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Abstract

Training Transformers on algorithmic tasks frequently demonstrates an intriguing
abrupt learning phenomenon: an extended performance plateau followed by a
sudden, sharp improvement. This work investigates the underlying mechanisms
for such dynamics, primarily in shallow Transformers. We reveal that during the
plateau, the model often develops an interpretable partial solution while simultane-
ously exhibiting a strong repetition bias in their outputs. This output degeneracy
is accompanied by internal representation collapse, where hidden states across
different tokens become nearly parallel. We further identify the slow learning of
optimal attention maps as a key bottleneck. Hidden progress in attention config-
uration during the plateau precedes the eventual rapid convergence, and directly
intervening on attention significantly alters plateau duration and the severity of
repetition bias and representational collapse. We validate that these identified
phenomena—repetition bias and representation collapse—are not artifacts of toy
setups but also manifest in the early pre-training stage of large language models
like Pythia and OLMo.

1 Introduction

Training Transformers on mathematical or algorithmic tasks often exhibits an intriguing “abrupt
learning” phenomenon in their training dynamics, where the model’s performance plateaus at a
suboptimal level for an extended period before suddenly and rapidly converging to the optimal solution
[3, 36, 44, 47, 54] (Figures 1 and 2). This is often considered an example of the broader phenomenon
of “emergence,” where model capabilities appear to arise discontinuously and unpredictably with
increasing amount of parameters, training data, or training steps [49]. Understanding these sharp
phase transitions in learning trajectories is crucial for gaining deeper insights into how Transformer
models learn and develop their sophisticated capabilities.

Despite recent progress in understanding such abrupt learning dynamics in Transformers for specific
tasks like in-context learning [10, 15, 41, 44, 47, 54], parity learning [3], Markov chains [15],
grammar learning [9, 32], and matrix completion [18], a unifying account of the model evolution
during loss plateau is still missing. Further, many of these works require specific assumptions on
model and data that limit their generality.

The goal of this paper is to uncover universal characteristics and underlying mechanisms that define
these training dynamics that are broadly applicable to a wide range of setups and tasks. Specifically,
what common patterns manifest in the model’s input-output behavior and internal representations
during the extended plateau phase, and what critical changes precede the sudden shift towards
higher performance? Is there hidden progress accumulating beneath the surface of the loss plateau?
Answering these questions is pivotal for building a comprehensive picture of the nature of phase
transitions in Transformer training dynamics.
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Figure 1: Abrupt learning and related characteristics. Training a shallow Transformer on algorith-
mic tasks like moving-window-sum exhibits an abrupt learning curve: performance plateaus for an
extended number of steps, before suddenly and sharply improving to optimum. Before the sudden
drop in loss, the attention map cannot be interpreted easily, whereas the post-sudden-drop attention
map is clearly interpretable w.r.t. the task. Furthermore, the model exhibits degenerate patterns before
the sudden drop, including output repetitions and collapse of its hidden representations.

To investigate these questions systematically and within a controlled setting, we focus on training
small, shallow Transformers (typically 1 or 2 layers) on a suite of simple algorithmic tasks. The
reduced model size allows for more tractable analysis and clearer interpretation of internal model
mechanisms, avoiding the obfuscation that can arise from the interplay of countless factors in large
models. Furthermore, algorithmic tasks such as moving-window-sum, prefix-sum, and multi-digit
addition (as detailed later) have well-defined optimal solutions, thus allowing us to precisely measure
the model’s progress against a known ground truth and to readily interpret which aspects of the
problem the model is succeeding on at different training stages. Interestingly, we will demonstrate
that key findings from these controlled small-scale studies extend to the pre-training dynamics of
actual Large Language Models (LLMs).

Our Contributions. We identify implicit biases that underlie the early plateau period of Transformer
training: the model learns a partial solution while being biased toward degenerate patterns in its
outputs and internal representations. We further study the pivotal role of attention map learning in
driving these phenomena and overcoming the performance plateau. See Figure 1 for an overview of
our findings. Our specific contributions are:

• Partial solutions during plateau: We show that during the initial loss plateau, the model often
learns a partial solution, which correctly predicts a subset of easier tokens within a sequence—
those that might be intuitively simpler to learn (e.g., copying the first element in a moving-window
sum, or predicting the final carry-over in multi-digit addition)—while failing on more complex
parts of the task. This pattern is observed across diverse algorithmic tasks (Table 1).

• Repetition bias in outputs: We identify a strong repetition bias during the plateau, where the
model tends to output repetitive tokens. This bias can be quantified by metrics such as a direct
count of repeated subsequent tokens or the entropy of the output token distribution. Such repetitions
significantly increase during the early training steps and then markedly decrease as the performance
starts to improve (Figure 2b).

• Internal representation collapse: The output repetition bias is accompanied by representation
collapse, where hidden representations for different tokens become nearly parallel (e.g., cosine
similarity often exceeds 0.9), indicating a degenerate representational geometry inside Transformers.
Subsequently, this representational similarity drops significantly as the model’s performance
improves, signifying a diversification of internal representations (Figure 2b).
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Figure 2: Abrupt learning dynamics for the MWS task. (a): Train/Test loss and Train/Test
Accuracy (note that both train and test data metrics are near-identical in the online training setup, and
thus we only report train metrics); (b): Attention Progress, Repetition Frequency, and Representation
Cosine Similarity between hidden states. Increase in attention progress is gradual and happens before
the sudden loss drop. Repetition frequency and representation cosine similarity rapidly increase at
the beginning and decrease to low values later on.

• Crucial role of attention map learning: We find that gradual learning of the optimal attention
pattern can commence during the loss plateau, before the sudden drop in loss (Figure 2b). By
directly intervening on the attention map during training—for instance, by biasing the attention
scores towards or away from the optimal configuration—we can observe tangible changes in
the duration of loss plateau and the severity of degenerate behaviors like repetition bias and
representation collapse.

• Validation in LLMs: Our identified phenomena of repetition bias and representation collapse
are not limited to small Transformers on synthetic algorithmic tasks. We further validate their
occurrence in the early pre-training phases of LLMs like Pythia and OLMo, suggesting these are
general characteristics of Transformer training dynamics.

2 Setup, Abrupt Learning, and Attention Map

We mainly present results for the moving-window-sum task in the main text, which we define below;
we also validate our findings on various other algorithmic tasks like multi-digit addition, permutations,
histogram, prefix-sum, etc., in Appendix B.

Data. The moving-window-sum (MWS) task involves computing the sliding-window sum (modulo
p) of a length-n sequence over windows of size 2; that is, sequences in MWS are

x1, x2, . . . , xn,SEP, y1, y2, . . . , yn

yi =

{
x1 i = 1

(xi−1 + xi)mod p i ≥ 2

Here, x1, . . . , xn are the input sequence, SEP is a separator token, and the task is to complete the
sequence with outputs y1, . . . , yn. In the experiments in the main paper, we use n = 16, p = 17,
xi ∼ Unif{1, 2, . . . , 16} and SEP = 17. We denote the full vocabulary V := {0, 1, 2, . . . , 17}, and
directly use these integers as token IDs when generating token embeddings for input to the model.

Model Architecture. We use a 1-layer, 1-head Transformer with causal masking and linear attention.
This simple architecture can already solve the MWS task to perfect accuracy. Formally, for a sequence
of tokens (s1, . . . , sL), the Transformer output is,

TFθ(s1, s2, . . . , sL) = LM ◦ (Id +MLP) ◦ (Id + Attn) ◦ Embed(s1, s2, . . . , sL) (1)
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where Embed outputs sum of token and absolute positional embeddings hi ∈ Rd, and Attn denotes
the causal-linear-Attention operation that combines tokens such that output at ith position is,

[Attn(h1, h2, . . . , hL)]i = WO

 i∑
j=1

(h⊤
j W

⊤
KWQhi)WV hj

 ;WO,WK ,WQ,WV ∈ Rd×d (2)

MLP denotes the 2-layer neural net hi 7→ W2(σ(W1hi)) for W2 ∈ Rd×4d,W1 ∈ R4d×d, and σ the
GELU activation. LM is a linear layer that maps the hidden state hi ∈ Rd to logits vi ∈ R|V |. Note
that all linear maps above implicitly include a bias term, and we use pre-LayerNorm so that before
the Attn, MLP, and LM, a LayerNorm operation is applied to the hidden states hi. For generating
sequences, we use greedy decoding i.e. output token is determined by the maximum logit over the
vocabulary (please see Appendix A for more implementation details). We use linear attention to
avoid small gradient issues from softmax function being a contributing factor toward abrupt learning,
as argued in [20]. We also show similar results on softmax attention, multi-layer / multi-head models,
and models with varying d in Appendix F.

Training. The model is trained to minimize the standard next-token-prediction cross-entropy loss
over the full sequence i.e. (x1, . . . , xn,SEP, y1, . . . yn) for the MWS task. We evaluate accuracy
over the output portion of the sequence, i.e., y1, . . . , yn, averaged over these n positions. We
use the Adam optimizer with a constant learning rate 10−4 and no weight decay. The training
is conducted in an online / single-epoch fashion, where a new batch of 256 training samples is
drawn from the data distribution at each training step. Note that in this setup, the training and
test losses essentially coincide. For completeness, we verify in Appendix G that our reported
phenomena occur when using different optimization algorithms (SGD, Muon [25]) or optimization
hyperparameters (learning rate, LR schedules, batch size, initialization scale, weight decay) as well,
and are not merely an artifact of a specific training setup. Code for experiments is available at
github.com/pulkitgopalani/tf-loss-plateau.

Abrupt Learning. Following the training procedure described above will result in a characteristic
abrupt learning curve, where the training/test loss is stuck at some sub-optimal value for a significant
number of steps, before suddenly and rapidly decreasing to its optimal value (Figure 2a). This drop
in loss is accompanied by a similarly rapid increase in accuracy, indicating that the optimal solution
is learned abruptly.

Attention Map. We analyze the attention map at different points during training. We find that
the attention map shows a sparse, interpretable pattern after the sudden loss drop, while no such
pattern is shown before the sudden drop (Figure 1). For the MWS task, this optimal attention pattern
corresponds to each output token yi attending only to the input tokens relevant to its computation, i.e.,
attending to x1 for y1, and to xi, xi−1 for yi, i ≥ 2. We further use an Attention Progress Measure
(APM) to record the progress of the attention map toward its optimal pattern during training, defined
as

APM :=

∑
(i,j)∈Ω |Aij |∑
(i,j) |Aij |

, (3)

where Aij denotes the attention score allocated to the jth token when computing output at the ith

position in the sequence, and Ω is the set of position pairs in the optimal attention map. This measure
is defined with absolute values due to our choice of linear attention so that Aij could be positive or
negative. In experiments, we calculate APM averaged over a random batch of sequences. The APM
sets Ω for all relevant tasks in this paper are defined in Table 2.

Figure 2b shows that the APM monotonically increases from near 0 to near 0.8 during training, and
its increase is more gradual than the loss/accuracy dynamics. In particular, APM already increases to
a nontrivial value during the loss plateau and before the sudden loss drop.

3 Implicit Biases in the Early Phase of Training

In this section, we characterize several key manifestations of the implicit biases in the early phase of
Transformer training. These patterns robustly co-occur with the loss plateau, and provide intuitive
indicators that the model is getting stuck at a degenerate state during the plateau.
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Partial Solution. During the loss plateau, the model often has already learned to implement a
partial solution to the task. This means it correctly predicts a subset of the output tokens, typically
those corresponding to an intuitively simpler part of the problem, while failing on the more complex
parts. For instance, in the MWS task, the model quickly learns to predict the first output token y1
correctly (see Figure 2a for the first-token accuracy), as it is simply a copy of the first input token
x1, while the overall loss remains high and accuracy on subsequent tokens is poor. This ability to
solve easier sub-components of the task early on is observed across various algorithmic problems
(see Table 1 in Appendix B).

Repetition Bias. Concurrent with learning the partial solution, the model’s outputs during the initial
phase of training display a strong repetition bias, which refers to a tendency of the model to generate
repetitive tokens of the form x, x, x, . . .. One way to quantify such repetitions is to simply count
the frequency of output tokens that equal the next one: for output sequence y1, y2, . . . , yn, define its
repetition frequency as,

ρ :=
1

n− 1

n−1∑
i=1

1[yi = yi+1]. (4)

We observe that ρ increases rapidly during the early phase of training, when the optimal attention
map has not been learned yet (Figure 2b). Note that this frequency is small at initialization, and
grows rapidly in the first ≈ 50 steps to ≈ 0.8, indicating that it is an implicit bias coming from
gradient-based training.

Representation Collapse. Motivated by the frequent repetitions in model outputs, we further
study the relation between the hidden representations at different output positions. We find a strong
representation collapse phenomenon—these representations become nearly parallel in the early phase
of training (except for the first output position which is correctly predicted in the partial solution). We
measure the pairwise cosine similarity between hidden representations at positions i, j in the output,

COSi,j :=
⟨hi,hj⟩
∥hi∥∥hj∥

(5)

where hi ∈ Rd is the hidden state at position i in the sequence (this quantity is averaged over a
random batch of sequences). We find that in the early phase of training, there is a rapid increase in
COSi,j—averaged over all output positions i, j except the first position, this quantity increases to
≈ 0.95 (Figure 2b). We emphasize that similar to repetitions, representation collapse is not present at
initialization and only appears after a few steps of training. This is in contrast to the rank collapse
phenomenon for deep softmax-attention Transformers [2] that occurs at initialization. Also, while we
focus on the final-layer representation (before the LM layer) in the main text, we show in Figure 42
that representation collapse happens in all intermediate layers to varying degrees.

4 The Role of Learning Attention

Observe that though the loss dynamics are abrupt, attention progress measure as well as repetitions
and representation collapse are not (Figure 2b); that is, even when the loss is barely decreasing
(between steps 50 and 150), attention progress measure notably increases, accompanied by a decrease
in repetition frequency and representation collapse. Via training-time interventions, this section shows
that learning the attention map plays a crucial role in shaping the loss plateau as well as repetitions
and representation collapse.

Representation Collapse Occurs After the Attention Layer. We start by verifying whether the
attention layer is responsible for representation collapse during the early phase of training. To this end,
we plot the cosine similarity of the residual stream for output tokens just before and after the attention
layer. Formally, let the residual stream before attention layer (i.e., token + positional embeddings) be
hi ∈ Rd, and the residual stream after attention layer be h′

i ∈ Rd, we measure the norm and pairwise
cosine similarity for hi and h′

i in Figure 41.

We find that in the early phase of training, the cosine similarity between different positions in the
post-attention residual stream representations approaches 1.0 rapidly, which is not the case for pre-
attention. Furthermore, the norm of h′

i grows rapidly in this phase, while the norm of hi remains
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Figure 3: Biasing attention map by c > 1. We find that multiplicative biasing the attention map
towards more weight to optimal positions leads to faster convergence, accompanied by less repetitions
and average cosine similarity.

near-constant. Hence, in the residual stream, representation collapse occurs after the attention layer
during the early phase of training.

Biasing the Attention Map. To study the role of attention map, we slightly modify the training
process starting at different time points in training, biasing it towards (or away from) the optimal
attention map to check if repetitions, representation collapse, and loss plateau are reduced (resp. am-
plified). We do the following: For each step in training after t0, for attention map A ∈ R(L−1)×(L−1),
we use the mask M ∈ R(L−1)×(L−1),Mij = c for (i, j) ∈ Ω,Mij = 1 otherwise, except for i = 1
(since that is a partial solution and converges early in training). Then, we use the modified attention
map A⊙M (Hadamard product) for training and inference. Hence, for c > 1, this implies biasing
the model towards the final (optimal) attention map, whereas for 0 < c < 1, this implies biasing the
model away from the optimal attention map.

We find that, for c > 1 and various values of t0, such a scaling leads to lower average cosine similarity
between hidden states, lower frequency of repetitions, and faster convergence (Figures 3 and 43).
Whereas, for 0 < c < 1, we find the opposite: the model is in representation collapse state for
a longer time and converges later compared to the non-scaled (c = 1) case, while the repetition
frequency remains large throughout the plateau (Figure 4).

For example, for t0 = 0, c = 10, i.e. scaling 10× from the start of training, we find that the peak
cosine similarity attained during training is ≈ 0.6, much smaller than the ≈ 0.95 attained for c = 1,
and further the peak for c = 10 is for negligible duration compared to that for c = 1. Later values
of t0 = 25, 50, 75 show similar results wherein the cosine similarity drops immediately on the
above biasing operation, followed by lower repetition frequency and convergence to optimal solution
(Figure 43). On the other hand, for t0 = 0, c = 0.2, 0.5, the model takes much longer to converge
and is in representation collapse / large repetition frequency state for much longer. This is in line
with our expectation that lower attention map values for the optimal positions lead to slower learning
and prolonged representation collapse.

Hence, learning the optimal attention map has a direct effect on shaping the loss dynamics as well as
repetitions and representation collapse.
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Figure 4: Biasing attention map by c < 1. We find that biasing the attention map to have lesser
weight at optimal positions leads to slower convergence, and more representation collapse and
repetitions.
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Figure 5: Different optimal initializations and effect on training. We find that fixing attention and
embedding weights (i.e. attention map) to optimal value, and training other components leads to faster
convergence and lesser representation collapse / repetitions. Similar effect does not hold for fixing
optimal MLP or Embeddings. (K,Q,O, V respectively denote the parameters WK ,WQ,WO,WV .)

Training with Optimal Attention Map v. Other Components In the first part of this test, we
initialize with the optimal attention map by fixing embeddings, LayerNorm for attention layer and
attention layer weights to their final values at the end of a normal training run, so that at initialization,
the correct attention map is already available to subsequent layers. We re-train the subsequent
non-fixed layers starting from random initialization. For the attention layer, we choose the set of
parameters to initalize in 2 ways: (a) only Key, Query (WK ,WQ) weights, and (b) All of Key, Query,
Value, Output (WK ,WQ,WV ,WO) weights. We find that in both of these cases, learning only the
subsequent layers (i.e. MLP, LM Head) take significantly shorter time than training the full model,
without any significant representation collapse, repetitions or plateau in loss (Figure 5). Further,
between (a) and (b), we find that additionally having WO,WV layers initialized to optimal values
slightly speeds up learning, and average cosine similarity goes up to approx 0.15 instead of ≈ 0.45
when only initializing WK ,WQ weights. This indicates that WO,WV layers also play a non-trivial
role in causing representation collapse.

On the other hand, fixing MLP or embeddings (together with LM head) to their final optimal values
and re-training the other components does not qualitatively change the training dynamics from the
full training case, i.e., a significant loss plateau, repetition bias, and representation collapse still occur
(Figure 5).

This result confirms that attention map is a major bottleneck that leads to early representation
collapse and loss plateau, and that there is little benefit from having the optimal MLP or embeddings
at initialization compared to attention map.

Our results are similar to [44] that shows how various sub-circuits (incl. attention map) for in-context
learning affect the loss plateau via training-time interventions, and [29] that shows the effectiveness
of attention transfer from pretrained model for downstream task training in Vision Transformers.

Tracking Progress in Hidden States To further track model progress during training, we probe
the output of Attention layer before it is added to the residual stream (Equation (2)) using a 2-layer
MLP probe with ReLU activation, and find that the accuracy for this probe increases earlier than the
model accuracy. Please see Appendix C for more details.

Searching for the Right Tokens The preceding results have demonstrated the important role of
learning attention map (i.e., attending to the correct tokens) towards the plateau in training loss.
Furthermore, once there is sufficient progress in the Attention map (visualized via APM in Figure 2b
and output probing in Figure 20), the final model output converges rapidly to the correct solution.
These observations conceptually align with abrupt learning observed when training 2–layer neural
nets on a specific class of target functions [1], where the loss plateau is attributed to ‘search’ phase
for aligning the first layer with the support of target function. In our setup, we hypothesize that a
similar ‘search’ phenomenon could be occurring, where gradual increase in attention map weights at
the required input tokens underlies the loss plateau.

Similar progress in model weights during loss plateau for a sinusoidal neuron trained on a sparse parity
task was shown in [3, Fig. 3]. [38] discuss parallel search when training multi-head Transformers on
a sparse parity task, and how the number of attention heads affects training dynamics.
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Figure 6: Prefix sum task training dynamics. While the usual contiguous repetitions do not occur
for this task, an alternate form of repetition occurs in terms of having only a few distinct tokens in
the output sequence. ‘Sequence entropy’ quantifies this repetition by measuring the entropy of the
empirical distribution of tokens in a sequence, and averaging this entropy over a batch of sequences.

5 A Further Look at Repetition Bias

Having observed that Transformer models exhibit a strong repetition bias in the early phase of
training, which co-occurs with the loss plateau, we now take a further look at this repetition bias and
study how it might be affected by the amount of repetitions in the training sequences. We show that
such bias still exists even when there is almost no repetition in the training data. Subsequently, we
also show that learning simple, repetitive sequences is easier for Transformers, i.e., no loss plateau,
indicating why the model might be biased towards repetitions in the early phase of training.

Beyond Repetitions in Consecutive Tokens One hypothesis for the reason behind repetition bias
is that the training data may consist of some repetitions, and the model may pick up these patterns
and amplify them in the early phase of training. To investigate this, we consider a task with low
repetitions in the training data. In particular, we consider the prefix sum task, where the outputs
y1, . . . , yn are defined as yi = (

∑i
j=1 xj)mod p. Our choice of the input distribution ensures that

there is no repetition in consecutive output positions (i.e., yi ̸= yi+1 for all i). Indeed, training a
Transformer on the prefix sum task does not result in a significant increase in the repetition frequency
at any point in training, unlike the MWS task. Nevertheless, in the early training phase, we still
observe that only a few tokens appear repeatedly in the model output though not contiguously as in
the MWS task. Therefore, we consider an alternative measure of repetitions based on entropy: for an
output sequence y1, y2, . . . , yn, we define

SeqEnt(y1, . . . , yn) :=

|V |∑
i=1

pi log(1/pi); pi =
|{yj = vi, j ∈ [n]}|

n
(6)

i.e. simply the entropy of the empirical distribution of tokens in the sequence. Intuitively, the entropy
is lower if most probability mass is concentrated at a few tokens, and larger if the tokens are more
uniformly distributed. We find that the model output entropy quickly goes to quite low values early
in training compared to the entropy of ground-truth data (Figure 6), indicating that the model still has
a form of repetition bias. Further, representation collapse still happens in the early phase, with the
average cosine similarity going to 0.8 during the plateau. Hence, we find that repetition bias might
take different forms depending on the task, but still robustly occurs in the early phase of training.

Repetitive Sequences are Easier to Learn We study what happens when training our model
on data that has a lot of repetitions. We consider a simple task REPEAT1 of the form
x1, x2, . . . , xn,SEP, y1, y2, . . . , yn, where yi = x1 ∀i. Unlike other tasks, the loss curve for
REPEAT1 does not have any noticeable plateau, though the accuracy still shows a small plateau period
(Figure 7). This observation indicates that such repetitive sequences are easier from an optimization
perspective and hence likely “preferred” during the early stage of training. In fact, just one gradient
step is sufficient to bring the average representation cosine similarity to ≈ 0.5. We show similar
results for other task variants (REPEAT2, REPEAT4) in Appendix D.

To further understand the early training phase model output, we define another metric α1 that
measures to what extent the model simply outputs the same token for all output positions: α1 =
1
n

∑n
i=1 1[yi = y1]. Note that this is distinct from accuracy, in that the model might output the wrong
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Figure 7: REPEAT1 training dynamics.

y1, however repeats y1 at y2, . . . , yn. We find that α1 rapidly increases to near perfect values (> 0.9)
in the early phase of training, showing that the model tends to repeat the first token identically at
most positions, even though the output token itself might be incorrect. Hence, repetitive sequences
appear to be inherently easier for the Transformer to learn, and this is likely the reason for repetition
bias in the early phase of training.

6 Repetition Bias and Representation Collapse in LLMs

Having established that the degenerate patterns of repetition bias and representation collapse are
prevalent in small Transformers trained on algorithmic tasks, a crucial question is whether these
phenomena also happen beyond toy settings, specifically during the early pre-training stages of LLMs.
We verify that this is indeed the case, using early-stage checkpoints of open-source LLMs Pythia [6]
and OLMo-2 [37].

For Pythia models with 14M, 1B, 1.4B, and 2.8B parameters, we find strong representation collapse
in the early training steps in their last layer and repetition bias in the output sequence (Figure 8).
Specifically, we randomly sample 100 questions from the test split of the AI2 ARC-Easy dataset
[12] . For each question, we let the model generate 8 tokens, and compute the pairwise cosine
similarity of the hidden states (see Appendix A for more implementation details). Figure 8 shows
that at initialization, the average cosine similarity is relatively low (0.4-0.65), but within a few steps
of training for all models, it sharply increases to > 0.9. These results remain similar if we use
random sampling instead of greedy decoding, and other datasets like GSM8K and ARC-Challenge
(Appendix E). Further, the outputs for many prompts in the greedy decoding case are trivial repetitions
of the same token, e.g., newline ‘\n’, a clear manifestation of repetition bias.

Similar representation collapse patterns as Pythia are observed for the OLMo-2 7B model. For its
earliest available training checkpoint (step 150, OLMo-2-1124-7B), the average representation cosine
similarity in the setup from Section 6 is ≈ 0.93; for the next checkpoint at step 600, this value has
already decreased to ≈ 0.43 (similar for both greedy decoding and random sampling strategies).
Hence, repetition bias and representation collapse occur in the early pre-training phase of LLMs,
validating our findings beyond toy settings.
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Figure 8: Representation Collapse, Repetitions during Pythia Pretraining. Representation
collapse at different Pythia pretraining checkpoints evaluated on the ARC-Easy test dataset; tokens
generated via greedy decoding. We find that similar to our toy experiments, average pairwise cosine
similarity between hidden states and repetition frequency start at relatively low values, and increase
to near 1.0 during the early phase of pretraining, followed by a decrease around step 1000.
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7 Related Work

Abrupt learning has been studied in various settings; [9] study sudden drop in loss when training
BERT, and show abrupt learning of the attention map (termed Syntactic Attention Structure / SAS)
concurrent with the sudden drop in training loss. [20] study sudden drop in loss (‘Eureka moments’)
when training Transformers on multi-step tasks. They show that ill-distributed softmax attention
scores lead to small gradients for key, query weights causing slow learning of attention map, and
that appropriately modifying softmax temperature can alleviate optimization issues. [3] studied
abrupt learning in various neural net architectures trained on sparse parity tasks, demonstrating
underlying hidden progress during training via measures such as Fourier gap and weight movement.
[18] study abrupt learning when training a BERT model on matrix completion, while [32] analyze
abrupt learning for a grammar data setup through graph percolation. For abrupt learning in in-context
learning [17], there has been a line of recent works [10, 15, 41, 44, 47, 54, 55] that proposed various
theoretical and empirical explanations. [15] studied abrupt learning for a Markov chain in-context
learning task with Transformers, and demonstrate a partial solution in their setup in the form of a
unigram estimator. [46] analyze partial solutions for an in-context n–gram task with Transformers,
corresponding to k–gram estimators (k < n). For diagonal-attention Transformers with small
initialization, [7] analyze ‘saddle-to-saddle’ dynamics for a theoretical understanding of loss plateaus
during training.

A line of recent work has focused on understanding ‘grokking’ [39], i.e. abrupt generalization
after an extended phase of memorization of training data by the model. Subsequent works have
studied grokking through circuit formation [34, 36, 45], representation learning [31], delay in feature
learning [27, 33, 52]. [40] further study ‘naive loss minimization’ and numerical stability issues for
understanding grokking. Note that grokking is a fixed-dataset phenomenon concerning memorization
of the training dataset, and hence somewhat distinct from abrupt learning studied in this paper.

Rank collapse is a related phenomenon for deep softmax transformers at initialization that might
hinder training [2]; however, our representation collapse phenomenon is different in that (i) we use
shallow (1 or 2 layers) Transformers instead of deep ones; (ii) we use linear attention instead of
softmax; (iii) our observed representation collapse occurs only after a few steps of training, not at
initialization. [4] show a form of representation collapse so that for 2 sequences (v1, v2, . . . , vn)
and (v1, v2, . . . , vn, vn), as n grows large, the pretrained model’s hidden state representation for the
last token becomes identical for both sequences (Theorem 4.2, [4]). Note that we study evolution
of representation collapse in the early phase of Transformer training, distinct from the notion of
representation collapse at initialization, or in final pretrained models.

Repetition in language model outputs is a well studied problem [16, 19, 21, 23, 30, 48, 51, 53].
However most works focus not on the early phase of training, but on how repetition may arise in
trained language models, and how to mitigate them. Towards understanding learning dynamics, [8,
11] report token repetitions in the early phase of training language models. Please see Appendix I for
additional discussion on related work.

8 Discussion

We identified repetition bias and representation collapse as key characteristics of the early-phase
implicit biases of Transformer training, which are closely connected to the commonly observed loss
plateau. We further discussed ‘search’ over sequence tokens as a possible cause for loss plateau.
The question of why behaviors such as representation collapse exist during early time training is an
important question for future work. Furthermore, while we hypothesize a search-like phenomenon
to be the reason behind slow learning of attention map, a rigorous theoretical validation of this
hypothesis, and how it possibly connects to the intuitive “complexity” of the task, are important
questions for further research.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations of this work in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results in this work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described the model and data generation process in detail
for reproducibility in Section 2 and Appendix A. We have also released code at
github.com/pulkitgopalani/tf-loss-plateau.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have released code at github.com/pulkitgopalani/tf-loss-plateau, also
specified in Section 2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Described in Section 2, Appendix A and at other relevant places wherever
applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have not included error bars due to computational constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have described compute resources used in this work in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impact in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our data and models are specifically for toy setups designed to understand
training dynamics of Transformers, and hence there is no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have used existing GPT implementation [26], Pythia models [6] and OLMo-
2 model [37] via HuggingFace Transformers [50], ARC-Easy/Challenge datasets [12], and
GSM8K dataset [13] for which we have added relevant citations wherever necessary. Licence
information for all these is given in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released code at github.com/pulkitgopalani/tf-loss-plateau, with
details provided in README.md.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no research involving human subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no research involving human subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Compute Resources. All experiments were conducted on a single GPU (NVIDIA A100 or L40S)
on an academic computing cluster. Most training runs in this paper complete within a few hours.

Causal Linear Attention. Linear attention transformer is obtained simply by removing the softmax
activation function when computing the attention map, and setting the causal mask to 0 instead of
−∞. We use the existing minGPT implementation [26] (MIT licence) for our experiments, modifying
the code as above and wherever required.

LLM Experiments. We use Pythia [6] / OLMo-2 [37] pretrained models (Apache 2.0 Licence)
hosted on Huggingface Transformers [50] and evaluate them on the ARC-Easy / Challenge datasets
[12] (CC-BY-SA 4.0 Licence), and GSM8K [13] (MIT Licence). We set the use_cache=False
in the generate function, and use the hidden state used for predicting each of the 8 output to-
kens. For random sampling, we use do_sample=True (using default temperature value), using
do_sample=False for our greedy decoding results.

B Results for Other Algorithmic Tasks

This section presents results on a suite of algorithmic tasks, verifying the generality of our identified
phenomena.

Table 1: Algorithmic tasks that show abrupt learning and partial solution during plateau

Task Description Partial Solution

Moving Window Sum (MWS) Sum over moving window of
2 elements, copy 1st element

First input element

Prefix Sum (PRE) Compute prefix sum of a
given n–length sequence

First input element

Permutation (PER) Permute an n−length
sequence by given
permutation

Incorrect permutation of
input sequence

Multi-Digit Addition (ADD) Add atmost–n–digit numbers First digit (0 or 1) i.e.
total carry-over from n
digits

Histogram (HIST) Compute counts of each
element in n–length sequence

≈ 100% Repetitive
sequences

Reverse (REV) Reverse n–length input
sequence

Repetitive sequences1

Copy (COPY) Copy n–length input
sequence

Repetitive sequences1

Copy + MWS + MWS3 Concatenation of sequences
from COPY, MWS, and
MWS3 (moving window of 3
elements)

During 1st plateau:
COPY part correct; 2nd
plateau: COPY and
MWS parts correct
(Appendix B.7)

(1The loss plateau is very brief, hence a partial solution like other cases is not applicable.)

In the following table we describe APM sets Ω for different algorithmic tasks used in this work.
We assume the attention map is of the shape A ∈ R(L−1)×(L−1) in the next token prediction setup
on the full input sequence. Hence, for MWS, Prefix sum, Histogram, Reverse, Copy, L = 33, for
permutation L = 50, and for Multi-digit addition L = 15. The APM sets are denoted by sets of
tuples (i, j) ∈ [L− 1]× [L− 1] indicating the row/column indices in the attention map A.
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Table 2: Attention Progress Measure (APM) sets (Ω) for all tasks

Task APM set Ω

MWS {(16, 0)} ∪ {(16 + i, i− 1) | i ∈ [1, 15]} ∪ {(16 + i, i) | i ∈ [1, 15]}
Prefix Sum {(16, 0)} ∪ {(16+ i, 16+ i) | i ∈ [1, 15]} ∪ {(16+ i, i) | i ∈ [1, 15]}
Multi-digit
Addition

{(i, 12− i) | i ∈ [9, 12]} ∪ {(i, 17− i) | i ∈ [9, 12]} ∪
{(i, 13− i) | i ∈ [9, 13]} ∪ {(i, 18− i) | i ∈ [9, 13]}

Permutation Layer 1: {(17 + i, πi+1 − 1) | i ∈ [0, 15]}
Layer 2: {(33 + i, 17 + i) | i ∈ [0, 15]}

Histogram Layer 1: {(16 + i, i) | i ∈ [0, 15]}
Copy {(16 + i, i) | i ∈ [0, 15]}
Reverse {(16 + i, 15− i) | i ∈ [0, 15]}

B.1 Multi-Digit Addition

This task involves adding 2 atmost 4–digit numbers; if the numbers are represented as a =
a1a2a3a4, b = b1b2b3b4 and their sum a + b = c = c0c1c2c3c4 then the training sequences
for ADD are of the form

a1, a2, a3, a4,+, b1, b2, b3, b4,=, c4, c3, c2, c1, c0

Note that the output sequence is reversed, following the observations from [28]. We find similar
abrupt learning characteristics (Figure 9), partial solution in this case being c0 i.e. total carry-over
from 4 single digit add operations. An interpretable attention map learnt for the output sequence is
shown in Figure 10.
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Figure 9: Training dynamics for Add task. (left) Train/Test Loss, Accuracy and Partial solution
progress (c0 accuracy); (middle) Repetition frequency and representation collapse; (right) Attention
progress measure.

Figure 10: Attention map for add task, note that the model attends to the relevant digits in the input
numbers, and to somewhat lesser extent to the preceding digits as well (highlighted positions show
entries with larger magnitude).
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B.2 Prefix sum

This task involves computing the cumulative (prefix) sum of an n−length sequence of integers, so
that the training sequences in PRE are of the form (n = 16,SEP = 17),

x1, x2, . . . , xn,SEP, y1, y2, . . . , yn

yi =

 i∑
j=1

xj

 mod 17 ∀i ∈ [n]

Training dynamics for this task are shown in Fig. 11 which show similar abrupt learning behavior
as MWS and partial solution learning for y1. The interpretable attention map learnt for this task is
shown in Figure 12.
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Figure 11: Training dynamics for Prefix sum task. (left) Train/Test Loss, Accuracy and Partial
solution progress (y1 accuracy); (middle) Attention progress and representation collapse; (right)
SeqEnt for data and model output sequences.

Figure 12: Attention map for Prefix sum task, that uses the relevant token in the input, as well as
the previous token in the output to track prefix sum (highlighted positions show entries with larger
magnitude).

B.3 Permutation

This task involves training a 2-layer, 1-head Transformer on permuting a length−n sequence using
the permutation π, which is generated at random and is distinct for each training sequence. Formally,
for a sequence of positive integers (x1, . . . , xn) and a permutation (π1, . . . , πn) over [n], training
sequences for PER, k = 0, 1, 2, . . . are given by

x1, . . . , xn,SEP, π1, . . . , πn,SEP, xπ1 , . . . , xπn

where xi ∼ Unif{17, 18, . . . , 32}, n = 16,SEP = 0. The partial solution in this case is the output
sequence being an permutation of the input sequence x1, . . . , xn i.e., it learns to copy the tokens
correctly, but in wrong order (Figure 13). The interpretable attention maps in this case show that the
model learns to copy the correct tokens based on the permutation provided (Figure 14a) and then
uses them for the final output sequence (Figure 14b).
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Figure 13: Training dynamics for Permutation task. (left) Train/Test Loss, Accuracy and Partial
solution progress; (middle) Repetition frequency and representation collapse; (right) Attention
progress measure. Note that the repetition frequency decreases by step 100, which is followed by the
partial solution.

(a) Attention map in Layer 1 where rows
are attention weights over the input part
x1, x2, . . . , xn of the sequence. The highlighted
positions are attending to π1, π2, . . . , πn =
5, 15, 4, 14, 3, 13, 6, 10, 11, 9, 16, 1, 12, 8, 2, 7. for
index i ∈ [n].

(b) Attention map in Layer 2; the rows (output part
of the sequence) are attention scores over the part of
sequence to which Layer 1 attention map copies the
correctly permuted tokens. This implies that this at-
tention map simply copies the correct token from the
residual stream after Layer 1.

Figure 14: Attention maps for the 2 layer Transformer used for Permutation task; highlighted positions
show entries with larger magnitude.

B.4 Histogram

This task [14] involves computing the counts of elements in the input sequence, and training sequences
are of the form

x1, x2, . . . , xn,SEP, y1, y2, . . . , yn

yi =

n∑
j=1

1[xj = xi]

where xi ∼ Unif{1, 2, . . . , 12}, n = 16,SEP = 0. We train a 2-layer, 1-head transformer for this
task, with gradient clipping (1.0) to avoid loss spikes (Figure 15). We note that the repetition bias in
this case is quite strong which leads to ≈ 100% repetitions in the early phase of training, and which
we characterize as partial solution for this task. Further we only consider the attention map from layer
1 (Figure 16) since this is the most consistent and clearly interpretable across runs, and indicates an
identity-map-like function.
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Figure 15: Training dynamics for Histogram task. (left) Train/Test Loss and Accuracy; (middle)
Repetition frequency and representation collapse; (right) Attention progress measure. We only
measure attention progress for the 1st layer, since that is the one that consistently and clearly shows
an interpretable pattern (Figure 16).

Figure 16: Attention map in layer 1 for histogram task, where rows for the latter half of the sequence
compute attention weights over the input tokens xi, similar to an identity map (highlighted positions
show entries with larger magnitude).

B.5 Reverse

This is the task of reversing the input sequence, so that the training sequences for reverse task REV
are given as,

x1, x2, . . . , xn,SEP, xn, xn−1, . . . , x1

for xi ∼ Unif{1, 2, . . . , 16}, n = 16,SEP = 0. The training dynamics are shown in Figure 17a and
the interpretable attention map is shown in Figure 17b.
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(a) Training dynamics for reverse task

(b) Attention map for re-
verse task (highlighted po-
sitions show entries with
larger magnitude).

Figure 17: Training dynamics for Reverse task. We see Abrupt Learning, Representation Collapse
and Repetitions, though to a lesser extent than MWS task. Note that the plateau is much shorter
compared to MWS, possibly explained by the fact that reversing a sequence is ‘easier’ than computing
the moving window sum.

B.6 Copy

This is the trivial task of copying the input sequence as is, so that the training sequences for copy task
COPY are given as,

x1, x2, . . . , xn,SEP, x1, x2, . . . , xn
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for xi ∼ Unif{1, 2, . . . , 16}, n = 16,SEP = 0. The training dynamics are shown in Figure 18a and
the interpretable attention map is shown in Figure 18b.
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Figure 18: Training dynamics for Copy task. Similar to reverse task, we observe Abrupt Learning,
Representation Collapse and Repetitions for Copy task, but this time to an even lesser extent than
reverse task itself.

B.7 Concatenation of Copy, MWS, MWS3

We train the model on following sequences,
x1, x2, . . . , x16,SEP, y1, y2, . . . , y13

yi =


xi i ∈ [1, 4]

(xi + xi+1) mod 17 i ∈ [5, 9]

(xi+1 + xi+2 + xi+3) mod 17 i ∈ [10, 13]

with xi ∼ Unif{1, 2, . . . , 16},SEP = 17, and find that the train loss follows a ‘staircase’-like evolu-
tion, learning the 3 distinct parts ([y1, . . . , y4], [y5, . . . , y9], [y10, . . . , y13]) sequentially (Figure 19).
Similar sequential trend is seen for accuracy and average cosine similarity, measured separately over
these parts (labeled Part 1,2,3).

0 500 1000 1500 2000 2500 3000
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss and Accuracy

Loss
Accuracy

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Part-wise Accuracy

Train Acc. 1
Train Acc. 2
Train Acc. 3

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Part-wise Cosine Similarity

Cosine Sim. 1
Cosine Sim. 2
Cosine Sim. 3

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 19: Partial Solution for Concatenated Target Sequence.

C Probing Attention Head Output

We probe the output hidden states of the Attention block, before they are added to the residual
stream (Equation (2)). Specifically, we use a 2-layer MLP probe with hidden layer width 256 and
ReLU activation function to map these hidden states to the ground truth output labels yi. Formally,
for hidden states h ∈ R256, the probe is defined as Probe(h) := WP,2ReLU(WP,1h), WP,2 ∈
R17×256,WP,1 ∈ R256×256, implemented using scikit-learn MLPClassifier [35]. We probe at
every 10 training steps of the Transformer model, training the probe on 1024 samples and evaluating
using 1024 held-out samples, both different from training data for the Transformer.

We find that the probe test accuracy increases earlier than the sudden jump in model accuracy
(Figure 20), demonstrating ‘hidden’ progress in Attention block outputs.
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Figure 20: Probing Attention Outputs. We find that the probe accuracy when probing attention block
outputs (Equation (2)) starts to increase earlier than the model accruacy during training, highlighting
‘hidden’ gradual progress in the hidden states in addition to attention map (via attention progress
measure).

D Results for REPEAT2, REPEAT4

REPEAT2 This task is defined as,

yi =

{
x1 1 ≤ i ≤ 8

(x1 + 1)mod 17 9 ≤ i ≤ 16

The training dynamics for REPEAT2 are given in Figure 21a. We find that similar to REPEAT1,
the training loss does not exhibit any plateau. Moreover, the repetition frequency ρ and metric α1

increase rapidly to ≈ 1.0 early on in training. We measure the average cosine similarity for hidden
states for repetitive blocks of the output sequence (see Figure 21b).
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(a) Training dynamics for REPEAT2 task

(b) Pairwise hidden state
cosine similarity for
REPEAT2 task at step 20.

Figure 21: REPEAT2 training dynamics. Note that there is no plateau in loss, similar to the
REPEAT1 task. Further, the pairwise cosine similarity for hidden states take a specific form indicating
the blocks of repeated tokens in the output.

REPEAT4 This task is defined as

yi =


x1 1 ≤ i ≤ 4

(x1 + 1)mod 17 5 ≤ i ≤ 8

(x1 + 2)mod 17 9 ≤ i ≤ 12

(x1 + 3)mod 17 13 ≤ i ≤ 16

Similar results are observed for REPEAT4 as well (Figure 22a); for this case we measure the average
cosine similarity for hidden states for repetitive blocks of the output sequence (see Figure 22b).
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(a) Training dynamics for REPEAT4 task

(b) Pairwise hidden state
cosine similarity for
REPEAT4 task at step 20.

Figure 22: REPEAT4 training dynamics. Similar to REPEAT2, there is no plateau in loss. The
pairwise cosine similarity for hidden states takes a form indicating the blocks of repeated tokens in
the output.

E Additional LLM Results
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Figure 23: Representation Collapse, Repetitions during Pythia Pretraining (GSM-8K [13]).
Representation collapse at different Pythia pretraining checkpoints evaluated on the GSM-8K test
dataset; tokens generated via greedy decoding.
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Figure 24: Representation Collapse, Repetitions during Pythia Pretraining (ARC-Challenge
[12]). Representation collapse at different Pythia pretraining checkpoints evaluated on the ARC-
Challenge test dataset; tokens generated via greedy decoding.
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Figure 25: Representation collapse during Pythia pretraining (inference with random sampling).
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F Varying Model Configurations
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Figure 26: Number of Layers (L). Abrupt learning, representation collapse in the last layer and
repetitions for multi–layer models.
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Figure 27: Number of attention heads (H). Representation collapse and repetition bias in 1-layer
multi-attention head models (embedding dimension is fixed at d = 256 for all cases).
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Figure 28: Embedding dimension (d). Abrupt learning with representation collapse and repetition
bias in 1-layer 1-head models with different embedding dimensions.
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Figure 29: Extent of Representation collapse at various intermediate layers. Cosine similarity
values showing the extent of representation collapse after each intermediate layer in multi-layer
models. Note that the representation collapse is not so severe in the early layers of multi-layer models,
but the cosine similarity becomes close to 1.0 as we progress to the final layer.
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Figure 30: Softmax Attention. For completeness we show that repetition bias and early-phase
representation collapse are not limited to linear transformers but are observed in softmax attention
transformers as well. Note that the loss plateau is longer than that for linear attention.

G Varying Optimization Setups
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Figure 31: Using SGD for training. We show that abrupt learning is not limited to Adam optimizer,
and occurs with SGD (η = 0.1) as well. We chose this value of η since smaller values typically lead
to much longer periods of little decrease in loss, without increase in accuracy.
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Figure 32: Using Muon for training, with Adam for embeddings, LM head and bias parameters.
We use learning rate 0.02 for Muon, and 1e–4 for Adam. Note that while the plateau duration
decreases significantly compared to using only Adam (Figure 2a), a plateau of duration ∼ 40 steps
still occurs.
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Figure 33: Using Muon for training, with AdamW for embeddings, LM head and bias parame-
ters. We use learning rate 0.02 for Muon, and 1e–4 for AdamW (weight decay= 0.01).
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Figure 34: Training Dynamics with Learning Rate Warmup. The learning rate increases linearly
from 0 to 1e–4 during training steps [0, t].
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Figure 35: Training Dynamics with Learning Rate Warmup + Cosine Decay. The learning rate
increases linearly from 0 to 1e–4 during training steps [0, t], and decreases as a cosine function during
steps [t+ 1, 400].
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Figure 36: Training Dynamics with different Initialization Scales. We find that smaller initializa-
tion scale (α < 1) leads to a longer plateau, and cosine similarity being very close to 1.0 throughout
the plateau. With α = 10, the representation collapse is not as strong, reaching a peak value of ≈ 0.6.
We smoothen the repetition frequency curve with window of size 20 for presentation clarity, using
np.convolve(repeat_freq, np.ones(20)/20, mode=’same’).
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Figure 37: Training Dynamics with different Learning Rates.
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Figure 38: Training Dynamics with varying Batch Size.
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Figure 39: Training Dynamics with AdamW, varying weight decay parameter (λ).
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Figure 40: Training Dynamics with ℓ2 regularization, varying regularization parameter (λ).
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H Additional Figures
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Figure 41: Norm and representation collapse dynamics for (a) pre- and (b) post-attention residual
streams for all positions i, j except the first position.
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Figure 42: Cosine similarity at various points in residual stream for 1-layer, 1-head Transformer
trained on MWS task.
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Figure 43: Biasing attention map by c = 10 at different t0 during training.

I Additional Related Work

Techniques from statistical physics have also been used towards understanding initial loss plateaus in
neural net training [24, 43]; they work in a 2-layer teacher-student setup, where the second layer is
fixed during training, and use order parameters to study training. They show that there is a permutation
symmetry in the weight vectors of the first layer during the early plateau stage, and exiting this state
leads to drop in loss. Singular learning theory [22] has also been used to explain stagewise learning
dynamics in Transformers; they estimate the ‘Local Learning Coefficient’ (LLC) during training to
quantify degeneracy in the loss landscape, and consequently explain the learning dynamics. The
interplay of simplicity bias and Transformer learning dynamics has also been studied recently in [5,
42]. [42] show that Transformers progressively learn higher-order (‘many-body’) interactions among
tokens in the sequence. In [5] authors show that neural nets learn to use lower-order moments of data
early in training via interventions on test data, and show an equivalence between n−gram statistics
and embedding moments for discrete domains.
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