̂b(m)

t + B̃
(m)
t w

(m)
t

)
− α

M

∑M
m′=1,m′ 6=m

(
Ã

(m′)
t θ

(m′)
t + b̃

(m′)
t + B̃

(m′)
t w

(m′)
t

)
.

The item 2 of Lemma C.3 implies that for any 0 ≤ t ≤ T − 1,

‖∆Θt+1‖F ≤ σ2‖∆Θt‖F +

√√√√ M∑
m=1
‖hm‖2 ≤ σ2‖∆Θt‖F +

M∑
m=1
‖hm‖. (30)

Then, using eqs. (55)-(57) yields that

M∑
m=1
‖hm‖ ≤

M − 1
M

(2α)(2ρmax + 2)
M∑
m=1

(
‖θ(m)
t ‖+Rmax + ‖w(m)

t ‖
)

(i)
≤ 4α(ρmax + 1)

M∑
m=1

(
‖θ(m)
t − θt‖+ ‖w(m)

t − wt‖+ ‖θt − θ∗‖+ ‖wt − w∗t ‖+ ‖θ∗‖+ ‖C−1(Aθt + b)‖
)

(ii)
≤ 4α(ρmax + 1)

(M∑
m=1

(
‖θ(m)
t − θt‖+ ‖w(m)

t − wt‖
)

23

Published in Transactions on Machine Learning Research (06/2022)

+M
(

1 + 2ρmax

λ2

)
‖θt − θ∗‖+M‖wt − w∗t ‖+ Mρmax

λ2
(2‖θ∗‖+Rmax)

)
,

where (i) uses the notations that w∗t = −C−1(Aθt + b), (ii) uses eqs. (39), (42) and (43). Hence, we obtain
that

E(‖∆Θt+1‖2
F)

(i)
≤
(

1 + σ−2
2 − 1

2

)
σ2

2E
(
‖∆Θt‖2

F

)
+
(

1 + 2
σ−2

2 − 1

)
E
[(M∑

m=1
‖hm‖

)2]
,

(ii)
≤ 1 + σ2

2
2 E

(
‖∆Θt‖2

F

)
+ 48α2(1 + σ2

2)
1− σ2

2
(ρmax + 1)2E

[
2M

M∑
m=1

(
‖θ(m)
t − θt‖2 + ‖w(m)

t − wt‖2)
+M2

(
1 + 2ρmax

λ2

)2(
‖θt − θ∗‖2 + ‖wt − w∗t ‖2)+ 4M2ρ2

max
λ2

2
(‖θ∗‖+Rmax)2

]
, (31)

where (i) uses eq. (30) and the fact that (u + v)2 ≤ (1 + σ)u2 + (1 + σ−1)v2 for any u, v, σ ≥ 0, (ii)
uses (

∑n
i=1 qi)2 ≤ n

∑n
i=1 q

2
i for any qi ∈ R and n ∈ N+. Similarly, we obtain from the update rule of

Wt = [w(1)
t ;w(2)

t ; . . . ;w(M)
t]> ∈ RM×d and eq. (15) that

E(‖∆Wt+1‖2
F) ≤1 + σ2

2
2 E

(
‖∆Wt‖2

F

)
+ 48α2(1 + σ2

2)
1− σ2

2
(ρmax + 1)2E

[
2M

M∑
m=1

(
‖θ(m)
t − θt‖2 + ‖w(m)

t − wt‖2)
+M2

(
1 + 2ρmax

λ2

)2(
‖θt − θ∗‖2 + ‖wt − w∗t ‖2)+ 4M2ρ2

max
λ2

2
(‖θ∗‖+Rmax)2

]
, (32)

Summing up eqs. (31) and (32) yields that

E(‖∆Θt+1‖2
F + ‖∆Wt+1‖2

F)
(i)
≤ 1 + σ2

2
2 E

(
‖∆Θt‖2

F + ‖∆Wt‖2
F

)
+ 96α2(1 + σ2

2)
1− σ2

2
(ρmax + 1)2E

[
2M
(
‖∆Θt‖2

F + ‖∆Wt‖2
F

)
+M2

(
1 + 2ρmax

λ2

)2((
1− αλ1

6

)t(∥∥θ0 − θ∗
∥∥2 + ‖w0 − w∗0‖2)

+ 36000βρ2
max(ν + 1)

αNλ1λ2(1− δ)

(
1+ ρmax

λ2

)2(
‖θ∗‖2 +R2

max + 1
)

+ 574βσL/4
2 2t

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2
)

+ 4M2ρ2
max

λ2
2

(‖θ∗‖+Rmax)2
]

(ii)
≤ 2 + σ2

2
3 E

(
‖∆Θt‖2

F + ‖∆Wt‖2
F

)
+ 192M2α2

1− σ2
2

(ρmax+1)2
(

1+ 2ρmax

λ2

)2[(∥∥θ0 − θ∗
∥∥2+‖w0 − w∗0‖2)

+
(282β
αλ2

+ 8M2ρ2
max

λ2
2

)(
‖θ∗‖2 +R2

max + 1
)

+ 574βσL/4
2 2t

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2
)]
, (33)

where (i) uses eq. (28), and (ii) uses (‖θ∗‖ + Rmax)2 ≤ 2‖θ∗‖2 + 2R2
max, α ≤ 1−σ2

50
√
M(ρmax+1) and N ≥

128ρ2
max(ν+1)

λ1(1−δ)
(
1+ ρmax

λ2

)2.

Iterating eq. (33) yields the following convergence rate of the initial consensus error E
(
‖∆ΘT ‖2

F

)
.

E
(
‖∆ΘT ‖2

F

)
≤ E

(
‖∆ΘT ‖2

F + ‖∆WT ‖2
F

)
≤
(2 + σ2

2
3

)T (
‖∆Θ0‖2

F + ‖∆W0‖2
F

)
+ 192M2α2

1− σ2
2

(ρmax+1)2
(

1+ 2ρmax

λ2

)2

+
[3

1− σ2

(∥∥θ0 − θ∗
∥∥2‖w0 − w∗0‖2 +

(282β
αλ2

+ 8M2ρ2
max

λ2
2

)(
‖θ∗‖2 +R2

max + 1
))

+ 574βσL/4
2 2T

Mλ2
max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)2
]

24

Published in Transactions on Machine Learning Research (06/2022)

≤ ‖∆Θ0‖2
F + ‖∆W0‖2

F +O
[M2α2

(1− σ2)2

(β
α

+M2
)

+ Mβα2σ
L/4
2 2T

1− σ2

]
(i)
≤ O

(
1 + M4βα

(1− σ2)2 + Mβασ
L/4
2 2T

1− σ2

)
, (34)

where (i) uses α ≤ β
2ρmax+2 = O(β). Substituting the above inequality into eq. (29) proves eq. (11).

Hyperparameter choice and complexities. To summarize, the following conditions of the hyperparame-
ters are used in the proof of Theorem 1, including those required by Corollary 2 and lemma C.4.

α ≤min
(β

2ρmax + 2 ,
λ1

40ρ2
max

(
1+ ρmax

λ2

)−2
,

1
λ1
,
βλ2

4ρmax
,

βλ1λ
3
2

23040ρ4
max

,
βλ2

2
53ρ2

max
,
βλ1λ2

432ρ2
max

,

1− σ2

50
√
M(ρmax + 1)

,
βλ2

2λ1
,
βλ1

2λ2

)
= min{O(β),O(M−1/2(1− σ2))} (35)

β ≤min
(1
λ2
,

2
5(2ρmax + 3)

)
= O(1) (36)

N ≥max
(8νρmax

λ2(1− δ) ,
6408βρ2

max(ν + 1)
αλ1λ2(1− δ)

(
1+ 1

λ2

)2
,
128ρ2

max(ν + 1)
λ1(1− δ)

(
1+ ρmax

λ2

)2)
=max{O(1),O(β/α)} (37)

L ≥12 lnM + (8M + 10) ln ρmax

ln σ−1
2

= O
(M

1− σ2

)
(38)

Under the above conditions, we choose the following hyperparameter values.

α = O(M−1/2(1− σ2)), β = O(1)

T = 6
αλ1

ln ε−1 = O
(√M ln ε−1

1− σ2

)
N = β

αε
= O

(√
M

ε(1− σ2)

)
L = 4

ln σ−1
2

(
ln
(β

Mε

)
+T ln 2

)
+ 12 lnM + (8M + 10) ln ρmax

ln σ−1
2

= O
(√M ln ε−1

(1− σ2)2 + M

1− σ2

)
≤ O

(M ln ε−1

(1− σ2)2

)
T ′ = 1

ln σ−1
2

ln
(
ε−1O

(
1 + M4βα

(1− σ2)2 + Mβασ
L/4
2 2T

1− σ2

))
= 1

ln σ−1
2

ln
(
ε−1O

(
1 + M3.5

1− σ2
+ αM2ε

1− σ2

))
= O

(1
1− σ2

ln
(M

ε(1− σ2)

))
.

Substituting these hyperparameters into eqs. (10) and (11) implies E(
∥∥θT − θ∗∥∥2),E(‖θ(m)

T+T ′ − θT ‖2) ≤ O(ε),
so E(‖θ(m)

T+T ′ − θ∗‖2) ≤ 2E(‖θ(m)
T+T ′ − θT ‖2) + 2E(‖θT − θ∗‖2) ≤ O(ε). Therefore, the overall communication

complexity for synchronizing θ(m)
t is T + T ′ = O

(√
M ln ε−1

1−σ2

)
, and the total sample complexity is NT =

O
(
M ln ε−1

ε(1−σ2)2

)
.

C Supporting Lemmas

In this section, we prove some supporting lemmas that are used throughout the analysis of Algorithm 1.
Lemma C.1. Regarding the terms defined in Appendix A, their norms have the following upper bounds.

‖Ai‖F , ‖A(m)
i ‖F , ‖Ãt‖F , ‖A‖F ≤ 2ρmax, (39)

‖Bi‖F , ‖B(m)
i ‖F , ‖B̃t‖F , ‖B‖F ≤ ρmax, (40)

‖Ci‖F , ‖C̃t‖F , ‖C‖F ≤ 1, (41)

25

Published in Transactions on Machine Learning Research (06/2022)

‖b(m)
i ‖, ‖b̃(m)

t ‖, ‖bi‖, ‖b̃t‖, ‖b‖ ≤ ρmaxRmax, (42)
‖C−1‖ = λ−1

2 . (43)

Proof. Consider any two vectors u, v ∈ Rd, we have that ‖uv>‖F =
√
tr(vu>uv>) = ‖u‖‖v‖. Therefore, by

Assumption 3, we obtain that

‖Ai‖F ≤ρi‖φ(si)‖‖γφ(si+1)− φ(si)‖ ≤ ρmax
[
γ‖φ(si+1)‖+ ‖φ(si)‖

]
≤ 2ρmax,

‖Bi‖F ≤γρi‖φ(si+1)‖‖φ(si)‖ ≤ ρmax,

‖Ci‖F ≤‖φ(si)‖2 ≤ 1,

‖b(m)
i ‖ ≤ρiR(m)

i ‖φ(si)‖ ≤ ρmaxRmax.

The proof for ‖A(m)
i ‖F , ‖b̃(m)

t ‖, etc. is similar.

On the other hand, by Jensen’s inequality, we obtain that

‖A‖F = ‖Eπb [Ai]‖F ≤ Eπb‖Ai‖F ≤ 2ρmax, ‖Ãt‖F ≤
1
N

(t+1)N−1∑
i=tN

‖Ai‖F ≤ 2ρmax.

The proof for the other remaining matrices in eqs. (39)-(42) is similar by using the Jensen’s inequality.
Finally, we prove eq. (43). Note that −C = Eπb

(
φ(si)φ(si)

)
� 0 with λmin(−C) = −λmax(C) = λ2. Hence,

‖C−1‖ = λmax(−C−1) = λ−1
min(−C) = λ−1

2 .

Lemma C.2. Suppose the MDP trajectory {si, ai}i≥0 is generated following a behavioral policy πb where
at
4= {a(m)

t }m. For any deterministic mappings Y : S ×A1× . . .×AM ×S → Rp×q such that ‖Y (s, a, s′)‖F ≤
Cy,∀s, s′ ∈ S, a(m) ∈ Am where a = {a(m)}m, we have

∥∥∥E[1
N

(t+1)N−1∑
i=tN

Y (si, ai, si+1)
∣∣∣Ft]− Y ∥∥∥ ≤ 2νCy

N(1− δ) ,

E
[∥∥∥ 1
N

(t+1)N−1∑
i=tN

Y (si, ai, si+1)− Y
∥∥2
F

∣∣∣Ft] ≤8C2
y(ν + 1)

N(1− δ) ,

where Y = EY (si, ai, si+1).

Note: A simplified version of the above lemma has been proposed and proved in Xu et al. (2020a), where ai
and si+1 are omitted in the above inequality. We add ai and si+1 so that this lemma can be better applied
to the quantities Ai, Bi, Ci and b(m)

i which rely on si as well as ai and si+1. The proof logic is very similar
to that of Xu et al. (2020a) and thus omitted here.
Corollary 1. Regarding the terms defined in Appendix A, they have the following upper bounds.

E
[
‖C̃t − C‖F

∣∣Ft] ≤ 2νρmax

N(1− δ) (44)

E
[∥∥B̃t −B∥∥2

F

∣∣Ft] ≤ 8ρ2
max(ν + 1)
N(1− δ) (45)

E
[∥∥b̃t − b∥∥2∣∣Ft] ≤ 8ρ2

maxR
2
max(ν + 1)

N(1− δ) (46)

E
[∥∥Ãt − C̃tC−1A

∥∥2
F

∣∣Ft] ≤ 32ρ2
max(ν + 1)
N(1− δ)

(
1 + 1

λ2

)2
(47)

E
[∥∥b̃t − C̃tC−1b

∥∥2∣∣Ft] ≤ 8ρ2
maxR

2
max(ν + 1)

N(1− δ)

(
1 + 1

λ2

)2
(48)

E
[∥∥Ãt − B̃tC−1A−A>C−1A

∥∥2
F

∣∣Ft] ≤ 32ρ2
max(ν + 1)
N(1− δ)

(
1 + ρmax

λ2

)2
, (49)

26

Published in Transactions on Machine Learning Research (06/2022)

Proof. Let Y (s, a, s′) = −γρ(s, a)φ(s′)φ(s)> in Lemma C.2. Then it can be checked that Y (st, at, st+1) =
Bt, Cy = ρmax, 1

N

∑(t+1)N−1
i=tN Y (si, ai, si+1) = B̃t, and Y = EπbY (si, ai, si+1) = B.

Applying Lemma C.2 to these equations proves eq. (45). The eqs. (44) and (46) can be proved in a similar
way.

Let Y (s, a, s′) = ρ(s, a)φ(s)[γφ(s′) − φ(s)]> + γρ(s, a)φ(s′)φ(s)>C−1A. Then, it can be checked that
Y (si, ai, si+1) = Ai −BiC−1A, 1

N

∑(t+1)N−1
i=tN Y (si, ai, si+1) = Ãt − B̃tC−1A. Moreover,

‖Y (s, a, s′)‖F ≤ ρmax(γ + 1) + γρmax‖C−1‖‖A‖ ≤ 2ρmax + ρmax(λ−1
2)(2ρmax) = 2ρmax(1 + ρmax/λ2) := Cy,

Y = EπbY (si, ai, si+1) = A−BC−1A = A>C−1A.

Applying Lemma C.2 to these equations proves eq. (49). The equations (47) and (48) can be proved in a
similar way.

Lemma C.3. The doubly stochastic matrix U and the difference matrix ∆ = I − 1
M 11> have the following

properties:

1. ∆U = U∆ = U − 1
M 11>

2. For any x ∈ RM and n ∈ N+, ‖Un∆x‖ ≤ σn2 ‖∆x‖ (σ2 is the second largest singular value of U).
Hence, for any H ∈ RM×M , ‖Un∆H‖F ≤ σn2 ‖∆H‖F

Proof. The first item can be proved by the following two equalities.

∆U =
(
I − 1

M
11>

)
U = U − 1

M
11>U = U − 1

M
11>

U∆ = U
(
I − 1

d
11>

)
= U − 1

M
U11> = U − 1

M
11>

The proof of the item 2 follows from the claim in page 3 of Qu & Li (2017) that

‖Ux− 1x‖ ≤ σ‖x− 1x‖, (50)

where we replace their W ∈ Rn×n and vector ω ∈ Rn into our U ∈ RM×M and vector H ∈ RM respectively,
x = 1

M 1>x and σ is the largest singular value of U − 1
M 11>. We first prove that σ is also the second largest

singular value of U , i.e., σ = σ2.

Consider the singular value decomposition of the doubly stochastic matrix U = Q>DQ̃, where matrices
Q, Q̃ are unitary and matrix D = diag(1, σ2, σ3, . . . , σM) is diagonal with 1 > σ2 ≥ σ3 ≥ σM ≥ 0. Note
that 1 = U1 = Q>DQ̃1 which implies that Q1 = DQ̃1. Similarly, 1 = U>1 = Q̃>DQ1 ⇒ Q̃1 = DQ1.
Combining the above two results, we conclude that

Q1 = DQ̃1 = DDU1 = D2U1,

that is, (I − D2)Q1 = 0. Since I − D2 is a diagonal matrix where the first diagonal entry is zero but
the rest diagonal entries are strictly positive, it must hold that all the entries of Q1 are zero except for
its first entry, i.e., Q1 = αe1 where α ∈ R is the first entry of Q1 and e1 = (1, 0, 0, . . . , 0) is a basis
vector. Hence, we conclude that Q̃1 = DQ1 = αDe1 = αe1. Taking the norm of both sides yields that
‖Ũ1‖ = |α|‖e1‖, i.e., |α| = ‖Q̃1‖ = ‖1‖ =

√
M . Therefore, Q − 1

n11> = Q>
(
D − 1

M (Q1)(Q̃1)>
)
Q̃ where

D − 1
M (Q1)(Q̃1)> = D − α2

M e1e
>
1 = D − e1e

>
1 = diag(0, σ2, σ3, . . . , σM), which proves that σ2 is the largest

singular value of U − 1
n11>, i.e., σ = σ2.

Then, substituting σ = σ2, Ux− 1x = (U − 1
M 11>)x = U∆x (the last step follows from the item 1 of this

Lemma) and x− 1x = (I − 1
M 11>)x = ∆x into eq. (50) yields that

‖U∆x‖ ≤ σ2‖∆x‖. (51)

27

Published in Transactions on Machine Learning Research (06/2022)

A simple induction based on the above equality proves that ‖Un∆x‖ ≤ σn2 ‖∆x‖ for any n ∈ N+. Therefore,
for any matrix H = [h1, . . . , hM] ∈ RM×M , we can prove that

‖Wn∆H‖F =

√√√√ M∑
m=1
‖Wn∆hm‖2 ≤

√√√√ M∑
m=1

(σn2 ‖∆hm‖)2 = σn2 ‖∆H‖F .

Based on Lemma C.3, we obtain the following inexactness of importance sampling ratio estimation ρ̂(m)
t ≈ ρt.

Corollary 2. Under Assumption 4 and choosing L ≥ O(lnM+M ln ρmax
lnσ−1

2
), the estimation error of the inexact

global importance sampling ratio ρ̂(m)
i satisfies

∑M
m=1

(
ρ̂

(m)
i −ρi

)2 ≤ σL/4
2 . Therefore, the following inequalities

hold.
M∑
m=1

∥∥A(m)
i −Ai

∥∥2
F
,

M∑
m=1

∥∥Ã(m)
t − Ãt

∥∥2
F
≤ 4σL/4

2 (52)

M∑
m=1

∥∥B(m)
i −Bi

∥∥2
F
,

M∑
m=1

∥∥B̃(m)
t − B̃t

∥∥2
F
≤ σL/4

2 , (53)

M∑
m=1

∥∥b̂(m)
i − b(m)

i

∥∥2
,

M∑
m=1

∥∥˜̂b(m)

t − b̃(m)
t

∥∥2 ≤ σL/4
2 R2

max. (54)

As a result, the following upper bounds hold.

‖A(m)
i ‖F ,

∥∥∥Ã(m)
t

∥∥∥
F
≤ 2ρmax + 2 (55)

‖B(m)
i ‖F ,

∥∥∥B̃(m)
t

∥∥∥
F
≤ ρmax + 1 (56)

‖b̂(m)
i ‖, ‖˜̂b(m)

t ‖ ≤ Rmax(ρmax + 1) (57)

Proof. Eq. (5) can be rewritten into the following matrix form.[
ρ̃

(1)
i,L; . . . ; ρ̃(M)

i,L

]
= UL

[
ρ̃

(1)
i,0 ; . . . ; ρ̃(M)

i,0
]
.

Hence, the item 1 of Lemma C.3 yields that

∆
[
ρ̃

(1)
i,L; . . . ; ρ̃(M)

i,L

]
= UL∆

[
ρ̃

(1)
i,0 ; . . . ; ρ̃(M)

i,0
]
.

Then the item 2 of Lemma C.3 yields that∥∥∆
[
ρ̃

(1)
i,L; . . . ; ρ̃(M)

i,L

]∥∥2 ≤ σ2L
2
∥∥∆
[
ρ̃

(1)
i,0 ; . . . ; ρ̃(M)

i,0
]∥∥2

. (58)

Denote ρmin := minm∈M ρ
(m)
i . Then Assumption 4 implies that ρ̃(m)

i,0 = ln ρ(m)
i ∈ [ln ρmin, ln ρmax]. Then it

can be proved by iterating eq. (5) that ρ̃(m)
i,L ∈ [ln ρmin, ln ρmax]. Hence,

1
M

ln ρi = 1
M

M∑
m=1

ln ρ(m)
i ∈ [ln ρmin, ln ρmax] (59)

Then eqs. (58) and (59) imply that

M∑
m=1

(
ρ̃

(m)
i,L −

1
M

ln ρi
)2
≤σ2L

2

M∑
m=1

(
ρ̃

(m)
i,0 −

1
M

ln ρi
)2
≤Mσ2L

2 ln2(ρmax/ρmin). (60)

28

Published in Transactions on Machine Learning Research (06/2022)

Hence, ∣∣∣ρ̃(m)
i,L −

1
M

ln ρi
∣∣∣ ≤√MσL2 ln

(ρmax

ρmin

) (i)
≤ 1

2M ln
(ρmax

ρmin

)
, (61)

where (i) uses the conditions that L ≥ 12 lnM+(8M+10) ln ρmax
ln(σ−1

2) and σ2 ∈ [0, 1).

Hence, eqs. (59) and (60) imply that

ρ̃
(m)
i,L ≤ ln ρmax + 1

2M ln
(
ρmax/ρmin

)
. (62)

Therefore, we obtain that
M∑
m=1

(
ρ̂

(m)
i − ρi

)2 (i)=
M∑
m=1

(
eMρ̃

(m)
i,L − eln ρi)2

(ii)
≤

M∑
m=1

[
max

(
eMρ̃

(m)
i,L , eln ρi

)]2(
Mρ̃

(m)
i,L − ln ρi

)2

(iii)
≤ M3σ2L

2 ρMmax
√
ρmax/ρmin ln2(ρmax/ρmin)

(iv)
≤ M3σ2L

2 (ρM+2.5
max /ρ2.5

min), (63)

where (i) uses eq. (6), (ii) uses the Lagrange’s Mean Value Theorem, (iii) uses eqs. (59), (60) and (62), (iv)
uses the inequality that ln x < x for x = ρmax/ρmin ≥ 1.

Since at least one of {ρ̃(m)
i,0 }m∈M equals ln ρmin, we have

ln ρi =
M∑
m=1

ρ̃
(m)
i,0 ≤ ln ρmin + (M − 1) ln ρmax. (64)

Then, eqs. (61) and (64) imply that

ρ̃
(m)
i,L ≤

1
2M ln ρmin +

(
1− 1

2M

)
ln ρmax (65)

Hence, we conclude that
M∑
m=1

(
ρ̂

(m)
i − ρi

)2 (i)=
M∑
m=1

(
eMρ̃

(m)
i,L − eln ρi)2 ≤

M∑
m=1

max
(
e2Mρ̃

(m)
i,L , e2 ln ρi)

(ii)
≤ Mρminρ

2M−1
max (66)

where (i) uses eq. (6), (ii) uses eqs. (64) and (65).

When ρmin ≥ σ
L/2
2 , eq. (63) implies that

∑M
m=1

(
ρ̂

(m)
i − ρi

)2 ≤ M3ρM+2.5
max σ0.75L

2 ; When ρmin < σ
L/2
2 < 1,

eq. (66) implies that
∑M
m=1

(
ρ̂

(m)
i − ρi

)2 ≤ Mρ2M−1
max σ

L/2
2 . Both imply

∑M
m=1

(
ρ̂

(m)
i − ρi

)2 ≤ σ
L/4
2 since

L ≥ 12 lnM+(8M+10) ln ρmax
ln(σ−1

2) .

Then, eq. (52) can be proved as follows.

M∑
m=1

∥∥A(m)
i −Ai

∥∥2
F
≤
∥∥φ(si)[γφ(si+1)− φ(si)]>

∥∥2
F

M∑
m=1

(ρ̂(m)
i − ρi)2 ≤ (1 + γ)2σ

L/4
2 ≤ 4σL/4

2 (67)

The above inequality implies that
∑M
m=1

∥∥Ã(m)
t − Ãt

∥∥2
F

=
∑M
m=1

∥∥ 1
N

∑(t+1)N−1
i=tN (A(m)

i − Ai)
∥∥2
F
≤ 4σL/4

2 ,
where ≤ applies Jensen’s inequality to the convex function ‖ · ‖2

F . Eqs. (53) and (54) can be proved similarly.

Eq. (52) implies that
∥∥A(m)

i − Ai
∥∥
F
,
∥∥Ã(m)

t − Ãt
∥∥
F
≤ 2. Hence, eq. (55) can be proved using triangle

inequality and eq. (39). Eqs. (56) and (57) can be proved similarly.

29

Published in Transactions on Machine Learning Research (06/2022)

The proof of Corollary 2 introduces a new technique, which includes discussion of two cases: ρmin :=
minm∈M ρ

(m)
i lies in [σL/2, ρmax] and (0, σL/2]. This is necessary as the local average is applied to ln ρ̂(m)

i ,
which may be a large negative number that cannot ensure a small consensus error for a fixed number of local
average steps L.
Lemma C.4. Under the update rules of Algorithm 1 and choosing L ≥ 12 lnM+(8M+10) ln ρmax

ln(σ−1
2) , α ≤ β

2ρmax+2 ,
the parameters have the following upper bound.

max
m∈M

‖θ(m)
T ‖+ max

m∈M
‖w(m)

T ‖ ≤ 2 max
m∈M

(‖θ(m)
0 ‖+ ‖w(m)

0 ‖+Rmax)[1 + β(2ρmax + 3)]T . (68)

Proof. Since L ≥ 12 lnM+(8M+10) ln ρmax
ln(σ−1

2) , eqs. (55)-(57) hold. Hence, these equations and the update rule

imply that ‖θ(m)
t+1‖ ≤

∑
m′∈Nm Um,m′‖θ

(m′)
t ‖+α(ρmax + 1)(2‖θ(m)

t ‖+Rmax + ‖w(m)
t ‖). Taking maximum with

respect to m yields that

max
m∈M

‖θ(m)
t+1‖ ≤ max

m∈M

∑
m′∈Nm

Um,m′ max
m′′∈M

‖θ(m′′)
t ‖+ α(ρmax + 1)

(
2 max
m∈M

‖θ(m)
t ‖+Rmax + max

m∈M
‖w(m)

t ‖
)
.

≤ α(ρmax + 1)
(
2 max
m∈M

‖θ(m)
t ‖+Rmax + max

m∈M
‖w(m)

t ‖
)

+ max
m∈M

‖w(m)
t ‖. (69)

Similarly, it can be obtained that

max
m∈M

‖w(m)
t+1‖ ≤ 2β(ρmax + 1) max

m∈M
‖θ(m)
t ‖+ (1 + β) max

m∈M
‖w(m)

t ‖+ βRmax(ρmax + 1). (70)

Adding up eqs. (69) and (70) yields that

max
m∈M

‖θ(m)
t+1‖+ max

m∈M
‖w(m)

t+1‖

≤ 2(α+ β)(ρmax + 1) max
m∈M

‖θ(m)
t ‖+ (αρmax + α+ β + 1) max

m∈M
‖w(m)

t ‖+Rmax(α+ β)(ρmax + 1)

(i)
≤ β(2ρmax + 3) max

m∈M
‖θ(m)
t ‖+ (1.5β + 1) max

m∈M
‖w(m)

t ‖+ 0.5βRmax(2ρmax + 3)

≤ [1 + β(2ρmax + 3)]
(

max
m∈M

‖θ(m)
t ‖+ max

m∈M
‖w(m)

t ‖
)

+ 0.5βRmax(2ρmax + 3),

where (i) uses the condition that α ≤ β
2ρmax+2 and (ii) uses ρmax ≥ 1. By iterating the inequality above and

using maxm∈M ‖θ(m)
0 ‖+ maxm∈M ‖w(m)

0 ‖ ≤ 2 maxm∈M(‖θ(m)
0 ‖+ ‖w(m)

0 ‖), we prove eq. (68).

30

	Introduction
	Summary of Contribution
	Other Related Work

	Policy Evaluation in Multi-Agent RL
	Two-Timescale Decentralized TDC for Off-Policy Evaluation
	Centralized TDC
	Decentralized Mini-batch TDC

	Finite-Time Analysis of Decentralized TDC
	Experiments
	Simulated Multi-Agent Networks
	Two-Agent Cliff Navigation Problem
	Application to Path Finding Problem

	Conclusion
	Notations and Filtration
	Notations to rewrite update rules in Algorithm 1
	Filtration

	Proof of Theorem 1
	Supporting Lemmas

