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Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a promising framework for enhanc-
ing the capabilities of Large Language Mod-
els (LLMs), especially in knowledge-intensive
tasks. Despite its advantages, current RAG
methods often struggle to fully exploit knowl-
edge during generation. In particular, the syn-
ergy between the model’s internal parametric
knowledge and external retrieved knowledge
remains limited. Retrieved contents may some-
times mislead generation, while certain gener-
ated content can guide the model toward more
accurate outputs. In this work, we propose
Collaborative Chain-of-Agents, a framework
designed to enhance synergy over both para-
metric and retrieved knowledge. Specifically,
we first introduce CoCoA-zero, a training-free
multi-agent RAG framework that first performs
knowledge induction and then generates an-
swers. Further, we develop a long-chain train-
ing strategy for CoCoA, which synthesizes
long trajectories from the CoCoA-zero frame-
work to fine-tune LLMs, improving their abil-
ity to explicitly integrate and collaboratively
leverage internal and external knowledge. Ex-
perimental results demonstrate the superiority
of CoCoA in open-domain QA and multi-hop
QA. Our code will be available on GitHub.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023) have demonstrated
strong performance across a wide range of natural
language tasks. However, the knowledge they rely
on is embedded in their parameters and cannot be
easily updated as new information emerges (Ji et al.,
2023; He et al., 2022). To address this limitation,
the Retrieval Augmented Generation (RAG) frame-
work introduces an external retrieval component
that brings in external knowledge and integrates it
into the input context of the LLMs. This design
has led to notable improvements in various natu-
ral language processing applications (Gao et al.,
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Figure 1: Evaluation on three datasets 2WikiMulti-
HopQA, HotpotQA, and WebQuestions. The Merge
method is a simple strategy we use to verify the collab-
oration of internal and external knowledge. It directly
generates a passage and merges it into the retrieved pas-
sages as the context of the LLM.

2023; Lewis et al., 2020). Existing research has
primarily aimed to improve two aspects of RAG: re-
trieving more relevant information during retrieval
and better utilizing that information to guide gener-
ation during generation. Despite these efforts, most
retrieval-augmented language models (RALMs)
still emphasize external retrieval, while paying in-
sufficient attention to the rich internal knowledge
already encoded in model parameters. This internal
knowledge is especially valuable for open-domain
question answering, where many queries are fac-
tual and often already covered during pretraining.
Specifically, as the knowledge in LLM’s param-
eter becomes richer and the abilitiy of the LLM
becomes stronger, sometimes answers with search
information are not as good as direct answers. To
validate the necessity of collaboratively synergiz-
ing internal (or parametric) and external (or re-
trieved) knowledge, we conduct experiments to
compare performance. As shown in Fig. 1, across
the three evaluation tasks, direct generation and
GenRead (Yu et al., 2022) (use explicitly generated
content) sometimes shows stronger performance.
Also, we conduct a test experiment, “Merge”, that
explicitly integrates internal and external knowl-
edge by generating a passage and retrieving the
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Figure 2: Illustration of the CoCoA framework. The top part is CoCoA-zero, a multi-agent collaboration framework.
It integrates internal and external knowledge in a collaborative manner by first performing knowledge induction and
then making decisions. The bottom part is the training strategy, which is based on CoCoA-zero and combines the
trajectories of different agents into long chains to train and enhance the integration ability of the LLM.

passages as the final context simultaneously, as
shown in Fig. 1. Its performance on multiple data
sets is better than direct generation and generation
with retrieval, which further verifies the potential
of internal and external knowledge collaboration.

Existing methods solve the problem of knowl-
edge collaboration through RAG pipeline optimiza-
tion. Some approaches alleviate this through work-
flow or multi-module collaboration. For example,
SURE (Kim et al., 2024a) generates multiple can-
didate answers and verifies them one by one to en-
sure reliability. CON (Yu et al., 2023) alleviates the
harmful effects of external information by adding a
processing chain. There are also some approaches
that solve the problem of knowledge collabora-
tion through enhanced training of the LLM. For
instance, RAFT (Zhang et al., 2024) employs anti-
noise training to enable the model to effectively uti-
lize internal knowledge when external documents
contain noise, while Self-RAG (Asai et al., 2023)
learns to determine whether retrieval is needed in
advance, thereby avoiding harmful content before
retrieval. Despite these efforts, existing work still
has notable limitations. On the one hand, methods
like SURE tend to lose effectiveness as LLMs be-
come more capable. On the other hand, Self-RAG
and related methods cannot fully benefit from in-
ternally generated content.

To address the above challenges, we introduce

CoCoA, which consists of a multi-agent reasoning
framework and a training strategy that combines
multi-agent trajectories into long chains to enhance
LLM performance. Specifically, we first introduce
CoCoA-zero, which features three agents: one
for extracting pre-trained knowledge, one for re-
trieving external data, and one for making deci-
sions by integrating both. This not only enables
explicit construction of decoupled internal and ex-
ternal knowledge, but also provides collaborative
reasoning traces for the training. Based on CoCoA-
zero, we further introduce a train strategy for Co-
CoA, which significantly improves performance
on knowledge-intensive tasks by integrating the
collaborative capabilities of multi- agents into one
model.

In general, our contributions can be summarized
as follows:

* We introduce CoCoA-zero, a multi-agent
framework that coordinates parametric and
retrieved knowledge for improved generation.

* We develop a training paradigm for CoCoA,
which distills multi-agent reasoning into long-
chain, enabling LLMs to better exploit both
internal and external knowledge.

* Extensive experiments demonstrate CoCoA’s
effectiveness, offering insights for inference-
time scaling on knowledge-intensive tasks.



2 Methodology

In this section, we present CoCoA-zero and Co-
CoA, as illustrated in Fig. 2. We first describe the
multi-agent framework, CoCoA-zero, followed by
the long-chain training strategy for CoCoA. The
algorithm is presented in 1.

2.1 Preliminaries

We formalize the standard Retrieval-Augmented
Generation framework. Given a query ¢ and a
corpus D, the RAG system retrieves k relevant
passages C' = {c1, ¢, -+ , ¢} C D and generates
an answer @ based on the combined input. This
process follows a retrieve-then-generate paradigm
and can be formulated as:

C = R(q7 D? k)?

4 =G(P(.0)), v

where R is the retriever, P is the prompt construc-
tor that formats ¢ and C, and G is the generator
(e.g., a LLM) that predicts the final answer a.

2.2 Two-stage RAG Framework: CoCoA-zero

In this section, we present our multi-agent RAG
framework, CoCoA-zero, which also functions as
the data synthesis pipeline for CoCoA. Stage 1 em-
ploys two specialized agents to induce knowledge
from internal parameters and external retrieval,
while Stage 2 introduces a third agent to synthesize
their outputs for high-level decision-making.

2.2.1 Stage I: Knowledge Induction

It is challenging to extract implicit knowledge
solely from the model’s internal knowledge or re-
trieved passages. Inspired by GenRead (Yu et al.,
2022) and SURE (Kim et al., 2024a), we design
two dedicated agents for knowledge induction.
Each agent first generates an answer to the ques-
tion and then summarizes knowledge based on that
answer.

Induction of Internal Knowledge. Directly al-
lowing the model to explicitly generate its own
internal knowledge is difficult to control and will
inevitably result in sparse or inconsistent knowl-
edge being generated. Following SURE (Kim et al.,
2024a), we introduce conditional induction. Specif-
ically, the Internal Knowledge Agent samples a
candidate a;, from the LLM based on the question:

ain = G(P(q)) 2

We then prompt the model to generate a knowl-
edge passage si, conditioned on ¢ and a;,, which
reflects the model’s internal understanding:

sin = G(P(gq, ain))- 3)

Induction of External Knowledge. For retrieved
passages, the External Knowledge Agent follows a
similar procedure. Specially, it first retrieve some
passages C' = {c1,ca,- -, cx} from the corpus D.
Conditioned on both ¢ and C), it produces a second
candidate aex¢:

aex = G(P(q,C)) ()

Then, conditioned on ¢, aex and C, the agent in-
duces the external knowledge passage sex, :

Sex = G(P(q, aex, C)). 5)

This conditional knowledge induction frame-
work enhances the model’s ability to articulate rele-
vant knowledge, providing a strong foundation for
the high-level decision-making in the next stage.

2.2.2 Stage II: High-level Decision Making

Building on the candidate answers and inductive
knowledge obtained in Stage I, the second stage
leverages the LLLM’s reasoning ability to perform
high-level decision making.

Specifically, the Decision-Making Agent adopts
COT (Wei et al., 2022) reasoning over the inter-
nal and external candidate answers and their corre-
sponding knowledge. It will be prompted with all
five components (questions, internal and external
candidate answers and their corresponding induc-
tive knowledge) and generate the final answer a
through COT.

coty,a = G(Pcot(Q7 Siny Ainy Sex, aex)) (6)

Here, cot, denotes the reasoning path that guides
the final answer generation.

The model thereby functions as a high-level ag-
gregator, reinforcing potentially consistent beliefs
and resolving potential conflicts between internal
beliefs and retrieved evidence. By explicitly mod-
eling and comparing knowledge before committing
to an answer, our framework improves the trans-
parency and robustness of the decision process.

2.3 Training Strategy for CoCoA

Although multi-agent collaboration for internal and
external knowledge coordination is simple and ef-
fective, how to achieve global optimization across
multiple agents remains non-trivial.



SFT DPO
Query + Passages CoCoA-zero
[ ? ' + \u
=l ‘ Y=
,—‘I 1: ‘ *\‘I

ZeroShot-Long

Figure 3: Illustration of the training for CoCoA.

To this end, we propose the collaborative Chain-
of-Agents training strategy, which aims to optimize
multi-agent collaboration end to end by supervis-
ing the LLM on long-form reasoning trajectories.
These trajectories are synthesized from the multi-
agent pipeline described in Section 2.2 and reflect
the full reasoning process that integrates both para-
metric and retrieved knowledge.

2.3.1 Supervised Fine-Tuning

The CoCoA-zero framework is designed to (1) con-
trol the direction of knowledge generation via con-
ditional induction, (2) decouple internal and ex-
ternal knowledge through parallel reasoning paths,
and (3) integrate both sources through Chain-of-
Thought decision making.

To supervise the model to achieve explicit and
collaborative knowledge integration, we synthesize
training samples by concatenating the intermediate
results produced by CoCoA-zero into a single long-
form response. Specifically, given a question ¢ and
a set of retrieved documents C', we integrate the
intermediate results from the CoCoA-zero pipeline
(i.e., internal induction s;,, external induction Sey,
the CoT reasoning trace cot, during integration
and the final answer @ ) into a long response y
and promote the evolution of model capabilities
through the following supervision objectives:

ESFT = _]E(;t,y)N'D [log PQ(Sina Sex, COla, a | q, d)j| .

(N

This stage explicitly exposes the model to collab-
orative long samples, where the target outputs are
synthesized based on the outputs of CoCoA-zero.

2.3.2 Direct Preference Optimization

To further enhance the model’s ability to integrate
internal and external knowledge, we perform Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) following the SFT stage.

Specifically, we first prompt the LLM to gen-
erate structured long-form responses in a zero-
shot setting and observe that the results are sig-
nificantly inferior to those from the CoCo-zero

pipeline. Motivated by this, we construct training
instances where CoCoA-zero outputs serve as pre-
ferred responses i+, and zero-shot outputs serve
as rejected responses y~. Each training instance
includes a context x = (g, d), a preferred response
YT = (Sint D Sext Bt @ a) from the CoCo-zero, and
a rejected response y~ from the ZeroShort-Long
baseline.

The DPO objective encourages the model to pre-
fer 4y over y~ by optimizing:

ﬁDpo(ﬂ'g) = - E(z,y*,y*)ND [log 0'(
B -logmo(y™|z) — B - logme(y~|z))
+a- (—logmy(y*|z))]

(®)
where 7y(y|z) denotes the unnormalized log-
probability of response y under the model 6.

Intuitively, the zero-shot prompting is a simple
compliance with instructions, which will produce
entangled reasoning. In contrast, CoCo-zero will
produce a path of internal and external knowledge
collaboration, resulting in a more reliable answer.

DPO thus bridges symbolic multi-agent collab-
oration and end-to-end generation, enabling the
model to internalize structured reasoning through
preference-based supervision.

Algorithm 1 CoCoA: Example of one sample
Input: Query ¢, corpus D, hyperparameters k
Output: Final answer & or training sample y
1: CoCoA-zero:
1: aip < Gin(P(q))
2: Sip Gin(,P(q, ain))
knowledge induction
3: C+ R(¢,D,K)
4: aex —— Gex(P(q, ()
5: Sex < Gex(P(q, aex, C))
knowledge induction
6: (coty, @) < Gam(P(q, Sin, Sex, Uin, Gex))
> Decision making

> Candidate
> Internal

> Top-K retrieval
> Candidate
> External

2: if Supervised Fine-tuning then
3: Y < (Sin D Sex D coty, @ a) > Target
4: Update model with Lgpr in Eq. 7.
5. end if
6: if DPO Training then
7.y« G(Pzs(q,0))
8: YT < (Sin D Sex ® coty @ a)
9: Update model with Lppo in Eq. 8,
10: end if

11: return a or the trained model CoCoA




Method 2WikiMQA HotpotQA  WebQuestions  NaturalQA*  PopQA_longtailf  TriviaQA*
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Llama-3.1-Instruct Train-free & w/o retrieval
Llama-3.1-8B 27.60 28.35 24.00 27.09 40.11 3998 3391 3569 22.59 23.48 62.87 64.17
Llama-3.1-8B+COT 23.80 26.55 2620 3226 38.04 3943 3651 38.78 23.23 24.14 6490 66.98
Llama-3.1-8B+GenRead 24.00 2392 29.20 31.15 29.53 29.67 30.39 31.22 2645 26.42 54.12 5429
Llama-3.1-Instruct Train-free & w/ retrieval
Llama-3.1-8B+StrandardRAG  26.80 25.07 3140 34.16 37.65 37.32 45.01 4437 40.89 38.51 66.83 67.16
Llama-3.1-8B+COT 2240 2525 3240 38.71 3573 36.17 42.85 4328 39.60 37.93 65.85 67.54
Llama-3.1-8B+CON 19.00 21.32 32.80 38.67 3440 38.05 43.19 4543 39.17 38.71 65.64 66.82
Llama-3.1-8B+SURE 18.40 21.32 32.00 37.26 3248 39.01 41.00 4490 4031  39.62 63.14 6291
CoCoA-zero-8B 3140 31.92 3740 41.20 43.11 39.13 4521 43.27 38.81 38.60 70.73  69.99
RALM w/ retrieval & w/ Training
Self-RAG 7B 3740 17.93 3340 20.57 44.64 2575 4047 4446 44.25 15.64 66.30 37.27
Self-RAG 13B 38.80 22.61 3540 21.64 4587 2531 4399 48.60 44.39 16.14 68.74 38.22
DeepSeek-R1-Distill-8B 36.80 25.79 35.00 32.66 4434 31.87 4521 36.78 42775 37.87 65.62 58.07
CoCoA-SFT-8B 41.00 36.87 39.40 4631 4296 41.32 48.28 48.25 43.25 42.21 70.72 70.39
CoCoA-DPO-8B 42.00 40.58 39.00 43.39 44.83 42.21 4828 46.26 43.60 42.35 71.52  70.42

Table 1: EM/F1 of different methods experimented on six datasets. The best and second best scores are highlighted
in bold and underlined, respectively. 1 represents the OOD (Out-of-Distribution) evaluation dataset.

2.4 Optimization Analysis

We compare independent training and chain-of-
agents training under a simplified two-step setting
involving pre-generation processing followed by
answer generation.

Lindep = — log Py(s|x,d) —log Py(als) (9)

Lchain = —log Py(s|x,d) — log Py(alx, d, s)
(10)
Gradient comparison:

OLchain  dLindep n
o0 00

Ay (11)
where A, = 8% [—log Py(alz,s,d)]. A,
captures feedback from the answer to the pre-
processing, which is absent in independent training.
Chain training is a special type of multi-task learn-
ing that helps to break out of local optimization.
The experimental results are in Section 3.6, and
detailed derivations are in Appendix C.

3 Experiments

In this section, we report our experiments results,
and provide a analysis of them.

3.1 Implementation Details

Training Data We sample subsets from the train-
ing sets of HotpotQA (Ho et al., 2020a), 2WikiMul-
tiHopQA (Ho et al., 2020b) and WebQuestions (Be-
rant et al., 2013), then synthesize data using the

CoCoA-zero and filter them based on gold answers.
This results in 6.8k filtered samples for SFT. For
DPO, we select 1151 samples, which are the ones
that are answered incorrectly by zero-shot but cor-
rectly by the CoCoA-zero framework. For each
sample, we gather 5 relevant passages using CON-
TRIEVER (Izacard et al., 2021).

Training Details We fine-tune LLaMA3.1-8B
with LoRA (r=16, a=16, dropout=0.05). During
SFT, we train for 5 epochs with a learning rate of
3e-5. For DPO, we used 5=0.2 and a=0.2 (RPO),
with a learning rate of 5e-6. All experiments are
conducted on a single A100 GPU.

Inference Details During inference, we use Con-
triever (Izacard et al., 2021) as the retriever and
set k to 5. For all datasets, we use 21M English
Wikipedia (Karpukhin et al., 2020) dump as the
source passages for the retrieval. Prompts for the
experiments can be found in Appendix E.

3.2 Datasets and Evaluation Metrics

Eval Datasets To evaluate the effectiveness and
generalization of CoCoA, we conduct experi-
ments on three open-domain question answering
datasets: WebQuestions (Berant et al., 2013), Nat-
uralQuestions (Kwiatkowski et al., 2019), and
TriviaQA (Joshi et al., 2017), as well as three
multi-hop question answering benchmarks: Hot-
potQA (Ho et al., 2020a), 2WikiMultiHopQA (Ho
et al., 2020b), and PopQA_longtail (Asai et al.,



2023). Dataset statistics are summarized in Table 2,
and further details are provided in Appendix A.

Evaluation Metrics We report both exact match
(EM) and F1 scores. Following Asai et al. (2023);
Mallen et al. (2022), we adopt a non-strict EM met-
ric that deems a prediction correct if it contains the
gold answer, rather than requiring an exact string
match. F1 measures token-level overlap between
the predicted and gold answers. In our setting,
longer responses often yield higher EM scores due
to increased coverage, but may reduce F1 scores by
introducing irrelevant content. Thus, considering
both metrics provides a more balanced evaluation.

Task Type Datasets # Samples
2WikiMultiHopQA 500
Multi-HopQA HotpotQA 500
PopQA _longtail 1399
WebQuestions 2032
OpenQA NaturalQA 3610
TriviaQA 11313

Table 2: Description of tasks and evaluation datasets.

3.3 Baselines

We selected several of the most representative meth-
ods for comparison. 1) StandardRAG, which
is the most classic “retrieve-then-read” paradigm.
2) Chain-Of-Thought (Wei et al., 2022): Uses
CoT prompting to generate intermediate reason-
ing steps before producing the final answer. 3)
Chain-Of-Note (Yu et al., 2023): Refines and
summarizes retrieved passages prior to answer-
ing. 4) GenRead (Yu et al., 2022): Generates self-
contained intermediate context to answer questions,
effectively replacing retrieval with generation. 5)
Self-RAG (Asai et al., 2023): Employs adaptive
retrieval and self-reflection to decide when and
how to use external knowledge. 6) DeepSeek-R1-
Distill-8B (Guo et al., 2025): A distilled LLaMA-
8B model released by DeepSeek-R1, trained on
curated reasoning data. All retrieval-based meth-
ods use top-5 passages. Other experimental settings
follow those reported in the original papers.

3.4 Main Results

Experimental results are presented in Table 1, and
we summarize the key findings as follows:

Superiority and Generalization of CoCoA:
Both our train-free framework CoCoA-zero and Co-
CoA methods achieve state-of-the-art performance

across almost all datasets. In particular, CoCoA im-
proves the EM and F1 of 2WikiMultiHopQA tasks
by 15.2% and 15.51% respectively. CoCoA-zero
improves the average EM and F1 of all tasks by
3.01% and 2.93% respectively, while other Train-
free methods are ineffective. Moreover, despite
being trained with limited data, CoCoA also per-
formed well on other out-of-distribution datasets,
demonstrating its robustness.

Advantage of CoCoA-zero Framework:
CoCoA-zero surpasses other train-free methods
by a clear margin and matches the performance of
StandardRAG with a 70B model while using only
an 8B LLM. Moreover, CoCoA-zero improves the
average EM of all tasks by 3.01% under the 8B
setting, and by 7.67 % under the 70B setting. This
proves that larger models are more beneficial to our
collaboration, and also illustrates the importance
of internal knowledge of stronger LLMs.

CoCoA Training vs. Reasoning Distillation:
For the fine-tuning method, we used long-chain
training to achieve strong performance, which is
better than the 8B distilled version of DeepSeek-R1.
This suggests that in knowledge-intensive tasks, ex-
panding with chain-of-thought reasoning may be
less effective, while explicitly outputting internal
and external key knowledge proves more superior.

Benefit of Direct Preference Optimization:
Comparing our supervised and preference-aligned
variants, DPO training brings consistent improve-
ments across all datasets. This suggests that con-
trastive preference learning helps the model bet-
ter align collaborative responses with high-quality
multi-agent outputs.

Method 2WikiMQA HotpotQA WebQuestions
CoCoA-zero  31.66 39.30 41.12
w/o Internal ~ 23.26 (1 8.40)  36.56 (] 2.74) 39.10 (] 2.02)
w/o External  28.97 (] 2.69)  30.96 (] 8.34) 38.97 (] 2.15)
w/o Thinking 30.38 (| 1.28)  37.17 (] 2.13) 39.75 () 1.37)
Zero-Shot 18.55 (L 13.11) 35.01 (] 4.29) 35.38(]5.74)
StandardRAG 2594 (1. 5.72)  32.78 (] 6.52) 37.49 (] 3.63)

Table 3: Ablation study on knowledge induction and
decision-making. The zero-shot method for knowledge
integration in Section 2.3.2 is also included. The average
of EM and F1 is used for fair evaluation.

3.5 Ablation Study I: Different Modules

To better understand the contribution of each mod-
ule in CoCoA-zero, we conduct an ablation study
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Figure 4: Performance changes as the number of documents in the context changes.

by selectively removing internal/external induction
and the reasoning mechanism.

As shown in Table 3, removing internal induc-
tion significantly degrades performance, especially
by 8.4% on 2WikiMultiHopQA, indicating the im-
portance of leveraging parametric knowledge. Sim-
ilarly, excluding external induction also leads to
a noticeable performance drop across all datasets,
highlighting the complementary role of retrieved
knowledge. Moreover, disabling the reasoning
mechanism in decision making results in a mod-
erate but consistent decrease, suggesting that ex-
plicit reasoning over both knowledge contributes to
deeper understanding and more accurate responses.

To further verify the effectiveness of multi-agent
collaboration and the rationale of negative sample
selection in DPO training, we include a zero-shot
variant using only prompt-based alignment with-
out fine-tuning. As expected, it shows the lowest
performance, confirming the need for learned coor-
dination between internal and external knowledge.

Overall, these results confirm the effectiveness
of our multi-agent collaboration design, where each
component plays a non-trivial role in achieving
optimal performance.

3.6 Ablation Study II: Training Strategies

To evaluate the effectiveness of our training strat-
egy for CoCoA, we conduct an ablation study
comparing different training configurations on the
LLaMA3.1-8B model. As shown in Table 4,
“Long-DPOgp” achieves the best overall perfor-
mance, confirming the benefit of aligning long-
form outputs via Direct Preference Optimization.
The “Short-SFTgp«3” variant, where each task
segment is trained on a separate model, shows clear
degradation in performance, especially on 2Wiki-
MultiHopQA. This indicates that separating induc-
tion and reasoning capabilities into isolated mod-
ules weakens the model’s ability to holistically inte-
grate information across steps. The “Short-SFTsp”

variant, which combines three instruction capabili-
ties into a single model but retains short-form gen-
eration, performs better than “Short-SFTgp«3” but
still falls behind our approaches. This shows that
simply merging instructions is slightly less perfor-
mant than our long chain consolidation.

Our training strategy for CoCoA, represented by
“Long-DPOgy” and “Long-SFTgp” variants, ex-
plicitly models multi-agent collaboration as a uni-
fied long-form output. The superior performance of
these models underscores the advantage of training
models to generate cohesive and contextually rich
responses rather than fragmented predictions. This,
to a certain extent, provides new perspectives for
the expansion of knowledge-intensive long chains.

Method 2Wiki HotpotQA WebQ Average
Long-DPOgp  41.29 41.20 43.52 42.00
Long-SFTgp  38.94 42.86 42.14 4131
Short-SFTgsp  33.91 40.04 40.13 38.03

Short-SFTgpx3  28.31 40.58 39.84  36.24

Table 4: Ablation study of the training strategy for Co-
CoA. For simplicity and fairness, the average of EM
and F1 is used as the metric.

3.7 When the Number of K Changes

In order to better explore the robustness of our
CoCoA with respect to the number of documents,
we set K to vary in the interval [1, 3, 5, 10, 15,
20]. The results are shown in Fig. 4. Overall, our
method outperforms StandardRAG across differ-
ent values of K. Moreover, our method achieves
stronger performance than StandardRAG when
given less context. We speculate that this is because
our model can better utilize internal knowledge, es-
pecially when given less information. However,
our advantage decreases when the number of docu-
ments is too large. We speculate that this is due to
the long context bottleneck of the model.

In summary, our method demonstrates strong ro-
bustness across different context sizes and provides



a practical solution in settings with limited external
information or constrained retrieval capacity.

3.8 Generalization to Non-QA Tasks

To further evaluate the generalization ability of Co-
CoA, we test its performance on fact verification
and multiple-choice tasks. As shown in Figure
5, our training did not reduce the performance of
these tasks compared to standard RAG. In fact, in
some cases, we even observed a slight improve-
ment. One explanation is that our training strat-
egy encourages collaborative output that leverages
the capabilities of the LLM, rather than injecting
knowledge directly, and thus possesses a certain
degree of universality.
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Figure 5: Illustration of accuracy changes when trans-
ferring to non-QA tasks, with accuracy as the metric.

4 Related Works

4.1 Retrieval-augmented Generation

In recent years, in order to solve the problems of
outdated knowledge in the model and hallucination
of large language models, retrieval-augmented gen-
eration has been introduced (Fan et al., 2024; Gao
et al., 2023), and many efforts have been made in
two aspects: “how to retrieve more relevant infor-
mation” including retriever fine-tuning (Nian et al.,
2024) and query optimization (Ma et al., 2023;
Wang et al., 2023a, 2024a) and “how to better use
the retrieved information to generate answers” in-
cluding domain fine-tuning (Wang et al., 2024b;
Zhang et al., 2024; Yue et al., 2025) and controlled
decoding strategies (Shi et al., 2023). Our CoCoA
falls into the second category: better utilization of
knowledge.

4.2 RAG Pipeline Optimization

Pipeline optimization usually adds pre-generation
processing, retrieval intent identification, or opti-
mizes the pipeline as a whole. For example, Glass

et al. (2022); Kim and Lee (2024) and Yu et al.
(2023) introduce reranking and refinement steps
before generation, mitigating the impact of noisy
retrieved passages. SKR (Wang et al., 2023b) and
UAR (Cheng et al., 2024) avoid unnecessary re-
trieval by adding retrieval intent identification pro-
cesses before generation. SURE(Kim et al., 2024a)
first generates multiple candidate answers and per-
forms conditional summary verification based on
the candidate answers, allowing LLMs to focus on
specific contexts. However, these methods either
overly emphasize external context and become de-
pendent on retrieval content, or overlook the syner-
gistic integration of the model’s internal knowledge
with retrieved external information, potentially lim-
iting answering performance.

4.3 RALM Enhancement

Retrieved-Augmented Language Model(RALM)
enhancement is usually achieved by adjusting the
language model to achieve effective use of the in-
formation. One common approach is to train the
language model itself. For example, RAFT (Zhang
et al., 2024) improves the model’s ability to re-
sist noise in external context by introducing noise
resistance training. REAR (Wang et al., 2024b)
achieves the model’s trade-off between external
context and internal knowledge by training the
model’s relevance-guided generation capabilities.
Self-RAG (Asai et al., 2023) trains LLMs to decide
whether to perform retrieval and to improve their
self-reflection ability. Another approach involves
guiding the decoding (Shi et al., 2023; Kim et al.,
2024b). For instance, CAD (Shi et al., 2023) en-
forces absolute trust in retrieved information by
using contrastive decoding under the assumption
that external information is fully correct. However,
both approaches tend to underutilize the model’s in-
ternal knowledge, which may constrain the quality
and informativeness of its responses.

5 Conclusion

We present CoCoA, a retrieval-augmented genera-
tion framework that enhances LLM performance by
enabling effective collaboration between paramet-
ric and retrieved knowledge. Through a two-stage
multi-agent pipeline and the long-chain training
strategy, our method achieves strong performance
on QA tasks, highlighting CoCoA’s effectiveness
and providing a new insight into the long-chain
expansion of knowledge-intensive tasks.



Limitations

While CoCoA has demonstrated excellent perfor-
mance and provided valuable insights into collab-
oration with parametric and retrieved knowledge,
there are still some limitations:

* The current design focuses on a specific agent
collaboration pattern via long-chain training.
Its applicability to broader or alternative multi-
agent architectures remains to be examined.

* Our approach focuses on inducing knowledge,
but does not explicitly capture non-knowledge
cues (such as logical clues) that can be equally
important for complex reasoning tasks.

* Although the approach performs robustly un-
der limited supervision, its scaling behavior
with respect to larger models and datasets has
not been systematically explored.
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A Dataset

Here, we introduce in detail the datasets we used,
which are seven datasets on four tasks.

2WikiMultiHopQA (Ho et al., 2020b) and Hot-
potQA (Ho et al., 2020a): Both datasets are
multi-hop question answering datasets based on
Wikipedia. Considering the limitation of exper-
imental cost, we used the sub-sampling set pub-
lished by Trivedi et al. (2022); Kim et al. (2024a),
which is obtained by extracting 500 questions from
the validation set of each dataset.

WebQuestions (Berant et al., 2013): Con-
structed from questions posed by the Google Sug-
gest API, where the answers are specific entities
listed in Freebase.

NaturalQA (Kwiatkowski et al., 2019): A
dataset designed to support comprehensive QA sys-
tems. It consists of questions from real Google
search queries. The corresponding answers are text
spans from Wikipedia articles, carefully identified
by human annotators.

TriviaQA (Joshi et al., 2017): A compilation
of trivia questions paired with answers, both origi-
nally pulled from online sources.

PopQA _longtail (Asai et al., 2023): A long-tail
subset of PopQA (Mallen et al., 2022), consist-
ing of 1,399 rare entity queries whose monthly
Wikipedia page views are less than 100.

Training Data We sampled subsets from the
training sets of HotpotQA (Ho et al., 2020a), 2Wiki-
MultiHopQA (Ho et al., 2020b) and WebQues-
tions (Berant et al., 2013), then used the CoCoA-
zero framework to synthesize data and filtered them
with gold answers. Finally, we selected 6.8k fil-
tered samples, including 3k, 3k, and 0.8k from the
three datasets, respectively. For the DPO training
data, we screen out 1151 samples, which are the
ones that are answered incorrectly by zero-shot but
correctly by the CoCoA-zero. For each sample,
we gathered 5 relevant passages using the most
common retriever Contriever (Izacard et al., 2021).

B Training Details

We fine-tune LLaMA3.1-8B with LoRA (r=16,
a=16, dropout=0.05) on a maximum input length
of 2048. LoRA is applied to attention projection
layers. During SFT, we trained for 5 epochs with a
batch size of 1, gradient accumulation of 4, and a
learning rate of 3e-5. For DPO, a 3 value of 0.2 is
applied, using a sigmoid loss function, while RPO
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is configured with an « value of 0.2. The learning
rate was set to 5e-6 and other settings are the same
as SFT. During inference, we use the vllm (Kwon
et al., 2023) accelerated inference framework, and
to ensure repeatability, we set the temperature to
0.0. All experiments are conducted on a single
A100 GPU with 80GB or 40GB memory.

C Optimization Analysis

We analyze the difference between independent
training and long chain training in terms of the form
of loss. We simplify the steps in this analysis, i.e.,
there are only two steps in the chain, pre-generation
processing first and then answering.

When the two agents optimize independently,
the loss takes the following form:

Lingep = —log Py(s | x,d) — log Py(a | s).
(12)
Here, 6 and ¢’ are optimized independently.
When two agents use long chain optimization,
the loss is as follows:

Lchain = — log P@(S’& | :L‘,d)

—log Pg(s | x,d) — log P@(d | z,d, 3).
(13)

Gradient propagation:

The gradient of the first term in Eq. (12) is,
8»Cindep _ 0 [* log Pg(s | x, d)]

_ (14)
00 o0
The gradient of the Eq. (13) is,
8£chain o 0 [— log Pg(s ’ a:,d)]
06 00
N 0 [— log Py(a | x,s,d)] (15)
00
=(4) + Ay
0 |—log Py(a d
A, = [~ log g;'x’s’ Iy (16)

Here, A, is the additional gradient that the
answer-loss naturally back-propagates to the pre-
processing parameters when the same network 6
produces both tokens. In the independent setting
A, = 0 by construction, so the preprocessor never
“hears” whether the answer is correct, which is
not conducive to the consistency of the response.
The chain objective restores this missing credit as-
signment signal, thus performing a special kind of
multi-task learning on both stages, optimizing them
instead of each in isolation, potentially helping to
escape from local optimal solutions.



Method 2WikiMultiHopQA HotpotQA WebQuestions

EM F1 Avg EM F1 Avg EM F1 Avg

CoCoA-zero 3140 3192 31.66 3740 41.20 3930 43.11 39.13 41.12
w/o Thinking  30.00 30.76 30.38 36.00 38.34 37.17 39.17 4032 39.75
w/o Internal  22.60 2393 23.26 34.00 39.11 36.56 40.01 38.20 39.10
w/o External  28.40 29.53 28.97 30.00 31.92 3096 39.81 38.13 3897
Zero-Shot 17.60 19.51 18.55 33.20 36.81 35.01 3445 36.31 35.38
Standard RAG 26.80 25.07 25.94 3140 34.16 3278 37.65 37.32 3749

Table 5: Ablation study of internal/external induction and reasoning in decision making. In addition, a zero-shot
method for explicit internal and external knowledge integration is added for comparison. For simplicity and fairness,

the average of EM and F1 is used as the metric.

Method 2WikiMultiHopQA HotpotQA WebQuestions
EM F1 Avg EM Fl1 Avg EM F1 Avg

Long-DPOgp  42.00 40.58 41.29 39.00 43.39 4120 44.83 4221 43.52

Long-SFTgz  41.00 36.87 3894 3940 4631 4286 4296 41.32 42.14

Short-SFTgp  28.60 28.03 28.31 39.00 42.15 40.58 41.19 38.48 39.84

Short-SFTgpx3 35.00 32.81 3391 37.60 4248 40.04 4129 3896 40.13

Table 6: Ablation study of the training strategy for CoCoA. For simplicity and fairness, the average of EM and F1 is

used as the metric

D Full Results

We supplemented the detailed results of the abla-
tion experiment as shown in Table 5 and Table 6.

E Prompt Templates

All the prompt templates used by our proposed Co-
CoA are shown in Table 9 and Table 8. And special
instructions are added to section 3.8 corresponding
to different tasks as shown in Table 7.

Task Task Instruction

Given four answer candidates, A,
B, C and D, choose the best an-
swer choice. Please answer with
the capitalized alphabet only, with-
out adding any extra phrase or pe-
riod. Do not exceed one word.

Is the following statement correct
or not? Say true if it’s correct; oth-
erwise say false. Don’t capitalize
or add periods, just say "true" or
"false". Do not exceed one word.

ARC-C

PubHealth

Table 7: Full list of instructions used during zero-shot
evaluations. For open-domain QA, we don’t use any
task specific instruction.
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Task:Prompt used by “CoCoA”

### Instruction:

1. First, provide background for the question.
Write a passage that is relevant to the question
only based on your knowledge.

2. Second, refer to the provided passages to
generate a summary. Cite and write a passage
that is relevant to the question only based on the
provided passages.

3. Third, refer to the information from the
above two sources, verify the accuracy of the
facts and the consistency of the logic, and
predict the final answer.

### Passages:\n{passages}\n

### Question:\n{question}

### Generate Format:

<Internal>\nxxx (your background based on
your knowledge)\n<\\Internal>
<External>\nxxx (your summary based on the
provided passages)\n<\\External>
<Thinking>\nxxx\n<\Thinking>
<Answer>\nxxx (your short answer consisting
of only a few words)<\\Answer>

Table 8: The prompt used by “CoCoA”.



Task

Task Instruction

External
Candidate

### Passages:\n {passages}\n\n
### Instruction:\n Answer the question below concisely in a few words.\n\n
### Input:\n{ question }\n

External
Induction

### Instruction:\n Refer to the provided passages to generate a summary that meets
the following conditions:\n

1. Cite and Write a passage that can support the prediction about the question only
based on the provided passages.\n

2. No more than 200 words.\n

3. Do not respond with anything other than the Summary-An

### Passages:\n {passages}\n\n

### Question:\n {question}\n

### Prediction:\n {answer}\n\n

### Generate Format:\n

### Summary: xxx\n

Internal
Candidate

### Instruction:\n Answer the question below concisely in a few words.\n\n
### Input:\n{ question }\n

Internal
Induction

### Instruction:\n Please provide background for the question that meets the follow-
ing conditions:\n

1. Write a passage that can support the prediction about the question only based on
your knowledge.\n

2. No more than 200 words.\n

3. Do not respond with anything other than the Background-\n

### Question:\n {question }\n

### Prediction:\n {answer }\n\n

### Generate Format:\n

### Background: xxx\n

Decision-
Making

### Internal Reasoning Path: \n{induction;,}\n\n ### Internal Prediction 1:
\n{answer;, }\n\n

### External Reasoning Path: \n{induction, }\n\n ### External Prediction 2:
\n{answer; }\n\n

### Instruction:\n

Refer to the information from the above two sources, verify the accuracy of the facts
and the consistency of the logic, and choose the best prediction.

### Question:\n{question }\n

### Generate Format:\n

### Thingking: xxx (Please think step by step)\n

### Short Answer: xxx (just in a few words)\n

Table 9: A list of prompts used by CoCoA-zero.

13



