
On the Relationship Between Model Training
Dynamics and Early Pruning Periods

Elvis Nunez
Department of Electrical and Computer Engineering

University of California, Los Angeles
elvis.nunez@ucla.edu

Stefano Soatto
Department of Computer Science

University of California, Los Angeles
soatto@cs.ucla.edu

Abstract

Contemporary deep learning models typically have billions of learnable parameters,
requiring vast amounts of compute for training and inference. An established
method for improving model efficiency is parameter pruning, whereby extraneous
model parameters are discarded while trying to preserve model performance. Typi-
cally, such model compression is performed after the model has been trained. In
this work, we aim to identify when a model becomes amenable to compression
during training in order to realize the computational savings of model compression
earlier. We showcase a phenomenon whereby an “early pruning period” occurs—
a period during training where a model becomes amenable to pruning, prior to
convergence. To help understand this behavior, we draw inspiration from recent
work showing that model training undergoes two phases—the “memorization” and
“forgetting” phases—and we show that the early pruning period often correlates
with the transition between these two phases, suggesting that a large model capacity
is only needed for the transient period of training, after which the model can be
effectively compressed. We ground our study in discriminative computer vision
applications and train multiple models across a spectrum of sizes, datasets, learn-
ing rate schedules, regularization strengths, and pruning criteria. We additionally
propose a gradient-free metric that can be computed efficiently during training that
also often correlates with the early pruning period. We show that we can identify
a period early in the training of ResNet models trained on CIFAR where we can
compress the model up to 90% without incurring significant accuracy degradation.

1 Introduction

In this paper, we explore the question: “For how long during training does a model need to have a
high capacity?” By “capacity,” we mean the size of the model, i.e., its number of parameters, which
we use as a proxy for the size of the hypothesis class that can be learned by the learning procedure.
We are particularly interested in determining if there exists a point during training when a model’s
capacity can be reduced. We hypothesize that a model’s large capacity may only be required to
traverse the initial transient landscape of the loss surface, and may be reduced for the remainder of
training, yielding a more efficient training procedure.

There are several means by which a model’s capacity can be reduced, such as pruning [1–4], weight
quantization [5–8] , and distillation [9, 10]. In this paper, we focus on parameter pruning due to its
simplicity. Neural network pruning has been studied for several decades in classical machine learning,
starting with [1] and [2] where parameters with small second-order derivatives were considered
expendable and were subsequently pruned. Later, [3] re-introduced the idea of pruning to deep neural
networks with a simple iterative magnitude-based criterion. These works highlighted the fact that
neural networks can be pruned post-training—that is, once trained, a neural network can be made

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

smaller without significantly compromising accuracy. Of note is [11], who showed that it is possible
to identify a subset of a model’s trained parameters such that, if trained in isolation from the outset,
could have achieved the same performance as the full model. However, this requires first training a
model to convergence before being able to identify the “winning ticket,” i.e., the subset of parameters
capable of being trained to the original model’s performance.

Our experiments reveal an interesting phenomenon in which a model pruned early in training can
match or exceed the performance of a model pruned later in training. We observe a correlation
between this pruning period and the model’s training dynamics, echoing several existing works that
partition model training into distinct phases. As explored in [12], the generalization of a model
decreases as its size increases, but after the model size passes a certain threshold, generalization
increases once again. This “double-descent” phenomenon underscores the importance of a model’s
large capacity; whether this capacity is needed for the entirety of training is the focus of this paper.

In [13], it is suggested that networks trained with stochastic gradient descent (SGD) undergo two
phases. In the first “empirical error minimization” phase, the network’s layers increase the information
on the labels, while in the second “compression” phase, the layers reduce the information on the
input, i.e., they learn an efficient representation of the input. Similarly, [14] observe that the Fisher
Information of a network’s parameters undergo a “memorization” phase, in which the information
that the weights contain about the data increases; afterwards, they undergo a “forgetting” phase,
in which the Fisher Information decreases. These works allude to the idea of a phase shift during
training driven by the model’s capacity. Inspired by this, we aim to study early pruning periods
through the lens of a model’s training dynamics.

Contributions: We make the following contributions: 1) We showcase a phenomenon in which a
model’s capacity can be reduced early in training to greater effect than compressing the model after
convergence. 2) We show that this early pruning period is often correlated with the model’s Fisher
Information, alluding to the idea of using this as a first-order metric for deciding when to prune a
model. 3) We propose a gradient-free metric that can be efficiently computed during training in order
to identify when a network has entered its early pruning period.

2 Related Work

Model Pruning: Compression of neural network models was first introduced in the 1980s [1], where
a diagonal approximation to the Hessian matrix was used to assess parameter importance—parameters
with a small value have little influence on the model’s output and can hence be removed/pruned. Later,
[2] considered a more robust computation of the inverse Hessian matrix to improve upon [1] which
yielded a better selection of superfluous model parameters. A gradient-free pruning criteria was
later considered in [3], where model parameters with small magnitudes (magnitude-based pruning)
were iteratively pruned from a model. These methods performed unstructured model pruning, where
pruned model parameters did not exhibit a coherent structure. On the other hand, structured pruning
methods remove groups of parameters, often removing entire convolution filters, layers, or weight
matrix rows/columns [4, 15–17].

Early Pruning: Our work is largely inspired by the Lottery Ticket Hypothesis [11], which found that
models can be pruned early in training, but must first be trained to convergence before identifying
which parameters to prune. Subsequent work [18] showed that models can be pruned once they
become stable to SGD noise; however, detecting when this occurs remains a costly procedure. Many
works have extended the Lottery Ticket Hypothesis, including work showing that winning tickets
(the identified subset of weights that are kept after pruning) generalize to models trained on different
datasets [19]. Several works have aimed to prune models prior to any training [20–22]; however,
such methods have been shown to not perform as strongly as those pruned after some training
[23]. Most similar to our work is [24], which introduces an iterative method to prune channels of
convolutional neural networks early in training based on a “mask distance” metric coupled with a
quantized training scheme. In our work, we prune models early using unstructured pruning in a
one-shot (i.e., non-iterative) fashion, and reveal a connection between the early pruning period and
the model’s training dynamics.

2

3 Early Pruning Period

We consider a neural network f(x; θ) parameterized by θ ∈ Rd that takes as input x. We train f for a
total of T epochs and denote by θ0→k, k ∈ {1, 2, . . . , T} the parameters after training for k epochs
when starting from random initialization θ0. In this paper, we consider the discriminative task of
classification. We denote by Acc (f(x; θ0→k), D) the test accuracy of the model on held-out dataset
D. We are interested in compressing θ0→k by pruning some of its weights, i.e., setting some of its
values to 0. We denote by Prune (θ0→k, r) the pruning of r% of the parameters of θ0→k.

Our goal is to identify a point in training, t < T , such that Acc (f(x;Prune (θ0→t, r)t→T), D) ≃
Acc (f(x; θ0→T) , D) where Prune (θ0→t, r)t→T denotes the training of parameters Prune (θ0→t, r)
for an additional T − t epochs. In words, we want to train a model for t epochs, prune it, and then
continue training it for the remaining T − t epochs. Ultimately, we would like t to be such that the
performance of the pruned model, Prune (θt, r)t→T , is similar to the performance of the non-pruned
model, θT . Below we describe our pruning methods and the metrics we use to help identify t. We
emphasize that our pruning method does not entail fine-tuning the pruned model beyond the original
training compute of T epochs.

Pruning: We compress our model using unstructured pruning [3], which simply zeros out some
of the elements in θ0→k by performing an element-wise multiplication with binary mask Mr:
Prune (θ0→k, r) = θ0→k ⊙Mr where the percentage of zeros in Mr ∈ Rd is r. Mr is constructed
such that only the top (100− r)% of weights of θ0→k are kept, and all other values are set to 0. In
this paper, the “top (100− r)%” of weights refers to the weights with the largest magnitude; however,
as discussed in the next section, we also consider another metric to decide which parameters to prune.
We focus on global unstructured pruning, but include results for local pruning in the Appendix. In
global pruning, we keep the top (100− r)% of parameters across the entire model. In local pruning,
we keep the top (100− r)% of parameters within each layer.

Compression Signal: Our task at hand is to judiciously decide when to prune a model during training,
and which parameters to prune. Toward this end, we begin by performing a perturbation analysis on
the predicted posterior distribution p(y|x; θ) modeled by the network f(x; θ). Given a perturbation,
θ̄ = θ +∆θ, one way of measuring the discrepancy between posterior distributions parameterized by
θ and θ̄ is via the KL divergence, whose second-order approximation is given by

Ex∼Q̂(x)[KL(p(y|x, θ̄)∥p(y|x, θ))] = ∆θTF∆θ + o(∆θ2) (1)

where Q̂(x) denotes the training dataset and F is the Fisher Information Matrix (FIM) given by

F = Ex∼Q̂(x)

[
Ey∼p(y|x;θ)

[
∇θ log p(y|x; θ)∇θ log p(y|x; θ)T

]]
. (2)

The FIM can therefore be interpreted as a local measure that quantifies how much the perturbation
to a set of weights affects the predicted distribution. As such, while we focus on magnitude-based
pruning due to its simplicity, we also consider pruning parameters with a low Fisher Information,
which helps us decide which parameters to prune. However, computing the full FIM given by Eq. (2)
is computationally expensive, so we compute only its trace, which is given by

tr(F) = Ex∼Q̂(x)

[
Ey∼p(y|x;θ)

[
||∇θ log p(y|x; θ)||2

]]
. (3)

The trace of the FIM, denoted by tr(F), can be well-approximated using Monte Carlo estimation
[14]. For a set of samples {x(i)}Ni=1 sampled from the training dataset, and corresponding predicted
labels {ỹ(i)}Ni=1, we use Monte Carlo sampling to estimate Eq. (3) by computing:

tr(F) ≈ 1

N

N∑
i=1

||∇θ log p(ỹ
(i)|x(i); θ)||2. (4)

3

0 50 100 150 200
Epoch

94.6

94.7

94.8

94.9

95.0

95.1

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10

0

250

500

750

1000

1250

1500

tr(
F)

(a)

0 50 100 150 200
Epoch

93.8

93.9

94.0

94.1

94.2

94.3

94.4

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10

0

250

500

750

1000

1250

1500

tr(
F)

(b)

0 50 100 150 200
Epoch

74.5

75.0

75.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100

0

1000

2000

3000

tr(
F)

(c)

0 50 100 150 200
Epoch

73.4

73.6

73.8

74.0

74.2

74.4

74.6

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100

0

1000

2000

3000

tr(
F)

(d)

Figure 1: Early pruning periods correlate with tr(F). Blue points denote the test accuracies
of models pruned at a 90% sparsity level at the corresponding epoch t and fine-tuned for 200 − t
epochs. The red curve denotes the trace of the Fisher Information Matrix of the baseline (unpruned)
models computed over the training set. The mean and standard deviation of three random seeds are
plotted. (a): ResNet18 on CIFAR-10. Baseline accuracy: 95.3± 0.06. (b): VGG11 on CIFAR-10.
Baseline accuracy: 94.7± 0.07. (c) ResNet18 on CIFAR-100. Baseline: 77.3± 0.1. (d): VGG11 on
CIFAR-10. Baseline accuracy: 76.03± 0.11.

To help us understand when a model is most amenable to pruning, we draw inspiration from [14],
where it was shown that models undergo two phases during training: a “memorization” phase and a
“forgetting” phase. These two phases can be observed by measuring tr(F) during training. During
the memorization phase, which occurs first, the model’s weights undergo an increase in the Fisher
Information; afterwards, the model undergoes a “forgetting” phase, in which the Fisher Information
of the weights decreases. Since the Fisher Information measures how much the predicted distribution
is affected by a perturbation to the weights, weights with a small Fisher Information do not have
a significant influence on outputs. The shift from the memorization phase to the forgetting phase
therefore marks the period when parameters begin to become redundant. Hence, we explore whether
tr(F), computed over the training set via Eq. (4), can be used as a metric for deciding when to prune
a model.

Efficient Compression Signal: While the trace of the FIM can be approximated using Monte
Carlo estimation as in Eq. (4), it requires additional gradient computations beyond those computed
for training the model, which will slow down training. To remedy this, we propose an alternative
gradient-free metric that can be computed efficiently during training. In particular, we propose
tracking the expected KL divergence between the predicted distribution, p(y|x; θ), and the uniform
categorical distribution over C classes, pu(y|x) = 1

C for y ∈ [C]:

KLUniform ≜ Ex∼Q̂(x) [KL(pu(y|x)∥p(y|x; θ))] . (5)

At initialization, the network’s predicted distribution is nearly uniform; as training progresses, the
learned distribution diverges from the uniform distribution, and computing Eq. (5) during training
quantifies how this divergence evolves. We found that this metric also correlates with a model’s early
pruning period.

Learning Rate Scaling: In the standard train-prune-fine-tune framework [3], the learning rate used to
fine-tune the pruned model is smaller than the learning rate used to train the dense model—typically
1
10 th of the original learning rate. However, since we apply pruning earlier in training, we found that
simply thresholding the learning rate defined by the learning rate scheduler at the pruning epoch
worked well. More precisely, the maximum learning rate used to train the pruned model at epoch t
was max(Λ, LR(t)) where LR(t) is the learning rate schedule’s value at epoch t and Λ is a lower
bound on the learning rate.

4 Experiments

We conduct extensive experiments on ResNet [25] and VGG [26] models on the CIFAR-10 and
CIFAR-100 datasets [27]. Training details are provided in Appendix A. We ablate over model size,
compression levels, learning rate schedules, and regularization in Appendix B. Our experiments in
this section focus on global pruning; experiments on local pruning are provided in Appendix C.

4

4.1 Early Pruning Periods

Early pruning. Discriminative models can be effectively pruned after an initial transient period, often
less than halfway through training. We trained a ResNet18 and VGG11 model on both CIFAR-10 and
CIFAR-100 for 200 epochs, saving a model checkpoint after each epoch. After training, we loaded
the model at various saved checkpoints, t, pruned 90% of the model’s parameters using unstructured
magnitude-based pruning, and then resumed training for the remaining 200 − t epochs with the
learning rate computed as explained in Sec. 3. Our results are provided in Fig. 1, where we load
and fine-tune globally-pruned models at every 20th epoch. This procedure was repeated three times,
and we show results for the mean ± the standard deviation across the three trials (illustrated with
the low opacity bands). As illustrated by the blue curve, pruning the model early, i.e., around epoch
60-70, yields the highest-accuracy pruned model. The baseline (non-pruned) CIFAR-10 ResNet18
model achieves an average test accuracy of 95.3%, while the ResNet18 CIFAR-100 model achieve
an average of 77.3%. Hence, we observe that the model can be pruned early while incurring a
minor accuracy degradation of about 0.2% on CIFAR-10, and 1.8% on CIFAR-100—though this is a
more challenging task with an aggressive pruning rate. A more moderate level of sparsity can better
preserve accuracy, as shown in Fig. 5 in Appendix B.2.

These results suggest that a large model capacity is needed for the model to memorize sufficient
information about the training data, i.e., cross loss landscape bottlenecks as hypothesized in [14],
but once this threshold is crossed, model capacity becomes expendable, and shedding some of these
weights can yield more efficient training without a significant reduction in accuracy.

When to prune? The trace of the FIM [28] correlates with the performance of a pruned-model,
suggesting its possible use as a metric for deciding when to prune a model during training. The red
curve in Fig. 1 depicts the trace of the FIM of the dense model computed on the training data after
every training epoch. We observe the “memorization” and “forgetting” phases first discovered in [14].
In the memorization phase, we see an increase in the amount of information about the dataset that is
stored in the model’s weights; afterwards, in the forgetting phase, we see a decrease of information.
Crucially, we observe that the early pruning period occurs around the peak of tr(F), that is, at the
boundary between the memorization and forgetting phases. This suggests that a model may be most
amenable to pruning when it is near the memorization/forgetting phase shift.

4.2 Fisher-based Pruning Criterion

0 50 100 150 200
Epoch

93.25

93.50

93.75

94.00

94.25

94.50

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10 (Fisher Pruning)

0

250

500

750

1000

1250

1500

tr(
F)

Figure 2: Models pruned via a Fisher
Information criterion exhibit an early
pruning period.

As discussed in Sec. 3, the Fisher Information of a set of
the model’s weights quantifies how much the predicted
posterior distribution is affected by a perturbation to these
weights. Hence, the Fisher Information of a set of weights
can be interpreted as a measure of their synaptic strength,
whereby weights with a low Fisher Information can be
considered irrelevant. Up until now, we have used the
magnitude of weights as our pruning criterion, removing
weights with a small magnitude. Here, we experiment with
pruning weights based on the their Fisher Information,
removing weights with a small Fisher Information. In
Fig. 2, we prune a ResNet-18 model at a sparsity level
of 90% and prune it according to a Fisher Information
criterion. We again observe an early pruning period that
correlates with the FIM trace. This suggests that tr(F) can
be an effective pruning criterion. However, comparing the
performance of this model to the model pruned with the magnitude-based criterion, i.e., Fig. 6a in
Appendix B.3, we observe that the magnitude-based criterion achieves a higher test accuracy. While
tr(F) can often be a good proxy for assessing how much the model has memorized about its training
data in aggregate, it may not be the best local measure for assessing parameter importance.

4.3 Efficient Compression Signal

To decide when to prune a model during training, we would like a metric that can be computed
efficiently. As discussed above, tr(F) can be an effective signal for deciding when to prune; however,

5

0 50 100 150 200
Epoch

75.0

75.2

75.4

75.6

75.8

76.0

Te
st

 A
cc

ur
ac

y
(%

)

Exponential

2

4

6

8

10

12

14

KL
U

ni
fo

rm

(a)

0 50 100 150 200
Epoch

76.0

76.2

76.4

76.6

76.8

77.0

Te
st

 A
cc

ur
ac

y
(%

)

Cosine

2

4

6

8

10

12

14

KL
U

ni
fo

rm

(b)

0 50 100 150 200
Epoch

75.50

75.75

76.00

76.25

76.50

76.75

77.00

Te
st

 A
cc

ur
ac

y
(%

)

Linear

4

6

8

10

12

14

KL
U

ni
fo

rm

(c)

Figure 3: The early pruning period correlates with the KLUniform metric. Models are trained on
CIFAR-100 at a 90% sparsity rate. The yellow curve denotes the KLUniform metric of the baseline
(unpruned) models computed over the training set. We observe that KLUniform correlates with the
test accuracies of the pruned models. (a): Models trained with an exponential learning rate schedule.
Baseline accuracy: 77.4%. (b): Models trained with a cosine schedule. Baseline accuracy: 78.4%.
(c): Models trained with a linear schedule. Baseline accuracy: 78.4%.

computing tr(F) requires additional gradient computations beyond those computed to train the model,
which will slow down training. To remedy this, we propose a more efficient metric, KLUniform

(see Eq. (5)), which forgoes gradient computations. This metric measures the divergence between
the uniform distribution over the data’s labels (the distribution that assigns equal probability to all
labels) and the model’s learned posterior distribution. In Fig. 3, we plot our KLUniform metric of the
unpruned model trained on CIFAR-100, along with the accuracies of the pruned models. Similar to
the correlation observed with tr(F) in Fig. 1, here we again see that the best performing pruned model
tends to be the one pruned near the inflection point of the metric. While the inflection point of tr(F)
represents a shift from the memorization phase to the forgetting phase of training, the inflection point
of KLUniform marks a shift of the predicted posterior distribution toward the uniform distribution.
This can also be interpreted as a “forgetting” phase, since a decrease in KLUniform implies an
attenuation of the model’s overconfident predictions. Moreover, we observe that this metric also
correlates with tr(F), suggesting KLUniform may be an efficient gradient-free proxy for tr(F).

5 Conclusion and Future Work

In this paper, we aim to explore the question of when a model is most amenable to compression
via pruning, particularly during training. We study model compression in the context of one-shot
unstructured pruning, whereby we prune the model once during training, and fine-tune the model
for the remaining epochs, staying within the original computational budget and yielding a pruned
model without additional fine-tuning. We show a correlation between the trace of a model’s Fisher
Information, and when the pruned model performs best—what we refer to as “early pruning periods.”
By tracking a model’s Fisher Information, tr(F), during training, we found that a pruned model’s
performance is often best if it is pruned near the transition from the memorization phase to the
forgetting phase. We posit that the evolution of the Fisher Information throughout training may serve
as a low-fidelity signal that quantifies a model’s learned redundancy. Our experiments highlight the
need for a large model capacity at the outset of training, but after the initial transient period (i.e., near
the memorization/forgetting phases), this capacity can be reduced in order to expedite training.

In addition to showing a correlation between the trace of the Fisher Information and the accuracy of
pruned models at different stages of training, we also showed a correlation between our KLUniform

metric and when pruned models performed best. KLUniform measures the KL divergence between
the uniform posterior distribution assigning equal probability to data labels, pu(y|x) = 1

C , and
the predicted posterior distribution defined by the model, p(y|x, θ). This gradient-free metric can
be computed efficiently during training and may serve as a proxy for tr(F), making it suitable for
deciding when to prune a model.

Finally, we acknowledge that, due to computational constraints, the experiments presented in this
paper were performed on small-scale models and datasets. Validating the claims presented in this
paper on large-scale models and datasets remains an exciting future work with many practical
applications that can make training more efficient and democratize access to large-scale training.

6

References
[1] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural

information processing systems, 2, 1989.

[2] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

[3] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[4] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

[5] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International conference on machine learning, pages
1737–1746. PMLR, 2015.

[6] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[7] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. Advances in neural information
processing systems, 31, 2018.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks
with low precision multiplications. arxiv 2014. arXiv preprint arXiv:1412.7024, 2014.

[9] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neu-
ral network. ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/
CorpusID:7200347.

[10] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. arXiv preprint arXiv:1802.05668, 2018.

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[12] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

[13] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810, 2017.

[14] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. arXiv preprint arXiv:1711.08856, 2017.

[15] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[16] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training
techniques. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 1803–1811, 2019.

[17] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models.
Advances in neural information processing systems, 36, 2024.

[18] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

7

https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347

[19] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. Advances in neural
information processing systems, 32, 2019.

[20] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[21] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[22] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information
processing systems, 33:6377–6389, 2020.

[23] Jonathan Frankle. The Lottery Ticket Hypothesis: On Sparse, Trainable Neural Networks. PhD
thesis, Massachusetts Institute of Technology, 2023.

[24] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G
Baraniuk, Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more
efficient training of deep networks. arXiv preprint arXiv:1909.11957, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

[28] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. Ameri-
can Mathematical Soc., 2000.

8

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

A Training Details

Our baseline models are trained on either CIFAR-10 or CIFAR-100 for 200 epochs. We use an
SGD optimizer with 0.9 momentum and a maximum learning rate of 0.1 (without a warm-up). We
use a batch size of 128. Unless stated otherwise, models are trained with a weight decay value
of 5 × 10−4 and with an exponential learning rate schedule that decays the learning rate by 0.97
after each epoch. When a model is pruned at epoch t, the pruned model is trained for an additional
200 − t epochs with the same learning rate schedule as its base model. However, as explained in
Sec. 3, the pruned model is trained with a different maximum learning rate, namely max(∆, LR(t))
where LR(t) is the learning rate set by the learning rate schedule at epoch t, and ∆ = 0.001 is a
lower bound hyperparameter. We choose this learning rate so that models pruned later in training are
trained with a sufficiently large learning rate to recover performance, but not too large to compromise
generalization; models pruned earlier will be trained with a learning rate similar to that which would
be used by the base model.

B Ablations

B.1 Effect of Model Size

We observe that models across a spectrum of sizes (i.e., number of parameters) can be effectively
pruned early in training. In Fig. 1, we showed results for ResNet18, which has approximately 11.2
million (M) parameters, and was originally intended for use on the ImageNet dataset and adapted
for CIFAR. We further experimented with early pruning on ResNet20/32/44/56, each of which was
designed specifically for the CIFAR datasets and range from having 0.27M parameters to 0.85M—all
of which are smaller than the previous ResNet18 model. We provide the performance of these models
in Fig. 4. For all model sizes, we again observe that the performance of pruned models correlates
with tr(F), where the early pruning period occurs near the memorization/forgetting phase shift.

0 50 100 150 200
Epoch

87.0

87.5

88.0

88.5

89.0

89.5

Te
st

 A
cc

ur
ac

y
(%

)

ResNet20

500

1000

1500

2000

2500

tr(
F)

0 50 100 150 200
Epoch

89.75

90.00

90.25

90.50

90.75

91.00

Te
st

 A
cc

ur
ac

y
(%

)

ResNet32

500

1000

1500

2000

tr(
F)

0 50 100 150 200
Epoch

90.8

91.0

91.2

91.4

91.6

Te
st

 A
cc

ur
ac

y
(%

)

ResNet44

500

1000

1500

2000

tr(
F)

0 50 100 150 200
Epoch

89.75

90.00

90.25

90.50

90.75

91.00

Te
st

 A
cc

ur
ac

y
(%

)

ResNet56

500

1000

1500

2000

2500

tr(
F)

Figure 4: Early pruning periods emerge across models of various sizes. We train
ResNet20/32/44/56 on CIFAR-10 for 200 epochs. At every 20th epoch t, we prune 90% of the
models’ parameters and fine-tune for 200 − t epochs. We observe that there is a period early in
training when pruning the model performs best. Baselines accuracies: ResNet20: 92.2%, ResNet32:
93.1%, ResNet44: 93.3%, 56: 92.5%.

B.2 Varying Compression Levels

The benefits of pruning a model earlier in training are agnostic to the sparsity rate. Our experiments
thus far have considered compressing a model by 90%—that is, removing 90% of its parameters
with the smallest magnitudes. Next, we investigate how the performance of early-pruned models
varies with sparsity levels. In Fig. 5, we provide results for a ResNet18 model pruned at multiple
compression levels: 80%, 90%, and 95%. Models trained with a more moderate compression
level exhibit the highest performance. Nevertheless, the model pruned early at a 95% sparsity rate
maintains a competitive performance compared to its baseline (94.7% vs. 95.3%). Additionally, we
again observe that the early pruning period occurs near the memorization/forgetting phase shift.

B.3 Effect of Learning Rate Schedules

The learning rate schedule can modulate the duration of the memorization and forgetting phases
during training, as depicted by the red curves in Fig. 6, and hence can control when a model becomes
amenable to pruning. Our previous experiments utilized an exponential learning rate decay, which

9

0 50 100 150 200
Epoch

94.0

94.5

95.0

Te
st

 A
cc

ur
ac

y
(%

)

Sparsity Level Comparison

80%
90%
95%

0

250

500

750

1000

1250

1500

tr(
F)

Figure 5: Models pruned at various compression levels perform best when pruned near the
peak of tr(F). We train a ResNet18 model on CIFAR-10 for 200 epochs. At every 20th epoch t, we
prune either 80%, 90%, or 95% of the model’s parameters via unstructured magnitude-based pruning.
Performance of pruned models correlates with the peak of the dense model’s FIM trace.

0 50 100 150 200
Epoch

94.65

94.70

94.75

94.80

94.85

94.90

94.95

Te
st

 A
cc

ur
ac

y
(%

)

Exponential

0

250

500

750

1000

1250

1500

tr(
F)

(a)

0 50 100 150 200
Epoch

94.9

95.0

95.1

95.2

95.3

95.4

Te
st

 A
cc

ur
ac

y
(%

)

Cosine

200

400

600

800

1000

1200

1400

tr(
F)

(b)

0 50 100 150 200
Epoch

94.9

95.0

95.1

95.2

95.3

95.4

Te
st

 A
cc

ur
ac

y
(%

)

Linear

250

500

750

1000

1250

tr(
F)

(c)

Figure 6: The learning rate schedule modulates the length of the memorization phase and
when the early pruning period occurs. Models are pruned at 90%. (a): Models trained with an
exponential learning rate schedule. Baseline accuracy: 95.3%. (b): Models trained with a cosine
schedule. Baseline accuracy: 95.0% (c): Models trained with a linear schedule. Baseline accuracy:
95.0%. When fine-tuning pruned models, we use the same schedule used to train the baseline models.

decayed the learning rate by 0.97 after every epoch. Here, we additionally train with cosine and linear
decay schedules. In Fig. 6, we observe that the peak of the tr(F) curve is dependent on the learning
rate, with cosine and linear schedules reaching the forgetting phase later in training. This suggests that
learning rate schedules determine the length of the memorization phase. In particular, as depicted in
Fig. 7, the exponential schedule decays much faster than the cosine and linear schedules, suggesting
that models enter the forgetting phase once the model has memorized sufficient information and
the learning rate has become sufficiently small. Nevertheless, we continue to observe a correlation
between the peak of tr(F) and when the pruned model performs best.

B.4 Weight Decay Regularization

The strength of correlation between a model’s early pruning period and the trace of the FIM hinges
on the model’s ability to fit the data well. Our previous experiments employed L2 regularization
(“weight decay”) as a means of regularizing the network. The weight decay coefficient controls how
fast model parameters are decayed (made smaller); larger coefficients impose stronger regularization,
while smaller coefficients may lead to insufficient regularization. Our experiments have thus far used
a coefficient of 5× 10−4, which we found to perform well. To study the effect of the regularization
strength on the early pruning period, we retrained baseline models with coefficients of 5 × 10−3

and 5 × 10−5, and applied early pruning to these models. Our results are summarized in Fig. 8
(see Fig. 13 for a similar plot with local pruning). The baseline model trained with a coefficient
of 5× 10−3 (Fig. 8a) underfit the data, while the the model trained with a coefficient of 5× 10−5

(Fig. 8c) overfit the data. All three cases exhibit an early pruning period; however, we observe a
weak correlation between when the early pruning period occurs and the trace of the FIM. In the case

10

0 50 100 150 200
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

LR

Exponential
Linear
Cosine

Figure 7: We train models with exponential, cosine, and linear learning rate annealing schedules.
Pruned models follow the same learning rate schedule as their baseline model, with the max learning
set as defined in Sec. 3.

0 50 100 150 200
Epoch

92.8

93.0

93.2

93.4

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-3

0

2500

5000

7500

10000

12500

15000

tr(
F)

(a) Underfitting

0 50 100 150 200
Epoch

94.65

94.70

94.75

94.80

94.85

94.90

94.95

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-4

0

250

500

750

1000

1250

1500

tr(
F)

(b) Good fit

0 50 100 150 200
Epoch

92.00

92.05

92.10

92.15

92.20

92.25

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-5

0

100

200

300

400

tr(
F)

(c) Overfitting

Figure 8: How well a model fits the data influences the correlation strength between a model’s
early pruning period and the trace of its FIM. We trained a ResNet18 model on CIFAR-10 with
varying weight decay coefficients. Each model was then pruned at varying points throughout training
and fine-tuned for the remaining epochs. (a): Weight decay coefficient 5× 10−3; this baseline model
underfit the data. Baseline: 93.4%. (b): 5 × 10−4; this baseline model fit the data well. Baseline:
95.3%. (c): 5× 10−5; this baseline model overfit the data. Baseline: 92.8%.

of overfitting, we hypothesize that the weak regularization strength prompted the model to quickly
memorize its training data and subsequently enter its forgetting phase early, leading to the discarding
of parameters that may have become important later in training. Hence, the early pruning period
occurs later—toward the end of the forgetting phase—once the appropriate superfluous weights can
be identified. In the case of underfitting, the model receives larger gradient updates (as evidenced by
the larger tr(F) values, which are the norm of the gradients, as per Eq. (4)), and so tr(F) may not
begin to decrease until the learning rate is sufficiently small later in training. Hence, while the early
weights to prune may have become evident earlier in training, tr(F) was not able to capture when
this occurred. Collectively, these results suggest that a model’s early pruning period and its FIM trace
are most strongly correlated when the model fits the data well.

C Local Unstructured Pruning

Here, we consider pruning parameters on a per-layer basis, keeping only top (100−r)% of parameters
in each layer, where r denotes the pruning rate. In Fig. 9, we recreate Fig. 1 using this local pruning
scheme and again observe an early pruning period.

In Fig. 10, we observe that pruning models of various sizes via local pruning also produces early
pruning periods that correlate with the trace of their FIM.

In Fig. 11, we show that models pruned via local pruning at various compression levels also exhibit
an early pruning period that correlates with the trace of their FIM.

In Fig. 12, we show that models trained with different learning rate schedules that are pruned via
local pruning also exhibit early pruning periods, and performance peaks near the transition between

11

0 50 100 150 200
Epoch

94.0

94.2

94.4

94.6

94.8

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10

0

250

500

750

1000

1250

1500

tr(
F)

(a)

0 50 100 150 200
Epoch

73.5

74.0

74.5

75.0

75.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100

500

1000

1500

2000

2500

3000

tr(
F)

(b)

Figure 9: Early pruning periods correlate with tr(F) when models are pruned at a local level.
Blue points denote the test accuracies of models pruned at a 90% sparsity level at the corresponding
epoch t and fine-tuned for 200− t epochs. The red curve denotes the trace of the Fisher Information
Matrix of the baseline (unpruned) models. The mean and standard deviation of three random seeds are
plotted. (a): ResNet18 on CIFAR-10. Baseline accuracy: 95.3± 0.06. (b) ResNet18 on CIFAR-100.
Baseline: 77.3± 0.1.

0 50 100 150 200
Epoch

86.5

87.0

87.5

88.0

88.5

89.0

Te
st

 A
cc

ur
ac

y
(%

)

ResNet20

500

1000

1500

2000

2500

tr(
F)

0 50 100 150 200
Epoch

89.6

89.8

90.0

90.2

90.4

90.6

90.8

Te
st

 A
cc

ur
ac

y
(%

)

ResNet32

500

1000

1500

2000

tr(
F)

0 50 100 150 200
Epoch

90.0

90.2

90.4

90.6

90.8

91.0

91.2

Te
st

 A
cc

ur
ac

y
(%

)

ResNet44

500

1000

1500

2000

tr(
F)

0 50 100 150 200
Epoch

89.6

89.8

90.0

90.2

90.4

90.6

Te
st

 A
cc

ur
ac

y
(%

)

ResNet56

500

1000

1500

2000

2500

tr(
F)

Figure 10: Early pruning periods emerge across models of various sizes when pruned at a local
level. We train ResNet20/32/44/56 on CIFAR-10 for 200 epochs. At every 20th epoch t, we prune
90% of the models’ parameters and fine-tune for 200− t epochs. We observe that there is an optimal
time to apply pruning early in training. Baselines accuracies: ResNet20: 92.2%, ResNet32: 93.1%,
ResNet44: 93.3%, 56: 92.5%.

0 50 100 150 200
Epoch

93.0

93.5

94.0

94.5

95.0

Te
st

 A
cc

ur
ac

y
(%

)

Sparsity Level Comparison

80%
90%
95%

0

250

500

750

1000

1250

1500

tr(
F)

Figure 11: Models pruned via local unstructured pruning at various compression levels perform
best when pruned near the peak of tr(F). We train a ResNet18 model on CIFAR-10 for 200
epochs. At every 20th epoch t, we prune either 80%, 90%, or 95% of the model’s parameters via
unstructured magnitude-based pruning. Performance of pruned models correlates with the peak of
the dense model’s FIM trace.

12

0 50 100 150 200
Epoch

94.0

94.2

94.4

94.6

94.8

Te
st

 A
cc

ur
ac

y
(%

)

Exponential

0

250

500

750

1000

1250

1500

tr(
F)

(a)

0 50 100 150 200
Epoch

94.2

94.4

94.6

94.8

95.0

Te
st

 A
cc

ur
ac

y
(%

)

Cosine

200

400

600

800

1000

1200

1400

tr(
F)

(b)

0 50 100 150 200
Epoch

94.0

94.2

94.4

94.6

94.8

95.0

Te
st

 A
cc

ur
ac

y
(%

)

Linear

250

500

750

1000

1250

tr(
F)

(c)

Figure 12: The learning rate schedule modulates the length of the memorization phase and
when the early pruning period occurs for models pruned at a local level. Models are pruned at
90%. (a): Models trained with an exponential learning rate schedule. Baseline accuracy: 95.3%. (b):
Models trained with a cosine schedule. Baseline accuracy: 95.0% (c): Models trained with a linear
schedule. Baseline accuracy: 95.0%. When fine-tuning pruned models, we use the same schedule
used to train the baseline models.

0 50 100 150 200
Epoch

91.50

91.75

92.00

92.25

92.50

92.75

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-3

0

2500

5000

7500

10000

12500

15000

tr(
F)

(a) Underfitting

0 50 100 150 200
Epoch

94.0

94.2

94.4

94.6

94.8

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-4

0

250

500

750

1000

1250

1500

tr(
F)

(b) Good fit

0 50 100 150 200
Epoch

90.5

91.0

91.5

92.0

Te
st

 A
cc

ur
ac

y
(%

)

Weight Decay: 5e-5

0

100

200

300

400

tr(
F)

(c) Overfitting

Figure 13: The early pruning period and the trace of a model’s FIM are correlated when the
model is pruned at a local level. We trained a ResNet18 model on CIFAR-10 with varying weight
decay coefficients. Each model was then pruned at varying points throughout training and fine-tuned
for the remaining epochs. (a): Weight decay coefficient 5× 10−3; this baseline model underfit the
data. Baseline: 93.4%. (b): 5 × 10−4; this baseline model fit the data well. Baseline: 95.3%. (c):
5× 10−5; this baseline model overfit the data. Baseline: 92.8%.

the memorization and forgetting phases. We obtain similar results for models trained on CIFAR-100,
as shown in Fig. 14.

In Fig. 13, we train models with varying regularization strengths and then prune them via local pruning.
In contrast to Fig. 8, here we see a stronger correlation between the pruned models’ performance and
their FIM trace. In Fig. 8, pruning is applied on a global scale, which means some layers may be
pruned more aggressively than others. On the other hand, local pruning prunes layers uniformly. In
the case of overfitting, the model’s layers will specialize to fit certain attributes of the data, while
the weaker regularization will lead to weights with an overall larger magnitude. We hypothesize that
local pruning is more suitable in this regime since pruning on a global level may disproportionately
prune layers with larger weight magnitudes. In the case of underfitting, the stronger regularization
leads to weights with small magnitudes which may take longer to fit the training data, hence why we
observe that the early pruning period occurs later in training. Again, pruning on a global level may
lead to more agressive pruning of certain layers that have not yet fit the data well, so local pruning
may be more appropriate in the underfitting regime as well.

13

0 50 100 150 200
Epoch

74.50

74.75

75.00

75.25

75.50

75.75

Te
st

 A
cc

ur
ac

y
(%

)

Exponential

500

1000

1500

2000

2500

3000

3500

tr(
F)

(a)

0 50 100 150 200
Epoch

75.0

75.5

76.0

76.5

77.0

77.5

Te
st

 A
cc

ur
ac

y
(%

)

Cosine

500

1000

1500

2000

2500

3000

tr(
F)

(b)

0 50 100 150 200
Epoch

75.0

75.5

76.0

76.5

Te
st

 A
cc

ur
ac

y
(%

)

Linear

1000

2000

3000

tr(
F)

(c)

Figure 14: The learning rate schedule modulates the length of the memorization phase and
when the early pruning period occurs for models pruned at a local level. Models are pruned at
90%. (a): Models trained with an exponential learning rate schedule. Baseline accuracy: 77.44%.
(b): Models trained with a cosine schedule. Baseline accuracy: 78.43% (c): Models trained with
a linear schedule. Baseline accuracy: 78.43%. When fine-tuning pruned models, we use the same
schedule used to train the baseline models.

14

	Introduction
	Related Work
	Early Pruning Period
	Experiments
	Early Pruning Periods
	Fisher-based Pruning Criterion
	Efficient Compression Signal

	Conclusion and Future Work
	Training Details
	Ablations
	Effect of Model Size
	Varying Compression Levels
	Effect of Learning Rate Schedules
	Weight Decay Regularization

	Local Unstructured Pruning

