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Abstract

While Vision Language Models (VLMs) are
trained to learn conceptual representations (gen-
eralized knowledge across many instances),
they are typically used to analyze individual
instances. When evaluation instances are atyp-
ical, this paradigm results in tension between
two priors in the model. The first is a pragmatic
prior that the textual and visual input are both
relevant, arising from VLM finetuning on con-
gruent inputs; the second is a semantic prior
that the conceptual representation is generally
true for instances of the category. In order to
understand how VLMs trade-off these priors,
we introduce a new evaluation dataset, VIS-
aGE, consisting of both typical and exceptional
images. In carefully balanced experiments, we
show that VLMs are typically dominated by
the semantic prior, which arises from the lan-
guage modality, when answering queries about
instances. In contrast, conceptual understand-
ing degrades when the assumption of congru-
ency underlying the pragmatic prior is violated
with incongruent images.

1 Introduction

Vision-language models (VLMs) are typically used
to analyze instances: what is going on in a partic-
ular image? However, during training they learn
a set of conceptual representations, generalized
knowledge that holds over many instances. While
VLMs have been thoroughly tested on their abil-
ity to discern minimal differences between image
instances (e.g., Johnson et al., 2017; Thrush et al.,
2022; Tong et al., 2024), and their conceptual repre-
sentations, based on exposure to typical instances,
have long been analyzed (e.g., Bruni et al., 2014;
Silberer et al., 2013; Collell and Moens, 2016),
the potential tension between instance and concept
representations, as arises in atypical instances, is
currently under-explored.

In language, the attributes associated with a con-
ceptual category are often expressed through gener-

Conceptual query:

Do cats have 4 legs? YES
e Instance query:
__ Does this cat have 4 legs? YES
Conceptual query:
Do cats have 4 legs? YES
Instance query:
@ Does this cat have 4 legs? NO
Conceptual query with exception name:
Do tripod cats have 4 legs? NO

e Instance query with exception name:

Does this tripod cat have 4 legs? NO

-
Exceptional Cat

Figure 1: VISaGE contains both typical category in-
stances and exceptional instances for which generics do
not hold. We probe VLMs for conceptual and instance-
level understanding, which is congruent in the typical
case (top pair) but conflicts in the case of exceptional
instances of a category cat (middle pair). However, the
same exceptional instance can also be a typical member
of the exception category (bottom pair).

ics — generalizations without quantifiers (e.g., cats
have four legs). This lack of quantification means
that generics remain true regardless of exceptions
(tripod cats—cats missing one leg—do not impact
the truth of “cats have four legs”). In other words,
the attribute is associated as characteristic of the
category regardless of how frequent it actually is'.

Unlike language, which can denote on this
generic or conceptual level, as well as refer to a
particular instance, VLMs are always grounded in
a particular visual instance. Work that has probed
for conceptual attributeshas used typical instances
to stand in for the concept. This conflates instance
and conceptual representations. In order to separate
the two, visual exceptions are required: instances
of a category that violate the generic (see Figure 1).

In this vein, we introduce a new evaluation
dataset, VisaGE: Visual Generics and Exceptions,
consisting of conceptual categories with images of

'This is a substantial simplification of the semantics of
generics (cf. Krifka, 1987).



both typical and exceptional instances. Specifically,
exceptions are always with regard to a particular
generic norm, i.e., a typical attribute: a tripod cat
is an exception for cats have four legs, but is typi-
cal for cats have a long tail. The category-attribute
pairs in VISaGE, along with their exceptions, are
extracted from textual generics and carefully man-
ually validated, together with the image instances.
Using VisaGE, we investigate two questions:

1. (RQ1) How does conceptual information im-
pact VLMs’ ability to recognize instance at-
tributes?

2. (RQ2) How does visual grounding to (po-
tentially atypical) instances impact a model’s
ability to access conceptual information?

These research questions examine the effects of two
priors in VLMSs. The first is a pragmatic prior, aris-
ing from VLM finetuning, that the textual and vi-
sual input are congruent and both relevant; the sec-
ond is a semantic prior that the category-attribute
generic is generally true”. In the exceptional image
settings we explore with VISaGE, these two priors
can conflict: In RQ1, given an atypical instance,
the pragmatic prior to focus on the current con-
text must overrule the semantic prior of typicality,
while for RQ2, the atypical image must be ignored,
and the semantic prior should be followed.

We test a set of contemporary VLMs and find ev-
idence that their conceptual representations do not
recognize possible variation in attributes. Specif-
ically, we find evidence that models rely on ex-
plicit textual cues to recognize instantiations of ex-
ceptional attributes in images, suggesting a strong
semantic prior for the generic. Additionally, we
observe that the models’ pragmatic prior often in-
terferes with conceptual understanding (and the
semantic prior) when visual grounding is incongru-
ent with the text. This suggests that VLMs’ visually
grounded conceptual representations only include
typical or generic instances of the category.

Our contributions are: 1. a new dataset, VISaGE,
consisting of concept-attribute pairs with images
of both typical (generic) and exceptional instances;
2. experimental evidence that VLM conceptual rep-
resentations are visually grounded only in typical
or generic instances and do not sufficiently recog-
nize within-category variation (exceptions).

“This is analogous to the Gricean maxims of relevance and
quality (truthfulness) (Grice, 1975).

2 Background

Previous work has investigated the semantics of
generics with LMs (Ralethe and Buys, 2022; Col-
lacciani et al., 2024; Cilleruelo et al., 2025). These
studies show LMs often struggle to account for and
reason about exceptions in both probing (Allaway
etal., 2024) and reasoning (Allaway and McKeown,
2025) tasks. However, they have not considered
generics in VLMs, particularly how visual ground-
ing interacts with generic’s semantics.

For evaluating VLLMs, most visual benchmarks
test situational and configurational instance under-
standing (Thrush et al., 2022; Li et al., 2024), some-
times with atypical examples (Bitton-Guetta et al.,
2023). Although Saleh et al. (2013) create a small
dataset of exceptional object images, these are not
annotated with semantic attributes, unlike VISaGE.
Additionally, our experiments, in which we manip-
ulate the image-text congruency, contribute to a
line of work investigating the relative importance
of different modalities in VLMs (Gat et al., 2021;
Frank et al., 2021; Parcalabescu and Frank, 2024).

3 Dataset

Our dataset VISaGE is constructed by first collect-
ing text pairs (n¢,q, €c,q) Where n 4 is a conceptual
norm for category ¢ with attribute a and e, 4 is an
exception to that norm (i.e., a subcategory of c that
does not have the attribute a). Then for each pair,
we retrieve two sets of images corresponding to
cases where the norm applies (generic images V)
and where it does not (exception images V.). The
resulting dataset then consists of tuples (n¢,q, €c,a.
V., Ve). Finally, we manually validate and expand
the dataset (details in Appendix A).

VISaGE contains 1698 exceptional image exam-
ples for 441 exception subcategories, derived from
972 category-attribute relations (conceptual norms)
for 171 categories, balanced with the same number
of typical images.’

Norm-Exception Text Pairs For our initial set of
concept-attribute norms, we intersect the category-
attribute lists of XCSLB (Devereux et al., 2014,
Misra et al., 2022) and the McRae norms (McRae
et al., 2005), with the categories in the THINGS
object image dataset (Hebart et al., 2019). This re-
sults in a robust set of conceptual norms expressed
as generics. Finally, for each generic (category-
attribute statement) we generate a set of exceptions

Dataset & code will be released on publication (CC-BY).



€c,q using the LM prompting framework proposed
by Allaway et al. (2024). We retain the short ex-
ceptions, ideally corresponding to subcategories.

Images We retrieve a large set of images for each
exception subcategory using Bing Image Search
by querying for the exception name e.,. Subse-
quent human validation (see below) selects the best
images, resulting in a mode of 4 images per ex-
ception. A matched number of generic images for
each category are taken from the THINGS dataset.
These images have been specifically collected to
be typical object instances; we further validate the
applicability of the generic conceptual norms.

Validation We collect three types of validation
annotations for each tuple. First, we validate that
the images V. retrieved from THINGS exhibit the
conceptual norms n. ,; category-attribute relations
that are not visually salient (birds can sing) or are
not exhibited across images are discarded. Second,
we validate that each e, , is actually an exception to
the norm n.. .. With this we filter out exception sub-
categories that are hallucinated (e.g., strawberry
blonde cheetah) or incorrectly related (e.g., not
exceptional or not actually subcategories). Finally,
we validate that the retrieved images V, for each
exception are correct. We exclude images that are
the wrong category (e.g., images of Ryan Gosling
retrieved for the category gosling) or that are the
wrong style (e.g., not object-centered photographs).

4 Experiments

Using VISaGE, our experiments query VLMs
about conceptual and instance attributes across a
number of conditions: see Fig. 2 for an overview.
Specifically, we vary 1. the type of knowledge be-
ing queried (conceptual versus instance); 2. the
type of image input (typical versus exceptional im-
ages); and, 3. the noun-phrase used to refer to the
concept (category-name versus exception-name ref-
erence).

Models We test a suite of open-weights VLMs:
these are listed in Appendix B. We use the v11lm
library to wrap our prompts* in the correct model-
specific formats.

Evaluation We report the percentage of correct
(yes/no) responses for each model, using the first

*Conceptual prompt template example: Answer yes or
no. Do {concept-pl} have {attribute}?
Instance prompt template example: Answer yes or no. Does
this {concept-sg} have {attribute}?

Exp1: | Exp2: Exp 3:
Conceptual query: Cvs1 |Instance | Concept
Do cats have 4 legs? (a)
"8 Instance query: (a)
R/ .‘3 Does this cat have 4 legs? (a)
Typical Cat
Conceptual query:
Do cats have 4 legs? (b)
= Instance query: (b)
= Does this cat have 4 legs? (b)
g '43 Conceptual query with exception name: _
s ' Do tripod cats have 4 legs? (c)
Exceptional Cat Instance query with exception name: (C)
Does this tripod cat have 4 legs? (c)
(d)*

Figure 2: Summary of experiments and conditions:
Exp. 1 measures the difference in accuracy between
probing at the conceptual level vs. instance level. Exp. 2
tests models’ ability to reason about instances, while
Exp 3 tests models’ conceptual understanding. Exp. 3
also includes condition (d), not shown, involving typical
images with queries about exception categories.

token of the model output. Note that the correct
response depends on the condition: see Figure 1.

4.1 Conceptual vs. Instance Queries

In an initial analysis, we test the ability of VLMs
to distinguish between conceptual and instance
queries. Specifically, we measure the difference
in accuracy between the conceptual and instance
queries in three conditions: (la) typical images
with category names, (1b) exceptional images with
category names, and (1¢) exceptional images with
exception names. Condition (1b) is the critical
condition, in which the correct prediction is differ-
ent for conceptual and instance queries (see Fig.1;
numerical results are in App. Table F).

We observe (Figure 3a) that instance queries are
in fact harder for VLMs than conceptual queries.
When visual input and category name are congru-
ent ((1a) and (1c)), we observe minimal differences
(near zero) between the conceptual and instance
queries. In contrast, when models are required to
consider specific visual features of the input, rather
than the semantic information from the category
name, as for instance queries in (1b), we observe
that most models fail to do this (conceptual accu-
racy is higher than instance accuracy). The accu-
racy difference that is visible only with incongruent
inputs emphasizes the importance of considering
how image instances interact with conceptual rep-
resentations.

4.2 Instance Attribute Recognition

Having shown that VLMs struggle with instance
queries requiring visual grounding (§4.1), our



Concept vs. Instance Queries

e
)
!

o
a
1

o
S

?\
I

Concept - Instance Accuracy

[ ]
*
+

Condition
(a) typical image, category name
(b) exception image, category name
(c) exception image, exception name

Instance Attribute Recognition

0.2 1

0.0

Condition
@ (a) typical image, category name
*  (b) exception image, category name
<+ (c) exception image, exception name

(b) Experiment 2

Conceptual Attribute Prediction

*

\ +

\ R
vy &
i*y ¥ x

%
\ |
¥
X

[}
|
|
|
N
*

Condition
(a) typical image, category name
(b) exception image, category name
(c) exception image, exception name
(d) typical image, exception level

Model
deepseek_vl_v2
gemma3
idefics3
internvl_chat
llava-next
paligemma2
phi3_v
qwen2_vl
smolvim

(a) Experiment 1

(c) Experiment 3

Figure 3: Results: See Fig. 2 for setup. Exp 1: The difference between conceptual and instance accuracy is highest
for incongruent pairs (b). Exp 2: Instance attribute recognition declines for exceptional images (b), unless they are
named as such (c). Exp 3: Conceptual attribute prediction accuracy decreases for incongruent inputs (b and d).

second set of analyses investigates the role of
language-based conceptual activation in mislead-
ing models. We compare category-name instance
queries (“Does this cat have four legs?”’) in two
conditions: with (2a) typical and (2b) exceptional
images. The third condition (2¢), exception-name
instance queries with exceptional images, provides
an explicit language cue to the model about which
conceptual representation it should use (the excep-
tion rather than the category).

Our results (Figure 3b) show that, despite in-
stance queries directing the model to consider the
image, all models still appear to ignore the visual
features, relying instead on language-based con-
ceptual cues. In particular, we again see that mod-
els have higher accuracy in the conditions ((2a)
and (2c)) where the text and image are congruent.
When the text and image are incongruent (condition
(2b)), the models appear to rely on language-based
conceptual information. Since the image in (2b) is
exceptional for the category, conceptual informa-
tion activated by the category name does not apply
to the image, resulting in a substantial drop in accu-
racy. This leads to the v-shaped pattern in accuracy.
Note that if the models instead prioritized using
the visual features of the input, their performance
would be relatively stable across conditions.

4.3 Conceptual Attribute Prediction

Since we have shown that visual grounding is of-
ten ignored by VLMs when answering instance
queries, our final set of experiments studies how it
impacts conceptual queries. Specifically, we use
two pairs of conditions to investigate the impact of
text-image congruency. The first pair of conditions
uses the category name in conceptual queries with:
(3a) typical (congruent), and (3b) exceptional (in-

congruent) images. The second pair of conditions
similarly queries conceptual information about the
exception subcategory with: (3c¢) exceptional (con-
gruent), and (3d) typical (incongruent) images.

Our results (Figure 3c) show that VLMs’ ability
to answer conceptual questions degrades when the
visual grounding is incongruent with the text input.
That is, we observe a drop in accuracy in both pairs
of conditions when comparing the congruent con-
dition to the incongruent condition ((3a) vs. (3b)
and (3¢) vs. (3d)). This suggests that the pragmatic
prior (considering the image relevant) interferes
with the conceptual representation; that is, the im-
age distracts the model from what is actually being
asked in the query.

We also observe that incongruency in the input
has less impact on accuracy when the queries are
about the exception subcategory. One reason for
this may be that the generic category is necessarily
a well-established concept, since it is derived from
a conceptual norm, while the exception subcategory
may not be. Models may therefore lack a well-
developed multimodal conceptual representation
for the exception, resulting in them treating the
conceptual query as an instance query. Our results
that VLMs rely primarily on language cues for
instance queries (§4.2), support this hypothesis.

5 Conclusion

VLMs must balance learned priors with the require-
ments of the current context. With the use of a
new dataset of visual exceptions, VISaGE, we have
shown that VLMs have not yet solved this task:
Models neither reliably attend to the exception in-
stance, ignoring the conceptual semantic prior, nor
can they reliably ignore distractor images to answer
generic conceptual queries.



Limitations

Our categories and attributes are limited to concep-
tual norms in American English. This is because
the typical images we use for visual grounding (de-
rived from THINGS) are based on American En-
glish definitions of categories. Conceptual spaces
are language-dependent and different languages
will make different conceptual distinctions, attend-
ing to different attributes. However, we believe the
general patterns of results would hold across lan-
guages and models, since the distinction between
instance-level and conceptual-level reasoning is
common across languages.

The data collection process focused on quality
rather than recall; we may have inadvertently omit-
ted particular important exception types. In particu-
lar, exceptions that are rare, hard to see, or unlikely
to be photographed, are missing (e.g., insomniac
owl as an exception for owls sleep in the day,
cheetah with a broken leg as an exception
for cheetahs are fast).

Compute limitations restricted the testing of very
large VLMs (11ama4, pixtral).

Risks The concepts in our dataset correspond
to concrete object categories. However, the diffi-
culty of appropriately distinguishing (exceptional)
instances vs. conceptual generalizations can also
apply to categories that group people, where over-
generalization can lead to stereotyping. Under-
standing VLM capabilities and limitations is a step
towards mitigating these risks.
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A Dataset Construction

The McRae norms are conceptual norms elicited
from humans (McRae et al., 2005). Devereux et al.
(2014) builds on these in the XCSLB dataset and
then (Misra et al., 2022) further revise them. Each
norm can be expressed as a generic.

To generate exceptions to the conceptual norms,
we use the framework proposed by Allaway et al.
(2024). This framework proposes specific prompt
templates for generating exceptions from LLMs,
along with a filtering process to ensure the gener-
ated exceptions are true and salient. We use these
templates with GPT-3.5 (Ouyang et al., 2022)° to
generate candidate exceptions and remove false
ones. We keep the top 5 candidates ranked by per-
plexity to use in our dataset.

VISaGE includes substantial human validation,
including an iterative process of adding new at-
tribute norms and exceptions. During validation,
annotators can revise and expand the dataset by
adding additional exceptions and category-attribute
relations. Specifically, for valid category-attribute
relations annotators, can provide an additional ex-
ceptional subcategory é. .. Additionally, for each
exception, annotators can provide a new category-
attribute relation n.; that the exception corre-
sponds to. This allows us to capture subcategories
that are exceptional for the category but not for the
original attribute a. For example, pixie-bob cats are
an exception to cats have long tails but not to the
original norm cats have tails. The tuples with the
new category-attribute norms (14, €ca, Ve, V,)°
are added directly into the dataset while for the new
exceptions €., new images V; are first retrieved
and validated before being added to the dataset as
(nc,aa éc,aa Ve, Vo).

The annotations were conducted by the authors
of this paper. Through the revision and expansion
process, we added 121 new tuples of conceptual-
norm-and-exception (along with their correspond-
ing images). Combined with the added conceptual
norms, we nearly doubled the size of our dataset
(an increase from 872 tuples to the final 1689 tu-

ples).
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Short Name

HF Model Name

deepseek_v1l_v2

deepseek/deepseek-v12-tiny

gemma3 google/gemma-3-4b-it

idefics3 HuggingFaceM4/Idefics3-8B-L1lama3
internvl_chat OpenGVLab/InternVL2-2B

llava-next llava-hf/1llava-v1.6-mistral-7b-hf
paligemma2 google/paligemma2-3b-ft-docci-448
phi3_v microsoft/Phi-3.5-vision-instruct
gwen2_v1l Qwen/Qwen-VL

smolvlm HuggingFaceTB/SmolVLM2-2.2B-Instruct

Table 1: Models used in experiments.

B Models

See Table 1 for the details of the models used. Mod-
els are downloaded from HuggingFace; model de-
tails can be found at https://huggingface.co/
MODEL _NAME.

C Compute

Experiments were performed using either Nvidia
A100 or A4500 GPUs. On average, each evaluation
(single model, condition) took approximately 15m,
including model loading.

D Experimental Details

We used the v11m’ package, version 0.8.5.post1
with transformers v4.52.0.dev@ and torch
v2.6.0. Models were evaluated with default set-
tings, apart from limiting the model’s output size
in order to deal with memory limitations. We only
evaluated the first output token.

E AI Agent Use

We used coding agents (copilot) to assist with
code development. We did not use any Al agents
for writing.

F Full Results

Numerical results for all experiments and condi-
tions are in Table 4.

G Annotation Tool

See Figure 5.

Sgpt-3.5-turbo-0613
SNote that .4 = ec,q; the changed index is for clarity.
"https://docs.vllm.ai

smolvlm

internvl_chat

image type name deepseek idefics3 qwen2_vl phi3_v paligemma2 gemma3 1llava-next

prompt
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Figure 4: Accuracy results for all experiment conditions.
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Figure 5: Annotation interface for dataset validation and expansion
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