Under review as a conference paper at ICLR 2026

JURY-RL: VOTES PROPOSE, PROOFS DISPOSE FOR LABEL-
FREE RLVR

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) enhances the reasoning of large language
models (LLMs), but its scalability is hampered by the high cost of human-annotated labels. Label-
free alternatives, such as majority voting or LLM-as-a-judge, are susceptible to false positives that
lead to reward hacking and training collapse. We introduce JURY-RL, a label-free RLVR frame-
work that separates answer proposal from reward disposal: votes from model rollouts propose a
consensus answer, while a formal theorem prover disposes the final reward. Specifically, a rollout is
rewarded only if the majority-voted answer is formally verified by a Lean prover. When verification
is inconclusive, we activate our proposed ResZero (Residual-Zero) reward: it drops the unverifiable
majority proposal and assigns a zero-mean, variance-preserving reward to the remaining (residual)
answers. This unique design maintains a stable optimization gradient for RL algorithms without
reinforcing spurious consensus. Experiments across mathematical reasoning, code generation, and
multi-task benchmarks show that JURY-RL not only achieves more stable training but also con-
sistently outperforms label-free baselines and even matches or surpasses supervised training with
ground-truth rewards across pass@1 and pass @k.

1 INTRODUCTION

Large language models (LLMs) (OpenAl, 2023; [DeepSeek-Al et al.l [2024; [Yang et al., 2025b)) continue to advance
in broad capabilities, yet reliable reasoning remains a core bottleneck (Wang et al.,|2023}; Lightman et al.| 2024; |Patil
& Jadon, 2025 [Huang et al., |2025b). Recent advances in reinforcement learning with verifiable rewards (RLVR)
(Shao et al., [2024; Lambert et al.| 2024} [DeepSeek-Al et al., [2025) offers a principled post-training path: rather than
aligning to what looks plausible, the objective aligns to what is provably correct by using verifiable signals such as
from program execution or mathematical equivalence (Cobbe et all 2021} |Yu et al. 2025 |AI & Agentical 2025).
However, scaling RLVR is constrained by its reliance on human-annotated answers or carefully curated specifications,
which is costly and limited in coverage (Ouyang et al., 2022; Bai et al., 2022; Shao et al.| 2024).

To reduce labeling cost, recent work explores label-free rewards, where no human ground-truth answers are provided
during training. A prominent subset is self-supervised self-reward, which derives signals from the model or unlabeled
data itself, including entropy minimization (Prabhudesai et al., 2025)), self-certainty (Zhao et al.,2025b), and majority
voting (Shafayat et al.,[2025;|Zhang et al.| [2025). These approaches can learn reasoning but are prone to false positives
and training collapse, often via reward hacking: models learn to satisfy the surrogate while drifting from correctness,
(Gao et al.,[2022;|Shafayat et al.,|[2025). LLM-as-a-Judge (Lee et al.,[2024;Su et al.| 2025;|Zhao et al., 2025¢) provides
another label-free path. Yet, in practice, they are vulnerable to instruction and format manipulation when reasoning
steps are explicitly produced, and suffer high false positives when they are hidden. They are also sensitive to prompting
and temperature, and introduce nontrivial compute overhead and shared-bias risks (Pang et al.,|2023;|Chen et al., 2024;
Thakur et al., [2025}; |Shi et al.| 2025} [Zhao et al., [2025c}a).

The shortcomings of the existing label-free methods, from reinforcing false consensus to reward hacking, are not
isolated issues but rather symptoms of a deeper challenge. We argue that a truly robust reward signal must simultane-
ously satisfy three essential properties: (i) scalable without costly human supervision, (ii) truth-aligned, rewarding
verifiable correctness instead of error-prone consensus, and (iii) optimization-stable, allowing learning to proceed
even when verification is inconclusive. Previous approaches have, in one degree or another, failed to meet all three
criteria. Self-supervised signals such as majority voting achieve scalability but sacrifice truth-alignment, while LLM-
as-a-Judge struggles with both truth-alignment due to high false positives and optimization instabilities.

This motivates our core proposal, a new paradigm designed to resolve this conflict: Votes Propose, Proofs Dispose.
Our strategy is to decouple the proposal of a candidate answer from the final disposal of its reward. To maintain
scalability, votes from model rollouts first propose a single consensus candidate through a computationally cheap
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Figure 1: The JURY-RL workflow: Votes Propose, Proofs Dispose. For each problem, a majority vote from multiple
rollouts (Jury) proposes a candidate answer. A lean verifier (Judge) then disposes the reward. If the answer is Verified
(6 = 1), supporting rollouts receive a positive reward, directly linking the learning signal to correctness. Conversely,
when verification is Inconclusive (6 = 0), all rollouts receive the proposed ResZero (Residual-Zero) Reward.

majority vote. A formal theorem prover (de Moura & Ullrich, 2021} Ren et al.| 2025} [Lin et al., 2025)) then acts as
a reliable judge to dispose the ultimate reward for this single candidate, thus satisfying all three principles above.
This design choice avoids the prohibitive cost of formally verifying every unique answer, thereby making the entire
framework viable at scale.

Our framework, JURY-RL, is shown in Figure[I]. A positive reward is granted only if the majority-voted answer
is formally verified by a Lean verifier (de Moura & Ullrich, [2021)), suppressing the false positives common in other
self-supervised or judge-based methods (Shafayat et al., [2025; |Gao et al.| 2022)). This raises a critical question: what
happens when verification is inconclusive? A naive zero reward would stall learning, while rewarding the majority vote
would reintroduce the risk of reinforcing errors. To solve this, we introduce the ResZero (Residual-Zero) reward, a
novel fallback mechanism. ResZero discards the unverified majority proposal and assigns a carefully constructed, zero-
mean reward to the remaining (residual) answers. This design maintains a stable optimization gradient for learning to
proceed, without amplifying a potentially spurious consensus, ensuring both training stability and truth alignment.

Contributions. (1) We introduce JURY-RL, a novel label-free RLVR framework that operationalizes a “votes pro-
pose, proofs dispose” paradigm. By strategically verifying only the majority-voted candidate, it aligns rewards with
provable correctness using a formal verifier, eliminating the need for human-annotated answers. (2) We design the
ResZero (Residual-Zero) reward, a principled fallback mechanism for when verification is inconclusive. By discard-
ing the unverifiable majority and assigning a zero-mean, variance-preserving reward to residual candidates, it ensures
stable optimization and prevents collapse from spurious consensus. (3) Across mathematical reasoning, code gener-
ation, and multi-task benchmarks, JURY-RL trains more stably and achieves state-of-the-art results among label-free
methods, matching or surpassing a strong supervised ground-truth baseline across pass@ 1 and pass @k.

2 RELATED WORK

Large Language Model Reasoning. The general capabilities of Large language models have rapidly expanded
(OpenAl [2023; Dubey et al.,|2024;|Yang et al., 2025b), yet reliable mathematical and programmatic reasoning remains
a bottleneck: models often optimize for plausibility rather than verifiable correctness (Ouyang et al., 2022} Rafailov
et al., 2023} [Touvron et al., 2023). Post-training techniques that elicit step-by-step reasoning (e.g., chain-of-thought
and self-consistency) can raise average accuracy but also amplify confident but wrong results when no external check
is available (Wei et al.| 2022; [Wang et al.,|2023)). These problems motivate recent verifiability-aligned training signals
that reward what is provably correct rather than what appears correct (Shao et al.| [2024}; |Lambert et al.,|2024; [Hu et al.}
2025; \DeepSeek-Al et al., |2025; [Kimi-Team et al.| 2025} [Yang et al.| [2025a).
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Label-Free RLVR. To scale beyond labeled specifications, label-free surrogates derive rewards from the model or
unlabeled data itself such as via majority voting (Shafayat et al.l 2025} [Zhang et al., [2025), confidence (Zhao et al.,
2025b), entropy (Prabhudesai et al.l 2025 |Agarwal et al.l 2025), or LLM-as-a-Judge (Pang et al., 2023 Lee et al.,
2024; Su et al.l 2025} [Zhao et al., [2025a). While attractive for its broad coverage and low cost, these signals are
prone to false positives, prompt/format gaming (Zhao et al., 2025c), and training collapse (Zhang et al., 2025). As a
result, consensus or judge approval models risk diverging from ground truth, leading to reward hacking and instability
(Shafayat et al.| 2025} Zhang et al., 2025)). Our work targets this conflict: retain the scalability of label-free training
while removing optimism toward unverified agreement.

Lean and Other Verifiers. Verification-based training employs externally checkable signals such as program ex-
ecution and unit tests, SMT solvers, or formal proof assistants such as Lean/Coq to couple reward with correctness
(P.Huet et al., {1997} (C.Blanchette et al., 2011; de Moura & Ullrichl 2021 |Cobbe et al., 2021; |Al & Agentical |2025).
Previous generate-then-verify pipelines typically provide no learning signal when verification fails, limiting stability
and sample efficiency. JURY-RL decouples proposal from disposal: votes propose a candidate, and a verifier disposes
the reward. Verified cases pay positive reward only to supporting trajectories, while unverifiable cases return a cen-
tered, variance-preserving group signal that avoids amplifying spurious consensus. This proof-gated design preserves
label-free scalability while maintaining optimization alignment with provable correctness.

3 PRELIMINARIES

Problem Setup. Let 7y denote a policy LLM with parameters §. Given a problem z, the model generates a token
sequence ¥ = (Y1,...,Yn) ~ To(- | ) and a deterministic extractor ans(-) parses a candidate answer a = ans(y). In
the label-free setting, ground-truth answers are unavailable during training. Instead, each = can be associated with a
machine-checkable specification spec(z), and an external verifier (e.g., a Lean-based checker) exposes a binary oracle

verify (z,a) € {0,1},
which returns 1 if a is formally certified correct under standard soundness assumptions.

We optimize a KL-regularized RLVR objective with a reference policy m,..¢ and coefficient 3:
HTIF%X EmN’D,ymwe('\x) T(LE, Y; gz) - BDKL(W(J(' | .’E) H ’/Tref(' | x)):|7 (l)

where 7(-) is a grouped reward computed from G rollouts G, = {y; }&, for the same input.

We adopt Group Relative Policy Optimization (GRPO) (Shao et al.| 2024) to estimate group-normalized advantages.

Concretely, sample y; ~ mo4(- | ) fori = 1,..., G and compute 7; := r(x, y;; G ). The scalar group advantage is
T, —T <
Ay = — 7= 1N p. o)
! std({r;}§2,) + ¢ ¢ ; ’ @

mo(Watl.yi<t) GRPO maximizes
Fold(yi,t\w,yi,<t)'

Let the per-token ratio be p; ((0) =
1 |vil

™ > min(p; 1(6)Ai, clip(pii(0),1— e, 1+€)Aiy) — BDxu(molmer) |,  (3)
=1

G
1
Jarpro(0) = E 5;

where flm is a broadcast of A; (or any per-token variant compatible with GRPO), and the clipping avoids excessive
policy drift. This presentation mirrors established RLVR practice for fair comparison and faithful reproduction.

Label-free Self-Reward in Reinforcement Learning. We categorize existing methods for label-free self-reward
based on the origin of the reward signal: model-internal signals versus those from an external judge.

(A) Model-Internal Self-Reward Signals. These methods derive rewards from the model’s own outputs without external
evaluators. (i) Output-side proxies, such as entropy minimization or confidence-based scores (Agarwal et al.| [2025;
Prabhudesati et al.| 2025)), reward hypotheses that exhibit high certainty. However, this approach is fragile, as it can
amplify errors when the model becomes confidently wrong. (ii) Single-view agreement rewards consistency among
multiple outputs generated from the same input z (Shafayat et al., [2025). Specifically, for G' responses ;5 ,, it

identifies the majority-voted answer a, = argmax, Zlczl I[ans(y;) = a] and assigns a positive reward rg, (z,y) =
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I[ans(y) = a,] to responses that match a,. The primary risk is reinforcing an erroneous consensus, where the model
converges on a popular but incorrect answer, often by exploiting superficial heuristics such as formatting conventions.
(iii) Multi-view agreement attempts to improve robustness by enforcing consistency across multiple, semantically
equivalent prompts. For instance, the majority answer from prompt variant =’ is used as a pseudo-label to supervise
responses from the original prompt x (Zhang et al., 2025). This often improves training stability. However, it usually
only delays rather than eliminates hacking, since spurious shortcuts can eventually propagate across multiple views.

(B) External-Judge Signals. This paradigm uses a powerful, external LLM as an automated judge to score the model’s
outputs. LLM-as-a-Judge (Lee et al., 2024; |Su et al.| |2025; [Huang et al.l [2025aj; Zhao et al., 2025a) remains label-
free (no human annotation) but comes with distinct trade-offs. On the one hand, it mitigates the self-confirmation bias
of internal methods. On the other hand, it introduces sensitivity to the judge’s prompt design and decoding strategy,
incurs significant computational cost, and risks transferring the judge’s intrinsic biases into the training signal. Another
approach is LLM-based Knowledge Distillation (LLM-KD) (Gu et al.| [2024b)), where a teacher model generates
a reference answer to guide the student model. While potentially offering a more granular signal, it is similarly
constrained by the teacher’s capabilities and biases. Thus, while external judges reduce some weaknesses of the
internal proxies, they bring a different set of reliability and scalability challenges.

Positioning Our Work. JURY-RL is a label-free RLVR method that proof-gates reward: a majority-voted answer
is rewarded only if a formal verifier certifies it. When verification is inconclusive, we drop the majority and apply
ResZero—a zero-mean, variance-preserving residual reward, so that GRPO maintains a stable gradient without rein-
forcing spurious consensus. This contrasts with the self-reward approaches that reward popularity or confidence, and
with LLM-as-a-Judge/KD approaches that are prompt-sensitive and prone to false positives; JURY-RL aligns learning
to verifiable correctness while remaining label-free.

4 JURY-RL

JURY-RL is designed to satisfy three core principles: (i) scalability without costly human supervision, (ii) truth
alignment by grounding rewards in verifiable evidence, and (iii) optimization stability, ensuring continuous learning
even when verification is inconclusive. We achieve this by decoupling the process of proposing a candidate answer
from the final disposal of its reward. Votes from the policy’s own rollouts serve as a scalable proposal mechanism,
while a formal theorem prover acts as a reliable judge for reward disposal.

This design choice—verifying only the single, majority-voted candidate—is crucial for maintaining computational
tractability and scalability. Performing formal verification on every unique answer generated across all rollouts would
be prohibitively expensive, undermining the efficiency of the label-free approach. The majority vote thus acts as an
effective heuristic to identify the most promising candidate for the costly-but-reliable verification process.

This section details the two key components of our framework: the overarching proof-gated reward mechanism that
enforces truth alignment, and the Residual-Zero (ResZero) fallback designed to maintain optimization stability.

4.1 THE PROOF-GATED REWARD FRAMEWORK

The JURY-RL workflow begins with a proposal stage. For a given problem x, we generate G trajectories {y; }$;
mg(+|) and parse their corresponding answers a; = ans(y;). A majority vote determines the most frequent answer,
which becomes our candidate proposal:

~

G
G = arg maXZ]I[ai = a]
i=1

This proposal is then passed to the disposal stage. A single call to an external Lean Veriﬁerevaluates the correctness
of a against a formal specification of «. This yields a binary proof-gate, § = verify(x, a) € {0, 1}, which dictates the
reward assignment.

The final reward r; for each trajectory y; is determined by a conditional function gated by 4:

ri = 6-Tla;=a] + (1—9).rReszero, @

K2

Verified Correctness Inconclusive Fallback

where rReZ°° s the Residual-Zero Reward detailed in Section[4.2]

"Details of our Lean verifier can be found in Appendix



Under review as a conference paper at ICLR 2026

The stability of this proof-gated design stems from its principled handling of both successful and inconclusive ver-
ification. First, when verification succeeds (6 = 1), a positive reward is granted exclusively to the trajectories that
produced the proven-correct answer. This approach directly binds the learning signal to hard evidence, which, un-
der standard soundness assumptions, suppresses the false positives that plague self-reward or judge-based surrogates
(Zhang et al., 2025; |Cobbe et al.,[2021). Second, when verification is inconclusive (6 = 0), the system defaults to our
ResZero fallback rather than naively rewarding the majority consensus. This carefully centered substitute maintains a
stable optimization gradient by preserving group-wise variance, which prevents learning from stalling or oscillating, a
common issue when verification fails for benign reasons like search limits or incomplete libraries. Finally, by paying
only for verifiable correctness, this framework inherently narrows the attack surface for prompt and format hacking, a
critical vulnerability in other label-free systems.

4.2 RESZERO REWARD

When formal verification is inconclusive, a learning signal is still needed to maintain optimization stability. However, a
naive choice like directly rewarding the majority vote (MV) is brittle and risks training collapse. Using MV as a reward
conflates agreement with correctness and can induce entropy collapse under GRPO, as spurious consensus strengthens.
A simple zero-reward fallback is also suboptimal, as it would lead to a zero group-wise advantage, effectively stalling
the learning process.

To address this, we introduce the ResZero (Residual-Zero) Reward. Its principle is to penalize the unverifiable
majority proposal and construct a meaningful, zero-mean reward from the remaining (residual) answers. This
design preserves a useful learning signal by maintaining variance among minority opinions without amplifying a
potentially false consensus. Furthermore, we propose an adaptive variant that strengthens this signal precisely when
the model is most confidently wrong. The intuition is that a strong but unverified consensus (indicated by a high
majority share, o) requires a stronger corrective signal. ResZero operationalizes this by using « to simultaneously
amplify the reward signal for residual answers and suppress the majority answer.

Let M = {i : a; = a} be the set of rollouts supporting the majority answer and R = {i : a; # a} be the set of
residual rollouts. The majority share is @ = |M|/G. We first define the leave-one-out residual share for an answer b

within the residual group:
- 1
=(p) = —— -
u (b)_|R|—1ZH[aJ_b]'

JER

J#i
Let z; = u(_"’)(ai) if ¢ € R (the relative support for a residual answer a; within its peer group) and z; = 0if i € M.
The ResZero reward is then assigned as:

pResZero a~]I[i€R]~(z,;fﬂ) —ca-lfi € M] + ~ ,
~—
Amplify residual signals Penalize majority Global re-centering

&)
where u = ﬁ Z zj, and y= ca’.
JER
Here, c is a positive hyperparameter controlling the penalty strength. v is designed as a global re-centering term to
ensure the total reward sums to zero. The term (z; — u) creates a zero-mean signal within the residual group, rewarding
answers that are more popular among the minorities and penalizing those that are less so. This entire residual signal is
then scaled by a.. By construction, the total reward sums to zero (3, rResZero — (), preserving the zero-mean property

crucial for GRPO stability. ]

The design of our ResZero reward ensures robust optimization through three properties. (i) Variance preservation: It
maintains non-zero variance among differing answers, which is critical for variance-normalized optimizers like GRPO
to prevent vanishing gradients. (ii) Zero-mean construction: Its strictly zero-mean property makes it a principled,
optimizer-agnostic signal, ensuring portability beyond GRPO to any general RL paradigm. (iii) Adaptive economy:
The corrective signal dynamically scales with the majority share «, applying maximum pressure when the model is
most confidently wrong, with this entire behavior governed by only a single hyperparameter c. Collectively, these
properties prevent collapse into spurious consensus and foster robust, exploratory learning.

This dual-reward strategy hinges on the verifier’s outcome. If verification succeeds (9=1), the policy update is guided
by verifiable correctness. Conversely, if inconclusive (6=0), our ResZero fallback penalizes the unverified majority,
which is critical for mitigating entropy collapse caused by spurious consensus. This design maintains the scalability
of label-free training by requiring only a single verification per step. The full procedure is detailed in Appendix [B}

’See Appendixfor a formal proof and Appendixfor a worked example. We set ¢ = 0.01 in our experiments.
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5 EXPERIMENTS

5.1 SETTING

Backbone Models. Our experiments are conducted on a diverse range of open-source large language models to
ensure broad applicability. This includes models from the Qwen2.5 (Yang et al., [2025b)), Qwen3 series (Yang et al.|
2025a)), and the Llama3 series (Dubey et al., 2024).

Baselines. We compare JURY-RL with several established label-free and supervised reward baselines. The self-
supervised baselines include Majority-Voting (Shafayat et al., 2025), Self-Certainty (Zhao et al., |2025b), and En-
tropy minimization (Prabhudesai et al., |2025). To further contextualize the comparison, we include a ground-truth
supervised oracle baseline with GRPO (Shao et al., [2024). Additionally, we benchmark against judge-based meth-
ods, LLM-as-a-Judge (Pang et al., [2023};|Zhao et al.| 2025a) and LLM-KD, to provide a comprehensive evaluation.
Additional details are provided in Appendix [D]

Implementation Details. All methods are implemented using the VeRL framework (Sheng et al.| [2025)) and trained
on 8x NVIDIA A100 GPUs. We train on 7,500 problems from the MATH dataset’s training split (Hendrycks et al.|
2021)), and evaluate on the 5,000-problem validation split (referred to as MATHS5000). For each reinforcement learning
update step, we sample a batch of 128 problems and generate G = 8 rollouts per problem. We use a learning rate
of 3 x 1076 and a KL penalty coefficient of 3 = 0.005. To ensure fair and reproducible comparisons, we utilize the
officially released chat-based prompting formats for all models. More details in Appendix

Evaluation Datasets and Metrics. To comprehensively assess model capabilities, we evaluate on a suite of bench-
marks covering mathematical reasoning, code generation, and general abilities. Mathematical Reasoning: We eval-
uate on the AIME24/25 (Hugging Face H4,2024; OpenCompass}, |2025), MATHS00 (Lightman et al., [2024), GSM8K
(Cobbe et al., 2021), and the competition-level AMC datasets (math-ai Team, 2024). Code Generation: We assess
coding proficiency using LiveCodeBench (Jain et al.,|2024) and CRUX (Gu et al.,|20244a). Instruction-Following and
Multi-Task: General abilities are measured using IFEval (Zhou et al.,[2023)) for instruction following and MMLU-Pro
(Wang et al) 2024)) for multi-task understanding. The specific metrics, frameworks, and implementation details are
provided in Appendix [F

5.2 MAIN RESULTS

We evaluate JURY-RL on both in- and out-domain tasks, as shown in Tables A key finding is that JURY-RL
not only outperforms all label-free baselines but also consistently surpasses the supervised GRPO with ground-truth
rewards (GT), suggesting that proof-gated rewards can offer a superior learning signal to direct supervision.

Mathematical Reasoning and In-Domain Generalization. The results on mathematical reasoning benchmarks in
Table [T| reveal a crucial insight into JURY-RL’s learning mechanism. We observe that while its advantage over base-
lines is modest on the in-distribution MATHS500 test set (which shares the same origin as our MATH training data),
its superiority becomes substantially more pronounced on out-of-distribution math benchmarks such as GSM8K and
AMC. We posit that this pattern arises because competing methods, including the supervised GT baseline, tend to
overfit to the stylistic patterns and problem-solving shortcuts of the MATH dataset. In contrast, JURY-RL, by relying
on formal verification, is incentivized to learn the underlying mathematical principles that are robust to such distri-
butional shifts. This superior generalization within the math domain culminates in a significant overall performance
leap over the GT baseline on all three backbones, with average score improvements of +2.32 pts (+5.91% rel.) on
Qwen3-1.7B, +1.91 pts (+5.93% rel.) on Llama-3.2-3B-Instruct and +1.53 pts (+3.28% rel.) on Qwen2.5-7B. For in-
stance, on Qwen2.5-7B, JURY-RL’s average of 48.13 % notably exceeds both the GT oracle (46.60%) and the strongest
label-free competitor, LLM-KD (46.54%). This body of evidence indicates that the signal from formal verification is
not merely a proxy for ground truth but can be a more potent objective for learning generalizable reasoning.

Out-of-Domain Generalization. This strong in-domain performance translates to robust out-of-domain generaliza-
tion across code generation, instruction following, and multi-task knowledge tests. On Qwen2.5-7B, JURY-RL again
surpasses the GT baseline, achieving an average of 40.45% (+2.76 pts, +7.32% rel.). On the other two backbone
models, its performance is statistically on par with GT while consistently ranking as the best-performing label-free
method. These results demonstrate that optimizing for verifiable correctness encourages the model to learn fundamen-
tal, transferable skills that generalize beyond the mathematical domain used for training.

3Values are reported as mean + standard error of the mean (SEM).
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Table 1: Main Results (%) of RL performance comparison on math reasoning benchmarks. Cell background colors
indicate relative performance: darker colors denote better results within each model group.

\ Mathematics Code Instruction ~ Multi-Task

Methods Average
‘ AIME24 AIME25 MATHS500 GSMSK AMC LiveCode CRUX IFEval MMLU-Pro

QOwen3-1.7B-Base

Before RL 6.67+46  6.67146 458422 6331413 2651448 459404 712409 33.66 +1.0 33.60 +0.4 25.33 123

GT-Reward 10.00 +5.6 0.004+0.0 682421 83.094+10 3494455 1484199 3375417 38.70110 39.43 10.4 35.88 120

Self—Certainty 6.67 146 3.33 133 57.2 +2.2 74.68 +1.2 26.51 148 1().3710_7 19.00 41 4 38.58 +1.0 35.28 104 30.18 122

Entropy 10-0015.6 3-33i3.3 65.2i2_1 79.98i1,1 32-53i5,l 12-64i0.8 31-0011.6 35-00il.0 37.01 +0.4 34.08 +2.4

Majority—Voting 3-33i3,3 O-OOiO,U 59.8i2_2 81.88i1,1 33-73i5.2 14-29i0.9 32-7511.7 37.16i1,0 35.68iu,4 33.18 +1.8

CoReward 10.00 456  3.33433  66.0421  82.03411 33.73452 1427109 3212416 3728410 37.39+0.4 3513404

LLM-KD 333i53 333i:‘>5 68-412,1 82.41 +1.1 44~58i5,5 14-05i0.9 34.62i1.7 34.65 +1.0 37.97i0.4 35*93:(:2.1

LLM-as-a-Judge | 10.00156 3.33155 628100 80.52.11 3133157 1433200 8612417 3628410  33.83104  34.28 104
JURY-RL (Ours) | 1333165 6.67246 684107 8332010 3614155 1454100 3500417 3655410 381104  36.90 tag

Llama-3.2-3B-Instruct

Before RL 3-33i3.3 U.OOiU_U 42.8i2_2 69.75i1.3 13-25i3.7 3-00i0.4 25-50il.5 54.41 +1.1 32.01 +0.4 27.12 +1.6
GT-Reward 13.33 +6.3 0.0040.0 48.0422  76.72412 2289446 7.054+06 3262417 50.16411 34.26 104 31.67 12,0
Entropy 6.67 146 0.00190 404402 68.994+13 1325437 5.38 405 26.62116 54.24 191 33.54 104 27.68 117
Self-Certainty 3.33 433 0.0010.0 40.2429 74.07 410 16874141 5574106 2275415 5411411 34.42 194 2792116
Majority—Voting 1000:&5.6 0.00:&0_0 47~0¢2_2 79.0811_1 1928143 8.1110_7 31.87:&1_5 48.36;&1.1 33.9410.4 30.85 +1.9
CoReward 10.0015_5 0.()010_0 49.2:&2_2 79.7611_1 2().4814_4 5-5710_5 3(].3811_6 50.46;&1.1 32.9510.4 30.98 +1.9
LLM-KD 10.00 +5.6 0.00 +0.0 494409 7847411 2048444 755406 3238416 49.0641. 34.04 404 31.26 419

LLM—as-a—Judge 6-67i4,6 O-OOiO,U 47.8i2_2 77~10i1.2 21.69i4,5 3-96i0.4 33.88i1,7 51.46i1,1 34-22i0.4 3O~75i1.8
JURY-RL (Ours) | 16.67469  0.00400 490422 80.74411 2410447 6.16406 3262417 50.09411 34.54 104 32.66 121

QOwen2.5-7B
Before RL 3.33 433 3.33433 492495 7165410 2048 144 4.57 404 28.00416 40.61 419 44.03 10.4 29.47 1299
GT-Reward 1333:&63 6.67:&4_6 76.4:&1_9 89.61 +0.8 46.9915_5 12.7810_7 51.38;&1_8 41.50:&1_0 45-0910_4 42'6412.6
Self-Certainty 13.33 16.3 6.67 +4.6 75.041.9 88.93 109 4458455 11.874107 5387118 39.66110 43.8940.4 41.98 126
Entropy 16.67 169 10.00156 734420 85.52410 39.76454 15.68108 51.50418 40.25459 42.61 104 41.71 108
Majority-Voting 10.00 156 3.33 433 714420 90.22 198 3855453 18374109 5238118 4272119 43.83 10.4 41.20 42,4
CoReward 10.00 +5.6 3.33 1433 74.04209 90.52408 3855453 10.37406 5725418 43.75110 42.08 10.4 41.09 123
LLM-KD 13.33 163 10.00 456 73.6 120 89.99108 45.78 4155 8.094+05 51.38+18 43.094110 43.73 10.4 4211 407

LLM-as-a-Judge | 10.00156 6.67446 722100 89.61.0s 4217154 1058406 53.0041s 4417410  48.67104  41.90105
JURY-RL (Ours) | 13.33165 1333163 746110 9121 105 4819455 14.6910s 5562115 4151410  50.00104  44.72 405

Overall Gains. JURY-RL demonstrates comprehensive performance improvements over the ground-truth (GT)
baseline across both in-domain and out-of-domain tasks. Specifically, it outperforms the GT baseline by +1.02 pts
(+2.84% rel.) on Qwen-1.7B-Base and +2.08 pts (+4.88% rel.) on Qwen2.5-7B, while maintaining a robust gain
of +0.99 pts (+3.13% rel.) on Llama-3.2-3B-Instruct. This indicates that the advantage of JURY-RL lies not only
in addressing the training collapse problem common in label-free methods but also in delivering stable and scalable
performance gains across different model scales. Crucially, the benefits of this verifiability-driven learning paradigm
extend beyond single-answer accuracy (pass@1). As we will show in subsequent analyses, it also learns, at a more
intrinsic level, to generate diverse and effective solution paths, leading to more substantial improvements in multi-
attempt success rates (pass@k) and effectively averting the mode collapse common in self-supervised methods.

5.3 ANALYSIS

Ablation Studies of ResZero. We compare three fallback designs under the same proof-gated framework when
0=0: Zero Reward (no signal), MV Reward (rewarding the majority vote), and our proposed ResZero, with GT and
Majority-Voting as references. As shown in Table 2| ResZero consistently achieves the highest Average across all
backbones. On average, it outperforms Zero Reward by +1.8 pts, MV Reward by +6.9 pts, and even surpasses GT by
+1.4 pts. This stark performance gap reveals the critical nature of the fallback signal. Rewarding an unverified majority
(MV Reward) is deceptive, as it causes the model to reinforce its own errors and collapse. Conversely, a simple Zero
Reward achieves suboptimal performance by taking a safe but inefficient path: it avoids reinforcing errors, but at the
cost of stalling the learning process for inconclusive samples. ResZero provides a robust solution by navigating this
trade-off between dangerous reinforcement and inefficient stagnation.

JURY-RL Achieves Stable Training and Avoids Collapse. To evaluate training stability, we tracked the validation
accuracy of JURY-RL against key label-free baselines on MATHS000 validation set throughout the training process.
As illustrated in Figure[2] the trajectory for the Entropy and Self-Certainty shows collapse after an initial performance
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Table 2: Ablation results for the proposed ResZero reward (§ = 0) on reasoning benchmark.

Mathematics

Code

Instruction

Multi-Task

Methods Average
| AIME24 AIME25 MATHS500 GSMS8K AMC LiveCode = CRUX IFEval MMLU-Pro
QOwen3-1.7B-Base
GT-Reward | 10.00156  0.00100 68.2121  83.09:10 3494455 14.84.09 33.75:17 3870410 3943404 3588420
Majority-Voting 3.33133 0.00 +0.0 59.8 122 81.88411 3373152 1429409 3275417 3716410 35.68 10.4 3318418
Proof-Gate + Zero Reward 3.33433 6.67 146  69.0491 83.70110 36.14153 14.82.09 30.63116 37.07110 37.40 +0.4 35.42 493
Proof-Gate + MV Reward 0.00 +0.0 0.00100 41.2492 82.87410 8431309 1448109 34.00417 36.78110 35.33 104 281241,
JURY-RL (Proof-Gate + ResZero) | 13.33.463 6.67446 684401 8332110 36.144535 1454.:09 3500417 36.55410 3811404 36.90426
Llama-3.2-3B-Instruct
GT-Reward ‘ 13.33 163 0.00 +0.0 48.0 429 76.724119 2289146 7.05406 3262417 50.16411 34.26 104 31.67 120
Majority-Voting 10.00 456 0.00 0.0 47.0422 79.08411 19.28 143 8114197 3187116 4836411 33.94 104 30.85419
Proof-Gate + Zero Reward 333433 000400 514400 7885411 21.69445 68li0s 3012496 50124755 3327404 3062416
Proof-Gate + MV Reward 10.00 5.6 0.00 0.0 474422 79.234111 25304438 707106 31374116 484941, 33.68 +0.4 31.39419
JURY-RL (Proof-Gate + ResZero) | 16.67 169 0.00100 49.0422 80.74471 2410447 6.16106 3262417 50.09 4711 3454104  32.66 121
Owen2.5-7B
GT-Reward | 1333463 6.67+46 764119 89.61i0s 46.99155 12.78:07 5138115 415041, 45.09 104  42.6449056
Majority-Voting 10.00 456 3.33433 Tldiso 90.2240s5 3855453 1837409 5238418 42.72449 43.83 104  41.20424
Proof-Gate + Zero Reward 13.33 16.3 6.67 146 758419 90.67108 39.76154 18144109 5225118 41.67110 47.88 +0.4 42.91 4906
Proof-Gate + MV Reward 0.00400 0.00400 51.6422 89.6940s 1687441 1729409 53254158 43.64110 35.01 104 3415412
JURY-RL (Proof-Gate + ResZero) | 13.33 153 13.33463 T74.6419 91.21 108 4819455 14.694:08 55.624+18 41.51419 50.00 +0.4 44.72 10 8
Qwen3-1.7B-Base Llama-3.2-3B-Instruct Qwen2.5-7B
50
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g\o, =@ GT-Reward § =—@— GT-Reward é =—@— GT-Reward
5»40 % JURY-RL 5‘30 % JURY-RL 240 % JURY-RL
s —e— LLM-KD s —e— LLM-KD s —e— LLM-KD
b4 —o— LLM-as-a-Judge | 3 20 L —o— LLMuasaludge | o —0— LLM-as-a-Judge
20 & —e— CoReward < —e— CoReward 25 —0— CoReward
=@ Majority-Voting 10 o} =@ Majority-Voting =@ Majority-Voting
o~ Self-Certainty o~ Self-Certainty 0~ Self-Certainty
0 % =@=Entropy 0 b—o =@ Entropy 0 o—o0 =@ Entropy
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Step Step Step

Figure 2: Accuracy on MATHS5000 Validation set over training steps.

gain, as the model begins to reinforce spurious consensus. The LLM-as-a-Judge/LLM-KD/Majority-Voting exhibit
noisy and suboptimal convergence. In contrast, JURY-RL demonstrates stable, monotonic improvement, confirming
that its proof-gated reward mechanism effectively prevents the mode collapse common in self-supervised methods.

Does JURL-RL Enhance Diversity? Yes. Table[3|shows that JURY-RL achieves substantially larger improvements
in pass@k than in pass@1 (e.g., +4.05 pp vs. +2.32 pp for Qwen3-1.7B-Base), indicating an increase in solution di-
versity. This stems from our ResZero reward mechanism, which penalizes flawed consensus and redistributes rewards
to explore alternative reasoning paths. This process actively counters mode collapse and incentivizes exploration,
directly boosting multi-attempt success rates. The effect is visually confirmed in Figure [3] which tracks the average
number of unique answers generated per problem during training. While baselines like Majority-Voting quickly suffer
from mode collapse—converging to a single answer—JURY-RL sustains a high level of diversity, an indication of its

robustness. Per-benchmark breakdowns are available in Appendix [G.T}

Table 3: Performance of JURY-RL vs. GT-Reward on math reasoning tasks (pass@k and pass@1). k=16 for AIME,
k=4 for MATH500 and GSM8K, and k=8 for AMC.

Model Average (pass @k) Average (pass@1)
GT-Reward JURY-RL A (pp) GT-Reward JURY-RL A (pp)
Qwen3-1.7B-Base 55.36 59.41 +4.05 39.25 41.57 +2.32
Llama-3.2-3B-Instruct 45.46 48.48 +3.02 32.19 34.10 +1.91
Qwen2.5-7B 62.48 64.04 +1.56 46.60 48.13 +1.53
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Analysis of Verifier Signal Quality. Is Lean a better judge than

LLM? While a formal verifier like Lean theoretically offers near-zero nt

false positives, our practical pipeline involves upstream processes like z

auto-formalization and consistency checks, which can introduce er- <E3

rors. It is therefore crucial to compare the signal quality of our verifier &

against an LLM-as-a-Judge. As shown in Table ] our Lean verifier éz

provides a superior reward signal compared to the LLM-as-a-Judge. o I

It achieves substantially higher precision (84.5% vs. 75.9%) at the 2! Proof-Gate + MV Reward

cost of moderately lower recall (88.0% vs. 96.1%). This trade-off is — Majority-Voting

paramount: high precision drastically reduces false positives, prevent- 0550 100 130 200 230 300

ing reward hacking and tightly aligning the training objective with ver- Step

ifiable correctness. Conversely, the LLM-judge’s noisy signal, stem- Figure 3: Average unique answers per sam-
ming from low precision, risks reinforcing errors despite its higher re- ~ ple over training steps on Qwen3-1.7B-Base.
call. The Lean verifier’s higher Fl-score (86.2%) confirms its better

overall balance, validating our “Proofs Dispose” principle of prioritiz- Table 4: Verifier signal quality on training
ing signal fidelity for stable learning. While our verifier is not per- set. All metrics reported in percent (%).
fect, its imperfections stem from upstream components rather than the
prover’s core logic. We provide a deeper analysis of these nuances and Verifier Prec. Rec. F1

their effect on training dynamics in Appendix [G.2] LLM-as-a-Judge 750 061 848
Lean Verifier (Ours) 84.5 88.0 86.2

Impact of c. We analyze the impact of the hyperparameter c in Eq.[5]
which controls the penalty strength on the unverified majority proposal in our ResZero reward. As illustrated in
Figure[] c is critical in navigating the trade-off between preventing mode collapse and maximizing task performance.
The right panel clearly demonstrates that a non-zero c is essential for maintaining solution diversity. When ¢ = 0, the
framework effectively degenerates to a zero-reward fallback, leading to a sharp decline in the average number of unique
answers as training progresses—a classic symptom of the model converging to a spurious consensus. In contrast, any
positive c value successfully sustains a high level of diversity. However, the left and center panels reveal a subtle trade-
off: an overly aggressive penalty (e.g., ¢ = 0.1) can slightly suppress the final reward and accuracy. This suggests
that while the penalty is crucial for exploration, an excessive value may overly restrict the policy from exploiting a
potentially correct, high-consensus answer. This ablation validates that a moderately tuned c (e.g., ¢ = 0.01 in our
experiments) strikes an optimal balance, ensuring robust training stability and solution diversity without compromising
convergence on the primary task objectives.

65.0 )
§ 32
625 >
X <
= o
5600 230 ¢=0.0
£ :E) ¢=0.005
8575 - ¢=0.01
< —_ 2.8 — c=002
55.0 — g — =005
— < | — 01
52.5 26
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Step Step Step

Figure 4: Training dynamics under different values of the hyperparameter c.

6 CONCLUSION

We introduced JURY-RL, a label-free RLVR framework that decouples proposal from disposal: majority voting
across rollouts merely proposes a candidate answer, while a formal Lean verifier disposes the final reward. If the
proposal is verified, only the supporting trajectories are rewarded; when verification is inconclusive, ResZero discards
the unverifiable majority and assigns a zero-mean, variance-preserving residual reward that keeps optimization well-
conditioned. This design jointly achieves three goals: scalability without human labels, truth alignment via verifiable
correctness, and optimization stability in the absence of proof. Across mathematical reasoning, code generation, and
multi-task evaluations, JURY-RL trains more stably than label-free baselines and achieves performance comparable
to or better than supervised training with ground-truth rewards. Our work demonstrates that grounding RL in sparse
but formally verified signals is a promising strategy for building robust and generalizable reasoning models without
human labels.
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ETHICS STATEMENT

This work studies label-free reinforcement learning with verifiable rewards (RLVR) for mathematical and program-
matic reasoning. It does not involve human subjects, crowd workers, user studies, or the collection of personally
identifiable information. All datasets used (e.g., MATH, GSM8K, AMC/AIME, LiveCodeBench, CRUX, MMLU-
Pro, IFEval) are publicly available and used under their respective licenses; we redistribute nothing and provide only
references and scripts to download from the original sources.

Potential risks include (i) misuse: stronger automated reasoning could be used to complete graded assignments or
to generate convincing but incorrect solutions; (ii) bias/coverage: public benchmarks may contain stylistic biases or
limited topical coverage; (iii) safety: LLM judges can transfer prompt or format biases into training signals. Our design
explicitly mitigates these issues by proof-gating rewards with a formal verifier (Lean) to reduce false positives and by
using the Residual-Zero (ResZero) fallback to avoid reinforcing unverifiable consensus. We report precisely which
datasets, prompts, and evaluation harnesses are used, and we provide ablations and diagnostics to surface failure modes
(e.g., collapse under majority-voting). We release only code, configuration files, and download scripts; no private or
proprietary data are included.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. All necessary components, including code,
models, datasets, and experimental settings, are detailed below.

Theory. Full proofs for our theoretical analysis (including the zero-mean property of RESZERO) are provided in
Appendix [A]

Code. The implementation of JURY-RL and all baseline methods is based on the publicly available VeRL framework
(Sheng et al.l 2025). The complete source code for our experiments, including scripts for training and evaluation, will
be made publicly available upon publication. All evaluation frameworks used are standard and open-source, with
specific details and links provided in Appendix [F

Models. The backbone models used in our experiments are all publicly available open-source models from the
Qwen and Llama3 series. Specifically, we used Qwen3-1.7B-Base, Llama-3.2-3B-Instruct, and Qwen2.5-7B. These
models can be accessed through official repositories such as Hugging Face. The judge model used in our LLM-as-a-
Judge baseline is gwen—-2.5-72b-instruct, which is also publicly accessible. We will release our trained model
upon acceptance.

Datasets. All datasets used for training and evaluation are standard, publicly available benchmarks. We train our
models on a 7,500-problem subset of the official MATH training split (Hendrycks et al., 2021). We evaluate on the
following benchmarks: AIME24/25, MATH500, GSM8K, AMC, LiveCodeBench, CRUX, IFEval, and MMLU-
Pro. References and links for each are provided in Section[5.1]

Experimental Setup and Hyperparameters. All crucial hyperparameters for training, optimization, and generation
are provided in Table [6]in Appendix [E] The prompt formats used for all models are their officially released chat-based
formats to ensure faithful reproduction. Details of the baseline implementations are described in Appendix [D} The
design of our Lean verifier is detailed in Appendix [C|

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of entropy
minimization in llm reasoning. CoRR, abs/2505.15134, 2025. doi: 10.48550/ARXIV.2505.15134. URL https:
//doi.org/10.48550/arXiv.2505.15134,

Together Al and Agentica. Deepcoder: A fully open-source 14b coder at 03-mini level. Blog post, 2025. URL
https://www.together.ai/blog/deepcoder, Accessed: 2025-09-10.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav
Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer
El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec,
Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah,

10


https://doi.org/10.48550/arXiv.2505.15134
https://doi.org/10.48550/arXiv.2505.15134
https://www.together.ai/blog/deepcoder

Under review as a conference paper at ICLR 2026

Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human
feedback. CoRR, abs/2204.05862, 2022. doi: 10.48550/ARXIV.2204.05862. URL https://doi.org/10.
48550/arXiv.2204.05862.

Jasmin C.Blanchette, Sascha Bohme, and Lawrence C.Paulson. Extending Sledgehammer with SMT Solvers. In
Proceedings of the 23rd International Conference on Automated Deduction (CADE23), volume 6803 of Lecture
Notes in Artificial Intelligence, pp. 116—130. Springer, 2011. doi: 10.1007/978-3-642-22438-6\ 9.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or LLMs as the judge?
a study on judgement bias. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 8301-8327, Miami, Florida, USA, 2024. Association for Computational Linguistics. doi: 10.
18653/v1/2024.emnlp-main.474. URL https://aclanthology.org/2024.emnlp-main.474/,

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math
word problems. CoRR, abs/2110.14168, 2021. doi: 10.48550/ARXIV.2110.14168. URL https://doi.org/
10.48550/arXiv.2110.14168.

Leonardo de Moura and Sebastian Ullrich. The Lean4 Theorem Prover and Programming Language. In Automated
Deduction— CADE?2S, volume 12699 of Lecture Notes in Computer Science, pp. 625-635. Springer, 2021. doi:
10.1007/978-3-030-79876-5_37. URL https://lean—-lang.org/papers/leand.pdf.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong
Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu,
Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu,
Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu,
Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-v3 technical report. CoRR, abs/2412.19437, 2024. doi:
10.48550/ARX1V.2412.19437. URL https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li,
Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan,
Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia,
Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji
Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in
lIms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL https:
//doi.org/10.48550/arXiv.2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra,
Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, and et al. The Ilama 3 herd of
models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.
48550/arXiv.2407.21783.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. CoRR, abs/2210.10760,
2022. doi: 10.48550/ARX1IV.2210.10760. URL https://doi.org/10.48550/arXiv.2210.10760.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang. Cruxeval:
A benchmark for code reasoning, understanding and execution. CoRR, abs/2401.03065, 2024a. doi: 10.48550/
ARXIV.2401.03065. URL https://doi.org/10.48550/arXiv.2401.03065.

11


https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://aclanthology.org/2024.emnlp-main.474/
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://lean-lang.org/papers/lean4.pdf
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2210.10760
https://doi.org/10.48550/arXiv.2401.03065

Under review as a conference paper at ICLR 2026

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language models. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024b. URL https://openreview.net/forum?id=5h0gqf7IBZZl

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. = Measuring mathematical problem solving with the MATH dataset. In Joaquin
Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021. URL https://datasets—benchmarks-proceedings.neurips.cc/paper/2021/hash/
beB83ab3ecdl0db773eb2dclblal/836al-Abstract—round2.html.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-reasoner-zero:
An open source approach to scaling up reinforcement learning on the base model. CoRR, abs/2503.24290, 2025.
doi: 10.48550/ARX1IV.2503.24290. URL https://doi.org/10.48550/arXiv.2503.24290.

Hui Huang, Xingyuan Bu, Hongli Zhou, Yingqi Qu, Jing Liu, Muyun Yang, Bing Xu, and Tiejun Zhao. An empirical
study of llm-as-a-judge for LLM evaluation: Fine-tuned judge model is not a general substitute for GPT-4. In Wanx-
iang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for
Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 5880-5895. Association for
Computational Linguistics, 2025a. URL https://aclanthology.org/2025.findings—-acl.306/.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua
Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large language models: Principles,
taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 43(2):42:1-42:55, 2025b.
doi: 10.1145/3703155. URL |https://arxiv.org/abs/2311.05232,

Hugging Face H4. AIME 2024 Benchmark. https://huggingface.co/datasets/HuggingFaceH4/
aime_2024, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models
for code. CoRR, abs/2403.07974, 2024. doi: 10.48550/ARXIV.2403.07974. URL https://doi.org/10.
48550/arXiv.2403.07974.

Kimi-Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang
Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang,
Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang,
Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan,
Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu,
Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran
He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing
Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo
Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji
Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu,
and Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with llms. CoRR, abs/2501.12599, 2025. doi:
10.48550/ARXTV.2501.12599. URL https://doi.org/10.48550/arXiv.2501.12599.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V.
Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang
Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep
Dasigi, and Hannaneh Hajishirzi. Tilu 3: Pushing frontiers in open language model post-training. CoRR,
abs/2411.15124, 2024. doi: 10.48550/ARXIV.2411.15124. URL https://doi.org/10.48550/arXiv.
2411.15124.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan
Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif vs. rlhf: Scaling reinforcement learning from
human feedback with ai feedback. In Proceedings of the 41st International Conference on Machine Learning, pp.
26874-26901. PMLR, 2024. URL https://arxiv.org/abs/2309.00267,

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman,
Ilya Sutskever, and Karl Cobbe. Let$ verify step by step. CoRR, abs/2305.20050, 2024. doi: 10.48550/ARXIV.
2305.20050. URL https://doi.org/10.48550/arXiv.2305.20050.

12


https://openreview.net/forum?id=5h0qf7IBZZ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2503.24290
https://aclanthology.org/2025.findings-acl.306/
https://arxiv.org/abs/2311.05232
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://doi.org/10.48550/arXiv.2403.07974
https://doi.org/10.48550/arXiv.2403.07974
https://doi.org/10.48550/arXiv.2501.12599
https://doi.org/10.48550/arXiv.2411.15124
https://doi.org/10.48550/arXiv.2411.15124
https://arxiv.org/abs/2309.00267
https://doi.org/10.48550/arXiv.2305.20050

Under review as a conference paper at ICLR 2026

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge,
Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqgi Chen,
Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis and
self-correction, 2025. URL https://arxiv.org/abs/2508.03613|

math-ai Team. Amc23: American mathematics competitions 2023 test set. https://huggingface.co/
datasets/math-ai/amc23, 2024. Hugging Face dataset; 40 AMC 2023 problems; accessed 2025-09-16.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL https:
//doi.orqg/10.48550/arXiv.2303.08774,

OpenCompass. AIME 2025 Benchmark. https://huggingface.co/datasets/opencompass/
AIME2025), 2025.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to fol-
low instructions with human feedback. CoRR, abs/2203.02155, 2022. doi: 10.48550/ARXIV.2203.02155. URL
https://doi.org/10.48550/arXiv.2203.02155.

Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu, Zongzhang Zhang, and Yang Yu.
Language model self-improvement by reinforcement learning contemplation. CoRR, abs/2305.14483, 2023. doi:
10.48550/ARXTV.2305.14483. URL https://doi.org/10.48550/arXiv.2305.14483.

Avinash Patil and Aryan Jadon. Advancing reasoning in large language models: Promising methods and approaches.
arXiv preprint arXiv:2502.03671, 2025. URL https://arxiv.org/abs/2502.03671.

Gérard P.Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assistant: A Tutorial. Technical report,
INRIA, 1997. URL https://coqg.inria.frl

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Maximizing
confidence alone improves reasoning. CoRR, abs/2505.22660, 2025. doi: 10.48550/ARXIV.2505.22660. URL
https://doi.org/10.48550/arXiv.2505.22660.

QwenTeam. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https://gwenlm.
github.io/blog/qwg—-32b/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.htmll

Z.Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao
Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao, Daya Guo,
and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical reasoning via reinforcement learning for
subgoal decomposition. CoRR, abs/2504.21801, 2025. doi: 10.48550/ARX1V.2504.21801. URL https://doi.
org/10.48550/arXiv.2504.21801l

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can large reasoning
models self-train? CoRR, abs/2505.21444, 2025. doi: 10.48550/ARXIV.2505.21444. URL https://doi.
org/10.48550/arXiv.2505.21444,

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARX1V.2402.03300. URL https://doi.org/10.
48550/arXiv.2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Proceedings of the Twentieth European
Conference on Computer Systems, EuroSys 2025, Rotterdam, The Netherlands, 30 March 2025 - 3 April 2025, pp.
1279-1297. ACM, 2025. doi: 10.1145/3689031.3696075. URL https://doi.org/10.1145/3689031.
3696075,

13


https://arxiv.org/abs/2508.03613
https://huggingface.co/datasets/math-ai/amc23
https://huggingface.co/datasets/math-ai/amc23
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2305.14483
https://arxiv.org/abs/2502.03671
https://coq.inria.fr
https://doi.org/10.48550/arXiv.2505.22660
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.48550/arXiv.2505.21444
https://doi.org/10.48550/arXiv.2505.21444
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.1145/3689031.3696075
https://doi.org/10.1145/3689031.3696075

Under review as a conference paper at ICLR 2026

Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhengiang Gong. Optimization-
based prompt injection attack to llm-as-a-judge, 2025. URL https://arxiv.org/abs/2403.17710.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu. Crossing the reward
bridge: Expanding RL with verifiable rewards across diverse domains. CoRR, abs/2503.23829, 2025. doi: 10.
48550/ARXIV.2503.23829. URL https://doi.orqg/10.48550/arXiv.2503.23829.

Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and Dieuwke Hupkes.
Judging the judges: Evaluating alignment and vulnerabilities in 1lms-as-judges, 2025. URL https://arxiv.
org/abs/2406.12624.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sha-
ran Narang, Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foun-
dation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. In International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=pZ31i2yt5DoY.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj,
Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen.
Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. CoRR, abs/2406.01574,
2024. doi: 10.48550/ARXIV.2406.01574. URL |https://doi.orqg/10.48550/arXiv.2406.01574,

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903, 2022. doi:
10.48550/ARXIV.2201.11903. URL https://doi.org/10.48550/arXiv.2201.11903.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan
Lin, and et al. Qwen3 technical report. CoRR, abs/2505.09388, 2025a. doi: 10.48550/ARXIV.2505.09388. URL
https://doi.org/10.48550/arXiv.2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou,
Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu,
Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, and et al. Qwen2.5 technical report.
CoRR, abs/2412.15115, 2025b. doi: 10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/
arXiv.2412.15115.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Hongchang Gao, Arman Kulkarni, Binyuan Hui, Lei Li,
Zhengyuan Xu, Minhao Jiang, Qi Liu, Xiang Zhu, Di Chen, Longjun Li, Wensen Cheng, Yu Zhang, Tianqi
Zhang, Hao Zhang, Chao Shang, Yuan Cheng, Qingchuan Pu, Feilin Yang, Yuning Jiang, Xinjie Hao, Sheng Wang,
Weizhong Tian, Yu Xi, Bin Wang, Cong Li, Jiang Guo, Heyi Ouyang, Kaiwen Wang, Brandon Timmons, and
et al. Dapo: An open-source llm reinforcement learning system at scale. CoRR, abs/2503.14476, 2025. doi:
10.48550/ARX1IV.2503.14476. URL|https://doi.org/10.48550/arXiv.2503.14476,

Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao Yao, and Bo Han.
Co-reward: Self-supervised reinforcement learning for large language model reasoning via contrastive agreement.
CoRR, abs/2508.00410, 2025. doi: 10.48550/ARXIV.2508.00410. URL https://doi.org/10.48550/
arXiv.2508.00410.

14


https://arxiv.org/abs/2403.17710
https://doi.org/10.48550/arXiv.2503.23829
https://arxiv.org/abs/2406.12624
https://arxiv.org/abs/2406.12624
https://doi.org/10.48550/arXiv.2307.09288
https://openreview.net/forum?id=pZ3i2yt5DoY
https://doi.org/10.48550/arXiv.2406.01574
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2508.00410
https://doi.org/10.48550/arXiv.2508.00410

Under review as a conference paper at ICLR 2026

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu, Zilong Zheng,
and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. CoRR, abs/2505.03335, 2025a. doi:
10.48550/ARX1IV.2505.03335. URL|https://doi.org/10.48550/arXiv.2505.03335.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason without external
rewards. CoRR, abs/2505.19590, 2025b. doi: 10.48550/ARXIV.2505.19590. URL https://doi.org/10.
48550/arXiv.2505.19590.

Yulai Zhao, Haolin Liu, Dian Yu, S. Y. Kung, Haitao Mi, and Dong Yu. One token to fool llm-as-a-judge, 2025c. URL
https://arxiv.org/abs/2507.08794.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
Instruction-following evaluation for large language models. CoRR, abs/2311.07911, 2023. doi: 10.48550/ARXIV.
2311.07911. URL https://doi.org/10.48550/arXiv.2311.07911.

APPENDIX

A THEORETICAL ANALYSIS

This section gives a minimal, checkable account of why JURY-RL stabilizes policy optimization.

. — Why naive majority voting is brittle. We show that, under GRPO, majority-vote rewards con-
flate agreement with correctness: as the majority share increases, supporters’ advantages go to zero while
dissenters’ penalties blow up, driving entropy collapse.

* §A.2l— RESZERO is zero-mean with non-degenerate variance. We prove the group reward strictly sums
to zero with the choice v = ca?, and that the group variance is non-zero whenever residual answers are not
all identical, so gradients remain informative when verification fails (Eq. [3).

» §A.3|— Fallback comparison (MV / Zero / RESZERO). We derive group-normalized advantages for each
fallback and show that only RESZERO yields a corrective (negative for unverifiable majorities) yet exploratory
(variance preserved on residuals) update, aligning with the stability observed in §5.3]

A.1 WHY NAIVE MAJORITY VOTING IS BRITTLE.

We retain the previously derived analysis showing that majority voting (MV) conflates agreement with correctness and
induces entropy collapse under GRPO as consensus strengthens. Using MV as a label-free reward conflates single-
view agreement with correctness and induces entropy collapse. For a question z, sample G rollouts y; ~my(- | ) and

parse answers a; = ans(y;). Let ¢ = argmax, ZJG:1 I[a; = a] with vote share ¢ = ézjg:l I[a; = a]. MV assigns
binary rewards ¥V = I[a; = a]. Under GRPO, group-normalized advantages satisfy 7 = 9, std = /9(1 — ©), hence

1o _ -
™MV 7 7 Gi=a

std - 1%@, a; 7é a.
As a spurious consensus strengthens (9 — 1), supporters receive vanishing signal (A:r — 0) while dissenters incur
diverging penalties (Ai_ — —00), suppressing exploration and shrinking the token-level entropy toward a single mode;
ratio clipping preserves the sign of A;, so the collapse persists. Because rMY ignores ground truth, MV is also
vulnerable to formatting hacks: repeated insertion of a frequent symbol in the “answer box” can maximize agreement
without correctness.

A.2 PROOF OF ZERO-MEAN PROPERTY FOR RESZERO REWARD

Here, we provide a formal proof that the adaptive ResZero reward, as defined in Equation (5)), maintains a strict zero-

mean property. This property, Zil pReszero — () s critical for ensuring stable optimization for different RL methods.

“Edge cases. (i) Tie-breaking) When multiple answers tie for the most frequent, we select a single @ by a fixed rule, so
M ={i:a; =a}and R = {i : a; # a} are uniquely defined. (ii) No residuals) If all G trajectories coincide, then |R| = 0,
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We now present the proof for the general case where |R| > 0. The total sum of rewards is decomposed as:

G

§ r?esZero — § T?esZero T E T?esZero

i=1 ieM i€ER

Step 1: Calculate the sum of rewards for the residual group (R). For any trajectory i € R, the reward is X% =
« - (z; — @) + . Summing over all members of the residual group:

Dot =3 falz — ) +1]

i€R i€R
= 042(21' — ) +Z’Y
i€R i€R

By the definition of a mean, the sum of deviations from the mean is zero, i.e., » ic R(zi — @) = 0. This simplifies the
total reward for the residual group to:

S rRen — a0+ |R| -y = |Rly
i€ER

Step 2: Calculate the sum of rewards for the majority group (M). For any trajectory ¢ € M, the reward is

pResZero — _cqy 4 . Since the reward is identical for all members of the majority group, the sum is:
> e = M| (—ca +7)
ieM

Step 3: Combine the sums from both groups. We add the sums from Step 1 and Step 2 to find the total sum:

G
ST~ M(—ca+9) + Rl
i=1

= —ca| M|+ (|M] + |R[)y

Since |M| + |R| = G, the equation becomes:

G
Zﬁ?eslero _ —CO&|M| + G’)/
=1

Step 4: Derivation of the Global Re-centering Term ~. To enforce the zero-mean property, we design the global
re-centering term -y such that the total sum from Step 3 is identically zero.

—ca|M|+Gy=0

_ ca|M|
e

By substituting the definition of the majority share, « = |M|/G, we arrive at the required form for ~:

_ (|M|>_ >
y=ca| o | =co

This derivation shows that setting v = ca? is the precise design choice required to make the ResZero reward strictly
zero-centered. This term acts as a global offset that exactly balances the penalties applied to the majority group and
the rewards distributed among the residual group.

|M| = G, and the residual sum is zero. The total reward becomes >_,_,, 75" = |M|(—ca + ). With o = [M|/G = 1 and

v = ca® = ¢, this equals G(—c + ¢) = 0.
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A.3 FALLBACK REWARDS FOR INCONCLUSIVE VERIFICATION

This section provides a theoretical analysis of different fallback reward mechanisms within the GRPO framework for
the scenario where formal verification of the majority-voted answer is inconclusive (6§ = 0). The analysis focuses on
the dynamics of the group-normalized advantage, A;, which serves as the learning signal for the policy update. The
advantage is defined as:

_ G

N r, — 1T 1

A= ——— h F=— E ;.
std({rj}le) +€ whete =14 "

We analyze three cases: rewarding the majority vote (MV), assigning a zero reward, and using our proposed ResZero
reward.

j=1

CASE 1: MAJORITY VOTING (MV) REWARD

As established in Appendix if we naively reward the majority consensus when verification fails, the reward is
MV o _ A ~ . . A . . = o~ o
rXV = Ifa; = @]. Let ¥ be the vote share of the majority answer G. The key statistics are 7 = ¢ and std({r;}) =

/(1 — ). This yields the following advantage:

1-9

. -~ if a; = a (Supporter)
A — 3 pp

A N
—\/g, if a; # a (Dissenter)

Theoretical Implication. As a spurious consensus strengthens (0 — 1), the advantage for supporters vanishes

(/1;" — 0) while the penalty for dissenters diverges (/Ali_ — —o00). This dynamic punishes any exploration and
provides no positive signal for adhering to the consensus, leading to entropy collapse and policy degradation.

CASE 2: ZERO REWARD

A seemingly safe alternative is to assign a zero reward to all rollouts when verification is inconclusive. In this case,
rée© = (foralli € {1,...,G}.

The resulting statistics are trivial:

* Mean Reward: 7 = £ 3% 0=0.

« Standard Deviation: std({r;}) =/ & ¢ (0-0)2=0.

Substituting these into the advantage formula gives:
- 0-0
A; = =0
0+e¢

Theoretical Implication. The advantage signal is nullified for all rollouts in the group. This leads to a vanishing
gradient for the policy update, effectively stalling the learning process for that entire batch. While it avoids the
destructive collapse of MV, it does so at the cost of learning efficiency, rendering the update step ineffective.

CASE 3: RESZERO REWARD

The ResZero reward is designed specifically to address the shortcomings of the above methods. It has two crucial
properties by construction:

ResZero
K3

* Zero-Mean Property: The total reward across the group sums to zero, i.e., Zil T = 0. This imme-

diately implies the mean reward is * = 0.
* Non-Zero Variance: By assigning a negative reward to the majority group and a structured, zero-mean

reward to the residual group, 7R®%™ is non-zero for most rollouts (unless all residual answers are identical).

Therefore, std({r;}) > 0 as long as there is diversity among residual answers.

The advantage function thus becomes:

T ostd({r ) e std({r)) +e

ResZero __ 0 ResZero
) [
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Theoretical Implication. This formulation provides a rich, structured learning signal that is both corrective and
exploratory.

1. Prevents Stagnation: Since A, is non-zero, it provides a meaningful gradient, ensuring that learning contin-
ues.

2. Corrects Spurious Consensus: For rollouts in the majority group (i € M), 7R ig negative. This

results in a negative advantage (A; < 0), actively discouraging the policy from converging on the unverified
consensus.

3. Guides Exploration: For rollouts in the residual group (i € R), the sign of 7R*Z (and thus Ay depends on
the relative popularity of their answers within the minority. This rewards more promising alternative paths
and penalizes less popular ones, guiding exploration in a principled manner.

In summary, our theoretical analysis reveals that each fallback strategy results in a fundamentally different learning
dynamic:

* Majority Voting (MV) leads to a destructive update. As a spurious consensus strengthens, it creates a
diverging penalty for dissent while the positive signal for supporters vanishes. This dynamic ultimately
causes entropy collapse, suppressing exploration and degrading the policy.

e Zero Reward results in an ineffective update. By nullifying the reward for all rollouts, the advantage signal
becomes zero for the entire group. This causes a vanishing gradient that stalls the learning process for that
step, wasting computational resources.

* ResZero Reward provides a constructive update. It maintains a stable, non-zero learning signal that is
both corrective, by penalizing the unverified majority consensus, and exploratory, by rewarding promising
alternatives among the residual answers.

B IMPLEMENTATION DETAILS

B.1 THE JURY-RL ALGORITHM

The full algorithm is summarized in Algorithm 1]

Algorithm 1 JURY-RL (one grouped update for a prompt z)

Compute group-normalized advantages A; from {ri}iG:l; broadcast token-wise.
Update my with GRPO (clipped ratios, KL to reference).

1: Sample G rollouts y; ~moa (- | x); parse a; = ans(y; ).

2: Compute vote shares v(a) and majority & € arg max, v(a).
3: Query verifier once: ¢ = verify(z, ).

4: if =1 then

5: Setr; = ]I[CL,L' = d]

6: else

7. Form M, R; compute u(~% and ; set r; via Eq. .

8: end if

9:

0:

—

B.2 AN INTUITIVE EXAMPLE OF THE RESZERO REWARD

Consider a scenario with G = 8 rollouts for a given problem. A majority vote reveals that |M| = 4 rollouts support a
proposal d, so the majority share is « = |M|/G = 4/8 = 0.5. The remaining | R| = 4 residual rollouts are split: three
support answer b, and one supports answer c. If the verifier is inconclusive (§ = 0), the ResZero reward is activated.

First, we analyze the residual group R. For a trajectory y; with answer a; = b, its leave-one-out support within the
residual group is z; = u(~)(b) = \R\%l = 2/3. For the singleton answer a; = c, the support is z; = u(=%(c) =

0/3 = 0. The average support across the residual group is therefore 4 = ﬁ(S +24+1-0)=0.5.
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Let the penalty hyperparameter be ¢ = 0.1. The global re-centering term is v = ca? = 0.1-(0.5)2 = 0.025. The final
reward for each trajectory is assigned according to Eq. (3)):

—ca+ v =-0.1(0.5) + 0.025 = —0.025, if 2 € M (proposal a)
TR0 = & az — 1) +v = 0.5(2 — 0.5) +0.025 = L +0.025 ~ 0.0667, ifi€ R,a; =b
oz — @) + v = 0.5(0 — 0.5) + 0.025 = —0.225, ifi € Roa;=c

By design, the total reward sums exactly to zero: 4(—0.025) + 3(% +0.025) +1(—0.225) = —0.1 +0.25+ 0.075 —
0.225 = 0. This demonstrates how ResZero penalizes the unverifiable majority while redistributing a zero-mean
signal among diverse residual answers. This maintains a useful, variance-driven learning gradient for GRPO without
reinforcing a potentially spurious consensus.

C LEAN VERIFIER DETAILS

C.1 LEAN VERIFIER

Lean (de Moura & Ullrich,2021) has emerged as a transformative framework in the formal verification of mathematical
proofs, grounded in a rigorous type-theoretic foundation that guarantees unprecedented levels of logical soundness
and mechanized reliability. Its intrinsic dependency on computer-assisted compilation environments not only ensures
formal correctness but also serves as a high-fidelity feedback mechanism for refining and validating mathematical
reasoning within LLMs.

In response to this potential, we have designed and implemented a comprehensive mathematical verification system
centered on Lean. This system bridges the gap between informal natural language mathematics and machine-verifiable
formalism by automatically translating problem statements and proposed solutions into syntactically and semantically
well-formed Lean expressions, followed by formal proof verification via Lean’s trusted kernel.

The architecture of this verification system ( illustrated in Figure[3)) is a cascaded, modular pipeline comprising three
specialized components:

* Autoformalizer Translates natural language mathematical content (question—answer pairs in our setting)
into precise, executable Lean formal specifications, preserving both syntactic structure and semantic intent.

* Consistency-Checker Performs bidirectional semantic alignment between the original input of natural lan-
guage and its formalized Lean counterpart, ensuring fidelity of meaning and detecting potential misinterpre-
tations or translation artifacts.

* Prover Synthesizes formal proof scripts in Lean and submits them to the theorem prover for mechanized
validation, thus certifying the logical correctness of the solution under the foundational logic of the system.

This framework not only advances the automation of mathematical reasoning verification, but also establishes a scal-
able, feedback-driven paradigm for integrating formal methods into natural language-based mathematical systems.

C.2 SETTING

To ensure reliable and precise reward signals, our Lean Verifier employs a three-stage inference pipeline composed of
the following core components:

¢ Autoformalizer: Utilizes the Goedel-Formalizer-V2-32B model (Lin et al.,2025]) to translate informal math-
ematical statements into formal Lean specifications.

* Consistency-Checker: Implemented using QwQ-32B (QwenTeaml, [2025), this component validates the out-
puts of the Autoformalizer.

* Prover: Employs the Goedel-Prover-V2-32B model (Lin et al., [2025) to synthesize formal proofs for the
specifications that have been validated in the previous stage.

The pipeline operates as follows: first, the Autoformalizer generates 8 candidate formalizations. The Consistency-
Checker then evaluates all candidates and selects the top checked candidate. Finally, the Prover conducts up to 16
independent sampling trials to find a valid proof.

All formal verification outputs were generated under the same hyperparameter configuration below:
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Autoformalizer Consistency-Checker Prover
Lean Server
CPU
Lean Verifier Y
Cache

Figure 5: The pipeline of our Lean Verifier: a collaborative system that combines autoformalization, formal verifica-
tion, and consistency checking to validate mathematical reasoning with high reliability.

* Temperature: 0.7

¢ Maximum Tokens: 32,768

‘We make the configuration choice to balance exploration, fidelity, and resource efficiency.

C.3 PERFORMANCE AND COST ANALYSIS

A crucial factor for the practical implementation of JURY-RL is the computational overhead introduced by the formal
Lean Verifier, especially when compared to baselines like an LLM-as-a-Judge. To provide a clear and quantitative
assessment of this cost, we conducted a wall-clock time analysis using the Qwen-2.5-7B model. The evaluation was
performed under the synchronous RL training configuration specified in our main paper, including the defined batch
size and the pass@8§ verification setting.

Initial (Cold-Start) Overhead. To accurately assess the computational cost, we first establish the baseline training
time. The oracle setting with Ground-Truth (GT) rewards, which involves no external verification, requires approxi-
mately 100 seconds per step. This duration represents the core training workload.

We then measured the additional verification overhead for the other methods under a worst-case scenario, defined as
processing a batch composed entirely of unseen question-answer (QA) pairs. The specific overheads are as follows:

* JURY-RL (Lean Verifier): The verification process introduces an additional overhead of approximately 200
seconds per step.

* LLM-as-a-Judge: The baseline using Qwen-2.5-72B for verification adds an overhead of approximately 80
seconds per step.

This means that in the initial training stages, the total step time for JURY-RL is approximately 300 seconds (100s for
training + 200s for verification), compared to 180 seconds for the LLM-as-a-Judge.

Cost Amortization and Convergence. The initial cold-start overhead is not representative of the average cost over
the entire training process. Our framework uses a caching mechanism for all verification results (shown in Fig[3]
As training proceeds and the policy begins to converge, the diversity of generated answers for any given problem
stabilizes. Consequently, an increasing fraction of QA pairs in subsequent batches will have been previously encoun-
tered and verified. These cached results can be retrieved almost instantly, bypassing the expensive formal verification
process. In the steady-state phase of training, this caching effect becomes dominant. The per-step time cost for JURY-
RL progressively converges toward that of the GT baseline, as most verification lookups are resolved via the cache.
Therefore, while the initial cost of the Lean Verifier is higher, this cost is effectively amortized throughout the training
run. We contend that this represents an acceptable and practical trade-off for the substantial gains in reward fidelity,
training stability, and final model performance documented in our main results.
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Beyond the runtime overhead, another critical aspect of the verifier is the trade-off between its performance and token
consumption, which directly impacts both the quality of the reward signal and the operational cost. To analyze this,
we evaluated different prover configurations on the MATH500 dataset.

Table [3] presents the performance and cost analysis of different prover configurations. While the Prover@64 con-
figuration achieves the highest accuracy, it comes at a significant computational cost, averaging 67,429 tokens per
verification. In contrast, the Prover@16 configuration, while exhibiting a slight and acceptable decrease in perfor-
mance to 87.0% ACC, reduces the token cost by more than half to 33,346. Given this highly favorable trade-off
between a marginal performance drop and substantial cost savings, we adopt Prover@ 16 as the default configuration
for our main experiments to ensure efficiency.

Table 5: Performance and token cost analysis of Lean Verifier across different Prover configurations.

Models MATHS500 Token Costs

ACC TPR F1-Score Max Tokens per Verify Avg Tokens per Verify Avg Tokens per Response
Prover@16 87.0 87.0 93.0 351,799 33,346 5,858
Prover@32 89.0 89.0 94.0 658,061 52,064 6,607
Prover@64 91.0 91.0 95.0 1,369,038 67,429 6,435

C.4 PROMPT

We list all the three models’ prompts below for reference.

Autoformalizer Prompt

Please autoformalize the following natural language problem statement in Lean 4.
Use the following theorem name: test_problem

The natural language statement is:

{informal_statement_content}.

Think before you provide the lean statement.

Consistency-Checker System Prompt

Your role is a Lean4 expert, please help me check consistency between natural language expression and its Lean4
proof statement.

Guidelines for Consistency Checking:

Goal:

Determine if the Lean theorem statement is an exact and faithful formalization of the mathematical problem.

Do not evaluate or consider the answer or the proof. Your sole task is to verify the correctness of the formalization.
Evaluation Stages (All required):

1. Math Assertion Analysis

Identify all structurally and semantically relevant components of the mathematical problem, including variables,
types, quantifiers, constraints, logic structure, conclusion, and so on. The analysis should be based on the actual
content of the text.

2. Lean Statement Analysis (ignore proof part)

Extract all structurally and semantically relevant components from the Lean statement, including variables, types,
conditions, quantifiers, constraints, the final claim, and so on. The analysis should reflect the actual content
present in the Lean code.

3. Comparative Verification

Check for exact correspondence between the math and Lean statements; you may refer to aspects like:

- Semantic alignment, logic structure, and quantifier correctness.

- Preservation of constraints and boundary assumptions.

- Accurate typing and use of variables.

- Syntactic validity and proper Lean usage (free from errors).

- Use of symbols and constructs without semantic drift.

- No missing elements, no unjustified additions, and no automatic corrections or completions.

4. Final Judgement
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Based solely on the above analysis, judge whether the Lean statement is a correct and exact formalization of the
mathematical problem.

5. Accuracy Confirmation

If correct: clearly confirm why all elements match.

If incorrect: list all mismatches and explain how each one affects correctness.

Note: While the analysis may be broad and open to interpreting all relevant features, the final judgment must be
based only on what is explicitly and formally expressed in the Lean statement. **Do not consider or assess any
part of the proof. Your judgment should be entirely about the accuracy of the statement formalization.**

You should present the results following the format:

Input:

The Natural Language Statement:

A math problem and its answer (no proof).

The Formal Statement in Lean4:

' Mean

A Lean 4 theorem statement formalizing the problem. Proof is intentionally omitted (e.g., sorry).

Output Format:

Return exactly one xml object

<comments>

Your brief analysis:

Math Assertion Analysis: [...]

Lean Statement Analysis (Proof Ignored): [...]

Comparative Verification: [...]

Conclusion: [...]

Accuracy Confirmation: [...match confirmation or list of discrepancies. .. ]

</comments>

<consistency >[Correct/Incorrect] </consistency >

Consistency-Checker User Prompt

Input Data:

The Natural Language Statement:
{informal_prefix }

The Formal Statement in Lean4:

* Y 'lean

{formal _statement}

ANAURY

Prover Prompt

Complete the following Lean 4 code:
‘Y leand
{formal_statement }

ANAURY

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining
the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of
the final formal proof.

D BASELINE DETAILS

e Majority Voting (MV). A self-supervised consensus reward (Shafayat et al., [2023). For each problem, we
generate G rollouts. A rollout y; receives reward 1 if its extracted answer ans(y; ) matches the majority answer
among the G rollouts, and 0 otherwise. This directly reinforces popular answers regardless of correctness.

* Self-Certainty. A confidence-derived signal (Zhao et al. [2025b). The reward is computed from the log-
probabilities of the tokens composing the final answer (as extracted by ans(-)); higher cumulative log-
probability indicates greater model certainty and yields a higher reward.
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* Entropy Minimization. A low-entropy proxy (Prabhudesai et al. [2025)). The reward is inversely related
to the policy’s output entropy for the final-answer tokens, encouraging more deterministic, high-confidence
predictions.

¢ Ground Truth (GT). The ground-truth supervised oracle baseline. Using human-annotated labels, a rollout
receives 1 if its extracted answer matches the ground truth and O otherwise. We train this baseline with the

same GRPO objective 2024) as our method for a fair comparison.

e LLM-as-a-Judge. An external-judge paradigm (Pang et all 2023} [Zhao et al, [2025d). We employ
gwen—2.5-72b-instruct as the judge. It assesses the reasoning process and the final answer of each

rollout; its evaluation (numeric score or a binary correct/incorrect label) is used as the reward for the RL
update. The prompt for it is shown below.

* LLM-KD (Knowledge Distillation). Teacher—student distillation has been used in Label-Free RLVR (Zhao|
2025a). We use gqwen—2.5-72b—-instruct to produce an answer for each problem and treat it as
a pseudo label. The policy model is trained to align its outputs with these machine-generated references.

LLM-as-a-Judge prompt

You
ques

are a professional math QA pair evaluator. Your sole task is to determine whether a given mathematical
tion and answer are correctly matched. First explain your reasoning, then end your response with your final

judgment: True or False.

E ADDITIONAL EXPERIMENTAL DETAILS

Detailed training and testing settings are provided in Table[d]

Table 6: Reinforcement learning training hyperparameters. This configuration is consistently applied across all exper-

iments

to ensure a fair comparison.

Hyperparameter Value
Training Configuration
Train Batch size (Number of Sampled Questions) 128
Rollouts per problem (G) 8
Max prompt length 512
Max new tokens 3072
Training epoch 6
Optimizer Parameters (AdamW)
Learning rate 3x1076
b1 0.9
Ba 0.999
€ 108
Warmup style Cosine
Warmup steps ratio 0.1
GRPO Algorithm Parameters
KL loss coefficient (3) 0.005
clip ratio (¢) 0.2
Generation Parameters
Training temperature 1.0
Evaluation temperature 0.8
top-p 0.95
F BENCHMARK AND METRIC DETAILS

This section details the specific metrics and software frameworks used for each benchmark mentioned in the main text.
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Figure 6: Training dynamics of precision, recall, validation accuracy, and training entropy under different Lean
pass@k verification settings.

AIME24/25, MATH500, GSMS8K: We report pass@1 accuracy. All three are evaluated using the
lighteval framework: https://github.com/huggingface/lighteval

AMC: We report pass@1 accuracy. This is evaluated using the ttrl implementation: https://
github.com/ruixin31/Spurious_Rewards/tree/main/code/ttrl

LiveCodeBench: We report pass@1 accuracy. This is evaluated using the official library: https://
github.com/LiveCodeBench/LiveCodeBench

CRUX: We report pass@1 accuracy. This is evaluated using the ZeroEval framework: https:
//github.com/WildEval/ZeroEval

MMLU-Pro: We report pass@1 accuracy. This is evaluated using the Im-evaluation-harness:
https://github.com/EleutherAI/Ilm-evaluation—-harness

G FURTHER ANALYSIS

G.1

PASS@K RESULTS FOR ALL COMPARISONS

This appendix complements The Diversity Analysis of JURY-RL in Section [5.3] The complete numerical results
are listed in Table[7] for easy cross-reference. The pass@k results presented in Table [7 unequivocally demonstrate the
effectiveness of our JURY-RL framework. Across all three backbone models, JURY-RL not only surpasses every label-

free baseline but also consistently outperforms the strong supervised GT-Reward baseline, which is trained directly on
ground-truth answers.
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Table 7: Pass@k Results (%) of RL performance comparison on math reasoning benchmarks.

AIME24 AIME25 MATHS500 GSMS8K AMC
Methods Average
pass@16 pass@16 pass@4 pass@4 pass@8

Owen3-1.7B-Base

Before RL 16.67 160 13.3316.3 72.0 £2.0 89.314+08 56.634+54 49.59443
GT-Reward 26.67 182 16.67 1.9 82.0 41.7 9242 107 59.04154 55361456
Entropy 20.00+7.4 23.33 478 81.2418 90.75 408 59.04454 54.86 4.7
Self-Certainty 23.33+78 26.67452 T7.2+1.9 90.83 108 H7.83154 55174143
Majority-Voting 23.33 478 16.67 469 772410 9234107 53.01455 52.51146
CoReward 26.67 +82 16.67 +6.9 T7.4 119 92.04108 54.22155 53.40+46
LLM-KD 20.00+7.4 16.67+69 822417 9325407 5542455 53.51444

LLM-as-a-Judge 16.67+69 13.33+6.3 74.6 +1.9 91.74 108 5542455 50.35+43
JURY-RL (Ours) | 30.00+85 30.00+s.5 82.041.7 92.42 107 62.65+53 59.41450

Llama-3.2-3B-Instruct

Before RL 23.33178 6.67146 65.0 +2.1 86.88 109 49.40455 46.26 142
GT-Reward 23.33 478 6.67 £46 63.8 +2.1 90.14 4108 43.37T+54 4546440
Entropy 16.67 +6.9 3.33 133 58.8 £2.2 84.46 +10 50.60455 42.77 41338
Self-Certainty 13.334+6.3 10.00 456 58.0 42.2 84.69 110 4458155 4212444
Majority-Voting 16.67+6.9  0.00 +0.0 63.642.1 9098408 39.76454 42.20430
CoReward 23.33 178 0.00 +o0.0 60.4 +2.2 90.45 108 43.37T154 4351433
LLM-KD 23.33 +7.8 3.33 +3.3 65.0 £2.1 89.99108 4940155 46.214139

LLM-as-a-Judge 26.67 +8.2 10.00 +5.6 62.2 4122 89.84 108 40.964+54 45.93 144
JURY-RL (Ours) | 30.00 +s.5 3.33 133 64.8 £2.1 90.07108 5422155 48.48140

QOwen2.5-7B
Before RL 30.00 8.5  20.00 £7.4 76.2 £1.9 93.78 +o.7 63.86153 56.77 148
GT-Reward 33.33 +8.8 30.00 +8.5 85.2 +1.6 95.22 +0.6 68.67i5.1 62.48 +4.9
Entropy 30.00 485 36.67 +8.9 85.2416 93.78 107 67.47151 62.624150
Self-Certainty 23.33+78 30.00 £s.5 84.6 +1.6 93.86 +0.7 69.884+50 60.33+4.7
Majority-Voting 33.33+8.8 30.00 485 85.4 116 95.00 106 63.86+53 61.52449
CoReward 30.00 48.5 26.67i&2 83.8 +1.6 95.60 +0.6 63.86 +5.3 59.99 +4.8
LLM-KD 33.334+88 33.33+s8 87.8 415 95.75 +0.6 67.471451 63.54 149

LLM-as-a-Judge 20.00+7.4 13.33+6.3 822417 95.38 406 59.04+54 53.99443
JURY-RL (Ours) | 36.67+s9 30.00+s5 86.6 115 9583106 71.08150 64.04149

G.2 DEEPER DIVE INTO VERIFIER IMPERFECTIONS

While a formal verifier is theoretically sound, its practical application is imperfect. We analyze how the number of
verification attempts, k in a pass@k setting, affects the quality of the reward signal. As shown in Figure[6] the Lean
verifier exhibits a highly desirable trade-off.

The precision (top-left panel) remains consistently high, around 85%. It is crucial to note that this precision gap from
a perfect 100% is not a flaw in the Lean prover’s core logic, which is formally sound. Instead, it primarily stems from
imperfections in upstream components like auto-formalization and consistency checks, which translate the problem
into a verifiable format. Despite this, the signal’s high fidelity is vital for preventing reward hacking and ensuring the
model learns from genuinely correct examples.

In contrast, the recall (top-right panel) shows a clear dependency on k. With a single attempt (pass@1), the recall is
modest (around 30%), but it steadily increases with more attempts, reaching nearly 90% at pass@16. This indicates
that while a single verification attempt might fail to prove a correct answer (e.g., due to search limits), multiple attempts
significantly increase the chance of success, thereby improving the richness of the training signal.
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Crucially, despite the wide variance in recall, the final validation accuracy (bottom-left) and training entropy
(bottom-right) converge to similar stable states across different values of k. This suggests that the high precision
of the verifier’s signal is the dominant factor for successful and stable training. This behavior stands in stark contrast
to an LLM-as-a-Judge. Mechanistically, an LLM-judge’s potential for error is inherent to its probabilistic and opaque
reasoning process, making it fundamentally prone to biases, format gaming, and confident mistakes. Its reward signal
is therefore inherently noisier and less reliable. The imperfections in our pipeline, however, are largely confined to the
modular pre-processing steps, leaving the core judgment by the Lean prover itself principled and trustworthy.

H CASE STUDY

To illustrate our “Proofs Dispose” principle, we present a case study comparing an LLM-as-a-Judge with a Lean formal
verifier. This case highlights a core problem with LLM judges: their reliability is limited by their own reasoning. The
first example shows that an LLM judge can reach a wrong conclusion due to flawed reasoning, which generates an
incorrect training signal. In contrast, once the autoformalization and consistency checks are passed, a Lean proof has
the property of zero false positives. As shown in the second example, it provides a definitive and highly reliable signal
through formal logic. This comparison explains why in JURY-RL, we use proofs, not an LLM, to dispose the final
reward.

Question

Let $x$ and $y$ be positive real numbers such that $3x + 4y < 72.$ Find the
— maximum value of xy (72 - 3x - 4y).

Answer

1152

LLM-as-a-Judge Output (Judge Wrong)

To evaluate whether the given answer of 1152 is correct for the problem, we need
— to find the maximum value of the function \( f(x, y) = xy (72 - 3x — 4y) \)
— subject to the constraint \( 3x + 4y < 72 \).

First, let’s rewrite the function:
N[ f(x, y) = xy (72 — 3x - 4y). \]

We can use the method of Lagrange multipliers or analyze the function directly.
<~ However, a simpler approach is to use symmetry and calculus.

Consider the function \( g(t) = t(72 - 3t - 4t) = t(72 - 7t) = 72t - 7t"2 \). This
<~ i1s a quadratic function in terms of \( t \), where \( t = x + y \). The
— maximum value of this quadratic function occurs at the vertex, which is
— given by:

\[ t = -\frac{bl}{2a} = -\frac{72}{-14} = \frac{72}{14} = \frac{36}{7}. \]

Now, we need to find \( x \) and \( y \) such that \( x + yv = \frac{36}{7} \) and
— \( 3x + 4y \) is minimized while still satisfying \( 3x + 4y < 72 \).

Given the symmetry and the nature of the problem, we can assume \( x = y \). Then:

\[ 2x = \frac{36}{7} \implies x = \frac{1l8}{7}. \]

\[ 3x + 4y = 3\left (\frac{18}{7}\right) + 4\left (\frac{18}{7}\right)
— 7\left (\frac{18}{7}\right) = 18. \]

Substituting \( x = y = \frac{18}{7} \) into the function:
\[ f\left (\frac{18}{7}, \frac{18}{7}\right) =
— \left (\frac{18}{7}\right)\left (\frac{18}{7}\right) (72 -
— 3\left (\frac{18}{7}\right) - 4\left (\frac{18}{7}\right)) \]
\[ = \left (\frac{18}{7}\right) "2 (72 - 7\left (\frac{18}{7}\right)) \]
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= \left (\frac{18}{7}\right) "2 (72 - 18) \]
= \left (\frac{18}{7}\right) "2 \cdot 54 \]
= \frac{324}{49} \cdot 54 \]

= \frac{17496}{49} \]

= 357.0612244898. \]

—
— — ——
|

This value does not match 1152. Therefore, the given answer of 1152 is incorrect.

Final judgment: False.

Lean Prover Output (Prove Success)

import Mathlib
import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

theorem test_problem
sSup {z : R | 3 xy : R, x>0 Ay >0A 3%x + 4xy < T2 ANz =2x %y * (72 - 3%x

— - 4xy)} = 1152 := by
have h; : (1152 : R) € {z : R | dxy : R, x>0 Ay >0 A 3%«x + 4xy < 72 N z =
o x *y * (72 — 3%x — 4xy)} := by

refine’ (8, 6, by norm_num, by norm_num, by norm_num, _)
<;> norm_num

<;> ring_nf

<;> norm_num

have hg : V (z : R), z € {z : R | dxvyv :R, x>0Ay >0 A 3xx + 4%y < 72 N z
> =xXx *y * (72 — 3*x — 4xy)} — z < (1152 : R) := by
intro z hz
rcases hz with (x, y, hx, hy, hxy, rfl)

have hy : 0 < x := hx
have hg 0 <y := hy
have hs 3% x + 4 %y < 72 := hxy
have he 0 <72 -3 %« x — 4 %y :=Dby linarith
have hr 0 < 3 » x := by positivity
have hsg 0 <4 » y := by positivity
have hg : 0 < (3 * x) * (4 x y) := by positivity
have hig : 0 < (3 * x) » (4 x y) * (72 = 3 » x — 4 x y) := by positivity
—-— Use AM-GM inequality to show that x » y » (72 - 3 x x — 4 x y) < 1152
have hi; ¢ (3 * x + 4 » y + (72 = 3 x x — 4 % y)) ~ 3 227 x (3 % x) x (4 % y)
— x (72 = 3 » x — 4 x y) := by
nlinarith [sg_nonneg (3 * x — 4 % y), sg nonneg (3 * x — (72 = 3 « x — 4 x
“~ vy)), sg_nonneg (4 xy — (72 — 3 » x — 4 % vy)),

mul_nonneg hr.le hg.le, mul_nonneg hr.le hg.le, mul_nonneg hg.le hg.le]
—-— Simplify the inequality to get the desired result

have his : (72 : R) = 3 > 27 % (3 * x) * (4  y) = (712 = 3 * x — 4 x y) := by

have hiz ¢ (3 * x + 4 » y + (72 = 3 x x — 4 % y)) =72 := by ring

rw [hiz] at hig

linarith
have hiz : x * v * (72 = 3 + x — 4 x y) < 1152 := by

have hiq : (72 : R) © 3 = 373248 := by norm_num

have his : 27 » (3 * x) » (4 x y) * (72 = 3 + x — 4 xy) =324 x (x «y x (72
— - 3 x x — 4 xvy)) := Dby

ring

rw [hi4] at hieo

rw [his] at hi2

nlinarith
linarith
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have hg : sSup {z : R | 3 xyv : R, x>0 Ay >0 A 3%x + 4dxy < 72 Nz =X * y %
— (72 = 3%x — 4xy)} = 1152 := by
have hgy : IsLUB {z : R | 3 x vy : R, x>0 Ay >0 A 3xx + 4y < 72 ANz =x %Yy
— x (72 — 3%x — 4xy)} 1152 := by
refine’ (fun z hz => hy z hz, fun y hy => _)
—— We need to show that 1152 is the least upper bound.
—— Since 1152 is in the set, any upper bound y must be at least 1152.

have hs : (1152 : R) € {z : R | dxy : R, x>0 Ay >0 A 3%«x + 4dxy < 72 A
— z =x %y * (72 — 3%xx — 4xy)} = hy
have hg : (1152 : R) <y := by
apply hy
exact hs
linarith

—— The supremum of the set is 1152 because it is the least upper bound.
have hs : sSup {z : R | 3 xyv : R, x>0 Ay >0 A 3%x + 4xy < 72 Nz = x %y
— % (72 — 3%x - 4xy)} = 1152 := by
apply le_antisymm
- —— Show that the supremum is less than or equal to 1152.
apply csSup_le
- —— The set is nonempty.
exact (1152, hi)
- —— Every element in the set is less than or equal to 1152.
intro z hz
exact he z hz
- —— Show that 1152 is less than or equal to the supremum.
apply le_csSup
- —— The set 1is bounded above.
use 1152
intro z hz
exact he z hz
- —— 1152 is in the set.
exact hip
exact hs

exact hs
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