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Abstract

Retrieval-Augmented Generation (RAG) has001
emerged as a promising framework for enhanc-002
ing the capabilities of Large Language Mod-003
els (LLMs), especially in knowledge-intensive004
tasks. Despite its advantages, current RAG005
methods often struggle to fully exploit knowl-006
edge during generation. In particular, the syn-007
ergy between the model’s internal parametric008
knowledge and external retrieved knowledge009
remains limited. Retrieved contents may some-010
times mislead generation, while certain gener-011
ated content can guide the model toward more012
accurate outputs. In this work, we propose013
Collaborative Chain-of-Agents, a framework014
designed to enhance synergy over both para-015
metric and retrieved knowledge. Specifically,016
we first introduce CoCoA-zero, a training-free017
multi-agent RAG framework that first performs018
knowledge induction and then generates an-019
swers. Further, we develop a long-chain train-020
ing strategy for CoCoA, which synthesizes021
long trajectories from the CoCoA-zero frame-022
work to fine-tune LLMs, improving their abil-023
ity to explicitly integrate and collaboratively024
leverage internal and external knowledge. Ex-025
perimental results demonstrate the superiority026
of CoCoA in open-domain QA and multi-hop027
QA. Our code will be available on GitHub.028

1 Introduction029

Large Language Models (LLMs) (Achiam et al.,030

2023; Touvron et al., 2023) have demonstrated031

strong performance across a wide range of natural032

language tasks. However, the knowledge they rely033

on is embedded in their parameters and cannot be034

easily updated as new information emerges (Ji et al.,035

2023; He et al., 2022). To address this limitation,036

the Retrieval Augmented Generation (RAG) frame-037

work introduces an external retrieval component038

that brings in external knowledge and integrates it039

into the input context of the LLMs. This design040

has led to notable improvements in various natu-041

ral language processing applications (Gao et al.,042

Figure 1: Evaluation on three datasets 2WikiMulti-
HopQA, HotpotQA, and WebQuestions. The Merge
method is a simple strategy we use to verify the collab-
oration of internal and external knowledge. It directly
generates a passage and merges it into the retrieved pas-
sages as the context of the LLM.

2023; Lewis et al., 2020). Existing research has 043

primarily aimed to improve two aspects of RAG: re- 044

trieving more relevant information during retrieval 045

and better utilizing that information to guide gener- 046

ation during generation. Despite these efforts, most 047

retrieval-augmented language models (RALMs) 048

still emphasize external retrieval, while paying in- 049

sufficient attention to the rich internal knowledge 050

already encoded in model parameters. This internal 051

knowledge is especially valuable for open-domain 052

question answering, where many queries are fac- 053

tual and often already covered during pretraining. 054

Specifically, as the knowledge in LLM’s param- 055

eter becomes richer and the abilitiy of the LLM 056

becomes stronger, sometimes answers with search 057

information are not as good as direct answers. To 058

validate the necessity of collaboratively synergiz- 059

ing internal (or parametric) and external (or re- 060

trieved) knowledge, we conduct experiments to 061

compare performance. As shown in Fig. 1, across 062

the three evaluation tasks, direct generation and 063

GenRead (Yu et al., 2022) (use explicitly generated 064

content) sometimes shows stronger performance. 065

Also, we conduct a test experiment,“Merge”, that 066

explicitly integrates internal and external knowl- 067

edge by generating a passage and retrieving the 068
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Figure 2: Illustration of the CoCoA framework. The top part is CoCoA-zero, a multi-agent collaboration framework.
It integrates internal and external knowledge in a collaborative manner by first performing knowledge induction and
then making decisions. The bottom part is the training strategy, which is based on CoCoA-zero and combines the
trajectories of different agents into long chains to train and enhance the integration ability of the LLM.

passages as the final context simultaneously, as069

shown in Fig. 1. Its performance on multiple data070

sets is better than direct generation and generation071

with retrieval, which further verifies the potential072

of internal and external knowledge collaboration.073

Existing methods solve the problem of knowl-074

edge collaboration through RAG pipeline optimiza-075

tion. Some approaches alleviate this through work-076

flow or multi-module collaboration. For example,077

SURE (Kim et al., 2024a) generates multiple can-078

didate answers and verifies them one by one to en-079

sure reliability. CON (Yu et al., 2023) alleviates the080

harmful effects of external information by adding a081

processing chain. There are also some approaches082

that solve the problem of knowledge collabora-083

tion through enhanced training of the LLM. For084

instance, RAFT (Zhang et al., 2024) employs anti-085

noise training to enable the model to effectively uti-086

lize internal knowledge when external documents087

contain noise, while Self-RAG (Asai et al., 2023)088

learns to determine whether retrieval is needed in089

advance, thereby avoiding harmful content before090

retrieval. Despite these efforts, existing work still091

has notable limitations. On the one hand, methods092

like SURE tend to lose effectiveness as LLMs be-093

come more capable. On the other hand, Self-RAG094

and related methods cannot fully benefit from in-095

ternally generated content.096

To address the above challenges, we introduce097

CoCoA, which consists of a multi-agent reasoning 098

framework and a training strategy that combines 099

multi-agent trajectories into long chains to enhance 100

LLM performance. Specifically, we first introduce 101

CoCoA-zero, which features three agents: one 102

for extracting pre-trained knowledge, one for re- 103

trieving external data, and one for making deci- 104

sions by integrating both. This not only enables 105

explicit construction of decoupled internal and ex- 106

ternal knowledge, but also provides collaborative 107

reasoning traces for the training. Based on CoCoA- 108

zero, we further introduce a train strategy for Co- 109

CoA, which significantly improves performance 110

on knowledge-intensive tasks by integrating the 111

collaborative capabilities of multi- agents into one 112

model. 113

In general, our contributions can be summarized 114

as follows: 115

• We introduce CoCoA-zero, a multi-agent 116

framework that coordinates parametric and 117

retrieved knowledge for improved generation. 118

• We develop a training paradigm for CoCoA, 119

which distills multi-agent reasoning into long- 120

chain, enabling LLMs to better exploit both 121

internal and external knowledge. 122

• Extensive experiments demonstrate CoCoA’s 123

effectiveness, offering insights for inference- 124

time scaling on knowledge-intensive tasks. 125
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2 Methodology126

In this section, we present CoCoA-zero and Co-127

CoA, as illustrated in Fig. 2. We first describe the128

multi-agent framework, CoCoA-zero, followed by129

the long-chain training strategy for CoCoA. The130

algorithm is presented in 1.131

2.1 Preliminaries132

We formalize the standard Retrieval-Augmented133

Generation framework. Given a query q and a134

corpus D, the RAG system retrieves k relevant135

passages C = {c1, c2, · · · , ck} ⊂ D and generates136

an answer â based on the combined input. This137

process follows a retrieve-then-generate paradigm138

and can be formulated as:139

C = R(q,D, k),
â = G(P(q, C)),

(1)140

whereR is the retriever, P is the prompt construc-141

tor that formats q and C, and G is the generator142

(e.g., a LLM) that predicts the final answer â.143

2.2 Two-stage RAG Framework: CoCoA-zero144

In this section, we present our multi-agent RAG145

framework, CoCoA-zero, which also functions as146

the data synthesis pipeline for CoCoA. Stage 1 em-147

ploys two specialized agents to induce knowledge148

from internal parameters and external retrieval,149

while Stage 2 introduces a third agent to synthesize150

their outputs for high-level decision-making.151

2.2.1 Stage I: Knowledge Induction152

It is challenging to extract implicit knowledge153

solely from the model’s internal knowledge or re-154

trieved passages. Inspired by GenRead (Yu et al.,155

2022) and SURE (Kim et al., 2024a), we design156

two dedicated agents for knowledge induction.157

Each agent first generates an answer to the ques-158

tion and then summarizes knowledge based on that159

answer.160

Induction of Internal Knowledge. Directly al-161

lowing the model to explicitly generate its own162

internal knowledge is difficult to control and will163

inevitably result in sparse or inconsistent knowl-164

edge being generated. Following SURE (Kim et al.,165

2024a), we introduce conditional induction. Specif-166

ically, the Internal Knowledge Agent samples a167

candidate ain from the LLM based on the question:168

ain = G(P(q)) (2)169

We then prompt the model to generate a knowl- 170

edge passage sin, conditioned on q and ain, which 171

reflects the model’s internal understanding: 172

sin = G(P(q, ain)). (3) 173

Induction of External Knowledge. For retrieved 174

passages, the External Knowledge Agent follows a 175

similar procedure. Specially, it first retrieve some 176

passages C = {c1, c2, · · · , ck} from the corpus D. 177

Conditioned on both q and C, it produces a second 178

candidate aext: 179

aex = G(P(q, C)) (4) 180

Then, conditioned on q, aex and C, the agent in- 181

duces the external knowledge passage sex, : 182

sex = G(P(q, aex, C)). (5) 183

This conditional knowledge induction frame- 184

work enhances the model’s ability to articulate rele- 185

vant knowledge, providing a strong foundation for 186

the high-level decision-making in the next stage. 187

2.2.2 Stage II: High-level Decision Making 188

Building on the candidate answers and inductive 189

knowledge obtained in Stage I, the second stage 190

leverages the LLM’s reasoning ability to perform 191

high-level decision making. 192

Specifically, the Decision-Making Agent adopts 193

COT (Wei et al., 2022) reasoning over the inter- 194

nal and external candidate answers and their corre- 195

sponding knowledge. It will be prompted with all 196

five components (questions, internal and external 197

candidate answers and their corresponding induc- 198

tive knowledge) and generate the final answer â 199

through COT. 200

cota, â = G(Pcot(q, sin, ain, sex, aex)) (6) 201

Here, cota denotes the reasoning path that guides 202

the final answer generation. 203

The model thereby functions as a high-level ag- 204

gregator, reinforcing potentially consistent beliefs 205

and resolving potential conflicts between internal 206

beliefs and retrieved evidence. By explicitly mod- 207

eling and comparing knowledge before committing 208

to an answer, our framework improves the trans- 209

parency and robustness of the decision process. 210

2.3 Training Strategy for CoCoA 211

Although multi-agent collaboration for internal and 212

external knowledge coordination is simple and ef- 213

fective, how to achieve global optimization across 214

multiple agents remains non-trivial. 215
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Figure 3: Illustration of the training for CoCoA.

To this end, we propose the collaborative Chain-216

of-Agents training strategy, which aims to optimize217

multi-agent collaboration end to end by supervis-218

ing the LLM on long-form reasoning trajectories.219

These trajectories are synthesized from the multi-220

agent pipeline described in Section 2.2 and reflect221

the full reasoning process that integrates both para-222

metric and retrieved knowledge.223

2.3.1 Supervised Fine-Tuning224

The CoCoA-zero framework is designed to (1) con-225

trol the direction of knowledge generation via con-226

ditional induction, (2) decouple internal and ex-227

ternal knowledge through parallel reasoning paths,228

and (3) integrate both sources through Chain-of-229

Thought decision making.230

To supervise the model to achieve explicit and231

collaborative knowledge integration, we synthesize232

training samples by concatenating the intermediate233

results produced by CoCoA-zero into a single long-234

form response. Specifically, given a question q and235

a set of retrieved documents C, we integrate the236

intermediate results from the CoCoA-zero pipeline237

(i.e., internal induction sin, external induction sex,238

the CoT reasoning trace cota during integration239

and the final answer â ) into a long response y240

and promote the evolution of model capabilities241

through the following supervision objectives:242

LSFT = −E(x,y)∼D
[
logPθ(sin, sex, cota, â | q, d)

]
.

(7)243

This stage explicitly exposes the model to collab-244

orative long samples, where the target outputs are245

synthesized based on the outputs of CoCoA-zero.246

2.3.2 Direct Preference Optimization247

To further enhance the model’s ability to integrate248

internal and external knowledge, we perform Direct249

Preference Optimization (DPO) (Rafailov et al.,250

2023) following the SFT stage.251

Specifically, we first prompt the LLM to gen-252

erate structured long-form responses in a zero-253

shot setting and observe that the results are sig-254

nificantly inferior to those from the CoCo-zero255

pipeline. Motivated by this, we construct training 256

instances where CoCoA-zero outputs serve as pre- 257

ferred responses y+, and zero-shot outputs serve 258

as rejected responses y−. Each training instance 259

includes a context x = (q, d), a preferred response 260

y+ = (sint⊕sext⊕ t⊕ â) from the CoCo-zero, and 261

a rejected response y− from the ZeroShort-Long 262

baseline. 263

The DPO objective encourages the model to pre- 264

fer y+ over y− by optimizing: 265

LDPO(πθ) =− E(x,y+,y−)∼D
[
log σ

(
β · log πθ(y+|x)− β · log πθ(y−|x)

)
+ α ·

(
− log πθ(y

+|x)
)]

(8) 266

where πθ(y|x) denotes the unnormalized log- 267

probability of response y under the model θ. 268

Intuitively, the zero-shot prompting is a simple 269

compliance with instructions, which will produce 270

entangled reasoning. In contrast, CoCo-zero will 271

produce a path of internal and external knowledge 272

collaboration, resulting in a more reliable answer. 273

DPO thus bridges symbolic multi-agent collab- 274

oration and end-to-end generation, enabling the 275

model to internalize structured reasoning through 276

preference-based supervision. 277

Algorithm 1 CoCoA: Example of one sample
Input: Query q, corpus D, hyperparameters k
Output: Final answer â or training sample y

1: CoCoA-zero:
1: ain ← Gin(P(q)) ▷ Candidate
2: sin ← Gin(P(q, ain)) ▷ Internal

knowledge induction
3: C ← R(q,D,K) ▷ Top-K retrieval
4: aex ← Gex(P(q, C)) ▷ Candidate
5: sex ← Gex(P(q, aex, C)) ▷ External

knowledge induction
6: (cota, â) ← Gdm(P(q, sin, sex, ain, aex))

▷ Decision making
2: if Supervised Fine-tuning then
3: y ← (sin ⊕ sex ⊕ cota ⊕ â) ▷ Target
4: Update model with LSFT in Eq. 7.
5: end if
6: if DPO Training then
7: y− ← G(PZS(q, C))
8: y+ ← (sin ⊕ sex ⊕ cota ⊕ â)
9: Update model with LDPO in Eq. 8,

10: end if
11: return â or the trained model CoCoA
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2WikiMQA HotpotQA WebQuestions NaturalQA‡ PopQA_longtail‡ TriviaQA‡
Method

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Llama-3.1-Instruct Train-free & w/o retrieval

Llama-3.1-70B 33.80 33.43 37.00 37.89 44.83 43.92 47.29 47.14 29.95 30.79 77.89 78.93
Llama-3.1-8B 27.60 28.35 24.00 27.09 40.11 39.98 33.91 35.69 22.59 23.48 62.87 64.17
Llama-3.1-8B+COT 23.80 26.55 26.20 32.26 38.04 39.43 36.51 38.78 23.23 24.14 64.90 66.98
Llama-3.1-8B+GenRead 24.00 23.92 29.20 31.15 29.53 29.67 30.39 31.22 26.45 26.42 54.12 54.29

Llama-3.1-Instruct Train-free & w/ retrieval
Llama-3.1-70B 22.00 23.12 35.20 38.03 39.76 39.05 47.87 46.97 40.60 38.75 70.97 71.44
Llama-3.1-8B+StrandardRAG 26.80 25.07 31.40 34.16 37.65 37.32 45.01 44.37 40.89 38.51 66.83 67.16
Llama-3.1-8B+COT 22.40 25.25 32.40 38.71 35.73 36.17 42.85 43.28 39.60 37.93 65.85 67.54
Llama-3.1-8B+CON 19.00 21.32 32.80 38.67 34.40 38.05 43.19 45.43 39.17 38.71 65.64 66.82
Llama-3.1-8B+SURE 18.40 21.32 32.00 37.26 32.48 39.01 41.00 44.90 40.31 39.62 63.14 62.91
CoCoA-zero-8B 31.40 31.92 37.40 41.20 43.11 39.13 45.21 43.27 38.81 38.60 70.73 69.99
CoCoA-zero-70B 40.40 39.86 43.20 45.74 43.46 41.64 52.19 51.24 44.82 43.83 78.35 77.57

RALM w/ retrieval & w/ Training
Self-RAG 7B 37.40 17.93 33.40 20.57 44.64 25.75 40.47 44.46 44.25 15.64 66.30 37.27
Self-RAG 13B 38.80 22.61 35.40 21.64 45.87 25.31 43.99 48.60 44.39 16.14 68.74 38.22
DeepSeek-R1-Distill-8B 36.80 25.79 35.00 32.66 44.34 31.87 45.21 36.78 42.75 37.87 65.62 58.07
CoCoA-SFT-8B 41.00 36.87 39.40 46.31 42.96 41.32 48.28 48.25 43.25 42.21 70.72 70.39
CoCoA-DPO-8B 42.00 40.58 39.00 43.39 44.83 42.21 48.28 46.26 43.60 42.35 71.52 70.42

Table 1: EM/F1 of different methods experimented on six datasets. The best and second best scores are highlighted
in bold and underlined, respectively. ‡ represents the OOD (Out-of-Distribution) evaluation dataset.

2.4 Optimization Analysis278

We compare independent training and chain-of-279

agents training under a simplified two-step setting280

involving pre-generation processing followed by281

answer generation.282

Lindep = − logPθ(s|x, d)− logPϕ(â|s) (9)283

284
Lchain = − logPθ(s|x, d)− logPθ(â|x, d, s)

(10)285

Gradient comparison:286

∂Lchain
∂θ

=
∂Lindep

∂θ
+∆g (11)287

where ∆g := ∂
∂θ

[
− logPθ(â|x, s, d)

]
. ∆g288

captures feedback from the answer to the pre-289

processing, which is absent in independent training.290

Chain training is a special type of multi-task learn-291

ing that helps to break out of local optimization.292

The experimental results are in Section 3.6, and293

detailed derivations are in Appendix C.294

3 Experiments295

In this section, we report our experiments results,296

and provide a analysis of them.297

3.1 Implementation Details298

Training Data We sample subsets from the train-299

ing sets of HotpotQA (Ho et al., 2020a), 2WikiMul-300

tiHopQA (Ho et al., 2020b) and WebQuestions (Be-301

rant et al., 2013), then synthesize data using the302

CoCoA-zero and filter them based on gold answers. 303

This results in 6.8k filtered samples for SFT. For 304

DPO, we select 1151 samples, which are the ones 305

that are answered incorrectly by zero-shot but cor- 306

rectly by the CoCoA-zero framework. For each 307

sample, we gather 5 relevant passages using CON- 308

TRIEVER (Izacard et al., 2021). 309

Training Details We fine-tune LLaMA3.1-8B 310

with LoRA (r=16, α=16, dropout=0.05). During 311

SFT, we train for 5 epochs with a learning rate of 312

3e-5. For DPO, we used β=0.2 and α=0.2 (RPO), 313

with a learning rate of 5e-6. All experiments are 314

conducted on a single A100 GPU. 315

Inference Details During inference, we use Con- 316

triever (Izacard et al., 2021) as the retriever and 317

set k to 5. For all datasets, we use 21M English 318

Wikipedia (Karpukhin et al., 2020) dump as the 319

source passages for the retrieval. Prompts for the 320

experiments can be found in Appendix E. 321

3.2 Datasets and Evaluation Metrics 322

Eval Datasets To evaluate the effectiveness and 323

generalization of CoCoA, we conduct experi- 324

ments on three open-domain question answering 325

datasets: WebQuestions (Berant et al., 2013), Nat- 326

uralQuestions (Kwiatkowski et al., 2019), and 327

TriviaQA (Joshi et al., 2017), as well as three 328

multi-hop question answering benchmarks: Hot- 329

potQA (Ho et al., 2020a), 2WikiMultiHopQA (Ho 330

et al., 2020b), and PopQA_longtail (Asai et al., 331
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2023). Dataset statistics are summarized in Table 2,332

and further details are provided in Appendix A.333

Evaluation Metrics We report both exact match334

(EM) and F1 scores. Following Asai et al. (2023);335

Mallen et al. (2022), we adopt a non-strict EM met-336

ric that deems a prediction correct if it contains the337

gold answer, rather than requiring an exact string338

match. F1 measures token-level overlap between339

the predicted and gold answers. In our setting,340

longer responses often yield higher EM scores due341

to increased coverage, but may reduce F1 scores by342

introducing irrelevant content. Thus, considering343

both metrics provides a more balanced evaluation.344

Task Type Datasets # Samples

Multi-HopQA
2WikiMultiHopQA 500

HotpotQA 500
PopQA_longtail 1399

OpenQA
WebQuestions 2032

NaturalQA 3610
TriviaQA 11313

Table 2: Description of tasks and evaluation datasets.

3.3 Baselines345

We selected several of the most representative meth-346

ods for comparison. 1) StandardRAG, which347

is the most classic “retrieve-then-read” paradigm.348

2) Chain-Of-Thought (Wei et al., 2022): Uses349

CoT prompting to generate intermediate reason-350

ing steps before producing the final answer. 3)351

Chain-Of-Note (Yu et al., 2023): Refines and352

summarizes retrieved passages prior to answer-353

ing. 4) GenRead (Yu et al., 2022): Generates self-354

contained intermediate context to answer questions,355

effectively replacing retrieval with generation. 5)356

Self-RAG (Asai et al., 2023): Employs adaptive357

retrieval and self-reflection to decide when and358

how to use external knowledge. 6) DeepSeek-R1-359

Distill-8B (Guo et al., 2025): A distilled LLaMA-360

8B model released by DeepSeek-R1, trained on361

curated reasoning data. All retrieval-based meth-362

ods use top-5 passages. Other experimental settings363

follow those reported in the original papers.364

3.4 Main Results365

Experimental results are presented in Table 1, and366

we summarize the key findings as follows:367

Superiority and Generalization of CoCoA:368

Both our train-free framework CoCoA-zero and Co-369

CoA methods achieve state-of-the-art performance370

across almost all datasets. In particular, CoCoA im- 371

proves the EM and F1 of 2WikiMultiHopQA tasks 372

by 15.2% and 15.51% respectively. CoCoA-zero 373

improves the average EM and F1 of all tasks by 374

3.01% and 2.93% respectively, while other Train- 375

free methods are ineffective. Moreover, despite 376

being trained with limited data, CoCoA also per- 377

formed well on other out-of-distribution datasets, 378

demonstrating its robustness. 379

Advantage of CoCoA-zero Framework: 380

CoCoA-zero surpasses other train-free methods 381

by a clear margin and matches the performance of 382

StandardRAG with a 70B model while using only 383

an 8B LLM. Moreover, CoCoA-zero improves the 384

average EM of all tasks by 3.01% under the 8B 385

setting, and by 7.67% under the 70B setting. This 386

proves that larger models are more beneficial to our 387

collaboration, and also illustrates the importance 388

of internal knowledge of stronger LLMs. 389

CoCoA Training vs. Reasoning Distillation: 390

For the fine-tuning method, we used long-chain 391

training to achieve strong performance, which is 392

better than the 8B distilled version of DeepSeek-R1. 393

This suggests that in knowledge-intensive tasks, ex- 394

panding with chain-of-thought reasoning may be 395

less effective, while explicitly outputting internal 396

and external key knowledge proves more superior. 397

Benefit of Direct Preference Optimization: 398

Comparing our supervised and preference-aligned 399

variants, DPO training brings consistent improve- 400

ments across all datasets. This suggests that con- 401

trastive preference learning helps the model bet- 402

ter align collaborative responses with high-quality 403

multi-agent outputs. 404

Method 2WikiMQA HotpotQA WebQuestions

CoCoA-zero 31.66 39.30 41.12
w/o Internal 23.26 (↓ 8.40) 36.56 (↓ 2.74) 39.10 (↓ 2.02)
w/o External 28.97 (↓ 2.69) 30.96 (↓ 8.34) 38.97 (↓ 2.15)
w/o Thinking 30.38 (↓ 1.28) 37.17 (↓ 2.13) 39.75 (↓ 1.37)

Zero-Shot 18.55 (↓ 13.11) 35.01 (↓ 4.29) 35.38 (↓ 5.74)
StandardRAG 25.94 (↓ 5.72) 32.78 (↓ 6.52) 37.49 (↓ 3.63)

Table 3: Ablation study on knowledge induction and
decision-making. The zero-shot method for knowledge
integration in Section 2.3.2 is also included. The average
of EM and F1 is used for fair evaluation.

3.5 Ablation Study I: Different Modules 405

To better understand the contribution of each mod- 406

ule in CoCoA-zero, we conduct an ablation study 407
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Figure 4: Performance changes as the number of documents in the context changes.

by selectively removing internal/external induction408

and the reasoning mechanism.409

As shown in Table 3, removing internal induc-410

tion significantly degrades performance, especially411

by 8.4% on 2WikiMultiHopQA, indicating the im-412

portance of leveraging parametric knowledge. Sim-413

ilarly, excluding external induction also leads to414

a noticeable performance drop across all datasets,415

highlighting the complementary role of retrieved416

knowledge. Moreover, disabling the reasoning417

mechanism in decision making results in a mod-418

erate but consistent decrease, suggesting that ex-419

plicit reasoning over both knowledge contributes to420

deeper understanding and more accurate responses.421

To further verify the effectiveness of multi-agent422

collaboration and the rationale of negative sample423

selection in DPO training, we include a zero-shot424

variant using only prompt-based alignment with-425

out fine-tuning. As expected, it shows the lowest426

performance, confirming the need for learned coor-427

dination between internal and external knowledge.428

Overall, these results confirm the effectiveness429

of our multi-agent collaboration design, where each430

component plays a non-trivial role in achieving431

optimal performance.432

3.6 Ablation Study II: Training Strategies433

To evaluate the effectiveness of our training strat-434

egy for CoCoA, we conduct an ablation study435

comparing different training configurations on the436

LLaMA3.1-8B model. As shown in Table 4,437

“Long-DPO8B” achieves the best overall perfor-438

mance, confirming the benefit of aligning long-439

form outputs via Direct Preference Optimization.440

The “Short-SFT8B×3” variant, where each task441

segment is trained on a separate model, shows clear442

degradation in performance, especially on 2Wiki-443

MultiHopQA. This indicates that separating induc-444

tion and reasoning capabilities into isolated mod-445

ules weakens the model’s ability to holistically inte-446

grate information across steps. The “Short-SFT8B”447

variant, which combines three instruction capabili- 448

ties into a single model but retains short-form gen- 449

eration, performs better than “Short-SFT8B×3” but 450

still falls behind our approaches. This shows that 451

simply merging instructions is slightly less perfor- 452

mant than our long chain consolidation. 453

Our training strategy for CoCoA, represented by 454

“Long-DPO8B” and “Long-SFT8B” variants, ex- 455

plicitly models multi-agent collaboration as a uni- 456

fied long-form output. The superior performance of 457

these models underscores the advantage of training 458

models to generate cohesive and contextually rich 459

responses rather than fragmented predictions. This, 460

to a certain extent, provides new perspectives for 461

the expansion of knowledge-intensive long chains. 462

Method 2Wiki HotpotQA WebQ Average

Long-DPO8B 41.29 41.20 43.52 42.00
Long-SFT8B 38.94 42.86 42.14 41.31
Short-SFT8B 33.91 40.04 40.13 38.03

Short-SFT8B×3 28.31 40.58 39.84 36.24

Table 4: Ablation study of the training strategy for Co-
CoA. For simplicity and fairness, the average of EM
and F1 is used as the metric.

3.7 When the Number of K Changes 463

In order to better explore the robustness of our 464

CoCoA with respect to the number of documents, 465

we set K to vary in the interval [1, 3, 5, 10, 15, 466

20]. The results are shown in Fig. 4. Overall, our 467

method outperforms StandardRAG across differ- 468

ent values of K. Moreover, our method achieves 469

stronger performance than StandardRAG when 470

given less context. We speculate that this is because 471

our model can better utilize internal knowledge, es- 472

pecially when given less information. However, 473

our advantage decreases when the number of docu- 474

ments is too large. We speculate that this is due to 475

the long context bottleneck of the model. 476

In summary, our method demonstrates strong ro- 477

bustness across different context sizes and provides 478
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a practical solution in settings with limited external479

information or constrained retrieval capacity.480

3.8 Generalization to Non-QA Tasks481

To further evaluate the generalization ability of Co-482

CoA, we test its performance on fact verification483

and multiple-choice tasks. As shown in Figure484

5, our training did not reduce the performance of485

these tasks compared to standard RAG. In fact, in486

some cases, we even observed a slight improve-487

ment. One explanation is that our training strat-488

egy encourages collaborative output that leverages489

the capabilities of the LLM, rather than injecting490

knowledge directly, and thus possesses a certain491

degree of universality.492

Figure 5: Illustration of accuracy changes when trans-
ferring to non-QA tasks, with accuracy as the metric.

4 Related Works493

4.1 Retrieval-augmented Generation494

In recent years, in order to solve the problems of495

outdated knowledge in the model and hallucination496

of large language models, retrieval-augmented gen-497

eration has been introduced (Fan et al., 2024; Gao498

et al., 2023), and many efforts have been made in499

two aspects: “how to retrieve more relevant infor-500

mation” including retriever fine-tuning (Nian et al.,501

2024) and query optimization (Ma et al., 2023;502

Wang et al., 2023a, 2024a) and “how to better use503

the retrieved information to generate answers” in-504

cluding domain fine-tuning (Wang et al., 2024b;505

Zhang et al., 2024; Yue et al., 2025) and controlled506

decoding strategies (Shi et al., 2023). Our CoCoA507

falls into the second category: better utilization of508

knowledge.509

4.2 RAG Pipeline Optimization510

Pipeline optimization usually adds pre-generation511

processing, retrieval intent identification, or opti-512

mizes the pipeline as a whole. For example, Glass513

et al. (2022); Kim and Lee (2024) and Yu et al. 514

(2023) introduce reranking and refinement steps 515

before generation, mitigating the impact of noisy 516

retrieved passages. SKR (Wang et al., 2023b) and 517

UAR (Cheng et al., 2024) avoid unnecessary re- 518

trieval by adding retrieval intent identification pro- 519

cesses before generation. SURE(Kim et al., 2024a) 520

first generates multiple candidate answers and per- 521

forms conditional summary verification based on 522

the candidate answers, allowing LLMs to focus on 523

specific contexts. However, these methods either 524

overly emphasize external context and become de- 525

pendent on retrieval content, or overlook the syner- 526

gistic integration of the model’s internal knowledge 527

with retrieved external information, potentially lim- 528

iting answering performance. 529

4.3 RALM Enhancement 530

Retrieved-Augmented Language Model(RALM) 531

enhancement is usually achieved by adjusting the 532

language model to achieve effective use of the in- 533

formation. One common approach is to train the 534

language model itself. For example, RAFT (Zhang 535

et al., 2024) improves the model’s ability to re- 536

sist noise in external context by introducing noise 537

resistance training. REAR (Wang et al., 2024b) 538

achieves the model’s trade-off between external 539

context and internal knowledge by training the 540

model’s relevance-guided generation capabilities. 541

Self-RAG (Asai et al., 2023) trains LLMs to decide 542

whether to perform retrieval and to improve their 543

self-reflection ability. Another approach involves 544

guiding the decoding (Shi et al., 2023; Kim et al., 545

2024b). For instance, CAD (Shi et al., 2023) en- 546

forces absolute trust in retrieved information by 547

using contrastive decoding under the assumption 548

that external information is fully correct. However, 549

both approaches tend to underutilize the model’s in- 550

ternal knowledge, which may constrain the quality 551

and informativeness of its responses. 552

5 Conclusion 553

We present CoCoA, a retrieval-augmented genera- 554

tion framework that enhances LLM performance by 555

enabling effective collaboration between paramet- 556

ric and retrieved knowledge. Through a two-stage 557

multi-agent pipeline and the long-chain training 558

strategy, our method achieves strong performance 559

on QA tasks, highlighting CoCoA’s effectiveness 560

and providing a new insight into the long-chain 561

expansion of knowledge-intensive tasks. 562
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Limitations563

While CoCoA has demonstrated excellent perfor-564

mance and provided valuable insights into collab-565

oration with parametric and retrieved knowledge,566

there are still some limitations:567

• The current design focuses on a specific agent568

collaboration pattern via long-chain training.569

Its applicability to broader or alternative multi-570

agent architectures remains to be examined.571

• Our approach focuses on inducing knowledge,572

but does not explicitly capture non-knowledge573

cues (such as logical clues) that can be equally574

important for complex reasoning tasks.575

• Although the approach performs robustly un-576

der limited supervision, its scaling behavior577

with respect to larger models and datasets has578

not been systematically explored.579
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A Dataset777

Here, we introduce in detail the datasets we used,778

which are seven datasets on four tasks.779

2WikiMultiHopQA (Ho et al., 2020b) and Hot-780

potQA (Ho et al., 2020a): Both datasets are781

multi-hop question answering datasets based on782

Wikipedia. Considering the limitation of exper-783

imental cost, we used the sub-sampling set pub-784

lished by Trivedi et al. (2022); Kim et al. (2024a),785

which is obtained by extracting 500 questions from786

the validation set of each dataset.787

WebQuestions (Berant et al., 2013): Con-788

structed from questions posed by the Google Sug-789

gest API, where the answers are specific entities790

listed in Freebase.791

NaturalQA (Kwiatkowski et al., 2019): A792

dataset designed to support comprehensive QA sys-793

tems. It consists of questions from real Google794

search queries. The corresponding answers are text795

spans from Wikipedia articles, carefully identified796

by human annotators.797

TriviaQA (Joshi et al., 2017): A compilation798

of trivia questions paired with answers, both origi-799

nally pulled from online sources.800

PopQA_longtail (Asai et al., 2023): A long-tail801

subset of PopQA (Mallen et al., 2022), consist-802

ing of 1,399 rare entity queries whose monthly803

Wikipedia page views are less than 100.804

Training Data We sampled subsets from the805

training sets of HotpotQA (Ho et al., 2020a), 2Wiki-806

MultiHopQA (Ho et al., 2020b) and WebQues-807

tions (Berant et al., 2013), then used the CoCoA-808

zero framework to synthesize data and filtered them809

with gold answers. Finally, we selected 6.8k fil-810

tered samples, including 3k, 3k, and 0.8k from the811

three datasets, respectively. For the DPO training812

data, we screen out 1151 samples, which are the813

ones that are answered incorrectly by zero-shot but814

correctly by the CoCoA-zero. For each sample,815

we gathered 5 relevant passages using the most816

common retriever Contriever (Izacard et al., 2021).817

B Training Details818

We fine-tune LLaMA3.1-8B with LoRA (r=16,819

α=16, dropout=0.05) on a maximum input length820

of 2048. LoRA is applied to attention projection821

layers. During SFT, we trained for 5 epochs with a822

batch size of 1, gradient accumulation of 4, and a823

learning rate of 3e-5. For DPO, a β value of 0.2 is824

applied, using a sigmoid loss function, while RPO825

is configured with an α value of 0.2. The learning 826

rate was set to 5e-6 and other settings are the same 827

as SFT. During inference, we use the vllm (Kwon 828

et al., 2023) accelerated inference framework, and 829

to ensure repeatability, we set the temperature to 830

0.0. All experiments are conducted on a single 831

A100 GPU with 80GB or 40GB memory. 832

C Optimization Analysis 833

We analyze the difference between independent 834

training and long chain training in terms of the form 835

of loss. We simplify the steps in this analysis, i.e., 836

there are only two steps in the chain, pre-generation 837

processing first and then answering. 838

When the two agents optimize independently, 839

the loss takes the following form: 840

Lindep = − logPθ

(
s | x, d

)
− logPϕ

(
â | s

)
.
(12) 841

Here, θ and θ′ are optimized independently. 842

When two agents use long chain optimization, 843

the loss is as follows: 844

Lchain = − logPθ

(
s, â | x, d

)
= − logPθ

(
s | x, d

)
− logPθ

(
â | x, d, s

)
.

(13) 845

Gradient propagation: 846

847

The gradient of the first term in Eq. (12) is, 848

∂Lindep

∂θ
=

∂
[
− logPθ(s | x, d)

]
∂θ

(14) 849

The gradient of the Eq. (13) is, 850

∂Lchain

∂θ
=

∂
[
− logPθ(s | x, d)

]
∂θ

+
∂
[
− logPθ(â | x, s, d)

]
∂θ

= (14) + ∆g

(15) 851

∆g :=
∂
[
− logPθ(â | x, s, d)

]
∂θ

. (16) 852

Here, ∆g is the additional gradient that the 853

answer-loss naturally back-propagates to the pre- 854

processing parameters when the same network θ 855

produces both tokens. In the independent setting 856

∆g = 0 by construction, so the preprocessor never 857

“hears” whether the answer is correct, which is 858

not conducive to the consistency of the response. 859

The chain objective restores this missing credit as- 860

signment signal, thus performing a special kind of 861

multi-task learning on both stages, optimizing them 862

instead of each in isolation, potentially helping to 863

escape from local optimal solutions. 864
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Method
2WikiMultiHopQA HotpotQA WebQuestions
EM F1 Avg EM F1 Avg EM F1 Avg

CoCoA-zero 31.40 31.92 31.66 37.40 41.20 39.30 43.11 39.13 41.12
w/o Thinking 30.00 30.76 30.38 36.00 38.34 37.17 39.17 40.32 39.75
w/o Internal 22.60 23.93 23.26 34.00 39.11 36.56 40.01 38.20 39.10
w/o External 28.40 29.53 28.97 30.00 31.92 30.96 39.81 38.13 38.97

Zero-Shot 17.60 19.51 18.55 33.20 36.81 35.01 34.45 36.31 35.38
Standard RAG 26.80 25.07 25.94 31.40 34.16 32.78 37.65 37.32 37.49

Table 5: Ablation study of internal/external induction and reasoning in decision making. In addition, a zero-shot
method for explicit internal and external knowledge integration is added for comparison. For simplicity and fairness,
the average of EM and F1 is used as the metric.

Method
2WikiMultiHopQA HotpotQA WebQuestions

EM F1 Avg EM F1 Avg EM F1 Avg

Long-DPO8B 42.00 40.58 41.29 39.00 43.39 41.20 44.83 42.21 43.52
Long-SFT8B 41.00 36.87 38.94 39.40 46.31 42.86 42.96 41.32 42.14
Short-SFT8B 28.60 28.03 28.31 39.00 42.15 40.58 41.19 38.48 39.84

Short-SFT8B×3 35.00 32.81 33.91 37.60 42.48 40.04 41.29 38.96 40.13

Table 6: Ablation study of the training strategy for CoCoA. For simplicity and fairness, the average of EM and F1 is
used as the metric

D Full Results865

We supplemented the detailed results of the abla-866

tion experiment as shown in Table 5 and Table 6.867

E Prompt Templates868

All the prompt templates used by our proposed Co-869

CoA are shown in Table 9 and Table 8. And special870

instructions are added to section 3.8 corresponding871

to different tasks as shown in Table 7.872

Task Task Instruction

ARC-C

Given four answer candidates, A,
B, C and D, choose the best an-
swer choice. Please answer with
the capitalized alphabet only, with-
out adding any extra phrase or pe-
riod. Do not exceed one word.

PubHealth

Is the following statement correct
or not? Say true if it’s correct; oth-
erwise say false. Don’t capitalize
or add periods, just say "true" or
"false". Do not exceed one word.

Table 7: Full list of instructions used during zero-shot
evaluations. For open-domain QA, we don’t use any
task specific instruction.

Task:Prompt used by “CoCoA”

### Instruction:
1. First, provide background for the question.
Write a passage that is relevant to the question
only based on your knowledge.
2. Second, refer to the provided passages to
generate a summary. Cite and write a passage
that is relevant to the question only based on the
provided passages.
3. Third, refer to the information from the
above two sources, verify the accuracy of the
facts and the consistency of the logic, and
predict the final answer.
### Passages:\n{passages}\n
### Question:\n{question}
### Generate Format:
<Internal>\nxxx (your background based on
your knowledge)\n<\\Internal>
<External>\nxxx (your summary based on the
provided passages)\n<\\External>
<Thinking>\nxxx\n<\\Thinking>
<Answer>\nxxx (your short answer consisting
of only a few words)<\\Answer>

Table 8: The prompt used by “CoCoA”.
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Task Task Instruction

External
Candidate

### Passages:\n {passages}\n\n
### Instruction:\n Answer the question below concisely in a few words.\n\n
### Input:\n{question}\n

External
Induction

### Instruction:\n Refer to the provided passages to generate a summary that meets
the following conditions:\n
1. Cite and Write a passage that can support the prediction about the question only
based on the provided passages.\n
2. No more than 200 words.\n
3. Do not respond with anything other than the S̈ummary.̈\n
### Passages:\n {passages}\n\n
### Question:\n {question}\n
### Prediction:\n {answer}\n\n
### Generate Format:\n
### Summary: xxx\n

Internal
Candidate

### Instruction:\n Answer the question below concisely in a few words.\n\n
### Input:\n{question}\n

Internal
Induction

### Instruction:\n Please provide background for the question that meets the follow-
ing conditions:\n
1. Write a passage that can support the prediction about the question only based on
your knowledge.\n
2. No more than 200 words.\n
3. Do not respond with anything other than the B̈ackground.̈\n
### Question:\n {question}\n
### Prediction:\n {answer}\n\n
### Generate Format:\n
### Background: xxx\n

Decision-
Making

### Internal Reasoning Path: \n{inductionin}\n\n ### Internal Prediction 1:
\n{answerin}\n\n
### External Reasoning Path: \n{inductionex}\n\n ### External Prediction 2:
\n{answerex}\n\n
### Instruction:\n
Refer to the information from the above two sources, verify the accuracy of the facts
and the consistency of the logic, and choose the best prediction.
### Question:\n{question}\n
### Generate Format:\n
### Thingking: xxx (Please think step by step)\n
### Short Answer: xxx (just in a few words)\n

Table 9: A list of prompts used by CoCoA-zero.
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