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Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities in complex reason-
ing tasks. However, existing approaches mainly
rely on imitation learning and struggle to achieve
effective test-time scaling. While reinforcement
learning (RL) holds promise for enabling self-
exploration, recent attempts yield modest im-
provements in complex reasoning. In this paper,
we present T1 to scale RL by encouraging ex-
ploration and understand inference scaling. We
first initialize the LLM using synthesized chain-
of-thought data that integrates trial-and-error and
self-verification. To scale RL training, we pro-
mote increased sampling diversity through over-
sampling. We demonstrate that T1 with open
LLMs as its base exhibits inference scaling be-
havior and achieves superior performance on chal-
lenging math reasoning benchmarks. More im-
portantly, we present a simple strategy to exam-
ine inference scaling, where increased inference
budgets directly lead to T1’s better performance
without any additional verification. The model
weights and training data are publicly available at
https://github.com/THUDM/T1.

1. Introduction
Large language models (LLMs) (Achiam et al., 2023; Team
et al., 2023; Dubey et al., 2024) have recently exhibited
remarkable capabilities in addressing complex reasoning
tasks (Shao et al., 2024; Lozhkov et al., 2024; Zhu et al.,
2024; Zhou et al., 2024). The chain-of-thought (CoT)
paradigm (Wei et al., 2022) has been instrumental in en-
hancing LLM reasoning, emphasizing the importance of
constructing and refining reasoning paths (Zelikman et al.,
2022; Gulcehre et al., 2023). Recent approaches priori-
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Figure 1: Training and inference scaling of T1 (Qwen2.5-
32B) on AIME2024 with different max generation budgets
(x-axis) and different RL training steps (SFT: 0% RL steps).
T1 achieves better performance with increasing generation
length. More RL training steps bring more significant infer-
ence scaling. Details in Section 4.

tize the imitation learning stage, with efforts dedicated to
generating reasoning paths through prompting (Yu et al.,
2024; Mitra et al., 2024; Yue et al., 2024) or rejection sam-
pling (Yuan et al., 2023), followed by training LLMs to
replicate the selected reasoning processes.

Despite these advancements, reinforcement learning (RL)—
which can enable LLMs to self-explore and learn from
feedback—has demonstrated greater potential than imitation
learning (OpenAI, 2024) for unlocking inference scaling,
i.e., test-time scaling of LLMs. However, its development
within the research community remains limited to date. Pre-
vious studies (Shao et al., 2024; Wang et al., 2024; Hou
et al., 2024) suggest that RL yields relatively modest per-
formance improvements in complex reasoning and lacks
scalability compared to its earlier training stages.

Regarding test-time scaling, existing methods typically rely
on repeated sampling (Brown et al., 2024), where multi-
ple outputs are generated from a given policy model and
auxiliary verifiers (Snell et al., 2024) are used to select the
best response. However, these approaches do not update
to the policy model itself, thus failing to fundamentally
improve the reasoning ability of LLMs. Repeatedly sam-
pling short responses with verifiers also falls short of the
expected inference scaling behavior (OpenAI, 2024). Ide-
ally, deeper thinking and longer generation are expected
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to directly lead to better performance without relying on
external signals. Consequently, improving LLM reason-
ing through RL scaling and inference scaling remains an
underexplored challenge.

In this work, we explore the key factors for scaling RL and
enabling test-time scaling behavior in LLM reasoning. We
introduce T1, which exhibits superior reasoning capabilities
trained via RL. We demonstrate its promising inference
scaling behavior in reasoning tasks, as shown in Figure 1.
The core idea of T1 is to encourage extensive exploration in
RL to scale its training while applying appropriate penalties
to maintain training stability.

First, we finetune the LLM using synthesized CoT data with
trial-and-error and self-verification, which helps substan-
tially expand the exploration space before RL training. This
strategy makes it different from previous works (An et al.,
2023; Yuan et al., 2023; Zhang et al., 2024) that typically
focus on the correct steps but usually overlook the overall
thinking process.

Next, to scale RL, we promote greater sampling diversity
during RL training by oversampling responses for each
prompt with a high temperature. In addition, we adopt a
token-level entropy bonus and an on-policy KL normaliza-
tion strategy to encourage varied token generation. These
also help mitigate excessive regularization from the refer-
ence. Strict penalties are imposed on repetitive or nonsensi-
cal outputs to prevent collapse and stabilize RL training.

Third, building on this scaled RL training, we propose a
simple way to measure and understand inference scaling.
The idea is to explicitly separate the generation of interme-
diate reasoning steps from the final answer. This allows
us to manually control the inference budget by truncating
the reasoning process and study how inference cost affects
LLMs’ reasoning performance. Figure 1 illustrates the train-
ing and inference scaling behavior of the policy model on
AIME2024. With the same amount of inference budget, the
performance improves consistently as RL training scales.
T1 also demonstrates stronger inference scaling trends as
training steps increase. In contrast, the T1-SFT and early-
stage policy models (e.g., 30% RL steps) show marginal
improvements even with the max inference budgets.

We build T1 on top of open models such as Qwen (Yang
et al., 2024a) and GLM (GLM et al., 2024). These non-o1
style models are equipped with long thinking through T1’s
RL scaling, without relying on directly-distilled long Chain-
of-Thought data. We evaluate the models on college- and
competition-level math reasoning benchmarks. Experiments
show that the T1 models achieve superior performance
across all benchmarks. For example, T1 with Qwen-32B as
its base can outperform the recent Qwen QwQ-32B-Preview
model on MATH500, AIME2024, and Omni-MATH-500.

More importantly, T1 exhibits promising trends in both
training and inference scaling. The model weights and
the data for SFT and RL training are publicly available at
https://github.com/THUDM/T1.

2. Building T1 with RL Scaling
2.1. Preliminary

Supervised Fine-Tuning (SFT). In the initial phase of
alignment, the pre-trained model is fine-tuned to replicate
high-quality demonstration data (e.g., dialogue, summariza-
tion). This process, commonly referred to as SFT, serves
as a foundational step for aligning the model’s outputs with
human-like performance.

Reinforcement Learning from Human Feedback
(RLHF). To further align the fine-tuned model πθ with
human preferences, Ouyang et al. (2022) proposes the use
of RL to maximize a reward signal while regularizing the
model πθ, that is, to optimize the objective:

Jr(πθ) = Ex∼pdata,y∼πθ

[
r(x,y)− β log

πθ(y | x)
πref(y | x)

]

(1)

Here, r(·) represents the reward function, which evaluates
the quality or correctness of each response. It takes a prompt
x and its corresponding response y as input and produces a
scalar reward. The term πref refers to the reference model,
typically the SFT model.

The general RLHF pipeline proceeds as follows: given a
prompt x, the policy model πθ generates K different re-
sponses, denoted as (y1, . . . ,yK). The reward function
then assigns a scalar reward to each pair (x,yi). Subse-
quently, the policy model πθ is updated via reinforcement
learning to maximize the objective defined in Eq. 1.

2.2. Scaling Reinforcement Learning for Reasoning

We present T1 to scaling RL with the goal of advancing
the reasoning capability of LLMs. The core idea behind T1
is to promote exploration during RL training. To achieve
this, we propose to expand the search space of the LLM and
encourage diverse reasoning trajectories while maintaining
the training stability with proper penalties to stably scale
the RL training.

The first step of T1 is to initialize the SFT model with rich
reasoning patterns, such as trial-and-error and verification—
elements often overlooked in prior works as they tend to
emphasize (only) the correct steps while neglecting the un-
derlying thought process. The second step is to develop
strategies to effectively scale RL training that further con-
tributes to the improvement of LLM reasoning. Figure 2
illustrates the overall framework of T1.
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Figure 2: The overall pipeline of RL and T1.

2.2.1. INITIALIZING POLICY W/ COT

The chain-of-thought (CoT) (Wei et al., 2022) often defines
the reasoning paths of LLMs (OpenAI, 2024), influencing
the response search space and RL scaling. To encourage
exploration and broaden the search space, we first initialize
the policy model with diverse reasoning patterns in the form
of CoT (e.g., reflection and verification) in the SFT stage. In
doing so, the SFT model is expected to produce responses
that incorporate self-correction from flawed attempts as
well as thoroughly-verified approaches. The policy model
is then used for subsequent RL training. Note that previous
works (Zelikman et al., 2022; An et al., 2023) that optimize
CoT often undervalue trial-and-error processes, focusing
primarily on correct reasoning steps.

Specifically, we begin by generating multiple responses
from different LLMs as attempts (y1, ...,yN ) for a given
prompt x and judge their correctness based on its ground-
truth label. Then we prompt an LLM to thoroughly examine
each attempt to obtain the critic ci, including 1) identifying
the nature of the errors for incorrect attempts and reflecting
on their underlying causes, and 2) performing a verifica-
tion process for correct ones to confirm the validity of the
conclusions derived.

To obtain the reasoning path, we further prompt an LLM
to incorporate these refined attempts {x,yi, ci}Ni=1—both
corrected misconceptions and validated reasoning—into a
single output. This is used to illuminate the trial-and-error
process that can lead from flawed initial attempts to the final
correct solution. Furthermore, we find that some constructed
CoTs could simply enumerate different approaches and fi-
nally present the correct solution. To overcome this issue,
we ask an LLM to rewrite the CoT based on the abstracted
pattern to obtain the final solution for SFT training.

2.2.2. ENCOURAGING EXPLORATION IN RL TRAINING

To scale RL training, we introduce strategies to encourage
exploration. For generation, we adopt a hard sampling strat-
egy to promote the policy model to explore as many trajec-
tories as possible to reach the correct path. For optimization,
we integrate the response entropy bonus as an auxiliary loss
and also ease the KL regularization to facilitate scaling.

Scaling response sampling with high temperature. Scal-
ing sampling aims to capture a broad spectrum of reason-
ing paths by generating an increased number of responses
per prompt during RL training. As indicated in previous
work (Li et al., 2024a), the policy model has possessed
strong ability in its inherent sampling space, and it is crucial
to search extensively for the valuable reasoning path that
can enable effective learning for the policy model.

Formally, given a prompt x, we sample K responses and
obtain D = {(x,y1), (x,y2), . . . , (x,yK)}. We find that a
larger K works better in practice and thus adopt K = 64 in
general. Previous works (Touvron et al., 2023; Kazemnejad
et al., 2024; Hou et al., 2024) commonly adopt K ≤ 8
except for K = 32 in Qwen2.5-Math (Yang et al., 2024b).

To further improve response diversity, we utilize a high tem-
perature τ during sampling. A higher temperature τ > 1
flattens the probability distribution, increasing the likelihood
of sampling less probable tokens, and thus encouraging the
exploration of diverse token sequences. This strategy facili-
tates the generation of various reasoning paths and avoids
falling into a fixed pattern. Our experiments demonstrate
that high sampling temperatures can help training stability
and improve the performance gainss in RL training.

For optimization, we use the leave-one-out strategy used in
RLOO (Ahmadian et al., 2024) to normalize the rewards:

r̄i = ri −
1

k − 1

K∑

j ̸=i

rj (2)

where ri denotes the reward from reward models or the
correctness in {0, 1}. Consequently, the policy model can
learn from a richer set of experiences, leading to improved
generalization and performance on reasoning.

Auxiliary entropy bonus. To encourage LLMs to generate
diverse tokens and avoid deterministic response patterns, we
incorporate an entropy bonus into the RL loss function. The
modified loss function L is defined as:

L = LRL − αH(π(·|x))

= LRL + α

|y|∑

j

∑

w∈V
πθ(w|x,y:j−1) log πθ(w|x,y:j−1)

(3)

where LRL represents the standard RL loss, α is a weighting
coefficient, H(π(·|x)) is the token-level entropy given the
prompt x, V is the vocabulary. The entropy term measures
the uncertainty in the token generation process, incentiviz-
ing the model to explore tokens of lower probability.

On-policy KL normalization. In RL training, the
Kullback-Leibler (KL) divergence is used to force the pol-
icy model to remain close to the reference model and thus
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prevent forgetting and reward hacking (Ouyang et al., 2022).
However, a fixed reference anchor could hinder the reward
optimization and thus prevent RL scaling. We adopt two
strategies to overcome this problem.

First, similar to the reward normalization which scales the
rewards to have zero mean, we enforce KL normalization
by subtracting the average KL divergence within responses
from a prompt x, effectively keeping the final normalized
reward centered at zero. Denoting the KL for a prompt-
response pair (x,yi) as di =

∑|yi|
j log

πθ(yi,j |x)
πref(yi,j |x) , the nor-

malized KL is:

d̄i = di −
1

k − 1

K∑

j ̸=i

dj (4)

Additionally, we apply the Exponential Moving Average
(EMA) to dynamically update the reference model, thus
avoiding it lagging too behind the policy model:

θref(t) = αθref(t− 1) + (1− α)θ(t)

where α is the decay rate. The EMA provides a smoothed es-
timate of the policy parameters, serving as a stable reference.
With these two strategies, policy updates are incremental
and controlled, preventing too large shifts that could desta-
bilize the model training.

2.2.3. PENALIZING UNEXPECTED PATTERNS

Encouraging exploration is essential for discovering effec-
tive reasoning strategies. However, it is also crucial to dis-
courage unexpected and undesirable response patterns. This
helps prevent training collapse and keeps the model from
deviating in unintended directions. To achieve this, we im-
plement a straightforward penalty mechanism by assigning
a negative reward of −1 to responses exhibiting common
issues such as repetition, overlong text, and garbage text,
e.g., mixed multilingual content or garbled characters.

Specifically, the reward function r′ is adjusted as follows:

r′ =

{
−1 if a bad pattern is detected in y,

r otherwise.

where r is the original reward and y is the generated re-
sponse. This formulation penalizes responses that exhibit
undesirable patterns, guiding the LLM to avoid the follow-
ing behaviors during training:

• Repetition and Overlong Text: Responses containing
repetitive n-grams or exceeding predefined maximum
length will receive a −1 reward. This discourages the
generation of meaningless verbose and repeated outputs.

• Garbage Text: Responses containing mixed languages
or garbled characters are also penalized with a −1 reward,

identified through language detection and text quality as-
sessment. This prevents the generation of incoherent or
unreadable output. During training, we observe that the
policy model can produce fluent but semantically irregular
text, leading to a significant increase in response entropy.
To address this, we implement both rule-based detection
of low-quality text and perplexity-based filtering to en-
hance training stability.

This penalty effectively prevents the training process from
collapsing and steers the model away from generating out-
puts that could undermine the reasoning capabilities.

3. Evaluating T1
We build T1 by using open models, including GLM-4-
9B (GLM et al., 2024), Qwen2.5-14B, and Qwen2.5-
32B (Yang et al., 2024a). We evaluate the performance on
widely-used math reasoning benchmarks—AIME, Omni-
MATH (Gao et al., 2024), MATH (Hendrycks et al., 2021),
and GPQA (Rein et al., 2023). Accuracy (Pass@1) is used
as the primary evaluation metric. The details of the experi-
mental setup is listed in Appendix A.

Table 1: Experiment results on challenging reasoning bench-
marks. We report the Accuracy(%) for all datasets.

MATH500 AIME Omni-MA
TH-500 GPQA

GPT-4o 76.6 9.3 26.8 53.6
Claude-3.5-sonnet 78.3 16.0 / 65.0
Llama-3.3-70B-Instruct 73.9 24.2 27.9 50.5
Qwen2.5-Math-7B-Instruct 82.7 16.7 29.7 36.9

o1-preview 85.5 44.6 / 72.3
QwQ-32B-preview 90.6 50.0 46.6 58.2

GLM-4-9B-chat 50.1 1.7 12.9 30.9
T1-SFT (GLM-4-9B) 60.2 4.1 20.0 37.2
T1 (GLM-4-9B) 65.8 9.2 24.4 38.1

Qwen2.5-14B-Instruct 78.9 13.7 30.1 45.5
T1-SFT (Qwen2.5-14B) 77.2 10.3 28.5 42.3
T1 (Qwen2.5-14B) 87.4 30.5 38.6 48.3

Qwen2.5-32B-Instruct 82.8 13.6 33.1 49.5
T1-SFT (Qwen2.5-32B) 83.4 24.9 34.6 49.5
T1 (Qwen2.5-32B) 92.4 50.6 49.6 56.1

3.1. Performance Results

Table 1 shows the overall results on major math benchmarks.
It is observed that the T1-SFT (without RL scaling) models
show promising performance advantages over their original
counterparts, respectively. Further with scaling RL, T1
helps achieve significant performance gains over both SFT
and original baselines. Specifically, T1 (Qwen2.5-32B)
trained with RL achieves over a 10% improvement on Omni-
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Figure 3: Training and evaluation with different number of responses (K) sampled in training on T1 (Qwen2.5-14B).

MATH-500 and MATH500 and over a 20% improvement on
AIME over its T1-SFT version, showcasing the substantial
contribution of RL in reasoning capabilities.

Furthermore, in math-related benchmarks, T1 shows ad-
vantages over baselines. For instance, on MATH500, T1
(Qwen2.5-32B) achieves a score of 92.4, outperforming
the previous best result (90.6). On AIME, the model also
achieves super competitive results compared to baselines.
These results highlight the superiority of our approach and
demonstrate its effectiveness in boosting the ability to han-
dle complex mathematical reasoning tasks.

While our method is primarily optimized for math-related
tasks, it also exhibits out-of-domain (OOD) performance
improvements on the GPQA benchmark, where no task-
specific optimization is applied in the training. But we also
observe remarkable performance improvement in these two
benchmarks, indicating that the learned reasoning capability
can be generalized across different tasks.

3.2. The Effect of Encouraging Exploration

Sampling more responses encourages exploration. Fig-
ure 3 shows the effect of sampling different number of
responses (i.e., K) during RL training. We have the fol-
lowing observations: First, sampling more responses during
RL training significantly boosts exploration, leading to a
substantial increase in response length, as shown in Figure
3 (a). Second, for a fixed number of prompts, more sam-
pled responses accelerate performance improvements, with
models achieving better accuracy on tasks like MATH500 in
fewer training steps, as evident in Figure 3 (b). Additionally,
models trained with more responses yield higher rewards
for the same KL divergence and exhibit slower KL growth,
as seen in Figure 3 (c). This indicates a better trade-off
between KL and reward.

Figure 4 illustrates the consistent improvements with sam-
pling more responses in RL training. It is also observed
that sampling additional responses significantly enhances
generalization. Although our training data predominantly
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Figure 4: Evaluation results of T1 (Qwen2.5-14B) using
different numbers of sampled responses (K) in RL training.

Table 2: Effects of sampling parameters in RL training on
T1 (Qwen2.5-14B). We use top-p=0.95 for all experiments.

Temperature min-p MATH500 AIME Omni-MATH-500

0.9 0 78.2 19.1 32.0
1.1 0 84.6 29.0 37.8
1.2 0 86.4 29.3 38.6
1.3 0 84.6 24.3 36.4
1.2 0.05 78.8 11.5 31.6

consists of mathematical content and includes almost no
science-related data (i.e., physics, chemistry, or biology), T1
demonstrates notable performance improvements in GPQA.
The impact of response sampling is particularly pronounced
when increasing the number of samples to 64, producing a
substantial improvement (over 6%), while sampling only 4
responses shows little to no benefit (around 3%).

High temperature in sampling benefits RL training.
A higher sampling temperature can encourage the policy
model to generate more diverse responses, but RL training is
often sensitive to the chosen temperature. Table 2 presents
the results of using different sampling temperatures. We
observe that higher temperatures contribute to more stable
training while training with a temperature ≤ 1.0 often col-
lapses after just a few steps. This behavior might occur
because, at lower temperatures, if the model starts produc-
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Figure 5: Inference scaling in T1 (Top) and repeated sam-
pling in previous works (Down).

ing undesirable patterns—such as repetitive or nonsensical
outputs—it becomes increasingly difficult for it to sample a
coherent response, preventing recovery from such issues.

Furthermore, training with a moderately high temperature
(e.g., 1.2) yields better performance, but excessively high
temperatures also negatively impacts outcomes. Although
previous studies (Nguyen et al., 2024) have proposed using
min-p sampling to mitigate the risks associated with higher
temperatures, our experiments find that this approach can
make the training process more prone to collapse, especially
exacerbating repetition during generation. Therefore, we
only use top-p with high temperature in our training.

Table 3: Effects of penalty reward during RL training on T1
(Qwen2.5-14B). It shows the overlong ratio and accuracy on
MATH500. “OverLongRatio” denotes the ratio of generated
responses exceeding the configured maximum length.

Penalty step40 step80 step120 step160

OverLongRatio ✓ 0% 2.6% 1.6% 0.7%
✗ 0% 4.1% 16.3% -

Accuracy(%) ✓ 78.6 80.1 81.2 81.2
✗ 79.0 79.2 76.4 -

Effects of penalty. Table 3 demonstrates the impact of
penalizing unexpected patterns during training. Without
penalty, we observe that the generation length becomes
unstable and grows explosively after approximately 100
steps, leading to substantial deterioration in performance.
In contrast, the model quickly stabilizes when the penalty is
applied, although there is a minor increase in the overlong
ratio during the early training stages. The penalized model
maintains appropriate generation lengths and produces text
with minimal repetition and noise, leading to consistent
performance improvement.

4. Understanding Inference Scaling in T1
With T1, we aim to improve our understanding of inference
scaling, which describes how LLMs achieve performance
gains from increased compute during inference (Snell et al.,
2024; OpenAI, 2024). Unlike previous works (Snell et al.,
2024; Brown et al., 2024; Kumar et al., 2024), which mainly
focus on scaling through repeated sampling, this study in-
vestigates a different approach. We explore how a single
longer generation (long thinking) affects the correctness of
responses and LLMs’ reasoning ability.

How to measure inference scaling? By scaling RL, T1
enables a new perspective for examining inference scaling.
Naturally, when we solve a complex problem, the reasoning
process often involves a sequence of thinking steps. Even
if an intermediate step is wrong, it still plays a key role in
figuring out the solution. Through reflection, the wrong step
can help reevaluate the approach, refine the reasoning pro-
cess, and lead to the correct path. That said, each previous
step in the (long) sequence is crucial, as the final solution is
built upon existing thinking.

Inspired by this assumption, we outline a simple strategy
to analyze the single (long) response generated by T1, as
illustrated by Figure 5 (Top). The idea is to truncate each re-
sponse from the beginning to different lengths, although re-
sponse length can be controlled through specialized prompt-
ing or post-RL fine-tuning. This is used to simulate varying
scales of inference cost. Specifically, we truncate each T1
response y into various lengths of tokens y:li , with li repre-
sents the length of the truncated response. For each of the
truncated response y:li , we propose to use a summarization
model ϕ(y:li) → A:li to generate the final answer A:li . In
the analysis below, we simplify by setting li as i×10% of
the original length of y, and by using the base model of T1
as the corresponding summarization model. Since the sum-
marization model can produce complete answers regardless
of whether the thinking process has fully concluded, we
evaluate A:li to assess performance on benchmarks.

This simple strategy enables us to analyze the relationship
between thinking/reasoning length and performance, that
is, the effect of inference scaling. Figure 6 shows the re-
sult on AIME, Omni-MATH-500, and MATH500, as x-axis
representing the average token count of y:li for different
responses with respect to each li. On each benchmark, per-
formance improves consistently as the average number of
thinking tokens increases, reflecting the positive impact of
longer thinking on LLMs’ reasoning performance. Take
AIME in Figure 6 for example, the summarization model’s
accuracy steadily rises from 24% to 50% as more and more
thinking tokens are generated. These results indicate that
scaling the inference process of LLMs by increasing the
number of tokens generated leads to significant improve-
ments in reasoning performance. The consistency of this
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inference scaling effect across different benchmarks sug-
gests that longer inference budgets directly contribute to
better performance. This also demonstrates the effective-
ness of our simple strategy to measure inference scaling.

Inference scaling is closely related to RL training scaling.
Based on the above strategy, we further study the relation-
ship between RL training and inference scaling. Figure 7
illustrates the inference scaling behavior of T1 with different
RL training compute. The policy model consistently demon-
strates improved performance across all three datasets as
training compute increases (from bottom to top), under the
same maximum generation budget. However, both the T1-
SFT model and under-trained RL policy models (e.g., 30%
steps in RL) show minimal gains when scaling up inference
costs (from left to right). More trained RL models (e.g.,
60% steps) achieve significant performance gains. This sug-
gests that more RL training could activate and enhance the
inference scaling property. In addition, we can observe that
challenging tasks benefit more from inference scaling. For
example, with 100% RL training steps (purple lines), T1
gains a 66% relative improvement (from 30% to 50%) on
AIME, 30% (from 38% to 49%) on Omni-math-500, and
6% (from 86% to 92%) on MATH500.

We further study the inference behavior during RL training,
as shown in Figure 8. First, the policy model is encouraged
to produce increasingly longer responses with the presented
exploration strategies during training, as seen in Figure 8 (a).
Next, we use an LLM to classify each reasoning step into

different patterns:Correct mistake, Try different approach,
Verification, and others. This helps study the reasoning be-
havior in longer responses. Figure 8 (b) shows the count
of different reasoning patterns corresponding to the purple
line in Figure 8 (a). Longer responses contain more di-
verse reasoning patterns, suggesting the model engaged in
trial-and-error problem-solving. An initial drop in reason-
ing attempts likely indicates that the model first learned to
eliminate redundant steps caused by the SFT. Overall, these
results demonstrate that RL training enhances the model’s
ability to leverage increased inference compute for more
effective reasoning.

Case study. As described in Section 2.2.1, the T1 model
is capable of exploring different approaches and correcting
reasoning errors. We aim to identify the key reasoning
steps—those in which the model discovers the correct idea
to solve a problem—and investigate whether these steps
share common characteristics.

Since our model can rectify its mistakes, it is not appropriate
to judge the correctness of a reasoning step solely based
on whether it leads to the correct final result. To address
this, we employ a strategy inspired by truncated inference
scaling analysis: a step is labeled as a key step when an ad-
ditional reasoning step transforms the model’s summarized
answer from incorrect to correct. Using this approach, we
identify 126 instances from the Omni-math-500 dataset and
108 instances from the AIME dataset where such transitions
occur. We then conduct a frequent word analysis on these

7



T1: Advancing LLM Reasoning through Reinforcement Learning and Inference Scaling

0 50 100 150
Training steps

1500

2000

2500

3000

Ge
ne

ra
tio

n 
Le

ng
th

 (T
ok

en
s)

w/ Explore
w/o Explore

(a) Length w/ and w/o encouraging explo-
ration during RL training.

0 100 200 300
Training steps

2

4

6

8

Co
un

ts

Correct mistake
Try different approach
Verification

(b) The number of different reasoning pat-
terns during RL training with exploration.

let
's

wait

con
sid

er

pe
rha

ps try

sug
ge

st
ne

ed

sim
plif

y

ho
wev

er

alt
ern

ate
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
op

or
tio

n

Frequent words in key steps

(c) Word frequency distribution in key rea-
soning steps. key step refers to the step that,
if omitted, yields an incorrect answer, but
when included, leads to the correct result.

Figure 8: A study of the inference behavior of T1 (Qwen2.5-14B) during RL training.

key steps, with the results illustrated in Figure 8 (c). No-
tably, words such as wait, perhaps, and alternate frequently
appear in these steps. These terms often signal moments
of rethinking or the exploration of alternative approaches.
The observation further demonstrates that reflection is a key
capability in improving the reasoning ability.

Figure 9 in Appendix A illustrates an example of the rea-
soning process of T1. Initially, the model attempts to solve
the problem until it reaches an intermediate step. It is not
confident in the reasoning and then employs a different ap-
proach and arrives at the same result. Finally, the model
performs an additional verification step to ensure that no
potential cases are overlooked. At this point, it is confident
that it has arrived at the correct answer.

5. Related Work

Language model reasoning. Recent advances in language
models in complex reasoning tasks have been remarkable
and have shown substantial improvements (Lewkowycz
et al., 2022; Shao et al., 2024; Lightman et al.). One line of
work involves pretraining large language models (LLMs) on
extensive reasoning-related datasets, such as mathematics
and code, which has significantly improved their founda-
tional understanding of reasoning tasks (Paster et al., 2023;
Shao et al., 2024; Lozhkov et al., 2024). Another line of
work focuses on post-training strategies. Some works (Yuan
et al., 2023; Yue et al.; Zelikman et al., 2022; Li et al.,
2024b) focus on synthesizing reasoning-related question-
answer pairs and incorporating additional verifiers or critics
to improve data quality Additionally, fine-tuning models
through reinforcement learning (Ouyang et al., 2022; Bai
et al., 2022) enables the model to learn from feedback and
self-guided actions. This iterative process allows models
to critique and refine their answers, thus improving their
problem-solving abilities(Shao et al., 2024; Wang et al.,
2024; Kazemnejad et al., 2024). In this work, we build on
the third line of work by scaling RL techniques.

Scaling language models. Scaling is one of the key fac-
tors leading to the success of powerful LLMs and provides
crucial insights into the continuous improvement. Kaplan
et al. (2020); Hoffmann et al. (2022); Du et al. (2024) study
the scaling laws for pretraining and demonstrate that scaling
model size and training tokens can both lead to predictable
improvements. Recently, reinforcement learning as well as
test-time scaling for LLMs to boost reasoning capabilities
has attracted much attention since the emerge of OpenAI
o1 (OpenAI, 2024), but are still under-explored in the open
community. Gao et al. (2023); Cobbe et al. (2021) explore
the scaling laws in reward modeling under a synthetic set-
ting and Rafailov et al. (2024a) studies the scaling of direct
policy optimization (Rafailov et al., 2024b). Hou et al.
(2024) investigates the impact of scaling and shows that tra-
ditional methods are not scalable and are far from effective
as shown in o1 in boosting the reasoning abilities of LLMs.
Beyond scaling RL training, inference scaling is also a cru-
cial yet under-explored. Existing works (Brown et al., 2024;
Snell et al., 2024) measure the inference cost by repeated
sampling, which heavily relies on external supervision as a
verifier and is not as scalable as proposed in o1.

6. Conclusion
In this paper, we present T1 for enhancing large language
models’ reasoning capabilities through scaled reinforcement
learning. By promoting extensive exploration during RL
training while maintaining stability through strategic penal-
ties and oversampling, T1 achieves strong reasoning perfor-
mance and demonstrates promising test-time scaling behav-
ior. We introduce a novel approach to measuring inference
scaling by analyzing the relationship between reasoning
steps and model performance, revealing that increased RL
training improves both reasoning accuracy and inference
scaling trends. Experimental results demonstrate that T1
shows excellent performance and outperforms existing mod-
els on challenging reasoning benchmarks.
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A. Appendix
A.1. Setup

Data construction. The prompts used in the training data all come from publicly available datasets, including MATH-
train (Hendrycks et al., 2021), and NuminaMath (Li et al., 2024b). We split around 12k for the SFT stage and the others for
RL training. To prepare the data for reinforcement learning, we convert the original instances into (Question, Label) pairs
through the following two steps: The first step is answer extraction. Since NuminaMath provides a combined rationale
and final answer, we employ an LLM to extract the answer as the label and shorten it as much as possible. A concise
label facilitates more accurate correctness checks by the LLM during later training stages. For MATH-train, we directly
use the question and official answer provided in the dataset. The second step is data filtering. For both NuminaMath
and MATH-train, we further filter the data to ensure reliability and high quality for RL training. In particular, we remove
inaccurate (noisy) labels and overly simple problems. For each question, we generate 16 responses and retain only those
instances whose pass rate lies in the interval (0, δ) (where δ = 0.3 in our experiments). Finally, we got 30k data that can be
used for RL training.

An example from AIME-2024 Question-15 solved by T1

Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be the radius of the smallest sphere that can contain each of the
rectangular boxes that are elements of B. The value of r2 can be written as p

q
, where p and q are relatively prime positive integers. Find p + q.

{Problem Analysis} Let the dimensions of the box be a, b, and c. From the surface area constraint: 2(ab + bc + ac) = 54 =⇒ ab + bc + ac = 27.
From the volume constraint: abc = 23. Our goal is to minimize a2 + b2 + c2 under these constraints.

{Symmetry Attempt} Perhaps the box is close to a cube. Let’s try a = b as a simpler case. This gives:

2(a2 + 2ac) = 54 =⇒ a2 + 2ac = 27 =⇒ c =
27 − a2

2a

Combined with volume constraint a2c = 23, · · · (simplification), we get:

a3 − 27a + 46 = 0

{Numerical Trial} Testing a = 2, · · · (verification), this gives a = b = 2 and c =
23

4
.

{Another Approach} Let’s consider another approach using Lagrange multipliers to minimize a2 + b2 + c2 subject to the constraints:

L(a, b, c, λ, µ) = a2 + b2 + c2 − λ(ab + bc + ac − 27) − µ(abc − 23)

· · · (heavy calculation of partial derivatives). So a = b is an optimal condition.

{Calculation} For a = 2, b = 2, c =
23

4
,

4r2 = a2 + b2 + c2 = 4 + 4 +
529

16
=

657

16

{Verification} Since 657 = 32 × 73 and 64 = 26, these numbers are relatively prime. Therefore, p = 657 and q = 64, giving p + q = 721.

{Try other values} Wait, let’s make sure we’ve considered all possibilities. Let’s try a = 1. · · · (derive equation and calculate ∆), but a = 1 does not

satisfy a ≤ 2√
23

≈ 0.4226. Therefore, a cannot be 1.

{Final Answer} Answer: 721

Figure 9: An example of T1’s response to Question-15 in AIME2024. T1 explores multiple solution approaches and employs
various verification strategies to ensure the correctness of the final answer.

Training details. For SFT, we train the models for three epochs using a learning rate 1e-5 with cosine decay scheduling.
For RL training, we sample 64 responses for each prompt and perform policy gradient descent for every 32 prompts. We
train the model with a 1.5e-6 learning rate and KL set to 2e-4. For the reward function, we use the ground truth, i.e., the
correctness of the response, as the metric, assigning a reward of 1 for correct answers and 0 for incorrect ones. Although
using a trained reward model is generally considered a superior approach due to its ease of optimization, we find that using
the correctness of response as the reward also performs well for reasoning tasks and helps mitigate issues such as data
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distribution shifts and reward hacking. If not specified, the max generation length for training and inference is set to 10,240
for GLM-4-9B and Qwen2.5-14B models and 16,384 for Qwen2.5-32B models.

Evaluation. We evaluate the performance of the models on the test sets of reasoning-related datasets, including AIME20241,
Omni-MATH (Gao et al., 2024), MATH (Hendrycks et al., 2021), and GPQA (Rein et al., 2023) Accuracy (Pass@1) is used
as the primary evaluation metric. We report the results of baselines from previous works if available. For MATH, we assess
performance on a subset of the MATH-test set, referred to as MATH500, following the predefined split in Lightman et al..
For Omni-MATH, we sample a smaller evaluation subset by sampling 500 examples called Omni-MATH-500 for efficient
yet comprehensive evaluation. GPQA consists of graduate-level problems in biology, physics, and chemistry. For AIME, we
use the official questions released for the year 2024, which consists of 30 problems. We evaluate each model 32 times on
AIME to get stable results and report the average performance. For all datasets, we use the greedy sampling strategy with
SGLANG (Zheng et al., 2023) as the inference engine.

A full example from AIME-2024 Question-15 solved by T1

Question
Let B be the set of rectangular boxes with surface area 54 and volume 23 . Let r be the radius of the smallest sphere
that can contain each of the rectangular boxes that are elements of B . The value of r2 can be written as p

q , where p
and q are relatively prime positive integers. Find p+ q.
Response from T1
Let’s tackle this problem step by step. We are given a set of rectangular boxes with surface area 54 and volume 23.
Let the dimensions of the box be a, b, and c. The surface area and volume constraints give us:

2(ab+ bc+ ac) = 54 =⇒ ab+ bc+ ac = 27

abc = 23

Our goal is to find the radius r of the smallest sphere that can contain each of these boxes. The smallest sphere that
can contain a rectangular box is one that contains all the vertices of the box. This means the diameter of the sphere
must be at least the space diagonal of the box, which is:

d =
√

a2 + b2 + c2

Therefore, the radius r must satisfy:

2r ≥
√
a2 + b2 + c2 =⇒ r ≥

√
a2 + b2 + c2

2

To find the smallest possible r, we need to minimize a2 + b2 + c2 under the given constraints.
First, let’s express a2 + b2 + c2 in terms of a+ b+ c, ab+ bc+ ac, and abc. Recall the identity:

(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ac)

Rewriting this, we have:

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ac)

We know ab+ bc+ ac = 27 from the surface area constraint. Let s = a+ b+ c. Then:

a2 + b2 + c2 = s2 − 2× 27 = s2 − 54

Now, we need to express s in terms of a, b, and c. Since abc = 23, let’s consider the symmetric sums. We might try to
find s directly, but it’s not immediately obvious. Perhaps we can use the Arithmetic Mean–Geometric Mean inequality
AM ≥ GM to find a lower bound for s.
Wait, let’s apply AM ≥ GM to a, b, and c:

1https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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a+ b+ c

3
≥ 3

√
abc =⇒ s

3
≥ 3

√
23 =⇒ s ≥ 3

3
√
23

This gives us a lower bound for s, but we need the exact value to minimize a2 + b2 + c2. Maybe we can express s in
terms of a, b, and c using the given constraints.
Let’s consider a, b, and c as the roots of the cubic equation:

t3 − st2 + 27t− 23 = 0

According to Vieta’s formulas:

a+ b+ c = s, ab+ bc+ ac = 27, abc = 23

Now, we need to find s such that this cubic equation has real positive roots. Perhaps we can find the value of s that
minimizes a2 + b2 + c2.
From earlier, we have:

a2 + b2 + c2 = s2 − 54

To minimize a2 + b2 + c2, we need to minimize s2 (since −54 is constant). Therefore, we need to find the minimum
value of s such that the cubic equation has real positive roots.
Let’s consider the cubic function:

f(t) = t3 − st2 + 27t− 23

For the cubic to have three real positive roots, certain conditions must be met. However, this approach might be too
complicated. Perhaps we can consider specific values of a, b, and c that satisfy the constraints.
Let’s try assuming the box is a cube. If a = b = c, then:

2(ab+ bc+ ac) = 54 =⇒ 2(3a2) = 54 =⇒ 6a2 = 54 =⇒ a2 = 9 =⇒ a = 3

But then the volume is:

abc = a3 = 33 = 27

However, the volume is given as 23, not 27. So the box cannot be a cube.
Perhaps the box is close to a cube. Let’s let a = b. Then the constraints become:
Surface area:

2(a2 + 2ac) = 54 =⇒ 2a2 + 4ac = 54 =⇒ a2 + 2ac = 27 =⇒ c =
27− a2

2a

Volume:

a2c = 23 =⇒ a2
(
27− a2

2a

)
= 23 =⇒ a

(
27− a2

2

)
= 23

Multiplying both sides by 2:

a(27− a2) = 46 =⇒ 27a− a3 = 46 =⇒ a3 − 27a+ 46 = 0

Now, we need to solve the cubic equation a3 − 27a+ 46 = 0. Let’s try to find rational roots using the Rational Root
Theorem. The possible rational roots are factors of 46: ±1,±2,±23,±46.
Trying a = 2:

23 − 27× 2 + 46 = 8− 54 + 46 = 0

So a = 2 is a root. Therefore, we can factor the cubic:
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(a− 2)(a2 + 2a− 23) = 0

Setting each factor to zero:
1. a− 2 = 0 =⇒ a = 2 2. a2 + 2a− 23 = 0
Solving the quadratic equation:

a =
−2±

√
(2)2 − 4(1)(−23)

2
=

−2±
√
4 + 92

2
=

−2±
√
96

2
=

−2± 4
√
6

2
= −1± 2

√
6

Since dimensions must be positive, a = −1 + 2
√
6. However, let’s first consider a = 2.

If a = 2, then:

c =
27− a2

2a
=

27− 4

4
=

23

4

Now, let’s verify the volume:

a2c = 22 × 23

4
= 4× 23

4
= 23

So a = 2, b = 2, c = 23
4 satisfy both the surface area and volume constraints.

Now, let’s calculate a2 + b2 + c2:

a2 + b2 + c2 = 22 + 22 +

(
23

4

)2

= 4 + 4 +
529

16
= 8 +

529

16
=

128

16
+

529

16
=

657

16

Therefore, the space diagonal squared is:

a2 + b2 + c2 =
657

16

So the radius of the sphere is:

r =

√
a2 + b2 + c2

2
=

√
657
16

2
=

√
657

8

Now, let’s simplify
√
657:

657 = 9× 73 =⇒
√
657 =

√
9× 73 = 3

√
73

Therefore:

r =
3
√
73

8
=⇒ r2 =

(
3
√
73

8

)2

=
9× 73

64
=

657

64

Now, let’s consider whether this is the minimal r2. Could other dimensions yield a smaller r2?
Perhaps we can consider the general case using the identity we derived earlier:

a2 + b2 + c2 = s2 − 54

To minimize a2 + b2 + c2, we need to minimize s2, which means minimizing s. From the AM ≥ GM inequality, we
have:

s = a+ b+ c ≥ 3
3
√
abc = 3

3
√
23

So the minimum possible value of s is 3 3
√
23. Let’s calculate s2 in this case:

s2 =
(
3

3
√
23
)2

= 9
(

3
√
23
)2

= 9× 232/3
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Then:

a2 + b2 + c2 = s2 − 54 = 9× 232/3 − 54

But this is not necessarily an integer, and it’s not clear if this yields a smaller r2 than the value we found earlier.
Perhaps the box with dimensions a = 2, b = 2, c = 23

4 gives us the minimal r2.
Let’s consider another approach using Lagrange multipliers to minimize a2 + b2 + c2 subject to the constraints
ab+ bc+ ac = 27 and abc = 23.
Let’s set up the Lagrangian:

L(a, b, c, λ, µ) = a2 + b2 + c2 − λ(ab+ bc+ ac− 27)− µ(abc− 23)

Taking partial derivatives and setting them to zero:
1. ∂L

∂a = 2a − λ(b + c) − µbc = 0 2. ∂L
∂b = 2b − λ(a + c) − µac = 0 3. ∂L

∂c = 2c − λ(a + b) − µab = 0 4.
∂L
∂λ = ab+ bc+ ac− 27 = 0 5. ∂L

∂µ = abc− 23 = 0
From equations (1), (2), and (3):

2a− λ(b+ c)− µbc = 0

2b− λ(a+ c)− µac = 0

2c− λ(a+ b)− µab = 0

Subtracting equation (1) from equation (2):

(2b− 2a)− λ(a+ c− b− c)− µ(ac− bc) = 0

2(b− a)− λ(a− b)− µ(a− b)c = 0

Simplifying:

2(b− a) + λ(b− a)− µ(b− a)c = 0

(b− a) [2 + λ− µc] = 0

So either b = a or 2 + λ− µc = 0.
Similarly, subtracting equation (2) from equation (3):

(2c− 2b)− λ(a+ b− a− c)− µ(ab− ac) = 0

2(c− b)− λ(b− c)− µ(b− c)a = 0

Simplifying:

2(c− b) + λ(c− b)− µ(c− b)a = 0

(c− b) [2 + λ− µa] = 0

So either c = b or 2 + λ− µa = 0.
Similarly, subtracting equation (3) from equation (1):

(2a− 2c)− λ(b+ c− a− b)− µ(bc− ab) = 0

2(a− c)− λ(c− a)− µ(c− a)b = 0

Simplifying:

2(a− c) + λ(a− c)− µ(a− c)b = 0

(a− c) [2 + λ− µb] = 0
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So either a = c or 2 + λ− µb = 0.
From these equations, we have several possibilities:
1. a = b = c 2. a = b, 2 + λ − µc = 0, 2 + λ − µa = 0 =⇒ µc = µa =⇒ c = a 3. Similar cases leading to
a = b = c
Therefore, the only solution is a = b = c.
But earlier, we found that a = b = c leads to a3 = 27 =⇒ a = 3, but the volume would be 27, not 23. So a = b = c
is not possible.
Therefore, the minimal r2 occurs when a = b.
Thus, the dimensions a = 2, b = 2, c = 23

4 give us the minimal r2.
Therefore, r2 = 657

64 .
Finally, we need to find p+ q where r2 = p

q and p and q are relatively prime positive integers.
Here, p = 657 and q = 64. Let’s check if 657 and 64 are relatively prime.
The prime factorization of 64 is 26.
The prime factorization of 657 is:

657 = 9× 73 = 32 × 73

Since 64 and 657 have no common factors other than 1, they are relatively prime.
Therefore, p+ q = 657 + 64 = 721.
Wait, let’s make sure we’ve considered all possibilities. Perhaps there’s a smaller r2 with different dimensions.
Let’s consider the case where a, b, and c are all different.
From the earlier cubic equation:

t3 − st2 + 27t− 23 = 0

We need to find s such that this cubic has three positive real roots.
Using the derivative of the cubic:

f ′(t) = 3t2 − 2st+ 27

For the cubic to have three real roots, the discriminant of f ′(t) must be positive:

D = (−2s)2 − 4× 3× 27 = 4s2 − 324

Setting D > 0:

4s2 − 324 > 0 =⇒ s2 > 81 =⇒ s > 9 or s < −9

Since s = a+ b+ c and a, b, c are positive, s > 0. Therefore, s > 9.
The minimum value of s is 9, but s must be greater than 9 for the cubic to have three real roots.
Earlier, we found that s = a+ b+ c ≥ 3 3

√
23 ≈ 3× 2.8438 ≈ 8.5314.

Therefore, the minimum value of s is approximately 8.5314, which is less than 9.
This suggests that the cubic may have three real roots when s is slightly greater than 8.5314.
However, finding the exact value of s that minimizes a2 + b2 + c2 is complicated.
Therefore, the minimal r2 occurs when a = 2, b = 2, c = 23

4 , giving r2 = 657
64 .

Thus, the value of p+ q is 657 + 64 = 721.
Let’s verify that this is indeed the minimal r2.
Suppose we try other values of a, b, and c that satisfy the constraints.
Let’s try a = 1.
From the volume constraint:

abc = 23 =⇒ bc =
23

a
= 23

From the surface area constraint:
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2(ab+ bc+ ac) = 54 =⇒ ab+ bc+ ac = 27

Substituting bc = 23:

ab+ 23 + ac = 27 =⇒ a(b+ c) = 4

But bc = 23, so b and c are roots of the quadratic equation:

t2 − (b+ c)t+ bc = 0 =⇒ t2 −
(
4

a

)
t+ 23 = 0

For b and c to be real, the discriminant must be non-negative:

(
4

a

)2

− 4× 1× 23 ≥ 0 =⇒ 16

a2
− 92 ≥ 0 =⇒ 16− 92a2

a2
≥ 0

This implies:

16− 92a2 ≥ 0 =⇒ 16 ≥ 92a2 =⇒ a2 ≤ 16

92
=

4

23
=⇒ a ≤ 2√

23

But a = 1 does not satisfy a ≤ 2√
23

≈ 0.4226.
Therefore, a cannot be 1.
This suggests that the minimal r2 occurs when a = 2, b = 2, c = 23

4 .
Therefore, the value of p+ q is 657 + 64 = 721.
As we’ve explored, the case where a = b = 2 and c = 23

4 satisfies both the surface area and volume constraints and
yields the minimal r2. Any other dimensions either do not satisfy the constraints or result in a larger r2.
A fleeting thought might suggest considering the box oriented differently within the sphere to potentially reduce r, but
the minimal radius is inherently tied to the space diagonal of the box. Since the space diagonal is the longest distance
between any two vertices, the sphere must have a radius of at least half the space diagonal to contain the box.
Another brief consideration might involve symmetry or other geometric properties, but the algebraic approach using
the given constraints leads us directly to the solution.
Thus, the value of r2 is 657

64 , and therefore p+ q = 657 + 64 = 721.
Answer:** 721

A full example from MATH-500 Question-15 solved by T1

Question
Find the product of the y-coordinates of all the distinct solutions (x, y) for the two equations y = x2 − 8 and
y2 = −5x+ 44.
Response from T1
Let’s find the product of the y-coordinates of all the distinct solutions (x, y) for the equations y = x2 − 8 and
y2 = −5x+ 44.
First, we’ll express x in terms of y from the first equation:

y = x2 − 8 =⇒ x2 = y + 8 =⇒ x = ±
√
y + 8

Now, let’s substitute this expression for x into the second equation y2 = −5x+ 44. Wait, but x is in terms of y, so
we’ll have:

y2 = −5(±
√

y + 8) + 44

This gives us two cases to consider due to the ±:
**Case 1:** y2 = −5

√
y + 8 + 44

**Case 2:** y2 = 5
√
y + 8 + 44

18
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Let’s tackle Case 1 first:

y2 = −5
√

y + 8 + 44

Rewriting it:

y2 − 44 = −5
√
y + 8

Multiplying both sides by −1 to make things neater:

44− y2 = 5
√
y + 8

Now, let’s square both sides to eliminate the square root:

(44− y2)2 =
(
5
√
y + 8

)2

Simplifying both sides:

(44− y2)2 = 25(y + 8)

Expanding the left side:

(44− y2)2 = (44− y2)(44− y2) = 1936− 88y2 + y4

So the equation becomes:

1936− 88y2 + y4 = 25(y + 8)

Expanding the right side:

1936− 88y2 + y4 = 25y + 200

Bringing all terms to one side:

y4 − 88y2 − 25y + 1936− 200 = 0

Simplifying:

y4 − 88y2 − 25y + 1736 = 0

Now, let’s move on to Case 2:

y2 = 5
√
y + 8 + 44

Rewriting:

y2 − 44 = 5
√
y + 8

Squaring both sides:

(y2 − 44)2 =
(
5
√
y + 8

)2

Simplifying:

(y2 − 44)2 = 25(y + 8)

Expanding the left side:

y4 − 88y2 + 1936 = 25(y + 8)
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Expanding the right side:

y4 − 88y2 + 1936 = 25y + 200

Bringing all terms to one side:

y4 − 88y2 − 25y + 1936− 200 = 0

Simplifying:

y4 − 88y2 − 25y + 1736 = 0

Wait, that’s the same quartic equation we got from Case 1! So both cases lead us to the same equation:

y4 − 88y2 − 25y + 1736 = 0

Now, we need to find the roots of this quartic equation. Let’s try to factor it into two quadratics. Let’s assume:

y4 − 88y2 − 25y + 1736 = (y2 + ay + b)(y2 + cy + d)

Expanding the right side:

(y2 + ay + b)(y2 + cy + d) = y4 + (a+ c)y3 + (ac+ b+ d)y2 + (ad+ bc)y + bd

= y4 + (a+ c)y3 + (ac+ b+ d)y2 + (ad+ bc)y + bd

Setting this equal to the original quartic:

y4 + (a+ c)y3 + (ac+ b+ d)y2 + (ad+ bc)y + bd = y4 − 88y2 − 25y + 1736

Now, let’s match the coefficients:
1. Coefficient of y3:

a+ c = 0 =⇒ c = −a

2. Coefficient of y2:

ac+ b+ d = −88

Substituting c = −a:

a(−a) + b+ d = −88 =⇒ −a2 + b+ d = −88

3. Coefficient of y:

ad+ bc = −25

Substituting c = −a:

ad+ b(−a) = −25 =⇒ ad− ab = −25 =⇒ a(d− b) = −25

4. Constant term:

bd = 1736

Now we have:
- −a2 + b+ d = −88 - a(d− b) = −25 - bd = 1736
Let’s solve these equations. From the second equation:
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a(d− b) = −25 =⇒ d− b = −25

a

So:

d = b− 25

a

Now, substitute d into the first equation:

−a2 + b+

(
b− 25

a

)
= −88

Simplifying:

−a2 + 2b− 25

a
= −88

Multiply both sides by a to eliminate the fraction:

−a3 + 2ab− 25 = −88a

Bringing all terms to one side:

−a3 + 2ab+ 88a− 25 = 0

Rewriting:

−a3 + 88a+ 2ab− 25 = 0

This is getting messy. Perhaps there’s a better approach. Let’s try finding rational roots using the Rational Root
Theorem.
The Rational Root Theorem tells us that any rational root p

q of the polynomial y4 − 88y2 − 25y+1736 has p dividing
the constant term 1736 and q dividing the leading coefficient 1. So possible rational roots are the factors of 1736.
Let’s factor 1736:

1736 = 2× 868 = 2× 2× 434 = 2× 2× 2× 217 = 23 × 217

Now, 217 = 7× 31, so:

1736 = 23 × 7× 31

Therefore, the possible rational roots are ±1,±2,±4,±7,±8,±14,±28,
±31,±56,±62,±124,±217,±248,±434,±868,±1736.
Testing y = 7:

74 − 88× 72 − 25× 7 + 1736 = 2401− 88× 49− 175 + 1736

= 2401− 4312− 175 + 1736

= (2401 + 1736)− (4312 + 175)

= 4137− 4487

= −350

So y = 7 is not a root.
Testing y = −7:
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(−7)4 − 88× (−7)2 − 25× (−7) + 1736 = 2401− 88× 49 + 175 + 1736

= 2401− 4312 + 175 + 1736

= (2401 + 175 + 1736)− 4312

= 4312− 4312

= 0

So y = −7 is a root!
Great, we’ve found one root. Now, let’s factor y + 7 out of the quartic polynomial.
Using synthetic division to divide y4 − 88y2 − 25y + 1736 by y + 7:

−7 1 0 −88 −25 1736
−7 49 273 −1736

1 −7 −39 248 0

The quotient is y3 − 7y2 − 39y + 248.
Now, we need to factor y3 − 7y2 − 39y + 248. Let’s look for rational roots again using the Rational Root Theorem.
The possible rational roots are the factors of 248:

248 = 2× 124 = 2× 2× 62 = 2× 2× 2× 31 = 23 × 31

So the possible rational roots are ±1,±2,±4,±8,±31,±62,±124,±248.
Testing y = 8:

83 − 7× 82 − 39× 8 + 248 = 512− 7× 64− 312 + 248

= 512− 448− 312 + 248

= (512 + 248)− (448 + 312)

= 760− 760

= 0

So y = 8 is a root.
Now, let’s factor y − 8 out of y3 − 7y2 − 39y + 248 using synthetic division:

8 1 −7 −39 248
8 8 −248

1 1 −31 0

The quotient is y2 + y − 31.
So, the quartic polynomial factors as:

y4 − 88y2 − 25y + 1736 = (y + 7)(y − 8)(y2 + y − 31)

Now, let’s find the roots of the quadratic y2 + y − 31:

y =
−1±

√
12 − 4× 1× (−31)

2

=
−1±

√
1 + 124

2

=
−1±

√
125

2

=
−1± 5

√
5

2
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So the roots are y = −1+5
√
5

2 and y = −1−5
√
5

2 .
Therefore, the solutions for y are:

y = −7, y = 8, y =
−1 + 5

√
5

2
, y =

−1− 5
√
5

2

Now, we need to verify that these y-values correspond to valid solutions (x, y) by checking the original equations.
Starting with y = −7:
From y = x2 − 8:

−7 = x2 − 8 =⇒ x2 = 1 =⇒ x = ±1

Now, let’s check y2 = −5x+ 44:
For x = 1:

(−7)2 = −5(1) + 44 =⇒ 49 = −5 + 44 =⇒ 49 = 39

This is not true.
For x = −1:

(−7)2 = −5(−1) + 44 =⇒ 49 = 5 + 44 =⇒ 49 = 49

This is true.
So y = −7 corresponds to the solution (x, y) = (−1,−7).
Next, y = 8:
From y = x2 − 8:

8 = x2 − 8 =⇒ x2 = 16 =⇒ x = ±4

Now, check y2 = −5x+ 44:
For x = 4:

82 = −5(4) + 44 =⇒ 64 = −20 + 44 =⇒ 64 = 24

This is not true.
For x = −4:

82 = −5(−4) + 44 =⇒ 64 = 20 + 44 =⇒ 64 = 64

This is true.
So y = 8 corresponds to the solution (x, y) = (−4, 8).

Now, let’s consider y =
−1 + 5

√
5

2
:

From y = x2 − 8:

x2 = y + 8 =
−1 + 5

√
5

2
+ 8 =

−1 + 5
√
5 + 16

2
=

15 + 5
√
5

2

So:

x = ±

√
15 + 5

√
5

2

Now, let’s check y2 = −5x+ 44:
First, compute y2:
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y2 =

(
−1 + 5

√
5

2

)2

=

(
−1 + 5

√
5
)2

4

=
1− 10

√
5 + 25× 5

4

=
1− 10

√
5 + 125

4

=
126− 10

√
5

4

=
63− 5

√
5

2

Now, compute −5x+ 44:

For x =

√
15 + 5

√
5

2
:

−5x+ 44 = −5



√

15 + 5
√
5

2


+ 44

= −5



√

5(3 +
√
5)

2


+ 44

= −5



√

5(3 +
√
5)

2


+ 44

This is getting messy, and it’s clear that verifying this algebraically is quite involved. However, since we obtained y by
solving the quartic equation derived from the original equations, and we’ve already found valid solutions for y = −7

and y = 8, we can reasonably conclude that y =
−1 + 5

√
5

2
and y =

−1− 5
√
5

2
are also valid solutions.

Similarly, for y =
−1− 5

√
5

2
:

From y = x2 − 8:

x2 = y + 8 =
−1− 5

√
5

2
+ 8 =

−1− 5
√
5 + 16

2
=

15− 5
√
5

2

So:

x = ±

√
15− 5

√
5

2

Again, checking y2 = −5x+ 44 would be algebraically intensive, but we can accept these as valid solutions based on
our earlier work.
Now, let’s find the product of all the distinct y-coordinates:

y1 = −7, y2 = 8, y3 =
−1 + 5

√
5

2
, y4 =

−1− 5
√
5

2

First, let’s multiply y3 and y4:
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y3 × y4 =

(
−1 + 5

√
5

2

)(
−1− 5

√
5

2

)

=

(
−1 + 5

√
5
) (

−1− 5
√
5
)

4

=
(−1)

2 −
(
5
√
5
)2

4

=
1− 25× 5

4

=
1− 125

4

=
−124

4
= −31

Now, multiply y1, y2, y3, and y4:

y1 × y2 × y3 × y4 = (−7)× 8×
(
−1 + 5

√
5

2

)
×
(
−1− 5

√
5

2

)

= (−7)× 8×
((

−1 + 5
√
5
) (

−1− 5
√
5
)

4

)

= (−7)× 8×
(−124

4

)

= (−7)× 8× (−31)

= (−7)× 8× (−31)

= (−7)× (−248)

= 1736

Alternatively, we can use Vieta’s formulas on the quartic equation y4 − 88y2 − 25y+1736 = 0. For a general quartic
equation y4 + ay3 + by2 + cy + d = 0, the product of the roots is (−1)4d = d.
In our equation, d = 1736, so the product of the roots is 1736.
Wait, that’s interesting. Even though we had to verify the validity of each root, Vieta’s formula confirms that the
product of all the roots is indeed 1736.
However, perhaps we should double-check that all these y-values correspond to valid solutions. We’ve already verified
y = −7 and y = 8. Let’s briefly check the other two.

For y =
−1 + 5

√
5

2
:

From y = x2 − 8:

x2 = y + 8 =
−1 + 5

√
5

2
+ 8 =

−1 + 5
√
5 + 16

2
=

15 + 5
√
5

2

So:

x = ±

√
15 + 5

√
5

2

Now, check y2 = −5x+ 44:
Compute y2:
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y2 =

(
−1 + 5

√
5

2

)2

=

(
−1 + 5

√
5
)2

4

=
1− 10

√
5 + 25× 5

4

=
1− 10

√
5 + 125

4

=
126− 10

√
5

4

=
63− 5

√
5

2

Now, compute −5x+ 44 for x =

√
15 + 5

√
5

2
:

−5x+ 44 = −5



√

15 + 5
√
5

2


+ 44

= −5



√

5(3 +
√
5)

2


+ 44

= −5



√

5(3 +
√
5)

2


+ 44

This is getting complicated, and perhaps it’s time to accept that since these y-values satisfy the quartic equation derived
from the original system, and we’ve verified the other roots, these are valid solutions.

Similarly, for y =
−1− 5

√
5

2
, the calculations would be analogous.

Therefore, the product of the y-coordinates of all the distinct solutions is indeed 1736.
However, perhaps there’s a more straightforward way to find the product without getting bogged down in the algebra.
Let’s revisit the original equations:
1. y = x2 − 8 2. y2 = −5x+ 44
From the first equation, x2 = y + 8.
Substitute x2 = y + 8 into the second equation:

y2 = −5x+ 44

But we still have x in the equation. Perhaps we can express x in terms of y from the first equation:

x = ±
√

y + 8

Substitute into the second equation:

y2 = −5
(
±
√
y + 8

)
+ 44

This gives us two cases:
**Case 1:** y2 = −5

√
y + 8 + 44

**Case 2:** y2 = 5
√
y + 8 + 44
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Let’s solve Case 1:

y2 = −5
√

y + 8 + 44

Rewriting:

y2 − 44 = −5
√
y + 8

Multiply both sides by −1:

44− y2 = 5
√
y + 8

Square both sides:

(44− y2)2 = 25(y + 8)

Expanding the left side:

(44− y2)2 = 1936− 88y2 + y4

So:

1936− 88y2 + y4 = 25(y + 8)

Expanding the right side:

1936− 88y2 + y4 = 25y + 200

Bring all terms to one side:

y4 − 88y2 − 25y + 1936− 200 = 0

Simplifying:

y4 − 88y2 − 25y + 1736 = 0

Now, Case 2:

y2 = 5
√
y + 8 + 44

Rewriting:

y2 − 44 = 5
√
y + 8

Square both sides:

(y2 − 44)2 = 25(y + 8)

This is the same equation as before:

y4 − 88y2 − 25y + 1736 = 0

So both cases lead to the same quartic equation.
Now, instead of factoring, perhaps we can use Vieta’s formulas directly. For the quartic equation y4 + ay3 + by2 +
cy + d = 0, the product of the roots is (−1)4d = d.
In our equation y4 − 88y2 − 25y + 1736 = 0, the constant term d = 1736.
Therefore, the product of the roots is 1736.
This confirms our earlier result.

27



T1: Advancing LLM Reasoning through Reinforcement Learning and Inference Scaling

As a final check, let’s consider the geometric interpretation. The first equation y = x2 − 8 is a parabola opening

upwards, and the second equation y2 = −5x+ 44 can be rewritten as x =
44− y2

5
, which is a downward-opening

parabola when plotted as x vs. y.
Finding their intersections involves solving the quartic equation we derived, and we’ve found all the y-coordinates of
the intersection points.
Therefore, the product of the y-coordinates of all the distinct solutions is indeed 1736.
While we initially tried to find the solutions by substituting and factoring, the calculations became quite involved.
However, using Vieta’s formulas provided a much more straightforward path to the solution.
So, after all that, the product of the y-coordinates is:

1736
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