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Abstract001

While Vision Language Models (VLMs) are002
trained to learn conceptual representations (gen-003
eralized knowledge across many instances),004
they are typically used to analyze individual005
instances. When evaluation instances are atyp-006
ical, this paradigm results in tension between007
two priors in the model. The first is a pragmatic008
prior that the textual and visual input are both009
relevant, arising from VLM finetuning on con-010
gruent inputs; the second is a semantic prior011
that the conceptual representation is generally012
true for instances of the category. In order to013
understand how VLMs trade-off these priors,014
we introduce a new evaluation dataset, VIS-015
aGE, consisting of both typical and exceptional016
images. In carefully balanced experiments, we017
show that VLMs are typically dominated by018
the semantic prior, which arises from the lan-019
guage modality, when answering queries about020
instances. In contrast, conceptual understand-021
ing degrades when the assumption of congru-022
ency underlying the pragmatic prior is violated023
with incongruent images.024

1 Introduction025

Vision-language models (VLMs) are typically used026

to analyze instances: what is going on in a partic-027

ular image? However, during training they learn028

a set of conceptual representations, generalized029

knowledge that holds over many instances. While030

VLMs have been thoroughly tested on their abil-031

ity to discern minimal differences between image032

instances (e.g., Johnson et al., 2017; Thrush et al.,033

2022; Tong et al., 2024), and their conceptual repre-034

sentations, based on exposure to typical instances,035

have long been analyzed (e.g., Bruni et al., 2014;036

Silberer et al., 2013; Collell and Moens, 2016),037

the potential tension between instance and concept038

representations, as arises in atypical instances, is039

currently under-explored.040

In language, the attributes associated with a con-041

ceptual category are often expressed through gener-042

Figure 1: VISaGE contains both typical category in-
stances and exceptional instances for which generics do
not hold. We probe VLMs for conceptual and instance-
level understanding, which is congruent in the typical
case (top pair) but conflicts in the case of exceptional
instances of a category cat (middle pair). However, the
same exceptional instance can also be a typical member
of the exception category (bottom pair).

ics – generalizations without quantifiers (e.g., cats 043

have four legs). This lack of quantification means 044

that generics remain true regardless of exceptions 045

(tripod cats—cats missing one leg—do not impact 046

the truth of “cats have four legs”). In other words, 047

the attribute is associated as characteristic of the 048

category regardless of how frequent it actually is1. 049

Unlike language, which can denote on this 050

generic or conceptual level, as well as refer to a 051

particular instance, VLMs are always grounded in 052

a particular visual instance. Work that has probed 053

for conceptual attributeshas used typical instances 054

to stand in for the concept. This conflates instance 055

and conceptual representations. In order to separate 056

the two, visual exceptions are required: instances 057

of a category that violate the generic (see Figure 1). 058

In this vein, we introduce a new evaluation 059

dataset, VisaGE: Visual Generics and Exceptions, 060

consisting of conceptual categories with images of 061

1This is a substantial simplification of the semantics of
generics (cf. Krifka, 1987).

1



both typical and exceptional instances. Specifically,062

exceptions are always with regard to a particular063

generic norm, i.e., a typical attribute: a tripod cat064

is an exception for cats have four legs, but is typi-065

cal for cats have a long tail. The category-attribute066

pairs in VISaGE, along with their exceptions, are067

extracted from textual generics and carefully man-068

ually validated, together with the image instances.069

Using VisaGE, we investigate two questions:070

1. (RQ1) How does conceptual information im-071

pact VLMs’ ability to recognize instance at-072

tributes?073

2. (RQ2) How does visual grounding to (po-074

tentially atypical) instances impact a model’s075

ability to access conceptual information?076

These research questions examine the effects of two077

priors in VLMs. The first is a pragmatic prior, aris-078

ing from VLM finetuning, that the textual and vi-079

sual input are congruent and both relevant; the sec-080

ond is a semantic prior that the category-attribute081

generic is generally true2. In the exceptional image082

settings we explore with VISaGE, these two priors083

can conflict: In RQ1, given an atypical instance,084

the pragmatic prior to focus on the current con-085

text must overrule the semantic prior of typicality,086

while for RQ2, the atypical image must be ignored,087

and the semantic prior should be followed.088

We test a set of contemporary VLMs and find ev-089

idence that their conceptual representations do not090

recognize possible variation in attributes. Specif-091

ically, we find evidence that models rely on ex-092

plicit textual cues to recognize instantiations of ex-093

ceptional attributes in images, suggesting a strong094

semantic prior for the generic. Additionally, we095

observe that the models’ pragmatic prior often in-096

terferes with conceptual understanding (and the097

semantic prior) when visual grounding is incongru-098

ent with the text. This suggests that VLMs’ visually099

grounded conceptual representations only include100

typical or generic instances of the category.101

Our contributions are: 1. a new dataset, VISaGE,102

consisting of concept-attribute pairs with images103

of both typical (generic) and exceptional instances;104

2. experimental evidence that VLM conceptual rep-105

resentations are visually grounded only in typical106

or generic instances and do not sufficiently recog-107

nize within-category variation (exceptions).108

2This is analogous to the Gricean maxims of relevance and
quality (truthfulness) (Grice, 1975).

2 Background 109

Previous work has investigated the semantics of 110

generics with LMs (Ralethe and Buys, 2022; Col- 111

lacciani et al., 2024; Cilleruelo et al., 2025). These 112

studies show LMs often struggle to account for and 113

reason about exceptions in both probing (Allaway 114

et al., 2024) and reasoning (Allaway and McKeown, 115

2025) tasks. However, they have not considered 116

generics in VLMs, particularly how visual ground- 117

ing interacts with generic’s semantics. 118

For evaluating VLMs, most visual benchmarks 119

test situational and configurational instance under- 120

standing (Thrush et al., 2022; Li et al., 2024), some- 121

times with atypical examples (Bitton-Guetta et al., 122

2023). Although Saleh et al. (2013) create a small 123

dataset of exceptional object images, these are not 124

annotated with semantic attributes, unlike VISaGE. 125

Additionally, our experiments, in which we manip- 126

ulate the image-text congruency, contribute to a 127

line of work investigating the relative importance 128

of different modalities in VLMs (Gat et al., 2021; 129

Frank et al., 2021; Parcalabescu and Frank, 2024). 130

3 Dataset 131

Our dataset VISaGE is constructed by first collect- 132

ing text pairs (nc,a, ec,a) where nc,a is a conceptual 133

norm for category c with attribute a and ec,a is an 134

exception to that norm (i.e., a subcategory of c that 135

does not have the attribute a). Then for each pair, 136

we retrieve two sets of images corresponding to 137

cases where the norm applies (generic images Vc) 138

and where it does not (exception images Ve). The 139

resulting dataset then consists of tuples (nc,a, ec,a, 140

Vc, Ve). Finally, we manually validate and expand 141

the dataset (details in Appendix A). 142

VISaGE contains 1698 exceptional image exam- 143

ples for 441 exception subcategories, derived from 144

972 category-attribute relations (conceptual norms) 145

for 171 categories, balanced with the same number 146

of typical images.3 147

Norm-Exception Text Pairs For our initial set of 148

concept-attribute norms, we intersect the category- 149

attribute lists of XCSLB (Devereux et al., 2014; 150

Misra et al., 2022) and the McRae norms (McRae 151

et al., 2005), with the categories in the THINGS 152

object image dataset (Hebart et al., 2019). This re- 153

sults in a robust set of conceptual norms expressed 154

as generics. Finally, for each generic (category- 155

attribute statement) we generate a set of exceptions 156

3Dataset & code will be released on publication (CC-BY).
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ec,a using the LM prompting framework proposed157

by Allaway et al. (2024). We retain the short ex-158

ceptions, ideally corresponding to subcategories.159

Images We retrieve a large set of images for each160

exception subcategory using Bing Image Search161

by querying for the exception name ec,a. Subse-162

quent human validation (see below) selects the best163

images, resulting in a mode of 4 images per ex-164

ception. A matched number of generic images for165

each category are taken from the THINGS dataset.166

These images have been specifically collected to167

be typical object instances; we further validate the168

applicability of the generic conceptual norms.169

Validation We collect three types of validation170

annotations for each tuple. First, we validate that171

the images Vc retrieved from THINGS exhibit the172

conceptual norms nc,a; category-attribute relations173

that are not visually salient (birds can sing) or are174

not exhibited across images are discarded. Second,175

we validate that each ec,a is actually an exception to176

the norm nc,a. With this we filter out exception sub-177

categories that are hallucinated (e.g., strawberry178

blonde cheetah) or incorrectly related (e.g., not179

exceptional or not actually subcategories). Finally,180

we validate that the retrieved images Ve for each181

exception are correct. We exclude images that are182

the wrong category (e.g., images of Ryan Gosling183

retrieved for the category gosling) or that are the184

wrong style (e.g., not object-centered photographs).185

4 Experiments186

Using VISaGE, our experiments query VLMs187

about conceptual and instance attributes across a188

number of conditions: see Fig. 2 for an overview.189

Specifically, we vary 1. the type of knowledge be-190

ing queried (conceptual versus instance); 2. the191

type of image input (typical versus exceptional im-192

ages); and, 3. the noun-phrase used to refer to the193

concept (category-name versus exception-name ref-194

erence).195

Models We test a suite of open-weights VLMs:196

these are listed in Appendix B. We use the vllm197

library to wrap our prompts4 in the correct model-198

specific formats.199

Evaluation We report the percentage of correct200

(yes/no) responses for each model, using the first201

4Conceptual prompt template example: Answer yes or
no. Do {concept-pl} have {attribute}?
Instance prompt template example: Answer yes or no. Does
this {concept-sg} have {attribute}?

Figure 2: Summary of experiments and conditions:
Exp. 1 measures the difference in accuracy between
probing at the conceptual level vs. instance level. Exp. 2
tests models’ ability to reason about instances, while
Exp 3 tests models’ conceptual understanding. Exp. 3
also includes condition (d), not shown, involving typical
images with queries about exception categories.

token of the model output. Note that the correct 202

response depends on the condition: see Figure 1. 203

4.1 Conceptual vs. Instance Queries 204

In an initial analysis, we test the ability of VLMs 205

to distinguish between conceptual and instance 206

queries. Specifically, we measure the difference 207

in accuracy between the conceptual and instance 208

queries in three conditions: (1a) typical images 209

with category names, (1b) exceptional images with 210

category names, and (1c) exceptional images with 211

exception names. Condition (1b) is the critical 212

condition, in which the correct prediction is differ- 213

ent for conceptual and instance queries (see Fig.1; 214

numerical results are in App. Table F). 215

We observe (Figure 3a) that instance queries are 216

in fact harder for VLMs than conceptual queries. 217

When visual input and category name are congru- 218

ent ((1a) and (1c)), we observe minimal differences 219

(near zero) between the conceptual and instance 220

queries. In contrast, when models are required to 221

consider specific visual features of the input, rather 222

than the semantic information from the category 223

name, as for instance queries in (1b), we observe 224

that most models fail to do this (conceptual accu- 225

racy is higher than instance accuracy). The accu- 226

racy difference that is visible only with incongruent 227

inputs emphasizes the importance of considering 228

how image instances interact with conceptual rep- 229

resentations. 230

4.2 Instance Attribute Recognition 231

Having shown that VLMs struggle with instance 232

queries requiring visual grounding (§4.1), our 233
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Figure 3: Results: See Fig. 2 for setup. Exp 1: The difference between conceptual and instance accuracy is highest
for incongruent pairs (b). Exp 2: Instance attribute recognition declines for exceptional images (b), unless they are
named as such (c). Exp 3: Conceptual attribute prediction accuracy decreases for incongruent inputs (b and d).

second set of analyses investigates the role of234

language-based conceptual activation in mislead-235

ing models. We compare category-name instance236

queries (“Does this cat have four legs?”) in two237

conditions: with (2a) typical and (2b) exceptional238

images. The third condition (2c), exception-name239

instance queries with exceptional images, provides240

an explicit language cue to the model about which241

conceptual representation it should use (the excep-242

tion rather than the category).243

Our results (Figure 3b) show that, despite in-244

stance queries directing the model to consider the245

image, all models still appear to ignore the visual246

features, relying instead on language-based con-247

ceptual cues. In particular, we again see that mod-248

els have higher accuracy in the conditions ((2a)249

and (2c)) where the text and image are congruent.250

When the text and image are incongruent (condition251

(2b)), the models appear to rely on language-based252

conceptual information. Since the image in (2b) is253

exceptional for the category, conceptual informa-254

tion activated by the category name does not apply255

to the image, resulting in a substantial drop in accu-256

racy. This leads to the v-shaped pattern in accuracy.257

Note that if the models instead prioritized using258

the visual features of the input, their performance259

would be relatively stable across conditions.260

4.3 Conceptual Attribute Prediction261

Since we have shown that visual grounding is of-262

ten ignored by VLMs when answering instance263

queries, our final set of experiments studies how it264

impacts conceptual queries. Specifically, we use265

two pairs of conditions to investigate the impact of266

text-image congruency. The first pair of conditions267

uses the category name in conceptual queries with:268

(3a) typical (congruent), and (3b) exceptional (in-269

congruent) images. The second pair of conditions 270

similarly queries conceptual information about the 271

exception subcategory with: (3c) exceptional (con- 272

gruent), and (3d) typical (incongruent) images. 273

Our results (Figure 3c) show that VLMs’ ability 274

to answer conceptual questions degrades when the 275

visual grounding is incongruent with the text input. 276

That is, we observe a drop in accuracy in both pairs 277

of conditions when comparing the congruent con- 278

dition to the incongruent condition ((3a) vs. (3b) 279

and (3c) vs. (3d)). This suggests that the pragmatic 280

prior (considering the image relevant) interferes 281

with the conceptual representation; that is, the im- 282

age distracts the model from what is actually being 283

asked in the query. 284

We also observe that incongruency in the input 285

has less impact on accuracy when the queries are 286

about the exception subcategory. One reason for 287

this may be that the generic category is necessarily 288

a well-established concept, since it is derived from 289

a conceptual norm, while the exception subcategory 290

may not be. Models may therefore lack a well- 291

developed multimodal conceptual representation 292

for the exception, resulting in them treating the 293

conceptual query as an instance query. Our results 294

that VLMs rely primarily on language cues for 295

instance queries (§4.2), support this hypothesis. 296

5 Conclusion 297

VLMs must balance learned priors with the require- 298

ments of the current context. With the use of a 299

new dataset of visual exceptions, VISaGE, we have 300

shown that VLMs have not yet solved this task: 301

Models neither reliably attend to the exception in- 302

stance, ignoring the conceptual semantic prior, nor 303

can they reliably ignore distractor images to answer 304

generic conceptual queries. 305
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Limitations306

Our categories and attributes are limited to concep-307

tual norms in American English. This is because308

the typical images we use for visual grounding (de-309

rived from THINGS) are based on American En-310

glish definitions of categories. Conceptual spaces311

are language-dependent and different languages312

will make different conceptual distinctions, attend-313

ing to different attributes. However, we believe the314

general patterns of results would hold across lan-315

guages and models, since the distinction between316

instance-level and conceptual-level reasoning is317

common across languages.318

The data collection process focused on quality319

rather than recall; we may have inadvertently omit-320

ted particular important exception types. In particu-321

lar, exceptions that are rare, hard to see, or unlikely322

to be photographed, are missing (e.g., insomniac323

owl as an exception for owls sleep in the day,324

cheetah with a broken leg as an exception325

for cheetahs are fast).326

Compute limitations restricted the testing of very327

large VLMs (llama4, pixtral).328

Risks The concepts in our dataset correspond329

to concrete object categories. However, the diffi-330

culty of appropriately distinguishing (exceptional)331

instances vs. conceptual generalizations can also332

apply to categories that group people, where over-333

generalization can lead to stereotyping. Under-334

standing VLM capabilities and limitations is a step335

towards mitigating these risks.336
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The McRae norms are conceptual norms elicited 469

from humans (McRae et al., 2005). Devereux et al. 470

(2014) builds on these in the XCSLB dataset and 471

then (Misra et al., 2022) further revise them. Each 472

norm can be expressed as a generic. 473

To generate exceptions to the conceptual norms, 474

we use the framework proposed by Allaway et al. 475

(2024). This framework proposes specific prompt 476

templates for generating exceptions from LLMs, 477

along with a filtering process to ensure the gener- 478

ated exceptions are true and salient. We use these 479

templates with GPT-3.5 (Ouyang et al., 2022)5 to 480

generate candidate exceptions and remove false 481

ones. We keep the top 5 candidates ranked by per- 482

plexity to use in our dataset. 483

VISaGE includes substantial human validation, 484

including an iterative process of adding new at- 485

tribute norms and exceptions. During validation, 486

annotators can revise and expand the dataset by 487

adding additional exceptions and category-attribute 488

relations. Specifically, for valid category-attribute 489

relations annotators, can provide an additional ex- 490

ceptional subcategory êc,a. Additionally, for each 491

exception, annotators can provide a new category- 492

attribute relation nc,â that the exception corre- 493

sponds to. This allows us to capture subcategories 494

that are exceptional for the category but not for the 495

original attribute a. For example, pixie-bob cats are 496

an exception to cats have long tails but not to the 497

original norm cats have tails. The tuples with the 498

new category-attribute norms (nc,â, ec,â, Vc, Ve)6 499

are added directly into the dataset while for the new 500

exceptions êc,a, new images Vê are first retrieved 501

and validated before being added to the dataset as 502

(nc,a, êc,a, Vc, Vê). 503

The annotations were conducted by the authors 504

of this paper. Through the revision and expansion 505

process, we added 121 new tuples of conceptual- 506

norm-and-exception (along with their correspond- 507

ing images). Combined with the added conceptual 508

norms, we nearly doubled the size of our dataset 509

(an increase from 872 tuples to the final 1689 tu- 510

ples). 511
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Short Name HF Model Name

deepseek_vl_v2 deepseek/deepseek-vl2-tiny
gemma3 google/gemma-3-4b-it
idefics3 HuggingFaceM4/Idefics3-8B-Llama3
internvl_chat OpenGVLab/InternVL2-2B
llava-next llava-hf/llava-v1.6-mistral-7b-hf
paligemma2 google/paligemma2-3b-ft-docci-448
phi3_v microsoft/Phi-3.5-vision-instruct
qwen2_vl Qwen/Qwen-VL
smolvlm HuggingFaceTB/SmolVLM2-2.2B-Instruct

Table 1: Models used in experiments.

B Models512

See Table 1 for the details of the models used. Mod-513

els are downloaded from HuggingFace; model de-514

tails can be found at https://huggingface.co/515

MODEL_NAME.516

C Compute517

Experiments were performed using either Nvidia518

A100 or A4500 GPUs. On average, each evaluation519

(single model, condition) took approximately 15m,520

including model loading.521

D Experimental Details522

We used the vllm7 package, version 0.8.5.post1523

with transformers v4.52.0.dev0 and torch524

v2.6.0. Models were evaluated with default set-525

tings, apart from limiting the model’s output size526

in order to deal with memory limitations. We only527

evaluated the first output token.528

E AI Agent Use529

We used coding agents (copilot) to assist with530

code development. We did not use any AI agents531

for writing.532

F Full Results533

Numerical results for all experiments and condi-534

tions are in Table 4.535

G Annotation Tool536

See Figure 5.537

5gpt-3.5-turbo-0613
6Note that ec,â = ec,a; the changed index is for clarity.
7https://docs.vllm.ai
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At concept 0 of 35

alligator : generic images (THINGS)

alligator : generic features that should apply to THINGS images. Check the correct attributes.

alligator: alligators have scales

New exception for the attribute: alligators have scales

EXCEPTIONS

alligator: so� toy alligators is an exception to the rule "alligators have scales"

New generic the exception (so� toy alligators) is for

Exception: so� toy alligators

keep c33f3bfaa5d2a4ff9696a68785e2555f--cr.jpg

keep 5ed841cc0ea2b8e0df7ec8c3f0429f77--to.jpg

keep Ssxinyu-Alligators-Stuffed-Animal-Cr.jpg

keep MorisMos-24-Alligator-Stuffed-Animal.jpg

keep 6459adb1-7903-4d3b-acc5-72033755fdc2.jpg

keep 6c086992397cc8751e27bdc675af9a63--al.jpg

keep ee4fb8d6-bcc4-45eb-a9d7-523606d362a5.jpg

keep VbwHQpPUSBYlfFjwE04T19OXaK58mnlHdBhg.jpg

keep Alligator-Toy-Figures-for-Kids-So�-.jpg

keep c12bf1f3-02bd-4cf6-93b8-959af1e4f992.jpg

keep 5528ba4b7cb95eee75fe4d0bc40f572b--al.jpg

keep 918D0Y7geeL.jpg

keep dcd6e7129aa63a11a1b2a57da8ccda4a--al.jpg

keep 4f2b2833eb1ecc0bd2388de3fe29f76c.jpg

keep 7b493e5f8fc9db1a545ddca3259c6ee0.webp

keep 81ooCUeCcsL.SL1500.jpg

Update Concept Annotations

Figure 5: Annotation interface for dataset validation and expansion
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