
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL TIME INTEGRATOR WITH STAGE CORREC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerical simulation of dynamical systems requires time integration solvers that
balance accuracy and computational efficiency. Recent work indicates that neural
integrators, a hybrid of classical numerical integration and machine learning, can
achieve significant performance gains. Building upon this idea, we propose a new
type of neural integrator that introduces stage corrections inspired by the fact that
traditional time integration schemes such as Runge-Kutta exhibit different error
characteristics at each stage. Specifically, our method corrects numerical errors
immediately after each stage evaluation by using a neural network, mitigating
error propagation across stages. This enables the use of larger time steps while
preserving stability and accuracy. We demonstrate that our approach is at least
one order of magnitude more accurate than existing hybrid methods for complex
nonlinear dynamical systems when integrated with the same step size.

1 INTRODUCTION

Accurate numerical simulations of dynamical systems are critical in fields ranging from computa-
tional fluid dynamics to computational physics and from material science to chemical engineering.
Traditionally, solving the governing equations for these systems relies on numerical discretization
methods, which are computationally expensive and lead to trade-offs between speed and accuracy.

In recent years, machine learning (ML) algorithms have gained popularity due to their versa-
tility and potential for reducing computational demands. These methods can generally be divided
into two main categories. The first category is purely data-driven, where no explicit knowledge of
the underlying physical laws is used. Examples include Fourier Neural Operators (FNO) Li et al.
(2020) and DeepONets Lu et al. (2021). Some other works focused on data-driven dynamics dis-
covery Pan & Duraisamy (2018); Liu et al. (2022); Chen & Xiu (2021). The second category is
physics-informed, such as Physics-Informed Neural Networks (PINNs) Raissi et al. (2017; 2019);
Rad et al. (2020), which enforce the governing equations and boundary conditions without requir-
ing labeled data. While both approaches have successfully produced surrogate models that can
replace traditional numerical solvers, they face limitations when applied to partial differential equa-
tions (PDEs) involving complex geometries and boundary conditions Lu et al. (2022); McGreivy &
Hakim (2024), chaos Choudhary et al. (2020); Han et al. (2021); Greydanus et al. (2019), stiffness
Huang & Leimkuhler (1997); Liang et al. (2022), and long-term prediction Wang et al. (2022).

More recently, hybrid approaches that combine machine learning with numerical simulations
have emerged, offering a promising alternative for accelerating the simulation of dynamical systems.
These methods leverage the speed of low-fidelity simulations while improving accuracy through er-
ror correction via deep neural networks (see Figure 1). For this reason, we term such methods Neu-
ral Integrators. As a result, neural integrators are data-driven, physics-informed, and fundamentally
simulation-based. The integration of simulations confers two key advantages:

• Enriched physical information and improved reliability. By combining classic time-
stepping methods with neural networks (NNs), these approaches retain the intrinsic physics
of the system. Low-fidelity simulations provide reasonable approximations of system
states, making it more feasible for NNs to learn and correct errors rather than to directly
predict the solution.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of the hybrid approach. Left: classical high-fidelity numerical simulation.
Right: efficient high-fidelity simulation with network corrections.

• Seamless integration with existing simulation codes. Unlike many ML models that aim
to fully replace traditional simulations, hybrid approaches allow for the incorporation of
neural networks into existing simulation frameworks. By modifying only the time-stepping
components, these methods can achieve the same scalability as the original simulation code,
making them particularly suitable for complex large-scale HPC applications such as climate
models.

A notable example of this neural integrator paradigm is NeurVec Huang et al. (2023) (see Fig-
ure 2 (a)), which has demonstrated speedups of tens to hundreds of times compared to traditional
solvers. However, the theory of NeurVec was developed for the Euler method, and NeurVec yields
suboptimal results for multistage time integration methods. In this work, we propose a new type
of neural time integrator based on a stage correction strategy (NeurTISC) and demonstrate its ad-
vantages over NeurVec. In our method, we correct numerical errors immediately after each stage
evaluation by using a neural network (see Figure 2 (b)). This allows us to adopt a large step size
when using a classical integrator and at the same time mitigate error propagation across stages.

(a) NeurVec (b) Stage correction

Figure 2: Comparison between NeurVec and Stage correction proposed in this paper. The figure
demonstrates the difference when applied to a 3-stage numerical time stepper, e.g., Runge-Kutta 3.

We provide empirical validation of this strategy, demonstrating its ability to significantly im-
prove performance in stiff dynamical system simulations. Our experimental results show that the
stage correction strategy improves the accuracy of at least one order of magnitude compared to
NeurVec when both models have the same number of parameters and are integrated with the same
time step size. We also demonstrate that the stage correction strategy possesses stronger error correc-
tion power so that it can integrate the system stably for a longer time period compared to NeurVec.
Lastly, we show through a benchmark that using a trainable rational activation function Telgarsky
(2017); Boullé et al. (2020) in the correction network significantly improves error correction and
accuracy in longer time integration compared to classic activation functions like GeLU and tanh.

2 BACKGROUND

Classic Solvers for Dynamical Systems. A time-dependent dynamical system is typically depicted
by a system of ODEs

duptq

dt
“ F puptqq, up0q “ u0 P Rd . (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where t P rt0, tf s and uptq P Rd is the system state. To solve this system numerically, one can
employ a time integration method that propagates uptq by an iterative formula

un`1 “ un ` SpF, un, δtq, n “ 0, 1, . . . , (2)

where un is the short hand for uptnq, δt “ tn`1 ´ tn is the step size, and S defines a specific
integration scheme so that

SpF, un, δtq «

ż tn`1

tn

F puptn ` τqq dτ. (3)

For example, an s-stage explicit Runge-Kutta (ERK) method approximates the solution with

ki “ F
´

un ` δt ¨
ÿi´1

j“1
aijkj

¯

, i “ 1, . . . , s,

un`1 “ un ` δt ¨
ÿs

i“1
biki.

(4)

S for ERK is a linear summation of all the slopes tki, i “ 1, . . . , su.

The ODEs may also arise from time-dependent PDE simulations, where the governing equation
can also be written in the general form

Bu

Bt
“ Gpx, u, Bu{Bx, B2u{Bx2, . . .q. (5)

The right-hand side (RHS) function G contains the spatial derivatives that are typically approximated
with a spatial discretization method such as finite difference method and finite element method.

The NeurVec Framework. NeurVec is a NN-based corrector added to the estimated solution gen-
erated by an ODE solver. It allows the ODE solver to use a larger step size, typically beyond the
stability limit, therefore accelerating the solution process significantly. Consider the iterative for-
mula (2) with a k´times larger step size ∆t “ k ¨ δt, NeurVec learns a mapping from the state to
the error correction and uses it to compensate the errors:

ûkpn`1q “ ûkn ` SpF, ûkn, kδtq ` NeurVecpûkn,Θq, n “ 0, 1, . . . (6)

The corrected solution ûkpn`1q intends to approach the solution with high accuracy. To understand
the potential speedup, we take the ERK method (4) for an example. The ERK method with a fine
step size has a computational complexity Op1{δtq. In contrast, the evaluation time for NeurVec is
Opp1 ` ϵq{pkδtqq where ϵ is the runtime ratio between the NN inference time and the per-step cost
of the ODE solver. As ϵ decreases, the speedup by using NeurVec increases, with an upper bound k.

3 NEURAL TIME INTEGRATOR WITH STAGE CORRECTION

In this section, We provide the motivation and detailed description of our neural time integrator with
a stage-by-stage correction strategy.

Motivation. Our stage-by-stage correction strategy is inspired by the observation that the time
integration errors at different stages are of different nature, in both magnitudes, smoothness, and
frequency, as shown in Figure 3. NeurVec trains a single NN to learn the mixed correction at the
end of each time step. This is quite challenging, especially when one attempts to keep the NN
architecture simple and the number of NN parameters low for best speedup.

Correction at Intermediate Stages. For the ease of illustration, we use the Heun’s method (a
second-order ERK) to demonstrate how the stage corrections are carried out in our approach. As
shown below, NeurTISC modifies this scheme by adding to each ki stage an NN correction that
takes F p¨q as the input.

k1 “ F punq,

k2 “ F pun ` k1∆tq,

un`1 “ un ` ∆t{2pk1 ` k2q.

ùñ

pk1 “ pI ` NN1qpF ppuqq,

pk2 “ pI ` NN2qpF ppu ` pk1∆tqq,

pun`1 “ un ` ∆t{2ppk1 ` pk2q.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Stage errors when solving 1D Burgers equation with a large step size ∆t. The errors are
computed as ki ´ kREF

i where the reference kREF
i are obtained with a very fine step size. Left: stage

errors before the shock is formed. Right: stage errors under a sharp shock.

Here I is the identity map and NNi are a trained neural network to compensate the error for the i´th
stage.

Simple Neural Networks. We employ a simple NN structure, consisting of two fully connected
layers and a rational activation function. The activation function σ is defined as

σpxq “
ax3 ` bx2 ` cx ` d

1 ` pfx ` gq2

where a, b, c, d, f, g are learnable parameters. The parametrization of the denominator is used to
avoid possible singularities. The rational activation function has been observed to outperform stan-
dard activation functions (e.g., ReLU) in tasks such as approximating solutions to PDEs Boullé
et al. (2020); Huang et al. (2023). Noticeably, the advantage of rational activations is that they are
trainable, resolving the issue of hypothetical selection of activation functions Raissi et al. (2019);
Raissi (2018); Jagtap et al. (2020); Boullé et al. (2020). In addition, deep neural networks equipped
with trainable rational activations have superior approximation power compared to ReLU activated
networks Telgarsky (2017); Boullé et al. (2020), while maintaining a comparable bound on the gen-
eralization error Zhang & Kileel (2023). Following Boullé et al. (2020), we initialize the rational
activation function such that it resembles the ReLU (GeLU) function when x is close to the origin.
The effectiveness of the rational activations is demonstrated in Section 4.

Data Preparation. For each initial state u
pjq

0 , j “ 1, 2, . . . , P , we generate a sequence of reference
solutions tu

pjq

ref ptiq : i “ 0, 1, . . . , Nref , j “ 1, 2, . . . , P u by integrating the system with a suffi-
ciently small time step δt. In order to train NeurTISC with time step ∆t “ kδt, k " 1, we extract
training data tupjqptkiq “ u

pjq

ref ptkiq : i “ 0, 1 . . . , Ntrain, j “ 1, 2, . . . , P u by subsampling uref

every k time steps.

Weighted Loss and multi-step training. To produce corrections at a future time beyond the training
interval, we integrate the model for multiple time steps and average the loos over the L steps. Since
the corrected solutions are used as the input for the next step, the prediction errors also accumulate
during time integration. To alleviate this issue, we assigns decaying weights to predictions later in
time. The weighted ℓ2 loss is thus

ℓpΘq “
1

Ld

L
ÿ

m“1

βm ¨

›

›

›
upjqptα ` m∆tq ´ pupjqptα ` m∆tq

›

›

›

2

where α and j are the batch dimensions, β P p0, 1s is a hyperparameter that controls the decaying
speed. Our empirical experiences suggest that β „ 0.95 can improve the robustness of the model
training for long time windows (e.g. L ą 10).

During training, we start training the model with a short time window e.g., L “ 2, 3, and
gradually increase the window size. Because models for a shorter path is easier to learn, in such a
way the parameters are guided towards the optimum for longer paths step by step. This multi-phase
training strategy significantly reduces the occurrences of blowing up the solution due to instability.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 NUMERICAL EXPERIMENTS

To evaluate the performance of NeurTISC, we consider three dynamical systems of distinct nature
– elastic pendulum, viscous Burgers equation, and Kuramoto–Sivashinsky (KS) equation. The first
task is an ODE problem, the second is a classic PDE problem from fluid dynamics, and the third
one is a nonlinear chaotic PDE problem. We extensively compare NeurTISC with the existing
method NeurVec, demonstrating the improved accuracy and numerical stability, the generalization
to different initial conditions, and the ability to handle unseen future data. We use the same training
setup such as training/testing data, loss function and learning rate scheduler for both models. We
use the loss as a measure of how accurate the prediction can be for different models.

Elastic Pendulum. The elastic pendulum problem describes the motion of a freely-swinging point
mass connected to spring under gravity. The governing equation is given by

ˆ

:θ
:r

˙

“

ˆ

1
r p´g sin θ ´ r 9θq

r 9θ2 ´ k
m pr ´ ℓ0q ` g cos θ

˙

. (7)

Here g is gravity constant, k and ℓ0 are stiffness and relaxed length of the spring. The state of the
system is described by prptq, θptqq, the length of the spring and the angle between the spring and
vertical direction. This system is known to be potentially chaotic Breitenberger & Mueller (1981).

To reduce to the standard form (1), we introduce dummy variables 9r and 9θ. We sample training
paths by randomly sampling the initial state, with details listed in the table Table 1 below. We sample

rp0q 9rp0q rs´1
s θp0q 9θp0q rs´1

s

Unifp3{4, 5{4qℓ0 N p0, 0.12qℓ0 Unifp´π{8, π{8q N p0, p0.1πq
2
q

Table 1: Initial condition of the system.

128 training paths and 32 test paths, all integrated with RK4 with fine time step δt “ 0.002. We train
NeurTISC and NeurVec using a coarse time step ∆t “ 150δt. The two neural integrators roughly
have the same total number of parameters, with NeurVec having a hiddem dimension of 128 and
NeurTISC having only 32. In Table 2, we summarize test accuracy of both models when integrated
forward for different number of time steps. Figure 4 shows the predicted results of NeurTISC for

L 2 3 5 10
RK4 no correction 3.658 2.427e7 Failure Failure

NeurVec 9.676e-2 3.223e4 Failure Failure
NeurTISC (ours) 4.730e-4 1.756e-5 9.435e-6 1.908e-5

Table 2: Comparison of test accuracy on elastic pendulum. “Failure” indicates the solution blows
up.

four different scenarios. In all these cases, the trajectories predicted by NeurTISC match the ground
truth perfectly while the solution blows up when using NeurVec with the same step size.

Furthermore, we evaluate the effectiveness of the rational activation function. We test NeurTISC
with rational, GeLU, and tanh activations and compare its performance. Table 3 shows that rational
significantly outperform the other two options.

L 2 3 5 10

GeLU 2.923e-1 3.257e-2 8.903e-2 Failure

tanh 1.033e-3 1.782e-4 5.633e-5 1.004e-4

rational 4.730e-4 1.756e-5 9.435e-6 1.908e-5

Table 3: Comparison of test accuracy on elastic pendulum using NeurTISC with different activa-
tions. ”Failure” indicates the solution blows up.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: 10-step predicted solutions of NeurTISC on elastic pendulum. The red line is the exact
path, the black crossings are NeurTISC outputs. From left to right, the paths correponds to initial
conditions with (i) small radial and angular velocity, (ii) large radial velocity and small angular ve-
locity, (iii) small radial velocity and large angular velocity, and (iv) large radial and angular velocity.

Viscous Burgers Equation. We consider the 1D viscous Burgers equation on r0, 1s with periodic
boundary condition

Bu

Bt
“ ´u

Bu

Bx
` ν

B2u

Bx2
. (8)

To reduce to the ODE form (1), we use a uniform grid on r0, 1s and use finite difference methods to
approximate the spacial derivatives. To make the problem more challenging, we use the following
sinusoidal initial condition to form a shock:

up0, xq “ a1 ` a2 sinp2πxq ` a3 cosp2πxq. (9)

The coefficients a1, a2, a3 are randomly sampled from a Gaussian distribution N p0.5, 0.1q. The
dissipation parameter is set to ν “ 0.008. The fine time step is δt “ 0.0001 and the coarse time
step for training is ∆t “ 200δt. The spatial grid has n “ 96 equally spaced points. We choose this
setting to make the solution develops a shock gradually and integration using the fine time step is
stable, but integrating with the coarse step ∆t is unstable (see Figure 5 as an example).

We generate 64 training trajectories and 8 test trajectories. We start the training with L “ 2 and
extend to L “ 5. The dimension of the hidden layer is 1024 for NeurTISC and 4096 for NeurVec
so that the two models have approximately the same number of parameters. The test results are
reported in Table 4. Figure 5 shows the predicted solutions for L “ 5 steps using NeurTISC and
using RK4 without correction.

L 2 5

RK4 no correction 2.384e-7 9.432e-3

NeurVec 2.322e-8 1.131e-3

NeurTISC (Ours) 2.804e-9 1.009e-4

Table 4: Comparison of test accuracy on viscous Burgers equation.

We also evaluate the effectiveness of rational activation following the previous experiment on
the elastic pendulum problem. The results are shown in Table 5. The benefit of a trainable rational
activation is marginal for a small window size L “ 2. However, the benefit of rational activation
becomes evident for a larger window size L “ 5.

L 2 5

GeLU 3.441e-9 5.271e-4

tanh 3.083e-9 2.839e-4

rational 3.031e-9 1.627e-4

Table 5: Comparison of test accuracy on viscous Burgers equation using NeurTISC with different
activations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: 5-step predicted solutions of NeurTISC applied to 1D viscous Burgers equation on r0, 1s.
Left: the error of RK4 under a shock (note the different scaling in y-axis). Right: After the shock
is smoothed by dissipation, RK4 still suffers from large high-frequency errors.

Kuramoto–Sivashinsky Equation. This is a 4th order nonlinear PDE that exhibits chaotic be-
haviour when interrogated for sufficiently long times. The governing equation we consider is

Bu

Bt
“

B2u

Bx2
`

B4u

Bx4
`

1

2
¨

ˆ

Bu

Bx

˙2

. (10)

with the initial condition
up0, xq “ cos

´

2π
x

H

¯

. (11)

We simulate the system with ETDRK4 Cox & Matthews (2002), a different multi-stage PDE solver,
under the fine time step δt “ 0.02 for 3000 seconds. The coarse time step for training is ∆t “ 100δt.
We take the time-series data in the range 1000 ď t ď 3000 for training. This single trajectory is
split into 10 consecutive trajectories.

We use a uniform grid with size n “ 48, and set the hidden layer dimension to 256 and 1024 for
NeurTISC and NeurVec, respectively. We train the two models with a time window Ltrain, and use
a larger window Ltest when making predictions on the unseen data. The comparison of prediction
errors is given in Table 6. Spacial-temporal plots for the predicted results of different models are

pLtrain, Ltestq (10, 20) (20, 50)

ETDRK4 no correction 9.960e-2 7.421e-1

NeurVec 4.413e-3 4.119e-1

NeurTISC (Ours) 1.835e-3 1.462e-2

Table 6: Comparison of prediction accuracy on KS equation.

shown in Figure 6. The results show that both ETDRK4 without correction and NeurVec fail to
predict the merge of the two attractors near the end while NeurTISC correctly predicts the trajectory
of the attractors for 50 future time steps even though the model was trained using a time window of
20 steps.

Finally, we evaluate the effectiveness of the rational activation function on KS system follow-
ing the same settings used previously. Table 7 shows again that the rational activation function
outperform the other two choices.

5 CONCLUSION

In this paper we proposed NeurTISC, a new type of neural time integrator based on stage correc-
tion. NeurTISC enhances a traditional multi-stage time integrator by using a simple neural network
to compensate the errors at each stage; therefore, it allows the use of large step sizes to accelerate
the simulation of dynamical systems, including pure ODEs and ODEs converted from PDEs after
spacial discretization. We show that the stage-by-stage correction approach can effectively account

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Comparison of path predictions between plain ETDRK4, ETDRK4 with NeurVec inte-
grator, and ETDRK4 with NeurTISC integrator. Note the substantial difference in the predicted
solutions in the end.

pLtrain, Ltestq (10, 20) (20, 50)

GeLU 2.481e-3 1.923e-1

tanh 1.330e-2 3.987e-1

rational 1.835e-3 1.462e-2

Table 7: Comparison of prediction accuracy on KS equation using NeurTISC with different activa-
tions.

for the distinct error characteristics at each stage of the Runge-Kutta methods and mitigate the er-
ror accumulation problem. Using a variety of complex dynamical systems, we demonstrated that
NeurTISC achieves at least one order of magnitude better accuracy when compared with the exist-
ing method NeurVec, and it can predict the system states for a long time horizon whereas classical
integration methods and NeurVec may fail due to instability. We show that NeurTISC does not
rely on complex neural network architectures or large number of parameters. Two fully connected
layers and a rational activation function suffice to handle the challenging tasks in our experiments.
We have also evaluated the effectiveness of the trainable rational activation function through exten-
sive ablation studies. We conclude by emphasizing that hybrid methods like NeurTISC serve as an
enhancement to the numerical solvers in dynamical system simulations, ultimately drawing on the
strength of physics-based simulations and the speed of ML models.

REFERENCES

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. Advances in
neural information processing systems, 33:14243–14253, 2020.

Ernst Breitenberger and Robert D Mueller. The elastic pendulum: a nonlinear paradigm. Journal of
Mathematical Physics, 22(6):1196–1210, 1981.

Zhen Chen and Dongbin Xiu. On generalized residual network for deep learning of unknown dy-
namical systems. Journal of Computational Physics, 438:110362, 2021.

Anshul Choudhary, John F Lindner, Elliott G Holliday, Scott T Miller, Sudeshna Sinha, and
William L Ditto. Physics-enhanced neural networks learn order and chaos. Physical Review
E, 101(6):062207, 2020.

Steven M Cox and Paul C Matthews. Exponential time differencing for stiff systems. Journal of
Computational Physics, 176(2):430–455, 2002.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

Chen-Di Han, Bryan Glaz, Mulugeta Haile, and Ying-Cheng Lai. Adaptable hamiltonian neural
networks. Physical Review Research, 3(2):023156, 2021.

Weizhang Huang and Benedict Leimkuhler. The adaptive verlet method. SIAM Journal on Scientific
Computing, 18(1):239–256, 1997.

Zhongzhan Huang, Senwei Liang, Hong Zhang, Haizhao Yang, and Liang Lin. On fast simulation of
dynamical system with neural vector enhanced numerical solver. Scientific reports, 13(1):15254,
2023.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Senwei Liang, Zhongzhan Huang, and Hong Zhang. Stiffness-aware neural network for learning
hamiltonian systems. In International Conference on Learning Representations, 2022.

Xin-Yang Liu, Hao Sun, Min Zhu, Lu Lu, and Jian-Xun Wang. Predicting parametric spa-
tiotemporal dynamics by multi-resolution pde structure-preserved deep learning. arXiv preprint
arXiv:2205.03990, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
machine learning for fluid-related partial differential equations. Nature Machine Intelligence, pp.
1–14, 2024.

Shaowu Pan and Karthik Duraisamy. Long-time predictive modeling of nonlinear dynamical sys-
tems using neural networks. Complexity, 2018(1):4801012, 2018.

M Torabi Rad, A Viardin, GJ Schmitz, and M Apel. Theory-training deep neural networks for an
alloy solidification benchmark problem. Computational Materials Science, 180:109687, 2020.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions. Journal of Machine Learning Research, 19(25):1–24, 2018.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Matus Telgarsky. Neural networks and rational functions. In International Conference on Machine
Learning, pp. 3387–3393. PMLR, 2017.

Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J Zhang. Stable climate simula-
tions using a realistic general circulation model with neural network parameterizations for atmo-
spheric moist physics and radiation processes. Geoscientific Model Development, 15(9):3923–
3940, 2022.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yifan Zhang and Joe Kileel. Covering number of real algebraic varieties: Improved bound and
applications. arXiv preprint arXiv:2311.05116, 2023.

10


	Introduction
	Background
	Neural Time Integrator with Stage Correction
	Numerical Experiments
	Conclusion

