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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) enhances the reasoning of large language
models (LLMs), but its scalability is hampered by the high cost of human-annotated labels. Label-
free alternatives, such as majority voting or LLM-as-a-judge, are susceptible to false positives that
lead to reward hacking and training collapse. We introduce JURY-RL, a label-free RLVR frame-
work that separates answer proposal from reward disposal: votes from model rollouts propose a
consensus answer, while a formal theorem prover disposes the final reward. Specifically, a rollout is
rewarded only if the majority-voted answer is formally verified by a Lean prover. When verification
is inconclusive, we activate our proposed ResZero (Residual-Zero) reward: it drops the unverifiable
majority proposal and assigns a zero-mean, variance-preserving reward to the remaining (residual)
answers. This unique design maintains a stable optimization gradient for RL algorithms without
reinforcing spurious consensus. Experiments across mathematical reasoning, code generation, and
multi-task benchmarks show that JURY-RL not only achieves more stable training but also con-
sistently outperforms label-free baselines and even matches or surpasses supervised training with
ground-truth rewards across pass@1 and pass@k.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2023; DeepSeek-AI et al., 2024; Yang et al., 2025b) continue to advance
in broad capabilities, yet reliable reasoning remains a core bottleneck (Wang et al., 2023; Lightman et al., 2024; Patil
& Jadon, 2025; Huang et al., 2025b). Recent advances in reinforcement learning with verifiable rewards (RLVR)
(Shao et al., 2024; Lambert et al., 2024; DeepSeek-AI et al., 2025) offers a principled post-training path: rather than
aligning to what looks plausible, the objective aligns to what is provably correct by using verifiable signals such as
from program execution or mathematical equivalence (Cobbe et al., 2021; Yu et al., 2025; AI & Agentica, 2025).
However, scaling RLVR is constrained by its reliance on human-annotated answers or carefully curated specifications,
which is costly and limited in coverage (Ouyang et al., 2022; Bai et al., 2022; Shao et al., 2024).

To reduce labeling cost, recent work explores label-free rewards, where no human ground-truth answers are provided
during training. A prominent subset is self-supervised self-reward, which derives signals from the model or unlabeled
data itself, including entropy minimization (Prabhudesai et al., 2025), self-certainty (Zhao et al., 2025b), and majority
voting (Shafayat et al., 2025; Zhang et al., 2025). These approaches can learn reasoning but are prone to false positives
and training collapse, often via reward hacking: models learn to satisfy the surrogate while drifting from correctness,
(Gao et al., 2022; Shafayat et al., 2025). LLM-as-a-Judge (Lee et al., 2024; Su et al., 2025; Zhao et al., 2025c) provides
another label-free path. Yet, in practice, they are vulnerable to instruction and format manipulation when reasoning
steps are explicitly produced, and suffer high false positives when they are hidden. They are also sensitive to prompting
and temperature, and introduce nontrivial compute overhead and shared-bias risks (Pang et al., 2023; Chen et al., 2024;
Thakur et al., 2025; Shi et al., 2025; Zhao et al., 2025c;a).

The shortcomings of the existing label-free methods, from reinforcing false consensus to reward hacking, are not
isolated issues but rather symptoms of a deeper challenge. We argue that a truly robust reward signal must simultane-
ously satisfy three essential properties: (i) scalable without costly human supervision, (ii) truth-aligned, rewarding
verifiable correctness instead of error-prone consensus, and (iii) optimization-stable, allowing learning to proceed
even when verification is inconclusive. Previous approaches have, in one degree or another, failed to meet all three
criteria. Self-supervised signals such as majority voting achieve scalability but sacrifice truth-alignment, while LLM-
as-a-Judge struggles with both truth-alignment due to high false positives and optimization instabilities.

This motivates our core proposal, a new paradigm designed to resolve this conflict: Votes Propose, Proofs Dispose.
Our strategy is to decouple the proposal of a candidate answer from the final disposal of its reward. To maintain
scalability, votes from model rollouts first propose a single consensus candidate through a computationally cheap
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Figure 1: The JURY-RL workflow: Votes Propose, Proofs Dispose. For each problem, a majority vote from multiple
rollouts (Jury) proposes a candidate answer. A lean verifier (Judge) then disposes the reward. If the answer is Verified
(δ = 1), supporting rollouts receive a positive reward, directly linking the learning signal to correctness. Conversely,
when verification is Inconclusive (δ = 0), all rollouts receive the proposed ResZero (Residual-Zero) Reward.

majority vote. A formal theorem prover (de Moura & Ullrich, 2021; Ren et al., 2025; Lin et al., 2025) then acts as
a reliable judge to dispose the ultimate reward for this single candidate, thus satisfying all three principles above.
This design choice avoids the prohibitive cost of formally verifying every unique answer, thereby making the entire
framework viable at scale.

Our framework, JURY-RL, is shown in Figure 1 . A positive reward is granted only if the majority-voted answer
is formally verified by a Lean verifier (de Moura & Ullrich, 2021), suppressing the false positives common in other
self-supervised or judge-based methods (Shafayat et al., 2025; Gao et al., 2022). This raises a critical question: what
happens when verification is inconclusive? A naive zero reward would stall learning, while rewarding the majority vote
would reintroduce the risk of reinforcing errors. To solve this, we introduce the ResZero (Residual-Zero) reward, a
novel fallback mechanism. ResZero discards the unverified majority proposal and assigns a carefully constructed, zero-
mean reward to the remaining (residual) answers. This design maintains a stable optimization gradient for learning to
proceed, without amplifying a potentially spurious consensus, ensuring both training stability and truth alignment.

Contributions. (1) We introduce JURY-RL, a novel label-free RLVR framework that operationalizes a ”votes pro-
pose, proofs dispose” paradigm. By strategically verifying only the majority-voted candidate, it aligns rewards with
provable correctness using a formal verifier, eliminating the need for human-annotated answers. (2) We design the
ResZero (Residual-Zero) reward, a principled fallback mechanism for when verification is inconclusive. By discard-
ing the unverifiable majority and assigning a zero-mean, variance-preserving reward to residual candidates, it ensures
stable optimization and prevents collapse from spurious consensus. (3) Across mathematical reasoning, code gener-
ation, and multi-task benchmarks, JURY-RL trains more stably and achieves state-of-the-art results among label-free
methods, matching or surpassing a strong supervised ground-truth baseline across pass@1 and pass@k.

2 RELATED WORK

Large Language Model Reasoning. The general capabilities of Large language models have rapidly expanded
(OpenAI, 2023; Dubey et al., 2024; Yang et al., 2025b), yet reliable mathematical and programmatic reasoning remains
a bottleneck: models often optimize for plausibility rather than verifiable correctness (Ouyang et al., 2022; Rafailov
et al., 2023; Touvron et al., 2023). Post-training techniques that elicit step-by-step reasoning (e.g., chain-of-thought
and self-consistency) can raise average accuracy but also amplify confident but wrong results when no external check
is available (Wei et al., 2022; Wang et al., 2023). These problems motivate recent verifiability-aligned training signals
that reward what is provably correct rather than what appears correct (Shao et al., 2024; Lambert et al., 2024; Hu et al.,
2025; DeepSeek-AI et al., 2025; Kimi-Team et al., 2025; Yang et al., 2025a).
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Label-Free RLVR. To scale beyond labeled specifications, label-free surrogates derive rewards from the model or
unlabeled data itself such as via majority voting (Shafayat et al., 2025; Zhang et al., 2025), confidence (Zhao et al.,
2025b), entropy (Prabhudesai et al., 2025; Agarwal et al., 2025), or LLM-as-a-Judge (Pang et al., 2023; Lee et al.,
2024; Su et al., 2025; Zhao et al., 2025a). While attractive for its broad coverage and low cost, these signals are
prone to false positives, prompt/format gaming (Zhao et al., 2025c), and training collapse (Zhang et al., 2025). As a
result, consensus or judge approval models risk diverging from ground truth, leading to reward hacking and instability
(Shafayat et al., 2025; Zhang et al., 2025). Our work targets this conflict: retain the scalability of label-free training
while removing optimism toward unverified agreement.

Lean and Other Verifiers. Verification-based training employs externally checkable signals such as program ex-
ecution and unit tests, SMT solvers, or formal proof assistants such as Lean/Coq to couple reward with correctness
(P.Huet et al., 1997; C.Blanchette et al., 2011; de Moura & Ullrich, 2021; Cobbe et al., 2021; AI & Agentica, 2025).
Previous generate-then-verify pipelines typically provide no learning signal when verification fails, limiting stability
and sample efficiency. JURY-RL decouples proposal from disposal: votes propose a candidate, and a verifier disposes
the reward. Verified cases pay positive reward only to supporting trajectories, while unverifiable cases return a cen-
tered, variance-preserving group signal that avoids amplifying spurious consensus. This proof-gated design preserves
label-free scalability while maintaining optimization alignment with provable correctness.

3 PRELIMINARIES

Problem Setup. Let πθ denote a policy LLM with parameters θ. Given a problem x, the model generates a token
sequence y = (y1, . . . , yn) ∼ πθ(· | x) and a deterministic extractor ans(·) parses a candidate answer a = ans(y). In
the label-free setting, ground-truth answers are unavailable during training. Instead, each x can be associated with a
machine-checkable specification spec(x), and an external verifier (e.g., a Lean-based checker) exposes a binary oracle

verify(x, a) ∈ {0, 1},

which returns 1 if a is formally certified correct under standard soundness assumptions.

We optimize a KL-regularized RLVR objective with a reference policy πref and coefficient β:

max
πθ

Ex∼D, y∼πθ(·|x)

[
r(x, y;Gx) − βDKL

(
πθ(· | x) ∥πref(· | x)

)]
, (1)

where r(·) is a grouped reward computed from G rollouts Gx = {yi}Gi=1 for the same input.

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to estimate group-normalized advantages.
Concretely, sample yi ∼ πold(· | x) for i = 1, . . . , G and compute ri := r(x, yi;Gx). The scalar group advantage is

Âi =
ri − r

std({rj}Gj=1) + ε
, r = 1

G

G∑
j=1

rj . (2)

Let the per-token ratio be ρi,t(θ) =
πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

. GRPO maximizes

JGRPO(θ) = E

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ρi,t(θ)Âi,t, clip(ρi,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
− β DKL(πθ∥πref)

]
, (3)

where Âi,t is a broadcast of Âi (or any per-token variant compatible with GRPO), and the clipping avoids excessive
policy drift. This presentation mirrors established RLVR practice for fair comparison and faithful reproduction.

Label-free Self-Reward in Reinforcement Learning. We categorize existing methods for label-free self-reward
based on the origin of the reward signal: model-internal signals versus those from an external judge.

(A) Model-Internal Self-Reward Signals. These methods derive rewards from the model’s own outputs without external
evaluators. (i) Output-side proxies, such as entropy minimization or confidence-based scores (Agarwal et al., 2025;
Prabhudesai et al., 2025), reward hypotheses that exhibit high certainty. However, this approach is fragile, as it can
amplify errors when the model becomes confidently wrong. (ii) Single-view agreement rewards consistency among
multiple outputs generated from the same input x (Shafayat et al., 2025). Specifically, for G responses yi

G
i=1, it

identifies the majority-voted answer av = argmaxa
∑G

i=1 I[ans(yi) = a] and assigns a positive reward rsv(x, y) =

3
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I[ans(y) = av] to responses that match av . The primary risk is reinforcing an erroneous consensus, where the model
converges on a popular but incorrect answer, often by exploiting superficial heuristics such as formatting conventions.
(iii) Multi-view agreement attempts to improve robustness by enforcing consistency across multiple, semantically
equivalent prompts. For instance, the majority answer from prompt variant x′ is used as a pseudo-label to supervise
responses from the original prompt x (Zhang et al., 2025). This often improves training stability. However, it usually
only delays rather than eliminates hacking, since spurious shortcuts can eventually propagate across multiple views.

(B) External-Judge Signals. This paradigm uses a powerful, external LLM as an automated judge to score the model’s
outputs. LLM-as-a-Judge (Lee et al., 2024; Su et al., 2025; Huang et al., 2025a; Zhao et al., 2025a) remains label-
free (no human annotation) but comes with distinct trade-offs. On the one hand, it mitigates the self-confirmation bias
of internal methods. On the other hand, it introduces sensitivity to the judge’s prompt design and decoding strategy,
incurs significant computational cost, and risks transferring the judge’s intrinsic biases into the training signal. Another
approach is LLM-based Knowledge Distillation (LLM-KD) (Gu et al., 2024b), where a teacher model generates
a reference answer to guide the student model. While potentially offering a more granular signal, it is similarly
constrained by the teacher’s capabilities and biases. Thus, while external judges reduce some weaknesses of the
internal proxies, they bring a different set of reliability and scalability challenges.

Positioning Our Work. JURY-RL is a label-free RLVR method that proof-gates reward: a majority-voted answer
is rewarded only if a formal verifier certifies it. When verification is inconclusive, we drop the majority and apply
ResZero—a zero-mean, variance-preserving residual reward, so that GRPO maintains a stable gradient without rein-
forcing spurious consensus. This contrasts with the self-reward approaches that reward popularity or confidence, and
with LLM-as-a-Judge/KD approaches that are prompt-sensitive and prone to false positives; JURY-RL aligns learning
to verifiable correctness while remaining label-free.

4 JURY-RL

JURY-RL is designed to satisfy three core principles: (i) scalability without costly human supervision, (ii) truth
alignment by grounding rewards in verifiable evidence, and (iii) optimization stability, ensuring continuous learning
even when verification is inconclusive. We achieve this by decoupling the process of proposing a candidate answer
from the final disposal of its reward. Votes from the policy’s own rollouts serve as a scalable proposal mechanism,
while a formal theorem prover acts as a reliable judge for reward disposal.

This design choice—verifying only the single, majority-voted candidate—is crucial for maintaining computational
tractability and scalability. Performing formal verification on every unique answer generated across all rollouts would
be prohibitively expensive, undermining the efficiency of the label-free approach. The majority vote thus acts as an
effective heuristic to identify the most promising candidate for the costly-but-reliable verification process.

This section details the two key components of our framework: the overarching proof-gated reward mechanism that
enforces truth alignment, and the Residual-Zero (ResZero) fallback designed to maintain optimization stability.

4.1 THE PROOF-GATED REWARD FRAMEWORK

The JURY-RL workflow begins with a proposal stage. For a given problem x, we generate G trajectories {yi}Gi=1 ∼
πθ(·|x) and parse their corresponding answers ai = ans(yi). A majority vote determines the most frequent answer,
which becomes our candidate proposal:

â = argmax
a

G∑
i=1

I[ai = a]

This proposal is then passed to the disposal stage. A single call to an external Lean verifier 1 evaluates the correctness
of â against a formal specification of x. This yields a binary proof-gate, δ = verify(x, â) ∈ {0, 1}, which dictates the
reward assignment.

The final reward ri for each trajectory yi is determined by a conditional function gated by δ:

ri = δ · I[ai = â]︸ ︷︷ ︸
Verified Correctness

+ (1− δ) · rResZero
i︸ ︷︷ ︸

Inconclusive Fallback

, (4)

where rResZero
i is the Residual-Zero Reward detailed in Section 4.2.

1Details of our Lean verifier can be found in Appendix C.
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The stability of this proof-gated design stems from its principled handling of both successful and inconclusive ver-
ification. First, when verification succeeds (δ = 1), a positive reward is granted exclusively to the trajectories that
produced the proven-correct answer. This approach directly binds the learning signal to hard evidence, which, un-
der standard soundness assumptions, suppresses the false positives that plague self-reward or judge-based surrogates
(Zhang et al., 2025; Cobbe et al., 2021). Second, when verification is inconclusive (δ = 0), the system defaults to our
ResZero fallback rather than naively rewarding the majority consensus. This carefully centered substitute maintains a
stable optimization gradient by preserving group-wise variance, which prevents learning from stalling or oscillating, a
common issue when verification fails for benign reasons like search limits or incomplete libraries. Finally, by paying
only for verifiable correctness, this framework inherently narrows the attack surface for prompt and format hacking, a
critical vulnerability in other label-free systems.

4.2 RESZERO REWARD

When formal verification is inconclusive, a learning signal is still needed to maintain optimization stability. However, a
naive choice like directly rewarding the majority vote (MV) is brittle and risks training collapse. Using MV as a reward
conflates agreement with correctness and can induce entropy collapse under GRPO, as spurious consensus strengthens.
A simple zero-reward fallback is also suboptimal, as it would lead to a zero group-wise advantage, effectively stalling
the learning process.

To address this, we introduce the ResZero (Residual-Zero) Reward. Its principle is to penalize the unverifiable
majority proposal and construct a meaningful, zero-mean reward from the remaining (residual) answers. This
design preserves a useful learning signal by maintaining variance among minority opinions without amplifying a
potentially false consensus. Furthermore, we propose an adaptive variant that strengthens this signal precisely when
the model is most confidently wrong. The intuition is that a strong but unverified consensus (indicated by a high
majority share, α) requires a stronger corrective signal. ResZero operationalizes this by using α to simultaneously
amplify the reward signal for residual answers and suppress the majority answer.

Let M = {i : ai = â} be the set of rollouts supporting the majority answer and R = {i : ai ̸= â} be the set of
residual rollouts. The majority share is α = |M |/G. We first define the leave-one-out residual share for an answer b
within the residual group:

u(−i)(b) =
1

|R| − 1

∑
j∈R
j ̸=i

I[aj = b].

Let zi = u(−i)(ai) if i ∈ R (the relative support for a residual answer ai within its peer group) and zi = 0 if i ∈ M .
The ResZero reward is then assigned as:

rResZero
i = α · I[i ∈ R] ·

(
zi − ū

)︸ ︷︷ ︸
Amplify residual signals

− cα · I[i ∈ M ]︸ ︷︷ ︸
Penalize majority

+ γ︸︷︷︸
Global re-centering

,

where ū = 1
|R|

∑
j∈R

zj , and γ = cα2.
(5)

Here, c is a positive hyperparameter controlling the penalty strength. γ is designed as a global re-centering term to
ensure the total reward sums to zero. The term (zi− ū) creates a zero-mean signal within the residual group, rewarding
answers that are more popular among the minorities and penalizing those that are less so. This entire residual signal is
then scaled by α. By construction, the total reward sums to zero (

∑
i r

ResZero
i = 0), preserving the zero-mean property

crucial for GRPO stability. 2

The design of our ResZero reward ensures robust optimization through three properties. (i) Variance preservation: It
maintains non-zero variance among differing answers, which is critical for variance-normalized optimizers like GRPO
to prevent vanishing gradients. (ii) Zero-mean construction: Its strictly zero-mean property makes it a principled,
optimizer-agnostic signal, ensuring portability beyond GRPO to any general RL paradigm. (iii) Adaptive economy:
The corrective signal dynamically scales with the majority share α, applying maximum pressure when the model is
most confidently wrong, with this entire behavior governed by only a single hyperparameter c. Collectively, these
properties prevent collapse into spurious consensus and foster robust, exploratory learning.

This dual-reward strategy hinges on the verifier’s outcome. If verification succeeds (δ=1), the policy update is guided
by verifiable correctness. Conversely, if inconclusive (δ=0), our ResZero fallback penalizes the unverified majority,
which is critical for mitigating entropy collapse caused by spurious consensus. This design maintains the scalability
of label-free training by requiring only a single verification per step. The full procedure is detailed in Appendix B.

2See Appendix A.2 for a formal proof and Appendix B.2 for a worked example. We set c = 0.01 in our experiments.
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5 EXPERIMENTS

5.1 SETTING

Backbone Models. Our experiments are conducted on a diverse range of open-source large language models to
ensure broad applicability. This includes models from the Qwen2.5 (Yang et al., 2025b), Qwen3 series (Yang et al.,
2025a), and the Llama3 series (Dubey et al., 2024).

Baselines. We compare JURY-RL with several established label-free and supervised reward baselines. The self-
supervised baselines include Majority-Voting (Shafayat et al., 2025), Self-Certainty (Zhao et al., 2025b), and En-
tropy minimization (Prabhudesai et al., 2025). To further contextualize the comparison, we include a ground-truth
supervised oracle baseline with GRPO (Shao et al., 2024). Additionally, we benchmark against judge-based meth-
ods, LLM-as-a-Judge (Pang et al., 2023; Zhao et al., 2025a) and LLM-KD, to provide a comprehensive evaluation.
Additional details are provided in Appendix D.

Implementation Details. All methods are implemented using the VeRL framework (Sheng et al., 2025) and trained
on 8× NVIDIA A100 GPUs. We train on 7,500 problems from the MATH dataset’s training split (Hendrycks et al.,
2021), and evaluate on the 5,000-problem validation split (referred to as MATH5000). For each reinforcement learning
update step, we sample a batch of 128 problems and generate G = 8 rollouts per problem. We use a learning rate
of 3 × 10−6 and a KL penalty coefficient of β = 0.005. To ensure fair and reproducible comparisons, we utilize the
officially released chat-based prompting formats for all models. More details in Appendix E.

Evaluation Datasets and Metrics. To comprehensively assess model capabilities, we evaluate on a suite of bench-
marks covering mathematical reasoning, code generation, and general abilities. Mathematical Reasoning: We eval-
uate on the AIME24/25 (Hugging Face H4, 2024; OpenCompass, 2025), MATH500 (Lightman et al., 2024), GSM8K
(Cobbe et al., 2021), and the competition-level AMC datasets (math-ai Team, 2024). Code Generation: We assess
coding proficiency using LiveCodeBench (Jain et al., 2024) and CRUX (Gu et al., 2024a). Instruction-Following and
Multi-Task: General abilities are measured using IFEval (Zhou et al., 2023) for instruction following and MMLU-Pro
(Wang et al., 2024) for multi-task understanding. The specific metrics, frameworks, and implementation details are
provided in Appendix F.

5.2 MAIN RESULTS

We evaluate JURY-RL on both in- and out-domain tasks, as shown in Tables 13. A key finding is that JURY-RL
not only outperforms all label-free baselines but also consistently surpasses the supervised GRPO with ground-truth
rewards (GT), suggesting that proof-gated rewards can offer a superior learning signal to direct supervision.

Mathematical Reasoning and In-Domain Generalization. The results on mathematical reasoning benchmarks in
Table 1 reveal a crucial insight into JURY-RL’s learning mechanism. We observe that while its advantage over base-
lines is modest on the in-distribution MATH500 test set (which shares the same origin as our MATH training data),
its superiority becomes substantially more pronounced on out-of-distribution math benchmarks such as GSM8K and
AMC. We posit that this pattern arises because competing methods, including the supervised GT baseline, tend to
overfit to the stylistic patterns and problem-solving shortcuts of the MATH dataset. In contrast, JURY-RL, by relying
on formal verification, is incentivized to learn the underlying mathematical principles that are robust to such distri-
butional shifts. This superior generalization within the math domain culminates in a significant overall performance
leap over the GT baseline on all three backbones, with average score improvements of +2.32 pts (+5.91% rel.) on
Qwen3-1.7B, +1.91 pts (+5.93% rel.) on Llama-3.2-3B-Instruct and +1.53 pts (+3.28% rel.) on Qwen2.5-7B. For in-
stance, on Qwen2.5-7B, JURY-RL’s average of 48.13% notably exceeds both the GT oracle (46.60%) and the strongest
label-free competitor, LLM-KD (46.54%). This body of evidence indicates that the signal from formal verification is
not merely a proxy for ground truth but can be a more potent objective for learning generalizable reasoning.

Out-of-Domain Generalization. This strong in-domain performance translates to robust out-of-domain generaliza-
tion across code generation, instruction following, and multi-task knowledge tests. On Qwen2.5-7B, JURY-RL again
surpasses the GT baseline, achieving an average of 40.45% (+2.76 pts, +7.32% rel.). On the other two backbone
models, its performance is statistically on par with GT while consistently ranking as the best-performing label-free
method. These results demonstrate that optimizing for verifiable correctness encourages the model to learn fundamen-
tal, transferable skills that generalize beyond the mathematical domain used for training.

3Values are reported as mean ± standard error of the mean (SEM).
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Table 1: Main Results (%) of RL performance comparison on math reasoning benchmarks. Cell background colors
indicate relative performance: darker colors denote better results within each model group.

Methods Mathematics Code Instruction Multi-Task Average
AIME24 AIME25 MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-1.7B-Base

Before RL 6.67±4.6 6.67±4.6 45.8±2.2 63.31±1.3 26.51±4.8 4.59±0.4 7.12±0.9 33.66±1.0 33.60±0.4 25.33±2.3

GT-Reward 10.00±5.6 0.00±0.0 68.2±2.1 83.09±1.0 34.94±5.2 14.84±0.9 33.75±1.7 38.70±1.0 39.43±0.4 35.88±2.0

Self-Certainty 6.67±4.6 3.33±3.3 57.2±2.2 74.68±1.2 26.51±4.8 10.37±0.7 19.00±1.4 38.58±1.0 35.28±0.4 30.18±2.2

Entropy 10.00±5.6 3.33±3.3 65.2±2.1 79.98±1.1 32.53±5.1 12.64±0.8 31.00±1.6 35.00±1.0 37.01±0.4 34.08±2.4

Majority-Voting 3.33±3.3 0.00±0.0 59.8±2.2 81.88±1.1 33.73±5.2 14.29±0.9 32.75±1.7 37.16±1.0 35.68±0.4 33.18±1.8

CoReward 10.00±5.6 3.33±3.3 66.0±2.1 82.03±1.1 33.73±5.2 14.27±0.9 32.12±1.6 37.28±1.0 37.39±0.4 35.13±2.4

LLM-KD 3.33±3.3 3.33±3.3 68.4±2.1 82.41±1.1 44.58±5.5 14.05±0.9 34.62±1.7 34.65±1.0 37.97±0.4 35.93±2.1

LLM-as-a-Judge 10.00±5.6 3.33±3.3 62.8±2.2 80.52±1.1 31.33±5.1 14.33±0.9 36.12±1.7 36.28±1.0 33.83±0.4 34.28±2.4

JURY-RL (Ours) 13.33±6.3 6.67±4.6 68.4±2.1 83.32±1.0 36.14±5.3 14.54±0.9 35.00±1.7 36.55±1.0 38.11±0.4 36.90±2.6

Llama-3.2-3B-Instruct

Before RL 3.33±3.3 0.00±0.0 42.8±2.2 69.75±1.3 13.25±3.7 3.00±0.4 25.50±1.5 54.41±1.1 32.01±0.4 27.12±1.6

GT-Reward 13.33±6.3 0.00±0.0 48.0±2.2 76.72±1.2 22.89±4.6 7.05±0.6 32.62±1.7 50.16±1.1 34.26±0.4 31.67±2.0

Entropy 6.67±4.6 0.00±0.0 40.4±2.2 68.99±1.3 13.25±3.7 5.38±0.5 26.62±1.6 54.24±1.1 33.54±0.4 27.68±1.7

Self-Certainty 3.33±3.3 0.00±0.0 40.2±2.2 74.07±1.2 16.87±4.1 5.57±0.6 22.75±1.5 54.11±1.1 34.42±0.4 27.92±1.6

Majority-Voting 10.00±5.6 0.00±0.0 47.0±2.2 79.08±1.1 19.28±4.3 8.11±0.7 31.87±1.6 48.36±1.1 33.94±0.4 30.85±1.9

CoReward 10.00±5.6 0.00±0.0 49.2±2.2 79.76±1.1 20.48±4.4 5.57±0.5 30.38±1.6 50.46±1.1 32.95±0.4 30.98±1.9

LLM-KD 10.00±5.6 0.00±0.0 49.4±2.2 78.47±1.1 20.48±4.4 7.55±0.6 32.38±1.6 49.06±1.1 34.04±0.4 31.26±1.9

LLM-as-a-Judge 6.67±4.6 0.00±0.0 47.8±2.2 77.10±1.2 21.69±4.5 3.96±0.4 33.88±1.7 51.46±1.1 34.22±0.4 30.75±1.8

JURY-RL (Ours) 16.67±6.9 0.00±0.0 49.0±2.2 80.74±1.1 24.10±4.7 6.16±0.6 32.62±1.7 50.09±1.1 34.54±0.4 32.66±2.1

Qwen2.5-7B

Before RL 3.33±3.3 3.33±3.3 49.2±2.2 71.65±1.2 20.48±4.4 4.57±0.4 28.00±1.6 40.61±1.0 44.03±0.4 29.47±2.0

GT-Reward 13.33±6.3 6.67±4.6 76.4±1.9 89.61±0.8 46.99±5.5 12.78±0.7 51.38±1.8 41.50±1.0 45.09±0.4 42.64±2.6

Self-Certainty 13.33±6.3 6.67±4.6 75.0±1.9 88.93±0.9 44.58±5.5 11.87±0.7 53.87±1.8 39.66±1.0 43.89±0.4 41.98±2.6

Entropy 16.67±6.9 10.00±5.6 73.4±2.0 85.52±1.0 39.76±5.4 15.68±0.8 51.50±1.8 40.25±1.0 42.61±0.4 41.71±2.8

Majority-Voting 10.00±5.6 3.33±3.3 71.4±2.0 90.22±0.8 38.55±5.3 18.37±0.9 52.38±1.8 42.72±1.0 43.83±0.4 41.20±2.4

CoReward 10.00±5.6 3.33±3.3 74.0±2.0 90.52±0.8 38.55±5.3 10.37±0.6 57.25±1.8 43.75±1.0 42.08±0.4 41.09±2.3

LLM-KD 13.33±6.3 10.00±5.6 73.6±2.0 89.99±0.8 45.78±5.5 8.09±0.5 51.38±1.8 43.09±1.0 43.73±0.4 42.11±2.7

LLM-as-a-Judge 10.00±5.6 6.67±4.6 72.2±2.0 89.61±0.8 42.17±5.4 10.58±0.6 53.00±1.8 44.17±1.0 48.67±0.4 41.90±2.5

JURY-RL (Ours) 13.33±6.3 13.33±6.3 74.6±1.9 91.21±0.8 48.19±5.5 14.69±0.8 55.62±1.8 41.51±1.0 50.00±0.4 44.72±2.8

Overall Gains. JURY-RL demonstrates comprehensive performance improvements over the ground-truth (GT)
baseline across both in-domain and out-of-domain tasks. Specifically, it outperforms the GT baseline by +1.02 pts
(+2.84% rel.) on Qwen-1.7B-Base and +2.08 pts (+4.88% rel.) on Qwen2.5-7B, while maintaining a robust gain
of +0.99 pts (+3.13% rel.) on Llama-3.2-3B-Instruct. This indicates that the advantage of JURY-RL lies not only
in addressing the training collapse problem common in label-free methods but also in delivering stable and scalable
performance gains across different model scales. Crucially, the benefits of this verifiability-driven learning paradigm
extend beyond single-answer accuracy (pass@1). As we will show in subsequent analyses, it also learns, at a more
intrinsic level, to generate diverse and effective solution paths, leading to more substantial improvements in multi-
attempt success rates (pass@k) and effectively averting the mode collapse common in self-supervised methods.

5.3 ANALYSIS

Ablation Studies of ResZero. We compare three fallback designs under the same proof-gated framework when
δ=0: Zero Reward (no signal), MV Reward (rewarding the majority vote), and our proposed ResZero, with GT and
Majority-Voting as references. As shown in Table 2, ResZero consistently achieves the highest Average across all
backbones. On average, it outperforms Zero Reward by +1.8 pts, MV Reward by +6.9 pts, and even surpasses GT by
+1.4 pts. This stark performance gap reveals the critical nature of the fallback signal. Rewarding an unverified majority
(MV Reward) is deceptive, as it causes the model to reinforce its own errors and collapse. Conversely, a simple Zero
Reward achieves suboptimal performance by taking a safe but inefficient path: it avoids reinforcing errors, but at the
cost of stalling the learning process for inconclusive samples. ResZero provides a robust solution by navigating this
trade-off between dangerous reinforcement and inefficient stagnation.

JURY-RL Achieves Stable Training and Avoids Collapse. To evaluate training stability, we tracked the validation
accuracy of JURY-RL against key label-free baselines on MATH5000 validation set throughout the training process.
As illustrated in Figure 2, the trajectory for the Entropy and Self-Certainty shows collapse after an initial performance
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Table 2: Ablation results for the proposed ResZero reward (δ = 0) on reasoning benchmark.

Methods Mathematics Code Instruction Multi-Task Average
AIME24 AIME25 MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-1.7B-Base

GT-Reward 10.00±5.6 0.00±0.0 68.2±2.1 83.09±1.0 34.94±5.2 14.84±0.9 33.75±1.7 38.70±1.0 39.43±0.4 35.88±2.0

Majority-Voting 3.33±3.3 0.00±0.0 59.8±2.2 81.88±1.1 33.73±5.2 14.29±0.9 32.75±1.7 37.16±1.0 35.68±0.4 33.18±1.8

Proof-Gate + Zero Reward 3.33±3.3 6.67±4.6 69.0±2.1 83.70±1.0 36.14±5.3 14.82±0.9 30.63±1.6 37.07±1.0 37.40±0.4 35.42±2.3

Proof-Gate + MV Reward 0.00±0.0 0.00±0.0 41.2±2.2 82.87±1.0 8.43±3.0 14.48±0.9 34.00±1.7 36.78±1.0 35.33±0.4 28.12±1.1

JURY-RL (Proof-Gate + ResZero) 13.33±6.3 6.67±4.6 68.4±2.1 83.32±1.0 36.14±5.3 14.54±0.9 35.00±1.7 36.55±1.0 38.11±0.4 36.90±2.6

Llama-3.2-3B-Instruct

GT-Reward 13.33±6.3 0.00±0.0 48.0±2.2 76.72±1.2 22.89±4.6 7.05±0.6 32.62±1.7 50.16±1.1 34.26±0.4 31.67±2.0

Majority-Voting 10.00±5.6 0.00±0.0 47.0±2.2 79.08±1.1 19.28±4.3 8.11±0.7 31.87±1.6 48.36±1.1 33.94±0.4 30.85±1.9

Proof-Gate + Zero Reward 3.33±3.3 0.00±0.0 51.4±2.2 78.85±1.1 21.69±4.5 6.81±0.6 30.12±1.6 50.12±1.1 33.27±0.4 30.62±1.6

Proof-Gate + MV Reward 10.00±5.6 0.00±0.0 47.4±2.2 79.23±1.1 25.30±4.8 7.07±0.6 31.37±1.6 48.49±1.1 33.68±0.4 31.39±1.9

JURY-RL (Proof-Gate + ResZero) 16.67±6.9 0.00±0.0 49.0±2.2 80.74±1.1 24.10±4.7 6.16±0.6 32.62±1.7 50.09±1.1 34.54±0.4 32.66±2.1

Qwen2.5-7B

GT-Reward 13.33±6.3 6.67±4.6 76.4±1.9 89.61±0.8 46.99±5.5 12.78±0.7 51.38±1.8 41.50±1.0 45.09±0.4 42.64±2.6

Majority-Voting 10.00±5.6 3.33±3.3 71.4±2.0 90.22±0.8 38.55±5.3 18.37±0.9 52.38±1.8 42.72±1.0 43.83±0.4 41.20±2.4

Proof-Gate + Zero Reward 13.33±6.3 6.67±4.6 75.8±1.9 90.67±0.8 39.76±5.4 18.14±0.9 52.25±1.8 41.67±1.0 47.88±0.4 42.91±2.6

Proof-Gate + MV Reward 0.00±0.0 0.00±0.0 51.6±2.2 89.69±0.8 16.87±4.1 17.29±0.9 53.25±1.8 43.64±1.0 35.01±0.4 34.15±1.2

JURY-RL (Proof-Gate + ResZero) 13.33±6.3 13.33±6.3 74.6±1.9 91.21±0.8 48.19±5.5 14.69±0.8 55.62±1.8 41.51±1.0 50.00±0.4 44.72±2.8
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Figure 2: Accuracy on MATH5000 Validation set over training steps.

gain, as the model begins to reinforce spurious consensus. The LLM-as-a-Judge/LLM-KD/Majority-Voting exhibit
noisy and suboptimal convergence. In contrast, JURY-RL demonstrates stable, monotonic improvement, confirming
that its proof-gated reward mechanism effectively prevents the mode collapse common in self-supervised methods.

Does JURL-RL Enhance Diversity? Yes. Table 3 shows that JURY-RL achieves substantially larger improvements
in pass@k than in pass@1 (e.g., +4.05 pp vs. +2.32 pp for Qwen3-1.7B-Base), indicating an increase in solution di-
versity. This stems from our ResZero reward mechanism, which penalizes flawed consensus and redistributes rewards
to explore alternative reasoning paths. This process actively counters mode collapse and incentivizes exploration,
directly boosting multi-attempt success rates. The effect is visually confirmed in Figure 3, which tracks the average
number of unique answers generated per problem during training. While baselines like Majority-Voting quickly suffer
from mode collapse—converging to a single answer—JURY-RL sustains a high level of diversity, an indication of its
robustness. Per-benchmark breakdowns are available in Appendix G.1.

Table 3: Performance of JURY-RL vs. GT-Reward on math reasoning tasks (pass@k and pass@1). k=16 for AIME,
k=4 for MATH500 and GSM8K, and k=8 for AMC.

Model Average (pass@k) Average (pass@1)
GT-Reward JURY-RL ∆ (pp) GT-Reward JURY-RL ∆ (pp)

Qwen3-1.7B-Base 55.36 59.41 +4.05 39.25 41.57 +2.32
Llama-3.2-3B-Instruct 45.46 48.48 +3.02 32.19 34.10 +1.91
Qwen2.5-7B 62.48 64.04 +1.56 46.60 48.13 +1.53
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Figure 3: Average unique answers per sam-
ple over training steps on Qwen3-1.7B-Base.

Table 4: Verifier signal quality on training
set. All metrics reported in percent (%).

Verifier Prec. Rec. F1

LLM-as-a-Judge 75.9 96.1 84.8
Lean Verifier (Ours) 84.5 88.0 86.2

Analysis of Verifier Signal Quality. Is Lean a better judge than
LLM? While a formal verifier like Lean theoretically offers near-zero
false positives, our practical pipeline involves upstream processes like
auto-formalization and consistency checks, which can introduce er-
rors. It is therefore crucial to compare the signal quality of our verifier
against an LLM-as-a-Judge. As shown in Table 4, our Lean verifier
provides a superior reward signal compared to the LLM-as-a-Judge.
It achieves substantially higher precision (84.5% vs. 75.9%) at the
cost of moderately lower recall (88.0% vs. 96.1%). This trade-off is
paramount: high precision drastically reduces false positives, prevent-
ing reward hacking and tightly aligning the training objective with ver-
ifiable correctness. Conversely, the LLM-judge’s noisy signal, stem-
ming from low precision, risks reinforcing errors despite its higher re-
call. The Lean verifier’s higher F1-score (86.2%) confirms its better
overall balance, validating our “Proofs Dispose” principle of prioritiz-
ing signal fidelity for stable learning. While our verifier is not per-
fect, its imperfections stem from upstream components rather than the
prover’s core logic. We provide a deeper analysis of these nuances and
their effect on training dynamics in Appendix G.2.

Impact of c. We analyze the impact of the hyperparameter c in Eq. 5,
which controls the penalty strength on the unverified majority proposal in our ResZero reward. As illustrated in
Figure 4, c is critical in navigating the trade-off between preventing mode collapse and maximizing task performance.
The right panel clearly demonstrates that a non-zero c is essential for maintaining solution diversity. When c = 0, the
framework effectively degenerates to a zero-reward fallback, leading to a sharp decline in the average number of unique
answers as training progresses—a classic symptom of the model converging to a spurious consensus. In contrast, any
positive c value successfully sustains a high level of diversity. However, the left and center panels reveal a subtle trade-
off: an overly aggressive penalty (e.g., c = 0.1) can slightly suppress the final reward and accuracy. This suggests
that while the penalty is crucial for exploration, an excessive value may overly restrict the policy from exploiting a
potentially correct, high-consensus answer. This ablation validates that a moderately tuned c (e.g., c = 0.01 in our
experiments) strikes an optimal balance, ensuring robust training stability and solution diversity without compromising
convergence on the primary task objectives.
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Figure 4: Training dynamics under different values of the hyperparameter c.

6 CONCLUSION

We introduced JURY-RL, a label-free RLVR framework that decouples proposal from disposal: majority voting
across rollouts merely proposes a candidate answer, while a formal Lean verifier disposes the final reward. If the
proposal is verified, only the supporting trajectories are rewarded; when verification is inconclusive, ResZero discards
the unverifiable majority and assigns a zero-mean, variance-preserving residual reward that keeps optimization well-
conditioned. This design jointly achieves three goals: scalability without human labels, truth alignment via verifiable
correctness, and optimization stability in the absence of proof. Across mathematical reasoning, code generation, and
multi-task evaluations, JURY-RL trains more stably than label-free baselines and achieves performance comparable
to or better than supervised training with ground-truth rewards. Our work demonstrates that grounding RL in sparse
but formally verified signals is a promising strategy for building robust and generalizable reasoning models without
human labels.
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ETHICS STATEMENT

This work studies label-free reinforcement learning with verifiable rewards (RLVR) for mathematical and program-
matic reasoning. It does not involve human subjects, crowd workers, user studies, or the collection of personally
identifiable information. All datasets used (e.g., MATH, GSM8K, AMC/AIME, LiveCodeBench, CRUX, MMLU-
Pro, IFEval) are publicly available and used under their respective licenses; we redistribute nothing and provide only
references and scripts to download from the original sources.

Potential risks include (i) misuse: stronger automated reasoning could be used to complete graded assignments or
to generate convincing but incorrect solutions; (ii) bias/coverage: public benchmarks may contain stylistic biases or
limited topical coverage; (iii) safety: LLM judges can transfer prompt or format biases into training signals. Our design
explicitly mitigates these issues by proof-gating rewards with a formal verifier (Lean) to reduce false positives and by
using the Residual-Zero (ResZero) fallback to avoid reinforcing unverifiable consensus. We report precisely which
datasets, prompts, and evaluation harnesses are used, and we provide ablations and diagnostics to surface failure modes
(e.g., collapse under majority-voting). We release only code, configuration files, and download scripts; no private or
proprietary data are included.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. All necessary components, including code,
models, datasets, and experimental settings, are detailed below.

Theory. Full proofs for our theoretical analysis (including the zero-mean property of RESZERO) are provided in
Appendix A.

Code. The implementation of JURY-RL and all baseline methods is based on the publicly available VeRL framework
(Sheng et al., 2025). The complete source code for our experiments, including scripts for training and evaluation, will
be made publicly available upon publication. All evaluation frameworks used are standard and open-source, with
specific details and links provided in Appendix F.

Models. The backbone models used in our experiments are all publicly available open-source models from the
Qwen and Llama3 series. Specifically, we used Qwen3-1.7B-Base, Llama-3.2-3B-Instruct, and Qwen2.5-7B. These
models can be accessed through official repositories such as Hugging Face. The judge model used in our LLM-as-a-
Judge baseline is qwen-2.5-72b-instruct, which is also publicly accessible. We will release our trained model
upon acceptance.

Datasets. All datasets used for training and evaluation are standard, publicly available benchmarks. We train our
models on a 7,500-problem subset of the official MATH training split (Hendrycks et al., 2021). We evaluate on the
following benchmarks: AIME24/25, MATH500, GSM8K, AMC, LiveCodeBench, CRUX, IFEval, and MMLU-
Pro. References and links for each are provided in Section 5.1.

Experimental Setup and Hyperparameters. All crucial hyperparameters for training, optimization, and generation
are provided in Table 6 in Appendix E. The prompt formats used for all models are their officially released chat-based
formats to ensure faithful reproduction. Details of the baseline implementations are described in Appendix D. The
design of our Lean verifier is detailed in Appendix C.
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APPENDIX

A THEORETICAL ANALYSIS

This section gives a minimal, checkable account of why JURY-RL stabilizes policy optimization.

• §A.1 — Why naive majority voting is brittle. We show that, under GRPO, majority-vote rewards con-
flate agreement with correctness: as the majority share increases, supporters’ advantages go to zero while
dissenters’ penalties blow up, driving entropy collapse.

• §A.2 — RESZERO is zero-mean with non-degenerate variance. We prove the group reward strictly sums
to zero with the choice γ = cα2, and that the group variance is non-zero whenever residual answers are not
all identical, so gradients remain informative when verification fails (Eq. 5).

• §A.3 — Fallback comparison (MV / Zero / RESZERO). We derive group-normalized advantages for each
fallback and show that only RESZERO yields a corrective (negative for unverifiable majorities) yet exploratory
(variance preserved on residuals) update, aligning with the stability observed in §5.3.

A.1 WHY NAIVE MAJORITY VOTING IS BRITTLE.

We retain the previously derived analysis showing that majority voting (MV) conflates agreement with correctness and
induces entropy collapse under GRPO as consensus strengthens. Using MV as a label-free reward conflates single-
view agreement with correctness and induces entropy collapse. For a question x, sample G rollouts yi∼πθ(· | x) and
parse answers ai = ans(yi). Let â = argmaxa

∑G
j=1 I[aj = a] with vote share v̂ = 1

G

∑G
j=1 I[aj = â]. MV assigns

binary rewards rMV
i = I[ai = â]. Under GRPO, group-normalized advantages satisfy r = v̂, std =

√
v̂(1− v̂), hence

Âi =
rMV
i − r

std
=


√

1−v̂
v̂ , ai = â,

−
√

v̂
1−v̂ , ai ̸= â .

As a spurious consensus strengthens (v̂ → 1), supporters receive vanishing signal (Â+
i → 0) while dissenters incur

diverging penalties (Â−
i →−∞), suppressing exploration and shrinking the token-level entropy toward a single mode;

ratio clipping preserves the sign of Âi, so the collapse persists. Because rMV
i ignores ground truth, MV is also

vulnerable to formatting hacks: repeated insertion of a frequent symbol in the “answer box” can maximize agreement
without correctness.

A.2 PROOF OF ZERO-MEAN PROPERTY FOR RESZERO REWARD

Here, we provide a formal proof that the adaptive ResZero reward, as defined in Equation (5), maintains a strict zero-
mean property. This property,

∑G
i=1 r

ResZero
i = 0, is critical for ensuring stable optimization for different RL methods.

4

4Edge cases. (i) Tie-breaking) When multiple answers tie for the most frequent, we select a single â by a fixed rule, so
M = {i : ai = â} and R = {i : ai ̸= â} are uniquely defined. (ii) No residuals) If all G trajectories coincide, then |R| = 0,
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We now present the proof for the general case where |R| > 0. The total sum of rewards is decomposed as:

G∑
i=1

rResZero
i =

∑
i∈M

rResZero
i +

∑
i∈R

rResZero
i

Step 1: Calculate the sum of rewards for the residual group (R). For any trajectory i ∈ R, the reward is rResZero
i =

α · (zi − ū) + γ. Summing over all members of the residual group:∑
i∈R

rResZero
i =

∑
i∈R

[α(zi − ū) + γ]

= α
∑
i∈R

(zi − ū) +
∑
i∈R

γ

By the definition of a mean, the sum of deviations from the mean is zero, i.e.,
∑

i∈R(zi − ū) = 0. This simplifies the
total reward for the residual group to: ∑

i∈R

rResZero
i = α · 0 + |R| · γ = |R|γ

Step 2: Calculate the sum of rewards for the majority group (M). For any trajectory i ∈ M , the reward is
rResZero
i = −cα+ γ. Since the reward is identical for all members of the majority group, the sum is:∑

i∈M

rResZero
i = |M | · (−cα+ γ)

Step 3: Combine the sums from both groups. We add the sums from Step 1 and Step 2 to find the total sum:

G∑
i=1

rResZero
i = |M |(−cα+ γ) + |R|γ

= −cα|M |+ (|M |+ |R|)γ

Since |M |+ |R| = G, the equation becomes:

G∑
i=1

rResZero
i = −cα|M |+Gγ

Step 4: Derivation of the Global Re-centering Term γ. To enforce the zero-mean property, we design the global
re-centering term γ such that the total sum from Step 3 is identically zero.

−cα|M |+Gγ = 0

γ =
cα|M |
G

By substituting the definition of the majority share, α = |M |/G, we arrive at the required form for γ:

γ = cα

(
|M |
G

)
= cα2

This derivation shows that setting γ = cα2 is the precise design choice required to make the ResZero reward strictly
zero-centered. This term acts as a global offset that exactly balances the penalties applied to the majority group and
the rewards distributed among the residual group.

|M | = G, and the residual sum is zero. The total reward becomes
∑

i∈M rResZero
i = |M |(−cα + γ). With α = |M |/G = 1 and

γ = cα2 = c, this equals G(−c+ c) = 0.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 FALLBACK REWARDS FOR INCONCLUSIVE VERIFICATION

This section provides a theoretical analysis of different fallback reward mechanisms within the GRPO framework for
the scenario where formal verification of the majority-voted answer is inconclusive (δ = 0). The analysis focuses on
the dynamics of the group-normalized advantage, Âi, which serves as the learning signal for the policy update. The
advantage is defined as:

Âi =
ri − r̄

std({rj}Gj=1) + ε
, where r̄ =

1

G

G∑
j=1

rj .

We analyze three cases: rewarding the majority vote (MV), assigning a zero reward, and using our proposed ResZero
reward.

CASE 1: MAJORITY VOTING (MV) REWARD

As established in Appendix A.1, if we naively reward the majority consensus when verification fails, the reward is
rMV
i = I[ai = â]. Let v̂ be the vote share of the majority answer â. The key statistics are r̄ = v̂ and std({rj}) =√
v̂(1− v̂). This yields the following advantage:

Âi =


√

1−v̂
v̂ , if ai = â (Supporter)

−
√

v̂
1−v̂ , if ai ̸= â (Dissenter)

Theoretical Implication. As a spurious consensus strengthens (v̂ → 1), the advantage for supporters vanishes
(Â+

i → 0) while the penalty for dissenters diverges (Â−
i → −∞). This dynamic punishes any exploration and

provides no positive signal for adhering to the consensus, leading to entropy collapse and policy degradation.

CASE 2: ZERO REWARD

A seemingly safe alternative is to assign a zero reward to all rollouts when verification is inconclusive. In this case,
rZero
i = 0 for all i ∈ {1, . . . , G}.

The resulting statistics are trivial:

• Mean Reward: r̄ = 1
G

∑G
i=1 0 = 0.

• Standard Deviation: std({rj}) =
√

1
G

∑G
i=1(0− 0)2 = 0.

Substituting these into the advantage formula gives:

Âi =
0− 0

0 + ε
= 0

Theoretical Implication. The advantage signal is nullified for all rollouts in the group. This leads to a vanishing
gradient for the policy update, effectively stalling the learning process for that entire batch. While it avoids the
destructive collapse of MV, it does so at the cost of learning efficiency, rendering the update step ineffective.

CASE 3: RESZERO REWARD

The ResZero reward is designed specifically to address the shortcomings of the above methods. It has two crucial
properties by construction:

• Zero-Mean Property: The total reward across the group sums to zero, i.e.,
∑G

i=1 r
ResZero
i = 0. This imme-

diately implies the mean reward is r̄ = 0.
• Non-Zero Variance: By assigning a negative reward to the majority group and a structured, zero-mean

reward to the residual group, rResZero
i is non-zero for most rollouts (unless all residual answers are identical).

Therefore, std({rj}) > 0 as long as there is diversity among residual answers.

The advantage function thus becomes:

Âi =
rResZero
i − 0

std({rj}) + ε
=

rResZero
i

std({rj}) + ε
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Theoretical Implication. This formulation provides a rich, structured learning signal that is both corrective and
exploratory.

1. Prevents Stagnation: Since Âi is non-zero, it provides a meaningful gradient, ensuring that learning contin-
ues.

2. Corrects Spurious Consensus: For rollouts in the majority group (i ∈ M ), rResZero
i is negative. This

results in a negative advantage (Âi < 0), actively discouraging the policy from converging on the unverified
consensus.

3. Guides Exploration: For rollouts in the residual group (i ∈ R), the sign of rResZero
i (and thus Âi) depends on

the relative popularity of their answers within the minority. This rewards more promising alternative paths
and penalizes less popular ones, guiding exploration in a principled manner.

In summary, our theoretical analysis reveals that each fallback strategy results in a fundamentally different learning
dynamic:

• Majority Voting (MV) leads to a destructive update. As a spurious consensus strengthens, it creates a
diverging penalty for dissent while the positive signal for supporters vanishes. This dynamic ultimately
causes entropy collapse, suppressing exploration and degrading the policy.

• Zero Reward results in an ineffective update. By nullifying the reward for all rollouts, the advantage signal
becomes zero for the entire group. This causes a vanishing gradient that stalls the learning process for that
step, wasting computational resources.

• ResZero Reward provides a constructive update. It maintains a stable, non-zero learning signal that is
both corrective, by penalizing the unverified majority consensus, and exploratory, by rewarding promising
alternatives among the residual answers.

B IMPLEMENTATION DETAILS

B.1 THE JURY-RL ALGORITHM

The full algorithm is summarized in Algorithm 1.

Algorithm 1 JURY-RL (one grouped update for a prompt x)

1: Sample G rollouts yi∼πold(· | x); parse ai = ans(yi).
2: Compute vote shares v(a) and majority â ∈ argmaxa v(a).
3: Query verifier once: δ = verify(x, â).
4: if δ=1 then
5: Set ri = I[ai = â].
6: else
7: Form M,R; compute u(−i) and ū; set ri via Eq. (5).
8: end if
9: Compute group-normalized advantages Âi from {ri}Gi=1; broadcast token-wise.

10: Update πθ with GRPO (clipped ratios, KL to reference).

B.2 AN INTUITIVE EXAMPLE OF THE RESZERO REWARD

Consider a scenario with G = 8 rollouts for a given problem. A majority vote reveals that |M | = 4 rollouts support a
proposal â, so the majority share is α = |M |/G = 4/8 = 0.5. The remaining |R| = 4 residual rollouts are split: three
support answer b, and one supports answer c. If the verifier is inconclusive (δ = 0), the ResZero reward is activated.

First, we analyze the residual group R. For a trajectory yi with answer ai = b, its leave-one-out support within the
residual group is zi = u(−i)(b) = 2

|R|−1 = 2/3. For the singleton answer ai = c, the support is zi = u(−i)(c) =

0/3 = 0. The average support across the residual group is therefore ū = 1
|R| (3 ·

2
3 + 1 · 0) = 0.5.
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Let the penalty hyperparameter be c = 0.1. The global re-centering term is γ = cα2 = 0.1 · (0.5)2 = 0.025. The final
reward for each trajectory is assigned according to Eq. (5):

rResZero
i =


−cα+ γ = −0.1(0.5) + 0.025 = −0.025, if i ∈ M (proposal â)

α(zi − ū) + γ = 0.5( 23 − 0.5) + 0.025 = 1
12 + 0.025 ≈ 0.0667, if i ∈ R, ai = b

α(zi − ū) + γ = 0.5(0− 0.5) + 0.025 = −0.225, if i ∈ R, ai = c

By design, the total reward sums exactly to zero: 4(−0.025)+ 3( 1
12 +0.025)+ 1(−0.225) = −0.1+ 0.25+ 0.075−

0.225 = 0. This demonstrates how ResZero penalizes the unverifiable majority while redistributing a zero-mean
signal among diverse residual answers. This maintains a useful, variance-driven learning gradient for GRPO without
reinforcing a potentially spurious consensus.

C LEAN VERIFIER DETAILS

C.1 LEAN VERIFIER

Lean (de Moura & Ullrich, 2021) has emerged as a transformative framework in the formal verification of mathematical
proofs, grounded in a rigorous type-theoretic foundation that guarantees unprecedented levels of logical soundness
and mechanized reliability. Its intrinsic dependency on computer-assisted compilation environments not only ensures
formal correctness but also serves as a high-fidelity feedback mechanism for refining and validating mathematical
reasoning within LLMs.

In response to this potential, we have designed and implemented a comprehensive mathematical verification system
centered on Lean. This system bridges the gap between informal natural language mathematics and machine-verifiable
formalism by automatically translating problem statements and proposed solutions into syntactically and semantically
well-formed Lean expressions, followed by formal proof verification via Lean’s trusted kernel.

The architecture of this verification system ( illustrated in Figure 5 ) is a cascaded, modular pipeline comprising three
specialized components:

• Autoformalizer Translates natural language mathematical content (question—answer pairs in our setting)
into precise, executable Lean formal specifications, preserving both syntactic structure and semantic intent.

• Consistency-Checker Performs bidirectional semantic alignment between the original input of natural lan-
guage and its formalized Lean counterpart, ensuring fidelity of meaning and detecting potential misinterpre-
tations or translation artifacts.

• Prover Synthesizes formal proof scripts in Lean and submits them to the theorem prover for mechanized
validation, thus certifying the logical correctness of the solution under the foundational logic of the system.

This framework not only advances the automation of mathematical reasoning verification, but also establishes a scal-
able, feedback-driven paradigm for integrating formal methods into natural language-based mathematical systems.

C.2 SETTING

To ensure reliable and precise reward signals, our Lean Verifier employs a three-stage inference pipeline composed of
the following core components:

• Autoformalizer: Utilizes the Goedel-Formalizer-V2-32B model (Lin et al., 2025) to translate informal math-
ematical statements into formal Lean specifications.

• Consistency-Checker: Implemented using QwQ-32B (QwenTeam, 2025), this component validates the out-
puts of the Autoformalizer.

• Prover: Employs the Goedel-Prover-V2-32B model (Lin et al., 2025) to synthesize formal proofs for the
specifications that have been validated in the previous stage.

The pipeline operates as follows: first, the Autoformalizer generates 8 candidate formalizations. The Consistency-
Checker then evaluates all candidates and selects the top checked candidate. Finally, the Prover conducts up to 16
independent sampling trials to find a valid proof.

All formal verification outputs were generated under the same hyperparameter configuration below:
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Figure 5: The pipeline of our Lean Verifier: a collaborative system that combines autoformalization, formal verifica-
tion, and consistency checking to validate mathematical reasoning with high reliability.

• Temperature: 0.7

• Maximum Tokens: 32,768

We make the configuration choice to balance exploration, fidelity, and resource efficiency.

C.3 PERFORMANCE AND COST ANALYSIS

A crucial factor for the practical implementation of JURY-RL is the computational overhead introduced by the formal
Lean Verifier, especially when compared to baselines like an LLM-as-a-Judge. To provide a clear and quantitative
assessment of this cost, we conducted a wall-clock time analysis using the Qwen-2.5-7B model. The evaluation was
performed under the synchronous RL training configuration specified in our main paper, including the defined batch
size and the pass@8 verification setting.

Initial (Cold-Start) Overhead. To accurately assess the computational cost, we first establish the baseline training
time. The oracle setting with Ground-Truth (GT) rewards, which involves no external verification, requires approxi-
mately 100 seconds per step. This duration represents the core training workload.

We then measured the additional verification overhead for the other methods under a worst-case scenario, defined as
processing a batch composed entirely of unseen question-answer (QA) pairs. The specific overheads are as follows:

• JURY-RL (Lean Verifier): The verification process introduces an additional overhead of approximately 200
seconds per step.

• LLM-as-a-Judge: The baseline using Qwen-2.5-72B for verification adds an overhead of approximately 80
seconds per step.

This means that in the initial training stages, the total step time for JURY-RL is approximately 300 seconds (100s for
training + 200s for verification), compared to 180 seconds for the LLM-as-a-Judge.

Cost Amortization and Convergence. The initial cold-start overhead is not representative of the average cost over
the entire training process. Our framework uses a caching mechanism for all verification results (shown in Fig.5.
As training proceeds and the policy begins to converge, the diversity of generated answers for any given problem
stabilizes. Consequently, an increasing fraction of QA pairs in subsequent batches will have been previously encoun-
tered and verified. These cached results can be retrieved almost instantly, bypassing the expensive formal verification
process. In the steady-state phase of training, this caching effect becomes dominant. The per-step time cost for JURY-
RL progressively converges toward that of the GT baseline, as most verification lookups are resolved via the cache.
Therefore, while the initial cost of the Lean Verifier is higher, this cost is effectively amortized throughout the training
run. We contend that this represents an acceptable and practical trade-off for the substantial gains in reward fidelity,
training stability, and final model performance documented in our main results.
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Beyond the runtime overhead, another critical aspect of the verifier is the trade-off between its performance and token
consumption, which directly impacts both the quality of the reward signal and the operational cost. To analyze this,
we evaluated different prover configurations on the MATH500 dataset.

Table 5 presents the performance and cost analysis of different prover configurations. While the Prover@64 con-
figuration achieves the highest accuracy, it comes at a significant computational cost, averaging 67,429 tokens per
verification. In contrast, the Prover@16 configuration, while exhibiting a slight and acceptable decrease in perfor-
mance to 87.0% ACC, reduces the token cost by more than half to 33,346. Given this highly favorable trade-off
between a marginal performance drop and substantial cost savings, we adopt Prover@16 as the default configuration
for our main experiments to ensure efficiency.

Table 5: Performance and token cost analysis of Lean Verifier across different Prover configurations.

Models MATH500 Token Costs
ACC TPR F1-Score Max Tokens per Verify Avg Tokens per Verify Avg Tokens per Response

Prover@16 87.0 87.0 93.0 351,799 33,346 5,858
Prover@32 89.0 89.0 94.0 658,061 52,064 6,607
Prover@64 91.0 91.0 95.0 1,369,038 67,429 6,435

C.4 PROMPT

We list all the three models’ prompts below for reference.

Autoformalizer Prompt

Please autoformalize the following natural language problem statement in Lean 4.
Use the following theorem name: test problem
The natural language statement is:
{informal statement content}.
Think before you provide the lean statement.

Consistency-Checker System Prompt

Your role is a Lean4 expert, please help me check consistency between natural language expression and its Lean4
proof statement.
Guidelines for Consistency Checking:
Goal:
Determine if the Lean theorem statement is an exact and faithful formalization of the mathematical problem.
Do not evaluate or consider the answer or the proof. Your sole task is to verify the correctness of the formalization.
Evaluation Stages (All required):
1. Math Assertion Analysis
Identify all structurally and semantically relevant components of the mathematical problem, including variables,
types, quantifiers, constraints, logic structure, conclusion, and so on. The analysis should be based on the actual
content of the text.
2. Lean Statement Analysis (ignore proof part)
Extract all structurally and semantically relevant components from the Lean statement, including variables, types,
conditions, quantifiers, constraints, the final claim, and so on. The analysis should reflect the actual content
present in the Lean code.
3. Comparative Verification
Check for exact correspondence between the math and Lean statements; you may refer to aspects like:
- Semantic alignment, logic structure, and quantifier correctness.
- Preservation of constraints and boundary assumptions.
- Accurate typing and use of variables.
- Syntactic validity and proper Lean usage (free from errors).
- Use of symbols and constructs without semantic drift.
- No missing elements, no unjustified additions, and no automatic corrections or completions.
4. Final Judgement
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Based solely on the above analysis, judge whether the Lean statement is a correct and exact formalization of the
mathematical problem.
5. Accuracy Confirmation
If correct: clearly confirm why all elements match.
If incorrect: list all mismatches and explain how each one affects correctness.
Note: While the analysis may be broad and open to interpreting all relevant features, the final judgment must be
based only on what is explicitly and formally expressed in the Lean statement. **Do not consider or assess any
part of the proof. Your judgment should be entirely about the accuracy of the statement formalization.**
You should present the results following the format:
Input:
The Natural Language Statement:
A math problem and its answer (no proof).
The Formal Statement in Lean4:
‘‘‘lean
A Lean 4 theorem statement formalizing the problem. Proof is intentionally omitted (e.g., sorry).
‘‘‘
Output Format:
Return exactly one xml object
<comments>
Your brief analysis:
Math Assertion Analysis: [. . . ]
Lean Statement Analysis (Proof Ignored): [. . . ]
Comparative Verification: [. . . ]
Conclusion: [. . . ]
Accuracy Confirmation: [. . . match confirmation or list of discrepancies. . . ]
</comments>
<consistency>[Correct/Incorrect]</consistency>

Consistency-Checker User Prompt

Input Data:
The Natural Language Statement:
{informal prefix}
The Formal Statement in Lean4:
‘‘‘lean
{formal statement}
‘‘‘

Prover Prompt

Complete the following Lean 4 code:
‘‘‘ lean4
{formal statement}
‘‘‘
Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining
the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of
the final formal proof.

D BASELINE DETAILS

• Majority Voting (MV). A self-supervised consensus reward (Shafayat et al., 2025). For each problem, we
generate G rollouts. A rollout yi receives reward 1 if its extracted answer ans(yi) matches the majority answer
among the G rollouts, and 0 otherwise. This directly reinforces popular answers regardless of correctness.

• Self-Certainty. A confidence-derived signal (Zhao et al., 2025b). The reward is computed from the log-
probabilities of the tokens composing the final answer (as extracted by ans(·)); higher cumulative log-
probability indicates greater model certainty and yields a higher reward.
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• Entropy Minimization. A low-entropy proxy (Prabhudesai et al., 2025). The reward is inversely related
to the policy’s output entropy for the final-answer tokens, encouraging more deterministic, high-confidence
predictions.

• Ground Truth (GT). The ground-truth supervised oracle baseline. Using human-annotated labels, a rollout
receives 1 if its extracted answer matches the ground truth and 0 otherwise. We train this baseline with the
same GRPO objective (Shao et al., 2024) as our method for a fair comparison.

• LLM-as-a-Judge. An external-judge paradigm (Pang et al., 2023; Zhao et al., 2025a). We employ
qwen-2.5-72b-instruct as the judge. It assesses the reasoning process and the final answer of each
rollout; its evaluation (numeric score or a binary correct/incorrect label) is used as the reward for the RL
update. The prompt for it is shown below.

• LLM-KD (Knowledge Distillation). Teacher–student distillation has been used in Label-Free RLVR (Zhao
et al., 2025a). We use qwen-2.5-72b-instruct to produce an answer for each problem and treat it as
a pseudo label. The policy model is trained to align its outputs with these machine-generated references.

LLM-as-a-Judge prompt

You are a professional math QA pair evaluator. Your sole task is to determine whether a given mathematical
question and answer are correctly matched. First explain your reasoning, then end your response with your final
judgment: True or False.

E ADDITIONAL EXPERIMENTAL DETAILS

Detailed training and testing settings are provided in Table 6.

Table 6: Reinforcement learning training hyperparameters. This configuration is consistently applied across all exper-
iments to ensure a fair comparison.

Hyperparameter Value
Training Configuration
Train Batch size (Number of Sampled Questions) 128
Rollouts per problem (G) 8
Max prompt length 512
Max new tokens 3072
Training epoch 6

Optimizer Parameters (AdamW)
Learning rate 3× 10−6

β1 0.9
β2 0.999
ϵ 10−8

Warmup style Cosine
Warmup steps ratio 0.1

GRPO Algorithm Parameters
KL loss coefficient (β) 0.005
clip ratio (ϵ) 0.2

Generation Parameters
Training temperature 1.0
Evaluation temperature 0.8
top-p 0.95

F BENCHMARK AND METRIC DETAILS

This section details the specific metrics and software frameworks used for each benchmark mentioned in the main text.
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Figure 6: Training dynamics of precision, recall, validation accuracy, and training entropy under different Lean
pass@k verification settings.

• AIME24/25, MATH500, GSM8K: We report pass@1 accuracy. All three are evaluated using the
lighteval framework: https://github.com/huggingface/lighteval

• AMC: We report pass@1 accuracy. This is evaluated using the ttrl implementation: https://
github.com/ruixin31/Spurious_Rewards/tree/main/code/ttrl

• LiveCodeBench: We report pass@1 accuracy. This is evaluated using the official library: https://
github.com/LiveCodeBench/LiveCodeBench

• CRUX: We report pass@1 accuracy. This is evaluated using the ZeroEval framework: https:
//github.com/WildEval/ZeroEval

• MMLU-Pro: We report pass@1 accuracy. This is evaluated using the lm-evaluation-harness:
https://github.com/EleutherAI/lm-evaluation-harness

G FURTHER ANALYSIS

G.1 PASS@K RESULTS FOR ALL COMPARISONS

This appendix complements The Diversity Analysis of JURY-RL in Section 5.3. The complete numerical results
are listed in Table 7 for easy cross-reference. The pass@k results presented in Table 7 unequivocally demonstrate the
effectiveness of our JURY-RL framework. Across all three backbone models, JURY-RL not only surpasses every label-
free baseline but also consistently outperforms the strong supervised GT-Reward baseline, which is trained directly on
ground-truth answers.
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Table 7: Pass@k Results (%) of RL performance comparison on math reasoning benchmarks.

Methods AIME24 AIME25 MATH500 GSM8K AMC Average
pass@16 pass@16 pass@4 pass@4 pass@8

Qwen3-1.7B-Base

Before RL 16.67±6.9 13.33±6.3 72.0±2.0 89.31±0.8 56.63±5.4 49.59±4.3

GT-Reward 26.67±8.2 16.67±6.9 82.0±1.7 92.42±0.7 59.04±5.4 55.36±4.6

Entropy 20.00±7.4 23.33±7.8 81.2±1.8 90.75±0.8 59.04±5.4 54.86±4.7

Self-Certainty 23.33±7.8 26.67±8.2 77.2±1.9 90.83±0.8 57.83±5.4 55.17±4.8

Majority-Voting 23.33±7.8 16.67±6.9 77.2±1.9 92.34±0.7 53.01±5.5 52.51±4.6

CoReward 26.67±8.2 16.67±6.9 77.4±1.9 92.04±0.8 54.22±5.5 53.40±4.6

LLM-KD 20.00±7.4 16.67±6.9 82.2±1.7 93.25±0.7 55.42±5.5 53.51±4.4

LLM-as-a-Judge 16.67±6.9 13.33±6.3 74.6±1.9 91.74±0.8 55.42±5.5 50.35±4.3

JURY-RL (Ours) 30.00±8.5 30.00±8.5 82.0±1.7 92.42±0.7 62.65±5.3 59.41±5.0

Llama-3.2-3B-Instruct

Before RL 23.33±7.8 6.67±4.6 65.0±2.1 86.88±0.9 49.40±5.5 46.26±4.2

GT-Reward 23.33±7.8 6.67±4.6 63.8±2.1 90.14±0.8 43.37±5.4 45.46±4.2

Entropy 16.67±6.9 3.33±3.3 58.8±2.2 84.46±1.0 50.60±5.5 42.77±3.8

Self-Certainty 13.33±6.3 10.00±5.6 58.0±2.2 84.69±1.0 44.58±5.5 42.12±4.1

Majority-Voting 16.67±6.9 0.00±0.0 63.6±2.1 90.98±0.8 39.76±5.4 42.20±3.0

CoReward 23.33±7.8 0.00±0.0 60.4±2.2 90.45±0.8 43.37±5.4 43.51±3.3

LLM-KD 23.33±7.8 3.33±3.3 65.0±2.1 89.99±0.8 49.40±5.5 46.21±3.9

LLM-as-a-Judge 26.67±8.2 10.00±5.6 62.2±2.2 89.84±0.8 40.96±5.4 45.93±4.4

JURY-RL (Ours) 30.00±8.5 3.33±3.3 64.8±2.1 90.07±0.8 54.22±5.5 48.48±4.0

Qwen2.5-7B

Before RL 30.00±8.5 20.00±7.4 76.2±1.9 93.78±0.7 63.86±5.3 56.77±4.8

GT-Reward 33.33±8.8 30.00±8.5 85.2±1.6 95.22±0.6 68.67±5.1 62.48±4.9

Entropy 30.00±8.5 36.67±8.9 85.2±1.6 93.78±0.7 67.47±5.1 62.62±5.0

Self-Certainty 23.33±7.8 30.00±8.5 84.6±1.6 93.86±0.7 69.88±5.0 60.33±4.7

Majority-Voting 33.33±8.8 30.00±8.5 85.4±1.6 95.00±0.6 63.86±5.3 61.52±4.9

CoReward 30.00±8.5 26.67±8.2 83.8±1.6 95.60±0.6 63.86±5.3 59.99±4.8

LLM-KD 33.33±8.8 33.33±8.8 87.8±1.5 95.75±0.6 67.47±5.1 63.54±4.9

LLM-as-a-Judge 20.00±7.4 13.33±6.3 82.2±1.7 95.38±0.6 59.04±5.4 53.99±4.3

JURY-RL (Ours) 36.67±8.9 30.00±8.5 86.6±1.5 95.83±0.6 71.08±5.0 64.04±4.9

G.2 DEEPER DIVE INTO VERIFIER IMPERFECTIONS

While a formal verifier is theoretically sound, its practical application is imperfect. We analyze how the number of
verification attempts, k in a pass@k setting, affects the quality of the reward signal. As shown in Figure 6, the Lean
verifier exhibits a highly desirable trade-off.

The precision (top-left panel) remains consistently high, around 85%. It is crucial to note that this precision gap from
a perfect 100% is not a flaw in the Lean prover’s core logic, which is formally sound. Instead, it primarily stems from
imperfections in upstream components like auto-formalization and consistency checks, which translate the problem
into a verifiable format. Despite this, the signal’s high fidelity is vital for preventing reward hacking and ensuring the
model learns from genuinely correct examples.

In contrast, the recall (top-right panel) shows a clear dependency on k. With a single attempt (pass@1), the recall is
modest (around 30%), but it steadily increases with more attempts, reaching nearly 90% at pass@16. This indicates
that while a single verification attempt might fail to prove a correct answer (e.g., due to search limits), multiple attempts
significantly increase the chance of success, thereby improving the richness of the training signal.
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Crucially, despite the wide variance in recall, the final validation accuracy (bottom-left) and training entropy
(bottom-right) converge to similar stable states across different values of k. This suggests that the high precision
of the verifier’s signal is the dominant factor for successful and stable training. This behavior stands in stark contrast
to an LLM-as-a-Judge. Mechanistically, an LLM-judge’s potential for error is inherent to its probabilistic and opaque
reasoning process, making it fundamentally prone to biases, format gaming, and confident mistakes. Its reward signal
is therefore inherently noisier and less reliable. The imperfections in our pipeline, however, are largely confined to the
modular pre-processing steps, leaving the core judgment by the Lean prover itself principled and trustworthy.

H CASE STUDY

To illustrate our “Proofs Dispose” principle, we present a case study comparing an LLM-as-a-Judge with a Lean formal
verifier. This case highlights a core problem with LLM judges: their reliability is limited by their own reasoning. The
first example shows that an LLM judge can reach a wrong conclusion due to flawed reasoning, which generates an
incorrect training signal. In contrast, once the autoformalization and consistency checks are passed, a Lean proof has
the property of zero false positives. As shown in the second example, it provides a definitive and highly reliable signal
through formal logic. This comparison explains why in JURY-RL, we use proofs, not an LLM, to dispose the final
reward.

Question

Let $x$ and $y$ be positive real numbers such that $3x + 4y < 72.$ Find the
↪→ maximum value of xy (72 - 3x - 4y).

Answer

1152

LLM-as-a-Judge Output (Judge Wrong)

To evaluate whether the given answer of 1152 is correct for the problem, we need
↪→ to find the maximum value of the function \( f(x, y) = xy (72 - 3x - 4y) \)
↪→ subject to the constraint \( 3x + 4y < 72 \).

First, let’s rewrite the function:
\[ f(x, y) = xy (72 - 3x - 4y). \]

We can use the method of Lagrange multipliers or analyze the function directly.
↪→ However, a simpler approach is to use symmetry and calculus.

Consider the function \( g(t) = t(72 - 3t - 4t) = t(72 - 7t) = 72t - 7tˆ2 \). This
↪→ is a quadratic function in terms of \( t \), where \( t = x + y \). The
↪→ maximum value of this quadratic function occurs at the vertex, which is
↪→ given by:

\[ t = -\frac{b}{2a} = -\frac{72}{-14} = \frac{72}{14} = \frac{36}{7}. \]

Now, we need to find \( x \) and \( y \) such that \( x + y = \frac{36}{7} \) and
↪→ \( 3x + 4y \) is minimized while still satisfying \( 3x + 4y < 72 \).

Given the symmetry and the nature of the problem, we can assume \( x = y \). Then:
\[ 2x = \frac{36}{7} \implies x = \frac{18}{7}. \]
\[ 3x + 4y = 3\left(\frac{18}{7}\right) + 4\left(\frac{18}{7}\right) =

↪→ 7\left(\frac{18}{7}\right) = 18. \]

Substituting \( x = y = \frac{18}{7} \) into the function:
\[ f\left(\frac{18}{7}, \frac{18}{7}\right) =

↪→ \left(\frac{18}{7}\right)\left(\frac{18}{7}\right)(72 -
↪→ 3\left(\frac{18}{7}\right) - 4\left(\frac{18}{7}\right)) \]

\[ = \left(\frac{18}{7}\right)ˆ2 (72 - 7\left(\frac{18}{7}\right)) \]
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\[ = \left(\frac{18}{7}\right)ˆ2 (72 - 18) \]
\[ = \left(\frac{18}{7}\right)ˆ2 \cdot 54 \]
\[ = \frac{324}{49} \cdot 54 \]
\[ = \frac{17496}{49} \]
\[ = 357.0612244898. \]

This value does not match 1152. Therefore, the given answer of 1152 is incorrect.

Final judgment: False.

Lean Prover Output (Prove Success)

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem test_problem :
sSup {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z = x * y * (72 - 3*x

↪→ - 4*y)} = 1152 := by
have h1 : (1152 : R) ∈ {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z =

↪→ x * y * (72 - 3*x - 4*y)} := by
refine’ ⟨8, 6, by norm_num, by norm_num, by norm_num, _⟩
<;> norm_num
<;> ring_nf
<;> norm_num

have h2 : ∀ (z : R), z ∈ {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z
↪→ = x * y * (72 - 3*x - 4*y)} → z ≤ (1152 : R) := by
intro z hz
rcases hz with ⟨x, y, hx, hy, hxy, rfl⟩
have h3 : 0 < x := hx
have h4 : 0 < y := hy
have h5 : 3 * x + 4 * y < 72 := hxy
have h6 : 0 < 72 - 3 * x - 4 * y := by linarith
have h7 : 0 < 3 * x := by positivity
have h8 : 0 < 4 * y := by positivity
have h9 : 0 < (3 * x) * (4 * y) := by positivity
have h10 : 0 < (3 * x) * (4 * y) * (72 - 3 * x - 4 * y) := by positivity
-- Use AM-GM inequality to show that x * y * (72 - 3 * x - 4 * y) ≤ 1152
have h11 : (3 * x + 4 * y + (72 - 3 * x - 4 * y)) ˆ 3 ≥ 27 * (3 * x) * (4 * y)
↪→ * (72 - 3 * x - 4 * y) := by

nlinarith [sq_nonneg (3 * x - 4 * y), sq_nonneg (3 * x - (72 - 3 * x - 4 *
↪→ y)), sq_nonneg (4 * y - (72 - 3 * x - 4 * y)),

mul_nonneg h7.le h8.le, mul_nonneg h7.le h6.le, mul_nonneg h8.le h6.le]
-- Simplify the inequality to get the desired result
have h12 : (72 : R) ˆ 3 ≥ 27 * (3 * x) * (4 * y) * (72 - 3 * x - 4 * y) := by

have h13 : (3 * x + 4 * y + (72 - 3 * x - 4 * y)) = 72 := by ring
rw [h13] at h11

linarith
have h13 : x * y * (72 - 3 * x - 4 * y) ≤ 1152 := by

have h14 : (72 : R) ˆ 3 = 373248 := by norm_num
have h15 : 27 * (3 * x) * (4 * y) * (72 - 3 * x - 4 * y) = 324 * (x * y * (72

↪→ - 3 * x - 4 * y)) := by
ring

rw [h14] at h12

rw [h15] at h12

nlinarith
linarith

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

have h3 : sSup {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z = x * y *
↪→ (72 - 3*x - 4*y)} = 1152 := by
have h4 : IsLUB {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z = x * y
↪→ * (72 - 3*x - 4*y)} 1152 := by

refine’ ⟨fun z hz => h2 z hz, fun y hy => _⟩
-- We need to show that 1152 is the least upper bound.
-- Since 1152 is in the set, any upper bound y must be at least 1152.
have h5 : (1152 : R) ∈ {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧

↪→ z = x * y * (72 - 3*x - 4*y)} := h1

have h6 : (1152 : R) ≤ y := by
apply hy
exact h5

linarith
-- The supremum of the set is 1152 because it is the least upper bound.
have h5 : sSup {z : R | ∃ x y : R, x > 0 ∧ y > 0 ∧ 3*x + 4*y < 72 ∧ z = x * y
↪→ * (72 - 3*x - 4*y)} = 1152 := by

apply le_antisymm
· -- Show that the supremum is less than or equal to 1152.

apply csSup_le
· -- The set is nonempty.
exact ⟨1152, h1⟩

· -- Every element in the set is less than or equal to 1152.
intro z hz
exact h2 z hz

· -- Show that 1152 is less than or equal to the supremum.
apply le_csSup
· -- The set is bounded above.
use 1152
intro z hz
exact h2 z hz

· -- 1152 is in the set.
exact h1

exact h5

exact h3
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