
Under review as a conference paper at ICLR 2021

SHADOWCAST: CONTROLLABLE GRAPH GENERA-
TION WITH EXPLAINABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the problem of explaining graph generation, formulated as control-
ling the generative process to produce desired graphs with explainable structures.
By directing this generative process, we can explain the observed outcomes. We
propose SHADOWCAST, a controllable generative model capable of mimicking
networks and directing the generation, as an approach to this novel problem. The
proposed model is based on a conditional generative adversarial network for graph
data. We design it with the capability to control the conditions using a simple
and transparent Markov model. Comprehensive experiments on three real-world
network datasets demonstrate our model’s competitive performance in the graph
generation task. Furthermore, we control SHADOWCAST to generate graphs of
different structures to show its effective controllability and explainability. As the
first work to pose the problem of explaining generated graphs by controlling the
generation, SHADOWCAST paves the way for future research in this exciting area.

1 INTRODUCTION

In many real-world networks, including but not limited to communication, financial, and social
networks, graph generative models are applied to model relationships among actors. It is crucial
that the models not only mimic the structure of observed networks but also generate graphs with
desired properties because it allows for an increased understanding of these relationships. Currently,
there are no such methods for explaining graph generation.

Meaningful interactions between agents are often investigated under different what-if scenarios,
which determines the feasibility of the interactions under abnormal and unforeseen circumstances.
In such investigations, instead of using actual data, we can generate synthetic data to study and test
the systems (Barse et al., 2003; Skopik et al., 2014). However, there are many challenges. (1) Data
is not accessible by direct measurement of the system. (2) Data is not available. (3) Data produced
by generative models cannot be explained. To address these challenges, we have to answer a natural
and meaningful question: Can we control the generative process to shape and explain the generated
graphs?

In this work, we introduce the novel problem of explaining graph generation. The goal is to gener-
ate graphs of desired shapes by learning to control the associated graph properties and structure to
influence the generative process. We provide an illustrative case study of email communications in
an organization with two departments (Figure 1), where interactions of the employees follow a regu-
lar pattern during normal operations. Due to limited data, previously observed network information
may be missing scenarios of intra-department email surge within either the Human Resources or Ac-
counting departments. When such situations are required for analyzing the system, an ideal model
should generate graphs that reflect these scenarios (see box in Figure 1) while maintaining the orga-
nizational structure. By effectively controlling the generative process, SHADOWCAST allows users
to generate designed graphs that meet conditions resembling a wide range of possibilities. Overall,
this is a meaningful problem because controlling the generative process to explain generated net-
works proves to be valuable in many applications such as anomaly detection and data augmentation.

Existing graph generative models aim to mimic the structure of given networks, but they cannot
easily shape graphs into other desired states. These works either directly capture the graph struc-
ture (Cao & Kipf, 2018; Liu et al., 2017; Tavakoli et al., 2017; Zhou et al., 2019; Ma et al., 2018;
You et al., 2018; Simonovsky & Komodakis, 2018; Bojchevski et al., 2018) or model node feature

1

Under review as a conference paper at ICLR 2021

Figure 1: Case study illustration of explaining controlled generation: Many times, data of various
situations are not available in observed real-world networks. SHADOWCAST allows us to generate
graphs of desired structures and provide explanations for the generations.

information (Kipf & Welling, 2016; Wang et al., 2018; Grover et al., 2019; Zou & Lerman, 2019).
Most of them adopt implicit model approaches, such as the popular generative adversarial networks
(GANs) (Goodfellow, 2016). Only very recent advances (Li et al., 2018; Yang et al., 2019) in net-
work generation have started injecting auxiliary information into the model by adding graph-level
conditions as additional inputs. However, none of them allow direct control over the generative
process, which addresses the fundamental challenge of generating explainable graphs.

While there are no existing methods for explaining graph generation, studies of explainability in
other AI methods are increasing in popularity. One family of work, proxy methods (Huysmans
et al., 2011; Augasta & Kathirvalavakumar, 2011; Zilke et al., 2016; Lakkaraju et al., 2017), learns
to approximate model predictions with simpler surrogate models. Another line of work (Adadi &
Berrada, 2018; Guidotti et al., 2018; Koh & Liang, 2017) treats models as black-boxes and carefully
queries them for relevant information to form interpretations of the results. The works closest to
our problem are in interpretable Graph Neural Network (GNN) models, where models predict and
assign values to edges via attention mechanisms (Veličković et al., 2018; Neil et al., 2018; Xie &
Grossman, 2018). Notably, even the latest work (Ying et al., 2019), which considers both graph
structure and node feature information, still only explains predictions of individual nodes but cannot
produce explanations for entire graphs.

We propose SHADOWCAST, an approach for explaining graph generation, which addresses the chal-
lenge of generating graphs with user-desired structures. It is achieved by using easy-to-understand
node properties that are intended to capture graph semantics in an explicable way. These proper-
ties form the shadow that we control in order to guide the graph generative process. The model
architecture is essentially based on conditional GANs (Mirza & Osindero, 2014). The model intro-
duces control by leveraging the conditions, which we manage with a transparent Markov model, as
a control vector to influence the generative process. It allows for user-specified parameters such as
density distributions to generate designed graphs that are explainable. Finally, the generator captures
essential graph structures while exploring a myriad of other possibilities in multifarious networks.

We first evaluate SHADOWCAST on three real-world social and information networks to demonstrate
its competitive performance against several state-of-the-art graph generation methods in mimicking
given graphs. Our model achieves impressive results that are superior in most datasets. In addition,
we demonstrate the capability of SHADOWCAST to produce customizable synthetic graphs through
tunable parameters, which existing generative models are incapable of performing.

2 EXPLAINABLE GRAPH GENERATION

In this section, we describe the explainable graph generation problem. The core idea of the prob-
lem lies in generating graphs of desired structures through control of node properties as a form of
explainability. We define these properties and its structure as a shadow and introduce our approach
SHADOWCAST. Since it is a challenge to directly control the generation of graphs due to their com-
plex interconnected nature, we model them through shadows, which can be manipulated to control
the graph generation. We depict the problem and our approach in detail below (Sections 2.1 and 2.2).

2

Under review as a conference paper at ICLR 2021

2.1 PROBLEM FORMULATION

We focus on the novel problem of explaining graph generation. Let G = (V, E) denote a graph
with N nodes vi ∈ V and E edges (vi, vj) ∈ E . Each node is associated with some identity
information, e.g., the employee ID. In addition, we induce another graph with N nodes and the
same edge connections as in G, by the node properties, which we define as shadow S. Each node in
the shadow is associated with some property label ki ∈ K, e.g., the employee’s department, and it
“shadows” the corresponding node in G. Every node in G can be uniquely identified by the identity,
whereas the label of each node in S is not necessarily unique. Shadow nodes provide important
explanatory information that is useful in understanding the generated graphs. We note that there
could be other properties of interest, e.g., degree distribution, a shadow with different connectivity
than G. We leave the inclusion of additional properties as extensions for future work.

In this work, we aim to develop an explainable network graph generative model. By training the
model Θ on a graph G and its shadow S, the model would then monitor the generative process
and subject the generation to direction—aiding in the explainability of the generated graphs. Let us
define the Explainable Graph Generation (X2G) problem as such:

Given a graph G and key node properties of G, induce another graph by these
properties, defined as shadow S; train model Θ to learn a representation S̃ of
the shadow and control S̃ to generate graphs G̃’s with explainable structures.

Following this process, we can leverage node properties such as ground-truth labels and other node
attributes, valuable in understanding the model-generated results, as a control vector to guide the
graph generation.

2.2 PROPOSED MODEL

Figure 2: The SHADOWCAST architecture proposed in this paper.

We propose SHADOWCAST, an explainable generative approach that leverages both conditional
modeling and GANs to generate graph-structured data. Our approach is inspired by the recent
work (Bojchevski et al., 2018) that poses the graph generation problem as learning a distribution
of biased random walks over the input graph, which captures the underlying distribution of a graph
where nodes belong in some ground-truth communities. Similar to any archetypal generative ad-
versarial nets, SHADOWCAST consists of two ‘adversaries’—a generative model G and a discrimi-
native model D. In addition, our approach consists of a shadow caster model S that takes in some
sequences sampled from the shadow and produces shadow walks that directly influence the gener-
ator G. The goal of G is to capture the distribution over the data x and generate synthetic graph
random walks and conditions that are similar to the real walks. At the same time, D estimates the
probability that a graph random walk and its conditions came from the real graph rather than G,
to distinguish between the synthetic and real walks. We provide details of our model architecture
(Figure 2) and design choices below.

Using the conditional GAN framework, we train both G and D conditioned on some extra
information—sampled shadow walks s from the shadow S. By allowing our model to consider

3

Under review as a conference paper at ICLR 2021

any auxiliary information such as ground-truth communities or data from other sources, the model
can (1) leverage extra information from different data modalities, and (2) directly control the data
generation process. For example, by using contextual information in the social communications of
an organization, we learn semantically meaningful graph representations. We can then explicitly
generate networks of any given context.

Following Mirza & Osindero (2014), we introduce the conditional GAN training for graph shadow
random walks and define the loss as:

Lcgan = log(D(x | s)) + log(1−D(G(z | s))) (1)

where z ∼ N (0, Id) is a latent noise from a multivariate standard normal distribution. We rep-
resent a social transaction network as an input graph of N nodes as a binary adjacency matrix
A ∈ {0, 1}N×N . We then sample sets of random walks of length T fromA to use as training data x
for our model. Following Bojchevski et al. (2018), we use a biased second-order random walk sam-
pling strategy (Grover & Leskovec, 2016)—one of the advantageous properties of random walks
is their invariance under node reordering—in order to better capture both global and local graph
structures. Another advantage of random walks is that the walks only include connected nodes,
which efficiently exploits the sparsity of real-world graphs by including nonzero values of the adja-
cency matrix A. In the rest of this section, we describe in detail each stage of the SHADOWCAST
generation process and formally present the procedure (Algorithm 1).

Algorithm 1 Minibatch stochastic gradient descent training of explainable graph generative adver-
sarial nets. The number of steps to apply to the generator, ω, is a hyperparameter. We used ω = 3.

1: for number of training iterations do
2: Sample minibatch of m samples {x(1), . . . ,x(m)} from data distribution pdata
3: Sample the respective m shadow walks {s(1), . . . , s(m)}
4: Update S model weights:
5:

∇θs 1
m

m∑
i=1

[−
K∑
c=1

s(c) logS(s(c))]

6: Generate minibatch of m shadow walks {s̃(1), . . . , s̃(m)} with model S
7: Sample minibatch of m noise samples {z(1), . . . ,z(m)} from N (0, Id)
8: Update G model weights:
9:

∇θg 1
m

m∑
i=1

[log(1−D(G(z(i) | s̃(i))))]

10: for ω steps do
11: Update D model weights:
12:

∇θd 1
m

m∑
i=1

[logD(x(i) | s̃(i)) + log(1−D(G(z(i) | s̃(i))))]

13: end for
14: end for

Shadow Caster The shadow caster S is a sequence-to-sequence model that learns arrays of con-
tiguous node properties from sampled shadow walks on the shadow. The network predicts a se-
quence of inputs one at a time when some sequence is observed. We model S with a long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) neural network. Given sampled sequences of
shadow walks (s1, . . . , sT) from the shadow as inputs, the shadow caster S then generates synthetic
shadow walks (s̃1, . . . , s̃T) to mimic the sampled walks.

Generator The generatorG is a probabilistic sequential learning model that generates conditional
graph random walks (v1, . . . ,vT) ∼ G. We model G using another parameterized LSTM network
fθ. At each step t, fθ takes as input the previous memory state mt−1 of the LSTM model, the
current additional information s̃t, and the last node vt−1. The model produces two values (pt,mt),
where pt denotes the probability distribution over the current node and mt the current memory
state. Next, the current node vt is sampled from a categorical distribution vt ∼ Cat(σ(pt)) using a
one-hot vector representation, where σ(·) is the softmax function.

In order to initialize the model, we draw a latent noise from a multivariate standard normal distri-
bution z ∼ N (0, Id) and pass it through a hyperbolic tangent function gθ′(z) to compute memory

4

Under review as a conference paper at ICLR 2021

state m0. Generator G takes as inputs the noise z and sampled shadow walks s, and outputs graph
random walks (v1, . . . ,vT). Through this process, we generate fake random walks.

At this point, we find that our model is closely related to the recently introduced random walk graph
generative model (Bojchevski et al., 2018). In addition to random noise model initialization, the gen-
erator greatly benefits from the auxiliary information s̃t, modeling a more accurate representation
of the original graph (see Appendix for details).

Discriminator The discriminator D is a binary classification LSTM model. The goal of D is
to discriminate between real walks sampled from walking on the original graph and fake walks
generated by G. At each time-step t, the discriminator takes two inputs: the current node vt and
the associated shadow st, both represented as one-hot vectors. After processing each presented
sequence of shadow and graph walks, D outputs a score between 0 and 1, indicating the probability
of a real walk.

After training the model, we have a shadow caster S and a generator G that can produce synthetic
graphs. The shadow caster first constructs shadow walks (s̃1, . . . , s̃T) of some user-defined class
distribution (a relatively small number of shadow walks, e.g., 10,000). The generator then takes
(s̃1, . . . , s̃T) and generates a large set of random graph walks (a much larger number of random
walks than for training, e.g., 10M). We construct a score matrix S by counting how often an edge
appears in the set of graph walks. Next, we convert S into a binary adjacency matrix Â by first
setting sij = sji = max{sij , sji} to get a symmetric matrix. Next, we could use simple binariza-
tion strategies such as thresholding or choosing top-k entries. However, we follow a probabilistic
strategy, introduced in Bojchevski et al. (2018), that mitigates the issue of leaving out the low-degree
nodes and producing singletons because the starting nodes of every walk is random.

2.3 EXPLAINING GENERATED GRAPHS

Different from existing approaches, our model takes shadow walks—a series of random walks on
the node properties graph—as inputs to the generator, and creates graphs with various densities.
To answer questions like: “Why did the model generate such graphs? Could we modify it to our
desire?”, we generate graphs that are more explainable by controlling these shadow walk inputs. Our
goal is to provide insight into how black-box generative models produce graphs. For any desired
graph, we first build a Markov chain to model and construct sequences of node properties based on
some user-specified transition distribution. These sequences are then injected into the shadow caster
S to generate shadow walks (s̃1, . . . , s̃T) that mimic the original shadow. Next, given a trained
SHADOWCAST model Θ and the shadow walks (s̃1, . . . , s̃T), the generator G produces desired
graphs G̃’s. Through this process, one can control the shadow distributions and study the generated
graphs by comparing the results.

3 RELATED WORK

Although many existing works study the generalizability of graph generation methods, explaining
generated graphs remains an open question. From a broader point of view, we can consider the
related problems of (1) constructing generative models for graph-structured data and (2) interpreting
machine learning models and understanding their results.

Graph Generation Most existing graph generation models are designed to generate graphs mim-
icking the structure of observed graphs. So far, no generative method that shapes graphs into new
desired states have been proposed. In general, we can group these graph generative models into two
main families—those that directly model the graph structure (Cao & Kipf, 2018; Liu et al., 2017;
Tavakoli et al., 2017; Zhou et al., 2019; Ma et al., 2018; Simonovsky & Komodakis, 2018) and oth-
ers that study the graph in the context of node representations (Kipf & Welling, 2016; Wang et al.,
2018; Grover et al., 2019; Zou & Lerman, 2019). While modeling of graph structures approximates
the distribution of graphs with minimal assumptions about their structure, modeling node embed-
ding estimates the probabilities of each edge’s existence, which effectively models the relational
structure of large graphs. Another series of tangential work, graph translation (Guo et al., 2019; Jin
et al., 2019; Guo et al., 2018), attempts to learn a translation mapping from the input domain to the

5

Under review as a conference paper at ICLR 2021

target domain graph. However, the methods are designed to mainly generate graphs that match the
structural characteristics of any given graph.

Recently, some works in graph generation have started exploring network structures of various con-
ditions. These works employ graph-level condition information. In one work, Li et al. (2018)
produce some conditional generation results, where the conditions are graph properties such as the
number of nodes and edges. Another work, CondGEN (Yang et al., 2019), injects semantics into the
graphs by conditioning the model on supplementary contextual information. The model mainly con-
siders multiple small graphs, each with an accompanying semantic condition to learn a distribution
over graphs. While GraphRNN (You et al., 2018) is not a direct conditional model, it decomposes
the generative process into sequences of nodes and edges, which potentially allows for explicit con-
ditioning. However, these methods only generate graphs mimicking the observed graphs.

To allow state manipulation and controllable graph generation, our model borrows the concept
from NetGAN (Bojchevski et al., 2018), which adapts the standard LSTM to learn a distribution
of random walks and exploit sparsity in real-world graphs. In contrast to NetGAN, we integrate a
condition-based control mechanism to learn a model that generates explainable graphs. Due to the
challenging nature of the problem, to the best of our knowledge, no work has definitively considered
shaping graphs into new desired states.

Explainable AI Explainable AI studies the task of improving the interpretability of AI systems.
While proxy model methods (Huysmans et al., 2011; Augasta & Kathirvalavakumar, 2011; Zilke
et al., 2016; Lakkaraju et al., 2017) often resort to learning local approximations of predictions using
sets of rules in applying conditions on the prediction, advances in interpretability methods (Adadi
& Berrada, 2018; Guidotti et al., 2018; Koh & Liang, 2017) treat black-box models as such and
query them for information. Among the many recently developed interpretable models, Graph Neu-
ral Network (GNN) models have been studied to explain predictions on graph-structured data via
attention mechanisms (Veličković et al., 2018; Neil et al., 2018; Xie & Grossman, 2018). These ap-
proaches learn important graph structures by predicting and assigning attention values to the edges.
The attention values are the same for all nodes in the same structure, limiting the predictive power.

Moreover, these models cannot explain predictions by combining node feature information with
the graph structure. To circumvent the limitations of attention-based GNN models, GNNEx-
plainer (Ying et al., 2019) considers both graph structure and node features to explain predictions.
However, explainable GNN models identify explanations in graph structures and node features,
which are suitable for link prediction, node/graph classification tasks but not graph generation.

4 EXPERIMENTS

In this section, we first compare and evaluate our approach with other baseline graph generation
methods on three datasets to establish our model’s ability to generate high-quality graphs of complex
networks. Next, we demonstrate the explainability of SHADOWCAST by controlling the generative
process to create graphs according to specification. Note that generating graphs mimicking any
given graph as closely as possible is not our goal. Our objective is to introduce a more explainable
graph generative approach. Through our experiments, we not only demonstrate that SHADOWCAST
exhibits competitive performance in the task of graph generation, but we also show that our model
can generate graphs of different density distributions by controlling the shadows.

Datasets We consider three real-world graphs in social and information networks, where each
node belongs to one of the ground-truth communities. Two of the datasets are email communication
networks EUcore-top (N = 348, E = 3342, K = 5) and Enron (N = 154, E = 1843, K = 3). The
other dataset Cora-ML (N = 2810, E = 7981, K = 7) is a commonly used subset of a large author
citation dataset. We provide the links to datasets used in our experiments (see Appendix for details).

We study communication networks: (1) EUcore-top is a network that consists of the top five largest
departments in the EUcore email dataset that was created using anonymized emails from a large
European research institution. (2) Enron is a dataset of the Enron email corpus where nodes are
employees labeled according to their department information. The citation network: (3) Cora-ML is
a popular benchmark citation dataset. Nodes labeled according to their paper topic are authors, and
edges between them indicate that an author cited another author’s paper.

6

Under review as a conference paper at ICLR 2021

Baselines Since controlling the generative process to provide explainable graph generation is a
novel task, and no such method is developed, we compare our approach against four current state-
of-the-art graph generation baseline methods—GraphRNN (You et al., 2018), GVAE (Simonovsky
& Komodakis, 2018), NetGAN (Bojchevski et al., 2018), and CondGEN (Yang et al., 2019). We
randomly select 85% of the edges in each graph for training and use the remaining 15% for validation
and testing. We refer readers to the Appendix for more details about the model implementation
settings, baseline models, datasets, and explainable generated visualizations.

Performance We evaluate SHADOWCAST against existing benchmark generative models (You
et al., 2018; Simonovsky & Komodakis, 2018; Bojchevski et al., 2018; Yang et al., 2019) and present
the comparison statistics 1 (Table 1). By comparing the statistics of the real graphs and those gen-
erated by each method, closer mean values indicate greater resemblance to the original graphs, thus
better performance. In general, baseline methods succeed at replicating the graphs that are directly
modeled. Unsurprisingly, GVAE, designed for generating small graphs, performs well in the smaller
Enron and EUcore-top datasets. However, it does not recover statistics of the larger graph Cora-ML
well. On the other hand, our model captures all graph properties of the datasets, especially excelling
in preserving properties of larger graphs, as shown in its generation of the Cora-ML dataset.

Graph Model ASST CLUST CPL GINI MD TC

Cora-ML

Real -0.075 0.00277 5.636 0.485 241.0 2898.0
GraphRNN 0.062±5.5e-4 0.00121±2.2e-7 1.892±5.7e-5 0.119±1.9e-4 507.4±2.7 9023.8±17.8

GVAE -0.324±6.1e-3 0.01294±4.2e-4 3.481±1.1e-2 0.825±1.1e-3 121.6±7.0 15513.0±186.1
NetGAN -0.055±1.5e-3 0.00140±2.8e-5 4.943±9.5e-3 0.407±1.3e-3 223.6±2.1 1034.6±18.7

CondGEN -0.524±2.0e-2 0.00524±9.0e-4 2.168±1.7e-2 0.946±1.5e-3 404.0±37.0 95843.4±4780.4
SHADOWCAST -0.081±3.1e-3 0.00191±1.5e-4 5.187±1.0e-2 0.459±1.3e-3 229.6±7.7 1713.6±26.4

Enron

Real -0.003 0.03300 2.154 0.281 74.0 4784.0
GraphRNN 0.028±6.3e-3 0.02154±3.1e-4 1.977±5.5e-3 0.116±2.0e-3 30.8±0.8 1221.6±34.4

GVAE -0.112±2.1e-2 0.04625±1.0e-3 2.165±6.9e-3 0.288±7.2e-3 45.2±1.3 5439.2±58.7
NetGAN 0.123±1.2e-2 0.03051±3.4e-4 2.105±3.8e-3 0.244±5.8e-3 55.8±1.4 3486.0±57.9

CondGEN -0.287±2.7e-2 0.04074±1.5e-3 2.102±2.3e-2 0.463±7.1e-3 70.4±1.7 9619.6±183.7
SHADOWCAST -0.004±4.6e-3 0.03483±7.8e-4 2.214±6.2e-3 0.278±1.8e-3 73.2±2.6 5262.2±42.8

EUcore-top

Real -0.085 0.03105 2.885 0.433 65.0 8133.0
GraphRNN -0.005±8.6e-3 0.00891±1.1e-4 2.128±5.2e-3 0.118±9.6e-4 41.0±0.84 2255.2±59.2

GVAE -0.257±1.2e-2 0.02919±3.8e-4 2.579±7.0e-3 0.473±2.4e-3 68.8±2.3 9025.2±127
NetGAN -0.028±1.0e-2 0.02335±3.1e-4 2.642±1.0e-2 0.359±1.7e-3 62.0±2.2 4639.8±28.8

CondGEN -0.378±3.8e-2 0.01880±1.9e-3 2.101±1.2e-2 0.720±3.6e-3 147.0±10.0 26106.4±726.4
SHADOWCAST -0.034±1.1e-2 0.02847±3.4e-4 2.843±1.0e-2 0.435±2.6e-3 66.2±1.1 7414.4±93.8

Table 1: Performance statistics (mean and standard error) of the graphs generated by SHADOWCAST
and the baseline models, computed over five runs. We indicate the mean values of the generated
statistics closest to the real graphs. SHADOWCAST most closely matches original graphs in the
statistics when compared with the baseline models.

SHADOWCAST, a conditional generative model that considers meaningful auxiliary information
(e.g., node labels) of given graphs on top of learning the graph structure, naturally outperforms
methods that take an unconditional approach. The baseline methods are designed to generate graphs
unconditionally, with the exception of CondGEN. However, CondGEN performs conditional gen-
eration with graph-level conditions, which are not as informative as the node-level information we
inject into SHADOWCAST. This rich supplementary node information enables our model to learn
better representations of graphs. Hence, SHADOWCAST achieves the best performance results.

Explaining Generated Graphs In addition to recreating graphs that closely match statistics of
the input graphs, we demonstrate our model’s ability to generate desired graphs by controlling
parameters of the shadows. The controlled generation is a good way to gain insight into how
graphs are generated and provide a form of explainability. We influence the generative process
by constructing shadow walks of preferred distribution using shadow caster S. First, we create
sequences of node ground-truth labels by specifying the parameters of a transparent and straightfor-
ward Markov model: (1) initial probability distribution over K labels π = (π1, π2, . . . , πK), where
πi is the probability that the Markov chain will start from label i, and (2) transition probability ma-
trix A = (a11a12 . . . ak1 . . . akk), where each aij represents the probability of moving from label i

1Statistics measuring properties of the datasets and the graphs generated by SHADOWCAST and the base-
lines include ASST (assortativity), CLUST (clustering coefficient), CPL (character path length), GINI (Gini
index), MD (maximum node degree), and TC (triangle count).

7

Under review as a conference paper at ICLR 2021

to label j. Next, we input these constructed sequences into shadow caster S, which returns model-
generated shadow walks. Finally, by injecting these designed shadows into our trained generator G,
we generate explainable graphs of different structures.

(a) Observed: Enron normal operations (b) Generated: Legal (red) internal surge

(c) Generated: Finance (green) internal surge (d) Generated: Trading (blue) outgoing surge

Figure 3: SHADOWCAST generated explainable graphs of the Enron email network.

In Figure 3, we show controlled generation examples of the Enron email network, where each em-
ployee represented by a node belongs to one of three departments (e.g., Legal, Trading, and Finance
offices in the organization). Figure 3a is an observed instance of interactions between the depart-
ments during normal operations. Due to limited observations, network data of some unprecedented,
extraordinary situations may be unavailable. To simulate such occurrences, we can set the distri-
bution of the Legal (red), Trading (blue), and Finance (green) departments with parameters (π,A)
to control the generative process. Distribution configurations π = (π1, π2, π3) correspond to how
likely a sequence of model-generated shadow walks start from a particular department, while the
transition probability matrix A = (a11a12 . . . a31 . . . a33) determines the probability of moving
from one department to another. Various configurations (π,A) correspond to different cases such as
(Figure 3b) internal communication surge in the legal team during court pre-trial period, (Figure 3c)
internal surge in the finance department during financial accounts reporting period, and (Figure 3d)
increased outgoing communication between the trading team and the other two departments when
purchasing a subsidiary trading firm. Thus, by specifying these parameters, we can control and
explain the structure of the generated graphs (see Appendix for the specific parameter settings).

Following the example in Figure 3b, one could argue that we naively remove the legal (red) inter-
department edges and add random intra-department edges to create the effect of an internal email
surge. While the random graph constructed could appear legitimate, it is not clear if this newly
formed graph (1) follows the dynamics of the original network, and (2) has an explainable structure.
In contrast, our approach follows a simple and transparent Markov model, providing the needed
explainability for generated graphs that are modeled on the original graph. This intuitive approach
allows for an increased understanding of the generated graphs.

5 CONCLUSION

In this work, we present SHADOWCAST, a novel controllable graph generative model, which gen-
erates graphs that are explainable. To the best of our knowledge, this method is the first of its kind
to address the unique problem of controlling the generative process to explain the structures of gen-
erated graphs. Our model demonstrates how it can leverage graph properties as controls and allow
for adjustable parameters to direct the generative process. By introducing explainability in graph
generation, a meaningful problem for a better understanding of generated graph data, we hope to
encourage further investigation in this line of work and expand on its applications in different areas.

8

Under review as a conference paper at ICLR 2021

REFERENCES

A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial intelli-
gence (XAI). IEEE Access, 6:52138–52160, 2018.

M. Gethsiyal Augasta and T. Kathirvalavakumar. Reverse engineering the neural networks for rule
extraction in classification problems. Neural Processing Letters, 35:131–150, 2011.

Emilie Lundin Barse, Håkan Kvarnström, and Erland Jonsson. Synthesizing test data for fraud
detection systems. In ACSAC, 2003.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. NetGAN:
Generating graphs via random walks. In ICML, 2018.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv preprint, arXiv:1805.11973, 2018.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint, arXiv:
1701.00160, 2016.

Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In KDD,
2016.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In ICML, 2019.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv., 51(5),
2018.

X. Guo, L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and S. M. Pudukotai Dinakarrao. Deep
multi-attributed graph translation with node-edge co-evolution. In 2019 IEEE International Con-
ference on Data Mining (ICDM), 2019.

Xiaojie Guo, Lingfei Wu, and Liang Zhao. Deep graph translation. arXiv preprint, arXiv:
1805.09980, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 1997.

Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. An empir-
ical evaluation of the comprehensibility of decision table, tree and rule based predictive models.
Decision Support Systems, 51(1):141 – 154, 2011.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecule optimization. In International Conference on Learning Represen-
tations, 2019.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint, arXiv:
1611.07308, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, 2017.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Interpretable & explorable
approximations of black box models. arXiv preprint, arXiv:1707.01154, 2017.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

9

Under review as a conference paper at ICLR 2021

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint, arXiv:1803.03324, 2018.

Weiyi Liu, Pin-Yu Chen, Hal Cooper, Min Hwan Oh, Sailung Yeung, and Toyotaro Suzumura. Can
GAN learn topological features of a graph? arXiv preprint, arXiv:1707.06197, 2017.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In NeurIPS, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint, arXiv:
1411.1784, 2014.

Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, and Amir Saffari. Interpretable
graph convolutional neural networks for inference on noisy knowledge graphs. arXiv preprint,
arXiv:1812.00279, 2018.

Patrick O. Perry and Patrick J. Wolfe. Point process modelling for directed interaction networks.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(5):821–849, 2013.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In ICANN, 2018.

F. Skopik, G. Settanni, R. Fiedler, and I. Friedberg. Semi-synthetic data set generation for security
software evaluation. In PST, 2014.

Sahar Tavakoli, Alireza Hajibagheri, and Gita Sukthankar. Learning social graph topologies using
generative adversarial neural networks. In SBP, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. GraphGAN: Graph representation learning with generative adversarial nets. In AAAI,
2018.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Phys. Rev. Lett., 120:145301, 2018.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NeurIPS, 2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. In NeurIPS, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN: Gener-
ating realistic graphs with deep auto-regressive models. In ICML, 2018.

Dawei Zhou, Lecheng Zheng, Jiejun Xu, and Jingrui He. Misc-GAN: A multi-scale generative
model for graphs. Frontiers in Big Data, 2:3, 2019.

Jan Ruben Zilke, Eneldo Loza Mencı́a, and Frederik Janssen. DeepRED – rule extraction from deep
neural networks. In Discovery Science, 2016.

Dongmian Zou and Gilad Lerman. Encoding robust representation for graph generation. In IJCNN,
2019.

10

Under review as a conference paper at ICLR 2021

APPENDIX

A. IMPLEMENTATION DETAILS

The SHADOWCAST model incorporates a sequence-to-sequence (Seq2Seq) learner, a generator, and
a discriminator.

Shadow Caster (Seq2Seq) In the sequence-to-sequence model, we use an LSTM with 10 cells
for all three datasets. The input of this LSTM is a batch of shadow walk sequences length n and
dimension d, where the batch size is 128, walk length 16, and dimension is set as the number of
classes K in each dataset (128 x 16 x d). We select the walk length as 16 because it should capture
structures of most graphs of different sizes. The LSTM hidden layer with 10 memory units should
be more than sufficient to learn this problem. A dense layer with Softmax activation is connected to
the LSTM layer, and the generated output is a batch of sequences with size (128 x 16 x d).

Generator In the generator, we use a conditional LSTM with 50 layers. We follow a similar ar-
chitecture to NetGAN to generate sequences of walks on the graph nodes. Different from NetGAN,
our generator not only initializes the model with Gaussian noise, but it also takes the shadow walks
as conditions at each step of the process. Interestingly, we notice that the LSTM generator is more
sensitive to the input conditions than hyperparameters for performance. Hence, the set of hyperpa-
rameters for the generator is the same for all the datasets. We summarize the generative process of
G in the box below. We note that the conditional generative process is similar to the unconditional
process of NetGAN, with the addition of conditions s̃t in each timestep.

z ∼ N (0, Id)

t = 0 m0 = gθ′(z)

t = 1 fθ(m0, s̃1,0) = (p1,m1), v1 ∼ Cat(σ(p1))
t = 2 fθ(m1, s̃2,v1) = (p2,m2), v2 ∼ Cat(σ(p2))

...
...

...
t = T fθ(mT−1, s̃T ,vT−1) = (pT ,mT), vT ∼ Cat(σ(pT))

Discriminator Our discriminator is an LSTM with 40 layers. The inputs are sequences of graph
nodes concatenated with the respective conditions. The discriminator has similar architecture as the
shadow caster, where they are LSTM models that take sequences as inputs, expect that the LSTM
layer is connected to a final dense layer. The output is a single value between 0 and 1, which
distinguishes real sequences from generated ones.

In the SHADOWCAST training, we use Adam optimizers for all the models. The learning rate of the
shadow caster sequence-to-sequence training is 0.01, while both the generator and the discriminator
use a learning rate of 0.0002.

B. BASELINES

• CondGEN. We use the official PyTorch implementation (https://github.com/
KelestZ/CondGen). However, CondGEN is designed to learn a distribution over mul-
tiple small graphs. To ensure a fair comparison, we modify it to train on randomly selected
85% of the edges in a graph, validate on the remaining 15%, and generate graphs.

• GraphRNN. We use the official PyTorch implementation (https://github.com/
JiaxuanYou/graph-generation) of GraphRNN. The default hyperparameter set-
tings were used in all our experiments.

• GVAE. To compare with Graph VAE (no public code available), we adapt the reference
implementation provided by Yang et al. (2019) in their experiments for a single graph and
use the suggested hyperparameter settings.

• NetGAN. We use the official TensorFlow implementation provided by the authors
(https://github.com/danielzuegner/netgan), following the recommended
hyperparameter settings. We set random walk length to 16, learning rate to
0.0003, generator L2 penalty to 1e-7, and discriminator L2 penalty to
5e-5.

11

https://github.com/KelestZ/CondGen
https://github.com/KelestZ/CondGen
https://github.com/JiaxuanYou/graph-generation
https://github.com/JiaxuanYou/graph-generation
https://github.com/danielzuegner/netgan

Under review as a conference paper at ICLR 2021

C. DATASETS

Details of the datasets are listed below (see Table 2).

Dataset NLCC ELCC K classes K distribution

Cora-ML 2810 7981 7

Enron 154 1843 3

EUcore-top 348 3342 5

Table 2: Statistics of datasets. In the largest connected component (LCC) of each dataset, NLCC is
the number of nodes, ELCC the edges, and K number of total classes. The distribution of the classes
is shown in the corresponding histograms.

• EUcore-top: An email communication network we created that consists of the top five
largest departments in the EU-core dataset (Leskovec et al., 2007). For all nodes in the
graph, if a person i sends at least one email to person j, then there exists an edge (i, j)
between the two nodes. Each node belongs to exactly one department. We sort the data by
the intra-department email counts in descending order. The list of top five departments
is {14, 4, 7, 21, 1}. Link here: http://snap.stanford.edu/data/email-Eu-
core.html

• Enron: It is the Enron Corporation email corpus dataset (Perry & Wolfe, 2013),
where an edge exists between any two nodes as long as they share at least one
email. Link here: https://github.com/patperry/interaction-proc/
tree/master/data/enron

• Cora-ML: A scientific publication citation dataset (Bojchevski & Günnemann, 2018)
consisting of machine learning papers. Link here: https://github.com/
abojchevski/graph2gauss/tree/master/data

D. EXPLAINING GENERATED GRAPHS

We provide the Markov model parameters, initial probability distribution π = (π1, π2, π3) and
transition probability matrixA = (a11a12 . . . a31 . . . a33), used in our experiments.

Observed: Enron normal operations

12

http://snap.stanford.edu/data/email-Eu-core.html
http://snap.stanford.edu/data/email-Eu-core.html
https://github.com/patperry/interaction-proc/tree/master/data/enron
https://github.com/patperry/interaction-proc/tree/master/data/enron
https://github.com/abojchevski/graph2gauss/tree/master/data
https://github.com/abojchevski/graph2gauss/tree/master/data

Under review as a conference paper at ICLR 2021

Generated: Legal (red) internal surge
Initial probability distribution: π = [0.9, 0.05, 0.05]
Transition probability matrix: A = [[0.9, 0.05, 0.05], [0.1, 0.6, 0.3], [0.0, 0.1, 0.9]]

Generated: Finance (green) internal surge
Initial probability distribution: π = [0.05, 0.05, 0.9]
Transition probability matrix: A = [[0.9, 0.1, 0.0], [0.1, 0.6, 0.3], [0.05, 0.05, 0.9]]

Generated: Trading (blue) outgoing surge
Initial probability distribution: π = [0.05, 0.9, 0.05]
Transition probability matrix: A = [[0.9, 0.1, 0.0], [0.25, 0.5, 0.25], [0.0, 0.1, 0.9]]

13

	Introduction
	Explainable Graph Generation
	Problem Formulation
	Proposed Model
	Explaining Generated Graphs

	Related Work
	Experiments
	Conclusion

