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Figure 1: Pre-training vs. Learning-from-Scratch (LfS). Success rate (Adroit, PixMC) and
normalized return (DMControl) in each of the three task domains that we consider (aggregated across
tasks). BC results are averages of top-3 evaluations over 100 epochs [1], and RL results are reported
as a function of environment steps [2, 3], normalized to [0, 1] since number of steps differ between
tasks. We evaluate strong LfS baselines [2, 4] and find them to be competitive with recent frozen
pre-trained representations. We report mean and 95% confidence intervals over 5 seeds.

Abstract: We revisit a simple Learning-from-Scratch baseline for visuo-motor1

control that uses data augmentation and a shallow ConvNet. We find that this2

baseline has competitive performance with recent methods that leverage frozen3

visual representations trained on large-scale vision datasets.4

Keywords: to pre-train; not to pre-train5

1 Introduction6

Large-scale pre-training has delivered promising results in computer vision [5, 6, 7, 8] and natural7

language processing [9, 10, 11, 12]. Recent works have extended the pre-training paradigm to visuo-8

motor control by leveraging pre-trained visual representations for policy learning [1, 13, 3, 14, 15].9

These works train a visual representation using large out-of-domain vision datasets like ImageNet [16]10

and Ego4D [17], and freeze the vision model weights for downstream policy learning. When11

compared to simple Learning-from-Scratch (LfS) methods for visuo-motor control, these works12

find that frozen pre-trained representations help achieve high sample efficiency and/or asymptotic13

performance across a variety of domains and algorithms.14

However, there exists a rich body of work on strategies to improve performance of LfS methods,15

such as auxiliary self-supervised representation learning [18, 19] or using carefully curated data16

augmentations [20, 2, 4]. To gain a sharp understanding of the advantages of visual pre-training17

for motor control, it is necessary to establish strong LfS baselines. Towards this end, we take the18

experimental setups of prior works, and implement strong LfS baselines by adopting shallow ConvNet19

encoders and random shift augmentations. Surprisingly, we find that this modified LfS baseline can20

achieve results competitive with prior works that leverage frozen pre-trained visual representations.21

While our contributions are incremental in nature, we believe that our work contains must-know22

insights for anyone working on pre-trained representations for motor control.23

We evaluate our approach across 3 task domains (Adroit [21], DMControl [22], PixMC [3]) and 324

algorithm classes: imitation learning (behavior cloning), on-policy RL (PPO [23]), and off-policy25
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Figure 2: Tasks. We consider challenging and diverse visuo-motor control tasks spanning 3 domains:
Adroit (dexterous manipulation), DMControl (locomotion, manipulation), and PixMC (manipulation).

RL (DrQ-v2 [2]). Our carefully designed LfS baseline is competitive with use of frozen pre-trained26

representations in all settings, and in some cases even outperforms them. We remain optimistic that27

pre-trained representations will play an important and increasingly larger role in visuo-motor control.28

At the same time, we believe that setting a simple yet strong baseline will help benchmark progress29

in this area. We conjecture that current benchmark tasks are not well suited to reap the benefits of30

pre-trained representations, since they do not require any visual generalization. As the community31

builds better benchmarks and harder tasks that require both visual and policy generalization, we32

conjecture that pre-trained representations will play an increasingly important role. We are committed33

to releasing all of our proposed LfS baselines to the public.34

2 Experiments35

Comparing two paradigms is difficult, and comparing LfS with pre-trainined representations is no36

exception. To help narrow our scope, we focus on representative methods from each paradigm:37

a simple LfS method using data augmentation and a shallow ConvNet, and three frozen visual38

representations trained on large-scale out-of-domain vision datasets (PVR [1], MVP [3], R3M [13]).39

We choose to freeze the pre-trained representations to be consistent with prior work. All three40

pre-trained representations that we consider have been shown to outperform common representations41

such as supervised learning and MoCo-v2 [6] pretraining on ImageNet [16].42

We propose a set of strong LfS baselines that span 3 classes of algorithms: imitation learning43

(behavior cloning), on-policy RL (PPO [23]), and off-policy RL (DrQ-v2 [2]), and consider a total44

of 15 tasks across 3 domains: Adroit [21] (dexterous manipulation; 2 tasks), DMControl [22]45

(locomotion and control; 5 tasks), and PixMC [3] (robotic manipulation; 8 tasks). Figure 2 shows46

sample tasks from each domain. We base our experiments on the public implementations of PVR,47

MVP, and DrQ-v2, and meticulously follow their respective experimental setups. We summarize our48

experiments setup as follows:49

• Behavior Cloning (BC). We consider two domains – Adroit and DMControl – used in PVR.50

Observations are 256× 256 RGB images (center-cropped to 224× 224) with no access to pro-51

prioceptive information. Policies are trained with BC on 100 demonstrations per task; Adroit52

demonstrations are generated by oracle DAPG [21] policies as in PVR, and DMControl demon-53

strations are generated by oracle TD-MPC [24] policies. The original LfS baseline in PVR54

uses a shallow ConvNet encoder. Our improved LfS baseline additionally uses random shift55

augmentation [20, 2] during learning, and we refer to this baseline as LfS (+aug). Data augmenta-56

tion is relatively underexplored in BC literature, but we find that it works surprisingly well. In57

addition to PVR, we also compare with frozen MVP and R3M representations. Consistent with58

the experimental setup in PVR, we measure the policy performance with success rate in case of59

Adroit, and episode returns in case of DMControl. The policies are evaluated every two epochs,60

and we report the average performance over the three best epochs over the course of learning.61

• On-policy RL. We reproduce the results of MVP on their proposed PixMC robotic manipulation62

benchmark. Observations are 224×224 RGB images and also include proprioceptive information.63

The original LfS baseline uses a small ViT [25] encoder. We propose two improved LfS baselines64

for this setting: (1) an LfS baseline that uses a shallow ConvNet encoder and no data augmentation,65

referred to as LfS, and (2) an LfS baseline that additionally applies random shift augmentation in66

critic learning, referred to as LfS (+aug). Following prior work [4, 26], we do not augment value67
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targets. In addition to (frozen) MVP, we also compare with frozen PVR and R3M representations.68

Following the setup in MVP, we use success rate of the policy as the metric for comparison.69

• Off-policy RL. We reproduce the results of state-of-the-art LfS method DrQ-v2 on the same70

DMControl tasks as used in PVR. Observations are 84 × 84 RGB images with no access to71

proprioceptive information; we upsample observations to 224 × 224 when using pre-trained72

representations. DrQ-v2 uses a shallow ConvNet encoder and random shift augmentation by73

default, and we refer to this baseline as LfS (+aug). We compare DrQ-v2 to two alternatives:74

(1) not using data augmentation (simply denoted LfS), and (2) removing data augmentation and75

additionally replacing the LfS encoder with a frozen pre-trained representation, denoted by their76

representation names (PVR, R3M, MVP) respectively. Following prior work on DMControl, we77

use (normalized) return as the metric for comparison.78

2.1 Results79

We summarize our key findings as follows:80

• Performance comparison. Our proposed Learning-from-Scratch (LfS) baselines are competitive81

with (and in some cases outperform) recent frozen pre-trained representations for visuo-motor82

control across a variety of algorithms and domains; see Figure 1 and Table 2. This indicates that,83

while pre-trained representations have the potential to replace the LfS paradigm in the future,84

under the set of most widely used metrics, they have yet to exceed the representational power of a85

well designed LfS method on standard benchmarks.86

• No free lunch – yet. Our results indicate that the efficacy of a frozen pre-trained representation is87

both task-dependent (see Figure 3) and algorithm-dependent (see Figure 1): R3M outperforms88

other pre-trained representations on both Adroit and DMControl using BC, but performs poorly89

on DMControl using RL. Likewise, MVP performs well on PixelMC, but comparably worse in the90

two BC domains. Even within a visually consistent benchmark (PixMC), no single representation91

comes out on top. In contrast, LfS generally produces consistent results across all settings,92

presumably due to learning from task-specific data; this hypothesis is supported by prior work on93

in-domain finetuning of pretrained representations [27, 14, 28].94
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Figure 3: PixMC benchmark. PPO learning curves on the 8 robotic manipulation tasks from PixMC
[3]. LfS performs comparably to pre-trained representations on most tasks. Averaged across 5 seeds.
Table 1: Wall-time of methods learning from scratch vs. using a pre-trained visual representation. For
the latter, we report min{PVR,MVP,R3M} for a fair comparison. While LfS generally leads to better
downstream task performance, using a frozen pre-trained representation can reduce computational
cost substantially, especially during the training process. ↓ Lower is better.

Behavior Cloning Reinforcement Learning
Training (s/iteration) Inference (s/episode) s/1k frames s/iteration

Method\Setting Adroit DMControl Adroit DMControl DrQ-v2 PPO

LfS (+aug) 0.263 0.270 1.61 3.81 10.20 19.40
Fastest pre-training 0.003 0.006 2.66 11.00 13.00 11.90
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• Computational cost. Our results so far has focused entirely on downstream task performance,95

like success rate or return. However, frozen pre-trained representations already demonstrate96

significant gains along an often-neglected axis: wall-time. Training and inference speeds are97

shown in Table 1. We find that BC policy updates are an order of magnitude faster using frozen98

pre-trained representations compared to LfS, as we can embed and cache features for the entire99

dataset in a few forward passes. However, inference speed generally favors LfS due to their100

smaller visual backbones, which is particularly important for real-robot applications. Since RL101

training interleaves learning and inference (data collection), wall-times are more balanced in this102

setting. We do not factor in the cost of learning a pretrained representation, since it is a one-time103

cost, and the representations can be reused across tasks.104

3 Related Work105

Table 2: Imitation Learning. Success rate (Adroit) and
unnormalized return (DMControl) of LfS and our best result
obtained with a pre-trained representation, i.e., for each task
we report max{PVR,MVP,R3M}.

Task\Method LfS LfS (+aug) Best pre-training

Pen 14.0±5.6 85.7±4.3 87.0±5.7

Relocate 8.0±1.4 55.0±10.1 34.2±2.2

Finger Spin 6.2±3.0 445.3±12.2 611.4±18.2

Reacher Hard 35.6±18.1 846.2±67.2 602.0±107.8

Cheetah Run 8.8±5.6 171.0±18.8 202.2±12.2

Walker Stand 147.3±7.9 311.7±55.1 309.3±22.7

Walker Walk 38.4±2.4 111.4±27.5 80.6±5.3

Pre-training. Representation106

learning via supervised/self-107

supervised/unsupervised pre-training108

on large-scale datasets has emerged109

as a powerful paradigm in areas110

such as computer vision [5, 6, 7, 8]111

and natural language processing112

[9, 10, 11, 12], where large datasets113

are available. While pre-trained114

representations can be finetuned to115

solve various downstream tasks, it116

may be prohibitively expensive to do117

so, and representations are therefore118

commonly used as-is, i.e., with frozen weights. We reflect on recent progress and challenges when119

leveraging pre-trained visual representations for control, which is an emerging and comparably120

underexplored application area of such representations.121

Pretrained representations for control. Multiple works have explored learning control policies122

with visual representations pre-trained on large external datasets [29, 1, 13, 3, 27, 14, 15, 28]. In123

particular, PVR [1] and R3M [13] propose to learn policies by behavior cloning using pre-trained124

representations; PVR fuses features from several layers of a ResNet50 learned by MoCo [6], and R3M125

[13] learn a representation using a time-contrastive objective on ego-centric human videos. MVP126

[3] learn a policy with PPO and use a pre-trained visual encoder for feature extraction in addition to127

proprioceptive state information; the pre-trained representation is an MAE [30] trained on frames128

from diverse human videos. Despite encouraging results in leveraging pre-trained representations for129

control, we show that LfS remains competitive with (frozen) pre-trained representations at this time.130

4 Discussion131

We have shown that a carefully designed LfS baseline is competitive with frozen pre-trained repre-132

sentations across a variety of algorithm classes and domains. While this is the current conclusion, we133

remain optimistic that results will be skewed in favor of pre-trained representations as the paradigm134

matures. At present, we find that the main benefit of a frozen pretrained representation is the reduced135

training cost that comes with its universality – a single representation can be reused across tasks.136

Bridging the performance gap while maintaining universality will thus be critical to the adoption137

of this new paradigm. Recent works show that pretrained representations benefit from finetuning138

on task-specific data [27, 14, 28], combining elements of pre-training and LfS. However, finetuning139

large visual backbones present optimization challenges (e.g., instability and catastrophical forgetting),140

and can be costly. We encourage further research in these directions, and hope that our strong LfS141

baselines will help accurately benchmark progress in this area.142
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