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Abstract
Medical Visual Question Answering (MVQA) re-
quires AI models to answer questions related to
medical images, offering significant potential to
assist medical professionals in evaluating and di-
agnosing diseases, thereby improving early in-
terventions. However, existing MVQA datasets
primarily focus on basic questions regarding vi-
sual perception and pattern recognition, without
addressing the more complex questions that are
critical in clinical diagnosis and decision-making.
This paper introduces a new benchmark designed
for professional-level medical reasoning, simu-
lating the decision-making process. We achieve
this by collecting MRI and clinical data related
to Hypoxic-Ischemic Encephalopathy, enriched
with expert annotations and insights. Building on
this data, we generate clinical question-answer
pairs and MRI interpretations to enable compre-
hensive diagnosis, interpretation, and prediction
of neurocognitive outcomes. Our evaluation of
current large vision-language models (LVLMs)
shows limited performance on this benchmark,
highlighting both the challenges of the task and
the importance of this benchmark for advancing
medical AI. Furthermore, we propose a novel
“Clinical Graph of Thoughts” model, which in-
tegrates domain-specific medical knowledge and
clinical reasoning processes with the interpretive
abilities of LVLMs. The model demonstrates
promising results, achieving around 15% absolute
gain on the most important neurocognitive out-
come task, while the benchmark still reveals sub-
stantial opportunities for further research innova-
tion. Project page: https://github.com/
i3-research/HIE-Reasoning
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Figure 1. Differences between existing MVQA (a) and the pro-
posed dataset (b). Compared to existing methods that focus on
simple, clinically irrelevant tasks (green circle), our approach
targets more complex, clinically important tasks that align with
clinicians’ interests—tasks that traditional LVLMs fail to address.
To tackle this challenge, we propose Clinical Graph of Thought
Model, a model that decomposes these complex, clinically signifi-
cant tasks (red circle) into a graph of simpler clinical and interme-
diate knowledge tasks (purple circle), leveraging both visual and
clinical knowledge.

1. Introduction
Large Vision-Language Models (LVLMs) have achieved
significant success in areas like natural image and video
analysis (Bordes et al., 2024; OpenAI, 2023; 2024) and
natural language processing (NLP) (Ouyang et al., 2022;
Touvron et al., 2023). These models leverage advancements
in neural networks, large-scale datasets, and computational
resources, enabling capabilities such as automated image
captioning and complex visual question answering. How-
ever, in the medical field, LVLMs are still in their early
stages of development (Hu et al., 2024; He et al., 2023),
with research progressing but not yet matching the success
seen in non-medical domains. A key challenge lies in the
limited availability of suitable medical data, hindering their
broader application.

Many medical datasets for LVLMs (Alkhaldi et al., 2024;
Li et al., 2024; Moor et al., 2023; Saab et al., 2024) are
organized in a visual question-answering format, which pro-
vides natural inputs for LVLMs and offers a flexible way
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to test their capabilities across different aspects of medi-
cal data. However, most of these datasets are labeled by
general annotators. As shown in Fig. 1, they focus on gen-
eral question-answer pairs (e.g., “Q: What is the organ? A:
Brain”), primarily assessing basic pattern recognition and
object classification. It remains uncertain how effectively
these datasets can aid AI models in understanding complex
MRI tasks that clinical experts prioritize, such as “What
is the predicted two-year neurocognitive outcome for this
individual?” and enhancing clinical workflows (see Fig-
ure 3 (B)). This paper introduces a benchmark designed to
challenge LVLMs’ performance in professional-level med-
ical reasoning, focusing on questions relevant to medical
professionals to support diagnossis and prognosis.

Developing such a professional-level medical reasoning
benchmark poses challenges. Medical data is often scarce
and subject to strict sharing and usage limitations. Addi-
tionally, labeling this data is resource-intensive and costly,
requiring medical professionals like radiologists and neona-
tologists to carefully examine MRI images, consult with
patient families, and compose diagnostic reports. To build
this benchmark, we compiled a decade’s worth of MRI im-
ages and clinical expert-verified interpretations related to
Hypoxic-Ischemic Encephalopathy (HIE, a neonatal brain
dysfunction that occurs in 1-5/1000 neonates) from 133
individuals, in collaboration with experts in pediatric neu-
roradiology, neonatal MRI interpretation, neonatology, and
neonatal neurology. This interdisciplinary team brings criti-
cal expertise in managing neonates with HIE, resulting in
a high-quality benchmark closely aligned with real-world
neonatal care and long-term neurodevelopmental outcomes.

Using this raw annotated data, we generated question-
answer pairs along with a comprehensive MRI interpre-
tation summary that reflects expert reasoning, enabling us
to evaluate LVLMs’ capacity to comprehend these ques-
tions, identify correct answers, make accurate decisions,
and predict future neurocognitive outcomes. We defined the
questions with input from medical experts and obtained the
answers by parsing clinical reports.

After acquiring raw MRI reports from experts, we formu-
lated tasks that address the priorities of medical profession-
als, as opposed to general pattern recognition questions in
existing benchmarks. We modeled clinical decision-making
workflows and designed six tasks, as shown in Fig. 2. Each
task was meticulously validated by an expert neonatal radi-
ologist or neonatologist, depending on the task, with over
30 years of experience, ensuring clinical relevance, signifi-
cance, and accuracy for model training. We prompted large
language models to generate answers by parsing medical
reports and manually verified the responses for accuracy.

This approach establishes a benchmark that mirrors es-
sential components of professional-level MRI assessment

as shown in Fig. 2. We defined six tasks: Lesion Grad-
ing, Lesion Anatomy, Lesion in Rare Regions, Neurocogni-
tive Outcome Prediction, and MRI Interpretation Summary.
Each task targets distinct aspects of clinical significance.
Specifically, Lesion Grading assesses HIE lesion sever-
ity; Lesion Anatomy identifies the anatomical locations
of lesions; Lesion in Rare Locations determines whether
injuries are present in typical or atypical regions; MRI In-
jury Score generates an overall brain injury severity score,
widely used as a biomarker for predicting adverse two-year
outcomes and is implemented in many HIE clinical trials
worldwide (Laptook et al., 2017b; Shankaran et al., 2017b);
Neurocognitive Outcome Prediction forecasts two-year
neurocognitive outcomes, crucial since 30%-50% of HIE
patients experience adverse outcomes (Graham et al., 2008;
Lee et al., 2013; Weiss et al., 2019); and MRI Interpreta-
tion Summary provides brief, structured MRI summaries
from neonatal radiologists and neonatologists’ views, high-
lighting key findings on neonatal brain injury. Totally, our
benchmark comprises 749 professional question-answer
pairs and 133 MRI interpretation summaries derived from
unique MRI images of 133 individuals.

We evaluated a range of state-of-the-art general and medical
LVLMs on our benchmark, finding while these models per-
form well on general datasets focusing on visual perception
and pattern recognition, they demonstrate limitations on
our benchmark, which requires both visual perception and
specialized medical knowledge for reasoning.

To address this gap, we propose the Clinical Graph of
Thought Model (CGoT), which emulates the diagnostic pro-
cess through clinical knowledge-guided graph-of-thought
prompting. This approach not only enhances model per-
formance but also improves transparency. Additionally,
CGoT incorporates domain-specific clinical knowledge as
input both visually and textually to strengthen the predic-
tive power of LVLMs. Experimental results demonstrate a
significant improvement, with performance gains exceeding
over 15% across tasks, although further progress is needed.

In summary, the key contributions of this paper are: (1)
the creation of the novel HIE-Reasoning benchmark, which
replicates clinical decision-making workflows to evaluate
LVLMs in professional-level medical reasoning, represent-
ing the first medical reasoning benchmark that combines
clinical visual perception with professional-level medical
knowledge; (2) a comprehensive evaluation of state-of-the-
art general and medical LVLMs, revealing their limitations
in medical domain knowledge; and (3) the introduction of
CGoT, a clinically guided model that mimics the clinical
decision-making process, integrating medical expertise with
LVLMs to enhance decision-making support.
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Table 1. Comparison of Medical VQA Datasets. HIE-Reasoning uniquely integrates clinician-labeled, profession-level knowledge and
requires AI models to predict future outcomes, crucial for clinical early interventions.

Dataset General Medical Disease-Specific Future Data Clinical Workflow
Knowledge Knowledge Prediction Source Related

VQA-Med (Ben Abacha et al., 2019) ✓ Weak × Medical Database Low
OmniMedVQA (Hu et al., 2024) ✓ Weak × Medical Database Low
VQA-RAD (Lau et al., 2018) ✓ Weak × Medical Students & Fellows Medium
PathVQA (He et al., 2020) ✓ Weak × Textbooks Low
SLAKE (Liu et al., 2021) ✓ Weak × Medical Database Low

HIE-Reasoning ✓ Strong ✓ Clinical Report High

2. Related Work
Large Vision Language Models for VQA. LLMs provide a
promising performance in natural language processing and it
has been extended to multi-modality LVLMs, integrating the
textural information from texts and visual information from
images. Most famous foundation models start to support the
texts and images, such as GPT4o (OpenAI, 2024) and Gem-
ini (Saab et al., 2024) which accept as input any combination
of text, audio, image, and video and generate any combina-
tion of text, audio, and image outputs. These models are
trained on general vision-language tasks that may or may
not include medical data. Medical vision-language tasks
require strong domain knowledge and professional skills.
Thus, efforts have been made to integrate medical specific
knowledge into foundation models by finetuning the general
LVLMs, such as the Med-Flamingo (Moor et al., 2023),
LLava-Med (Li et al., 2024), and MiniGPT-Med (Alkhaldi
et al., 2024). Med-Flamingo is a multimodal model adapted
to the medical domain by pre-training on paired and in-
terleaved medical image-text data from publications and
textbooks (Moor et al., 2023). LLava-Med extends mul-
timodal instruction-tuning to the biomedical domain as a
biomedical multimodal conversational assistant (Li et al.,
2024). MiniGPT-Med (Alkhaldi et al., 2024) is a vision-
language model derived from large-scale language models
and tailored for medical applications which shows superior
performance in VQA benchmarks on medical imaging. In
this paper, we evaluate models on medical disease by ask-
ing complex and clinical-important questions that require
specialized knowledge from medical experts.

Benchmark Datasets for VQA in Medical Images. Bench-
mark datasets are important to evaluate the performance
of AI models for visual question answering and a few
medical benchmarks have been developed, such as VQA-
med (Ben Abacha et al., 2019), OmiMed-VQA (Hu
et al., 2024), SLAKE (Liu et al., 2021), VQA-RAD (Lau
et al., 2018) and Path3000 (He et al., 2020). The VQA-
med (Ben Abacha et al., 2019) is designed to answer four
categories of clinical questions: Modality, Plane, Organ
System, and Abnormality. OmiMed-VQA (Hu et al., 2024)
provides five different question types: Modality Recogni-

tion, Anatomy Identification, Disease Diagnosis, Lesion
grading, and Other Biological Attributes. SLAKE (Liu
et al., 2021) contains only two types of questions about
organ and disease on medical images. VQA-RAD (Lau
et al., 2018) focuses on visual attributes of medical images,
such as modality, organ, color, size of objects, counting, etc.
PathVQA (He et al., 2020) supports specific questions on
pathology images.

These datasets are designed to answer the question from the
image content without requiring deep professional medical
knowledge, domain-specific inference, or clinical-workflow-
related knowledge. Questions about general information on
medical images such as the modality, organ, and disease
information are easy and clinical-workflow-irrelevant (see
Fig. 1(a) and Table 1), which are not clinicians-interested
ones. Other types of questions, such as the complex and
clinical-important task (see Fig. 1(b) and Table 1) are the
core questions for clinicians but failed for the traditional
LVLMs. To fill this gap, we proposed a template bench-
mark, named HIE-Reasoning, focusing on answering the
clinicians-interested questions using both general medical
knowledge and strong disease-specific knowledge for future
outcome prediction, which cannot be performed on other
datasets (Table 1).

Prompt Engineering in Large Language Models. LLMs
face limitations in complex reasoning tasks that require
specialized knowledge (Sun et al., 2023). These limita-
tions can be addressed using prompting techniques, such as
think-of-graph (ToG) (Sun et al., 2023) and chain-of-thought
(CoT) (Wei et al., 2022), which encourage LLMs to gener-
ate step-by-step solutions for complex tasks. ToG treats the
LLM as an agent to interactively explore related entities and
relations on knowledge graphs (Sun et al., 2023), while CoT
breaks down multi-step problems into intermediate steps.
These prompt engineering techniques are primarily used
for VQA on text inputs. In this paper, we extend this ap-
proach by introducing a clinical graph-of-thought prompting
method for medical VQA, answering complex and clinical-
important tasks by decomposing it into a graph of thoughts
with easy clinical and intermediate knowledge tasks (see
Fig. 1 and Fig. 3).
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Q: Are there regions that are uncommonly 
injured in HIE? (Open)
A:  Occipital Medial GM Left, Frontal 
Opercular GM Left, Occipital Lateral GM 
Left,...

Task 3. Lesion in Rare Locations

Q: What is HIE lesion percentage in this 
MRI? (Open)
A: The MIR shows that 6.93% of the brain 
volume injured.
Q: What is the severity level of the HIE 
lesions? (MC)
A: 1 (<1%)        B: 2 (1%-5%) 
C: 3 (5%-50%) D: 4 (>50%)  

Task 1. Lesion Grading

Q: What brain regions are affected by HIE 
in this MRI? (Open)
A: Parietal Lateral GM left, Parietal WM 
left, Occipital left, ... 

Task 2. Lesion Anatomy

HIE injury L

Q: What is the MRI injury score of this 
MRI? (MC)
A: 1 B: 2 C: 3 D: 4 

Task 4. MRI Injury Score

3D MRI Volume
Q: What is the predicted neurocognitive 
outcome for this patient at 2 years? (MC)
A: 1 (Adverse) B: 0 (Normal) 

Task 5. Neurocognitive Outcome

HIE-Reasoning

Q: Summarize MRI findings. (Open)
A: The MRI shows that 6.93% of the brain 
volume is injured. The affected regions include 
the Parietal Lateral GM left, Parietal WM left, 
Occipital left, …. Additionally, HIE lesion 
regions that are not typical for HIE injury 
include Occipital Medial GM Left, Frontal 
Opercular GM Left, Occipital Lateral GM 
Left,.... The MRI injury score for this scan is 2.

Task 6. MRI Interpretation

Figure 2. HIE-Reasoning Dataset and Task Overview. This figure illustrates the HIE-Reasoning dataset structure, comprising six tasks
designed to assess reasoning capabilities for HIE MRI interpretation and outcome prediction using MRI data. This dataset supports the
development of reasoning models by providing both open-ended (open) and multiple-choice (MC) questions, encouraging comprehensive
understanding of HIE MRI and crucial aspects of MRI towards prognosis.

3. HIE-Reasoning Dataset
We define a series of tasks, illustrated in Fig. 2, for LVLMs
to perform professional-level clinical reasoning.

Task 1. Lesion Grading. This task quantifies brain injury
by estimating the percentage of brain volume affected by
HIE lesions and assessing the lesion severity extents. This
task outputs lesion volume percentage and severity. Accord-
ingly, we defined two specific tasks as in Fig. 2: one to
evaluate lesion percentage and another to categorize lesion
severity into four levels: level 0 (< 1% brain injury), level 1
(1%-5%), level 2 (5%-50%), and level 3 (> 50%). Manual
lesion annotations served as the ground truth (Bao et al.,
2025b) and were used to generate the ground-truth answers.

Task 2. Lesion Anatomy. This task identifies specific brain
regions affected by lesions. The brain is divided into 62
regions of interest (ROIs) based on standard anatomical ref-
erences (Doshi et al., 2016; Morton et al., 2020), and the
task outputs the lesioned regions among these ROIs. Such
task is critical for accurately predicting functional impair-
ments, assessing injury severity, and informing prognosis
in conditions like HIE. For example, lesions in the basal
ganglia or thalamus are strongly associated with adverse
neurocognitive outcomes.

Task 3: Lesions in Rare Locations. This task identifies
lesions caused by HIE and categorizes affected regions as
common or uncommon, helping to determine if additional
attention is needed for the patient. Specifically, (Bao et al.,
2025b) provides a lesion atlas generated by aggregating
lesion masks from each patient, resulting in statistical le-

sion maps across the HIE cohort. This atlas highlights
brain regions most commonly affected by HIE, aligning
with clinical knowledge on areas frequently impacted by
HIE injuries (Shankaran et al., 2012; Weiss et al., 2019). A
22.5% threshold, recommended by an experienced radiol-
ogist, was applied to generate commonly affected regions.
The brain regions most frequently impacted by HIE include
the basal ganglia, internal capsules, thalamus, perirolandic
cortex/subcortical white matter, temporal lobes, cerebral
white matter, brainstem, and vermis. For each case, primary
injury regions (i.e., commonly affected areas) are identified,
with uncommon injury sites noted when affected regions
fall outside the typical injury profile.

Task 4. MRI Injury Score. This task outputs an over-
all injury score of MRI, providing a standardized measure
of injury severity to guide treatment and predict outcomes.
Expert scoring of neonatal MRI is currently employed in
clinical trials to predict 18- to 22-month outcomes (Lap-
took et al., 2017b; Shankaran et al., 2017b). The Na-
tional Institute of Child Health and Human Development
(NICHD) Neonatal Research Network (NRN) injury scoring
system (Shankaran et al., 2012; 2015) is the most widely
used MRI injury score for assessing brain injury severity in
HIE. To facilitate machine learning modeling, we consoli-
dated the original 6-level score into 4 levels, instructed by
radiologist, as certain distinctions within the 6 levels were
clinically ambiguous and difficult to quantify for machine
learning purposes.

Task 5. Two-Year Neurocognitive Outcome. This task pre-
dicts the patient’s neurocognitive outcome at two years, aid-
ing clinicians in anticipating long-term impacts and planning
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appropriate interventions. Specifically, this task outputs a
binary label where the two-year neurocognitive outcome is
categorized as either normal (0) or adverse (1), based on
clinical criteria and NRN recommendations (Laptook et al.,
2017b; Shankaran et al., 2017b). An outcome is classified as
adverse if any of the following conditions are met: a Bayley-
III cognitive score below 85 in any domain, a GMFCS level
between 2 and 5, blindness, hearing impairment, or if the
patient is deceased in two years. Otherwise, the outcome is
considered normal (Laptook et al., 2017b; Shankaran et al.,
2017b; Bao & Ou, 2024).

Task 6. MRI Interpretation Summary. The initial Tasks 1
to 4 cover the key aspects of MRI interpretation: estimating
lesion volume, identifying lesion locations, detecting atypi-
cal lesion locations, and rating injury severity. These tasks
are structured based on a neonatal MRI summary template
recommended by radiologists, enabling the generation of
comprehensive MRI interpretations for patients.

Dataset Details. The HIE-Reasoning is the first publicly
available HIE dataset that integrates MRIs, clinical infor-
mation, neurocognitive outcomes, and includes question-
answer (QA) pairs along with comprehensive MRI inter-
pretation summaries. It was retrospectively collected from
Massachusetts General Hospital (MGH) between 2001 and
2018. The dataset includes high-quality MRIs acquired
within the first 0-14 days after birth from neonates with HIE,
totaling 133 MRI scans. Expert lesion annotations are avail-
able for all cases, provided by one clinical fellow with over
3 years of experience and three additional neuroradiologists
with over 5, 5, and 30 years of experience, respectively. Neu-
rocognitive outcome data was retrospectively gathered from
follow-ups conducted by more than four neonatologists and
neurologists, assessing outcomes at least 18-22 months post-
birth. In total, the dataset comprises 749 question-answer
pairs and 133 MRI comprehensive interpretation summary.

Justification for Small Sample Size. While this sample
size may appear modest for contemporary machine learn-
ing applications, several factors underscore its significance.
First, HIE diagnosis and treatment demand specialized ex-
pertise available only at select tertiary care centers, making
large-scale data collection inherently challenging. Second,
this benchmark emerges from decades of clinical collabo-
ration across multiple specialties’ efforts, establishing its
unique value in neonatal care research. The dataset’s com-
prehensive nature, depth of clinical knowledge, combining
diverse clinical indicators and expert annotations, compen-
sates for its size limitations and provides a foundational
resource for advancing medical AI in this critical domain.

4. Proposed Clinical Graph of Thought Model
A straightforward approach to addressing the HIE-
Reasoning task is to directly input MRI images into an
LVLM to generate a predicted outcome as shown in
Fig. 3 (A). However, without integrated clinical reasoning
and domain-specific knowledge, the LVLM’s performance
is often no better than random chance due to its lack of essen-
tial interpretative capabilities as shown in our experimental
analysis in Sec 5. To overcome this limitation, we propose
Clinical Graph of Thought Model (CGoT), which incorpo-
rates clinical knowledge into the LVLM, guiding it through
a clinician-like diagnostic process, as depicted in Fig. 3 (B)-
(C). This framework yields more reliable neurocognitive
outcome predictions. This novel approach demonstrates
how structured clinical reasoning, when coupled with ad-
vanced AI, can elevate medical image interpretation to new
levels of precision and reliability.

As detailed in Fig. 3 (C), CGoT systematically incorporates
insights from previous clinical evaluations, mimicking real-
world diagnosis workflows. The framework works with
two innovations, (1) clinical graph-structured prompting
for medical reasoning and (2) visual and professional-level
clinical knowledge as input.

4.1. Clinical Graph of Thought for Reasoning

In practice, a neonatologist would interpret a radiologist’s
report to assess brain injury severity. At the core of CGoT is
a structured “reasoning graph of thought” that mirrors clini-
cians’ step-by-step clinical diagnosis and decision-making
process. Similarly, CGoT leverages the knowledge gained
from each preceding task to guide the LVLM, enabling it
to address complex questions by progressively refining its
understanding in a stepwise manner.

CGoT consists of six key tasks that replicate the domain-
specific expertise of medical specialists. These tasks include
lesion grading (informed by radiologists and neonatologists),
anatomical localization (radiologist-driven), injury scoring
(led by neonatologists), and two-year outcome prediction
(integrating insights from radiologists, neonatologists, and
neurologists). Each task builds upon the previous one, cre-
ating a reasoning pipeline that aligns with the sequential
clinical evaluation process. Finally, the outputs of these
tasks are integrated and structured to form the MRI inter-
pretation summary by MRI summary template. Fig. 3 (B)
depicts CGoT ’s reasoning graph, which integrates critical
diagnostic elements and emulates the specialized expertise
of clinical roles, forming an interactive, layered diagnostic
approach. For example, in the lesion anatomy task, CGoT,
after receiving clinical guidelines, enables the LVLM to
emulate a radiologist’s role, identifying regions affected by
HIE with statements like, “I can identify HIE-injured brain
regions in this patient.”
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Figure 3. (A) The LVLM-only approach, which directly inputs MRIs for outcome prediction, lacks structured clinical reasoning and thus
performs poorly in outcome accuracy. (B) The proposed CGoT incorporates clinical reasoning steps that mimic a clinician’s diagnostic
workflow. (C) CGoT organizes tasks into a sequential, clinician-inspired diagnostic flow, making more reliable neurocognitive outcome
predictions by progressively integrating visual and textual clinical knowledge across interrelated diagnostic steps.

4.2. Clinical Knowledge Representation

CGoT relies on two primary knowledge sources for each
task: visual knowledge and textual clinical knowledge. Vi-
sual knowledge includes raw MRI data and derived visual
features, such as lesion probability and brain anatomical re-
gion information. Textual clinical knowledge is divided
into essential clinical contextual knowledge for answer-
ing the current question and individual clinical knowledge,
which is obtained from the previous task’s output. This
approach allows CGoT to sequentially build understanding
and tackle each task’s question by leveraging preceding an-
swers, thereby simulating a clinician’s reasoning process.
Below we dive into the knowledge detail.

4.2.1. VISUAL KNOWLEDGE

There are three types of visual knowledge: raw MRI, lesion
probability, and patient brain anatomy.

Raw MRI. Apparent diffusion coefficient (ADC) maps
serve as the primary imaging modality for identifying HIE
abnormalities by radiologists (Douglas-Escobar & Weiss,
2015; Wei et al., 2019; Liauw et al., 2009) and are used as
visual knowledge input for the LVLM.

Lesion Probability. Neuroradiologists detect acute brain
injury from HIE by identifying regions with abnormally low
ADC values, which indicate reduced water diffusion due to
ischemic necrosis (Weiss et al., 2019). However, distinguish-
ing these regions from normal variation is challenging due to
variability in ADC values across different brain regions (Ou
et al., 2017; Sotardi et al., 2021). To address this, Bao et
al. (Bao et al., 2025b) introduced ZADC maps to normalize
ADC values across brain voxels. By applying a threshold of
-2 on ZADC , a lesion prediction map is generated, offering
performance comparable to more complex deep learning
methods for lesion detection (Bao et al., 2025a;b). Details
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of this information are provided in the appendix.

Brain Anatomy. Knowledge of patient-specific brain
anatomy is essential for accurate interpretation. Brain re-
gions are identified using a standard set of predefined 62
ROIs. To enable the LVLM to understand brain anatomy,
a normalized brain structure map with these 62 ROIs in
standard brain space was transformed to each patient’s in-
dividual space using the DRAMMS tool (Ou et al., 2011).
This patient-specific anatomy map provides the LVLM with
the same anatomical knowledge a radiologist would use,
enhancing its ability to interpret brain region localization
during tasks. Details of the ROIs in the standard atlas space
are provided in the appendix.

4.2.2. TEXTUAL CLINICAL KNOWLEDGE

Answering expert-level questions in HIE diagnosis requires
advanced clinical knowledge and patient-specific insights.
We define two types of textual clinical knowledge: meta
clinical knowledge and individual clinical knowledge.

Meta Clinical Knowledge. Meta knowledge includes gen-
eral disease-related insights, such as brain anatomy, lesion
distributions, relationships between MRI biomarkers and
outcomes, and knowledge from radiology, neonatology, and
neurology. This shared knowledge across patients provides
essential context for HIE diagnostic tasks. A summary of
the relevant meta knowledge is provided, with further details
available in the appendix.

Individual Clinical Knowledge. Individual knowledge is
patient-specific and essential for personalized diagnostic
tasks. Derived dynamically through the task’s reasoning
process, it allows the model to incorporate personalized
clinical insights. As shown in Figure 3, meta and individ-
ual knowledge components are used selectively, ensuring
tailored responses for each task. Additional details about
task-specific knowledge are in the appendix.

5. Experiments
We conduct comprehensive experiments to demonstrate the
effectiveness of the proposed benchmark, HIE-Reasoning,
and model, Clinical Graph of Thought Model.

5.1. Implementation Details

Model Details. We begin by performing zero-shot eval-
uations on six representative large vision-language mod-
els (LVLMs): three general-purpose LVLMs (Gemini-
1.5-Flash (Team, 2024), GPT4o-Mini (OpenAI, 2024),
and GPT4o (OpenAI, 2024)) and three medical LVLMs
(MiniGPT4-Med (Alkhaldi et al., 2024), LLava-Med (Li
et al., 2024), and Med-Flamingo (Moor et al., 2023)). All
settings and hyperparameters are configured according to
the specifications of the released versions. We provide more
model details and all clinical prompts in the appendix.

Evaluation Metrics. We design task-specific evaluation
metrics in HIE-Reasoning to comprehensively assess model
performance as summarized in Table 2. For Lesion Grading
task, we use accuracy and Mean Absolute Error (MAE) to
assess models’ prediction performance of severity levels
and lesion percentages, respectively. The F1 Score is ap-
plied to measure the classification and retrieval quality of
model-predicted lesion regions compared to ground truth
in tasks such as Lesion Anatomy Identification and Lesion
in Rare Locations. To evaluate predictions for MRI Injury
Scores, we use accuracy, while for the two-year Outcome
task, we utilize the average inter-class accuracy (defined as
the mean accuracy across all output categories) to address
imbalanced and biased ground truth label distribution. Fi-
nally, the ROUGE-L Score (Lin, 2004), capturing content
overlap and fluency by comparing generated answers to ex-
pert references, commonly in medical summarization tasks
with LLM (Tang et al., 2023), is employed to measure the
quality of the MRI interpretation summary task.

5.2. Result Analysis
Performance of Different Baseline LVLMs. As shown in
Table 2, when original MRI image slices and task descrip-
tions are directly input into the LVLMs, their performance
is either comparable to or worse than random guessing. This
indicates a lack of sufficient clinical knowledge to provide
accurate answers. Med-Flamingo fails to address hallucina-
tion issues in the tasks Lesion Anatomy and Lesion in Rare
Locations, generating repetitive and meaningless responses;
consequently, its performance is not reported for these tasks.
Additionally, GPT-4o and GPT-4o-mini fail to answer cer-
tain questions due to their conservative alignment, which
rejects responses to questions with high uncertainty. For a
comprehensive evaluation, we aggregate their performance
metrics as GPT4o-Series. These results highlight the fact
that, despite being state-of-the-art models, these LVLMs do
not inherently acquire or retain professional-level medical
knowledge during training. This reinforces the importance
of our proposed HIE-Reasoning for evaluating LVLMs’ ca-
pabilities in professional-level medical reasoning.

Effectiveness of CGoT. We also compare our CGoT with
the corresponding baselines in Table 2. The results demon-
strate that CGoT significantly outperforms the baselines, par-
ticularly in predicting the critical two-year outcome, which
is the primary task of HIE-Reasoning and supports medi-
cal experts in HIE prognosis. In addition to the two-year
outcome, we observe a substantial performance gap be-
tween CGoT and the naive direct-output baselines across
tasks such as Lesion Grading, Lesion Anatomy, and MRI
Injury Score. This underscores the value of incorporating
additional clinical knowledge into LVLMs. Overall, these
findings highlight the effectiveness of CGoT in mimicking
the diagnostic and clinical decision making process, thereby
enhancing professional medical reasoning.
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Table 2. Performance comparison of various models on HIE-Reasoning benchmark. Performance comparison on HIE-Reasoning
benchmark reveals that directly feeding the MRI images and task descriptions into LVLMs yields poor performance. In contrast, our
CGoT demonstrates enhanced reasoning capabilities, significantly aiding medical decision-making.

Model
Lesion

Grading
Lesion

Anatomy
Lesion in

Rare Locations
MRI Injury

Score
Neurocognitive

Outcome
Interpretation

Summary
Acc (↑) MAE (↓) F1 Score (↑) F1 Score (↑) Acc (↑) Inter Class Acc (↑) ROUGE-L (↑)

GPT4o-Series 33.83% 0.1085 14.81% 11.47% 30.08% 52.16% 37.03%
Gemini-1.5-Flash 24.81% 0.1977 30.17% 22.53% 30.83% 56.60% 41.47%

MiniGPT4-Med-7B 12.03% 0.3785 8.00% 4.62% 34.59% 53.95% 41.09%
LLava-Med-7B 30.83% 0.1468 24.28% 22.52% 11.28% 49.50% 42.05%

Med-Flamingo-7B 18.05% 0.4651 – – 21.05% 50.00% 36.90%

CGoT-GPT4o-Series 56.25% 0.0715 34.25% 33.04% 51.13% 61.11% 44.14%
CGoT-Gemini-1.5-Flash 62.41% 0.0703 43.57% 41.47% 49.62% 71.73% 53.68%

CGoT : 2.

CGoT : The affected regions include Right Basal Ganglia, 
Left thalamus, Right thalamus, …

CGoT : The MRI shows that 24.56% of the brain volume injured.

CGoT : Limbic Cingulate GM Left, Limbic Cingulate GM 
Right,… are not typical for common HIE injury regions.

Patient 010

CGoT: 1 (Adverse).

Q: What are HIE lesion percentage in this MRI?

Q: What brain regions are affected by HIE in this MRI?

Q: Are there regions that are uncommonly injured in HIE?

Q: What is the severity level of the HIE lesions?

CGoT : Level 3 (5%-50%).

Q: What is the MRI injury score of this MRI?

Q: What is the predicted neurocognitive outcome for this patient at 2 years?

GT : The MRI shows a 22.06% of the brain volume injured.

GT : Level 3 (5%-50%).

GT : The affected regions include Right Basal Ganglia, 
Left thalamus, Right thalamus, …

GT : Limbic Cingulate GM Left, Limbic Cingulate GM 
Right,… are not typical for common HIE injury regions.

GT : 2.

GT: 1 (Adverse).

ADC

Expert Annotations of HIE Lesions

The MRI shows that 24.56% of the brain volume is injured. The affected regions include the left 
basal ganglia, right basal ganglia, left thalamus, right thalamus, …. Additionally, HIE lesion 
regions that are not typical for HIE injury include the left and right limbic cingulate gray 
matter,…. The MRI injury score for this scan is 2.

MRI Interpretation Summary by CGoT
The MRI shows that 22.06% of the brain volume is injured. The affected regions include the left 
basal ganglia, right basal ganglia, left thalamus, right thalamus, …. Additionally, HIE lesion 
regions that are not typical for HIE injury include the left and right limbic cingulate gray 
matter,…. The MRI injury score for this scan is 2.

MRI Interpretation Summary from GroundTruth 

Figure 4. Typical qualitative result of CGoT. CGoT can generate clinically relevant intermediate outputs at each diagnostic step, such
as lesion regions and MRI injury scores, which directly inform the final two-year neurocognitive outcome prediction and provide key
biomarkers in natural language format.

Table 3. Ablation of Clinical knowledge and graph of thought. It
shows that models incorporating both clinical knowledge and graph
of reasoning can improve prediction accuracy.

Clinical
Knowledge

Graph
of Thoughts

Neurocognitive
Outcome Prediction

✓ ✓ 71.73%
✓ × 52.43% (↓ 19.30%)
× ✓ 51.89% (↓ 19.84%)
× × 54.44% (↓ 17.29%)

Qualitative Result of CGoT. The graph-of-thoughts rea-
soning approach in CGoT offers greater transparency and
provides interpretable intermediate steps leading to the fi-
nal two-year outcome prediction. A qualitative example
is shown in Fig. 4. CGoT can progressively generate clin-
ically relevant information at each step of the diagnostic
process (e.g., “the affected regions include the right basal
ganglia and left thalamus” and “MRI injury score is 2” in
Fig. 4). These intermediate outputs are directly relevant to
the clinical question (e.g., What is the two-year neurocogni-
tive outcome for this patient?) and provide key biomarkers

in natural language.

5.3. Ablation Study
In this subsection, we conduct a series of ablation studies
to assess the contribution of each component in CGoT and
address the following research questions: Q1: Does the
inclusion of clinical knowledge in CGoT improve perfor-
mance? Q2: Does the clinical graph of reasoning in CGoT
enhance answer accuracy? Q3: Are all the reasoning tasks
for neurocognitive outcome prediction in CGoT essential
for achieving optimal performance? Q4: Is CGoT robust to
minor inaccuracies in its intermediate clinical tasks?

As shown in Table 3, models without clinical knowledge
as input and without a graph of reasoning perform worse.
The combination of both clinical knowledge and the rea-
soning graph yields the highest prediction accuracy, under-
scoring the importance of a structured, clinically-informed
approach in neurocognitive outcome prediction. The re-
sults also demonstrate that the clinical graph of reasoning in
CGoT significantly improves answer accuracy. The largest
accuracy drop occurs when the reasoning graph is absent,
highlighting its critical role in the model’s reasoning process
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Table 4. Ablation of CGoT with various combinations of reasoning
tasks. The results show that including all tasks, particularly the
MRI Injury Score, is crucial for optimal performance.

Lesion
Grading

Lesion
Anatomy

MRI
Injury Score

Neurocognitive
Outcome Prediction

✓ ✓ ✓ 71.73%
✓ ✓ × 50.94% (↓ 20.79%)
✓ × ✓ 70.12% (↓ 1.61%)
× ✓ ✓ 61.11% (↓ 10.62%)

(answering Q1 and Q2).

As shown in Table 4, the results indicate that including all
reasoning tasks in CGoT is necessary for achieving opti-
mal performance. The model’s accuracy drops significantly
when any task, especially the MRI Injury Score, is excluded.
This was expected, as the MRI Injury Score is a key MRI
biomarker for predicting neurocognitive outcomes at two
years in many clinical trials worldwide, making it a crucial
piece of clinical knowledge for outcome prediction. Further-
more, this suggests that a holistic approach, incorporating
Lesion Grading, Lesion Anatomy, and the MRI Injury Score,
is essential for high-quality neurocognitive predictions. As a
medical AI model, it is clear that each task provides unique
and complementary information, and omitting any one of
these tasks disrupts the comprehensive reasoning process
required for reliable outcome prediction (answering Q3).

Table 5. CGoT robustness to perturbations in intermediate predic-
tions.

Perturbation
Ratio (%)

Neurocognitive
Outcome Prediction (%)

0 71.73
10 67.83
20 66.22
30 62.72

Although CGoT relies on prerequisite reasoning tasks, it
remains robust to minor inaccuracies in these intermedi-
ate steps. As shown in the second row of Table 4 (with-
out MRI Injury Score: 50.94%; with MRI Injury Score:
71.73%), removing the MRI Injury Score from the reason-
ing chain results in a substantial drop in outcome prediction
accuracy, highlighting the critical role of prerequisite tasks
in the model’s performance. As demonstrated in Table 5,
CGoT maintains robustness when faced with small errors
in intermediate clinical reasoning tasks. Specifically, when
±1-level perturbations are applied to the predicted MRI
Injury Score in 10%–30% of test cases, the model exhibits
only a gradual decline in performance. This indicates that
CGoT is resilient to the types of variability and uncertainty
commonly encountered in real-world clinical settings. Such
robustness is essential for ensuring reliable predictions un-

der real conditions, further supporting the practical utility
of our clinically grounded, stepwise reasoning framework
CGoT (answering Q4).

6. Conclusion
We present a novel benchmark and framework for advanc-
ing Medical VQA, focusing on professional-level medical
reasoning for neonatal brain injury. We introduce HIE-
Reasoning, the first benchmark to combine clinical visual
perception with specialized medical knowledge, specifically
for the prediction of neurocognitive outcomes in HIE. We
also evaluate state-of-the-art LVLMs, revealing their limita-
tions in handling complex medical data. To address this gap,
we propose CGoT, a clinical knowledge-guided model that
enhances diagnostic accuracy by mimicking clinical reason-
ing processes. Our experiments demonstrate a significant
performance improvement, underscoring the potential for
further innovation in medical AI for professional reasoning.

Impact Statement
This paper introduces a benchmark for evaluating LVLMs
in professional-level medical reasoning, with a focus on
neonatal Hypoxic-Ischemic Encephalopathy diagnosis and
outcome prediction. The broader impact of this work lies
in its potential to improve AI-driven clinical decision sup-
port, thereby assisting radiologists and neonatologists in
diagnosing and prognosticating neonatal brain injury more
efficiently and effectively. By structuring complex medical
reasoning tasks through clinical knowledge-guided graph-of-
thought prompting, our approach enhances interpretability
and reliability, which are critical for real-world adoption in
healthcare. However, as with any AI-driven medical tool,
ethical considerations, such as potential biases in training
data, the risk of over-reliance on automated predictions,
and the necessity of human oversight, must be carefully
addressed. Future research should focus on model generaliz-
ability across diverse populations, sites and clinical settings
to ensure equitable benefits.
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Petryk, S., Mañas, O., Lin, Z., Mahmoud, A., Jayaraman,
B., et al. An introduction to vision-language modeling.
arXiv preprint arXiv:2405.17247, 2024.

Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C.,
Gur, R. E., Satterthwaite, T. D., Furth, S., Davatzikos, C.,
Initiative, A. N., et al. Muse: Multi-atlas region segmen-
tation utilizing ensembles of registration algorithms and
parameters, and locally optimal atlas selection. Neuroim-
age, 127:186–195, 2016.

Douglas-Escobar, M. and Weiss, M. D. Hypoxic-ischemic
encephalopathy: a review for the clinician. JAMA Pedi-
atrics, 169(4):397–403, 2015.

Edwards, A. D., Brocklehurst, P., Gunn, A. J., Halliday,
H., Juszczak, E., Levene, M., Strohm, B., Thoresen, M.,
Whitelaw, A., and Azzopardi, D. Neurological outcomes
at 18 months of age after moderate hypothermia for peri-
natal hypoxic ischaemic encephalopathy: synthesis and
meta-analysis of trial data. British Medical Journal, 340,
2010.

Graham, E. M., Ruis, K. A., Hartman, A. L., Northington,
F. J., and Fox, H. E. A systematic review of the role of
intrapartum hypoxia-ischemia in the causation of neonatal
encephalopathy. American Journal of Obstetrics and
Gynecology, 199(6):587–595, 2008.

He, S., Bao, R., Li, J., Stout, J., Bjornerud, A., Grant,
P. E., and Ou, Y. Computer-vision benchmark segment-
anything model (sam) in medical images: Accuracy in 12
datasets. arXiv preprint arXiv:2304.09324, 2023.

He, X., Zhang, Y., Mou, L., Xing, E., and Xie, P. Pathvqa:
30000+ questions for medical visual question answering.
arXiv preprint arXiv:2003.10286, 2020.

Hu, Y., Li, T., Lu, Q., Shao, W., He, J., Qiao, Y., and
Luo, P. Omnimedvqa: A new large-scale comprehensive
evaluation benchmark for medical lvlm. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22170–22183, 2024.

Laptook, A. R., Shankaran, S., Tyson, J. E., Munoz, B.,
Bell, E. F., Goldberg, R. N., Parikh, N. A., Ambalavanan,
N., Pedroza, C., Pappas, A., et al. Effect of therapeutic
hypothermia initiated after 6 hours of age on death or
disability among newborns with hypoxic-ischemic en-
cephalopathy: a randomized clinical trial. JAMA, 318
(16):1550–1560, 2017a.

Laptook, A. R., Shankaran, S., Tyson, J. E., Munoz, B.,
Bell, E. F., Goldberg, R. N., Parikh, N. A., Ambalavanan,
N., Pedroza, C., Pappas, A., et al. Effect of therapeutic
hypothermia initiated after 6 hours of age on death or
disability among newborns with hypoxic-ischemic en-
cephalopathy: a randomized clinical trial. JAMA, 318
(16):1550–1560, 2017b.

Lau, J. J., Gayen, S., Ben Abacha, A., and Demner-
Fushman, D. A dataset of clinically generated visual
questions and answers about radiology images. Scientific
data, 5(1):1–10, 2018.

Lee, A. C., Kozuki, N., Blencowe, H., Vos, T., Bahalim, A.,
Darmstadt, G. L., Niermeyer, S., Ellis, M., Robertson,
N. J., Cousens, S., et al. Intrapartum-related neonatal
encephalopathy incidence and impairment at regional and
global levels for 2010 with trends from 1990. Pediatric
Research, 74(1):50–72, 2013.

Li, C., Wong, C., Zhang, S., Usuyama, N., Liu, H., Yang, J.,
Naumann, T., Poon, H., and Gao, J. Llava-med: Training
a large language-and-vision assistant for biomedicine in
one day. Advances in Neural Information Processing
Systems, 36, 2024.

Liauw, L., van Wezel-Meijler, G., Veen, S., Van Buchem,
M., and van der Grond, J. Do apparent diffusion coef-
ficient measurements predict outcome in children with

10



Visual and Domain Knowledge for Professional-level Graph-of-Thought Medical Reasoning

neonatal hypoxic-ischemic encephalopathy? American
Journal of Neuroradiology, 30(2):264–270, 2009.

Lin, C.-Y. Rouge: A package for automatic evaluation of
summaries. In Annual Meeting of the Association for
Computational Linguistics, 2004. URL https://api.
semanticscholar.org/CorpusID:964287.

Liu, B., Zhan, L.-M., Xu, L., Ma, L., Yang, Y., and Wu, X.-
M. Slake: A semantically-labeled knowledge-enhanced
dataset for medical visual question answering. In 2021
IEEE 18th International Symposium on Biomedical Imag-
ing (ISBI), pp. 1650–1654. IEEE, 2021.

Moor, M., Huang, Q., Wu, S., Yasunaga, M., Dalmia, Y.,
Leskovec, J., Zakka, C., Reis, E. P., and Rajpurkar, P.
Med-flamingo: a multimodal medical few-shot learner.
In Machine Learning for Health (ML4H), pp. 353–367.
PMLR, 2023.

Morton, S. U., Vyas, R., Gagoski, B., Vu, C., Litt, J., Larsen,
R. J., Kuchan, M. J., Lasekan, J. B., Sutton, B. P., Grant,
P. E., et al. Maternal dietary intake of omega-3 fatty
acids correlates positively with regional brain volumes
in 1-month-old term infants. Cerebral Cortex, 30(4):
2057–2069, 2020.

Murphy, K., van der Aa, N. E., Negro, S., Groenendaal, F.,
de Vries, L. S., Viergever, M. A., Boylan, G. B., Benders,
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Appendix

In this appendix, we back up our claims by supplementing the main paper with details and examples. We provide our dataset
structure in Section A, visual knowledge details in Section B, Clinical Graph of Thought Model (CGoT) details in Section C,
model details in Section D and more ablation studies in Section E, respectively.

A. HIE-Reasoning Benchmark Structure
A.1. Benchmark Data Structure

Data

MGHNICU_001_QA.json

Meta 
Knowledge

MGHNICU_001_ADC_ss.nii.gz

MGHNICU_001_MRI_interpretation.json

Individual 
Knowledge

MGHNICU_001_LesionProb.nii.gz

MGHNICU_001_ROI.nii.gz

MGHNICU_001

Task 1.json, Task 2. json, Task 3. json, 
Task 4.json, Task 5. json, Task 6.json

MGHNICU_001H
IE
-R
e
a
s
o
n
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g

Figure 5. HIE-Reasoning dataset structure. The HIE-Reasoning dataset is organized into three components: Data, Meta Knowledge, and
Individual Knowledge.

This work was approved by Institutional Review Boards (IRBs) at Boston Children’s Hospital and IRB at Massachusetts
General Hospital. Figure 5 illustrates the hierarchical data structure for the HIE-Reasoning framework, which is designed
to integrate multimodal data and domain-specific reasoning for Hypoxic-Ischemic Encephalopathy (HIE) research. The
structure is organized into three primary components: Data, Meta Knowledge, and Individual Knowledge. Alongside the
Data components, the meta knowledge and individual knowledge in this dataset provide expert knowledge to complement
this dataset, facilitating further research and fostering advancements in this domain.

The Data component comprises patient-level files, such as MGHNICU 001, which encapsulate core data assets, includ-
ing raw MRI files (e.g., MGHNICU 001 ADC ss.nii.gz for apparent diffusion coefficient maps) and task-specific
reasoning files. These include our proposed Question-Answering pairs (e.g., MGHNICU 001 QA.json) and MRI
interpretation (MGHNICU 001 MRI interpretation.json). The Meta Knowledge component contains task-
specific meta knowledge files (Task1.json through Task6.json, as shown in Table 7), enabling structured rea-
soning processes for all six tasks. Lastly, the Individual Knowledge component includes patient-specific files like
MGHNICU 001 LesionProb.nii .gz for probabilistic lesion mapping and MGHNICU 001 ROI.nii.gz for brain
anatomy labeling. This structured data organization supports comprehensive reasoning workflows, bridging raw data,
domain-specific meta knowledge, and task-driven insights to enable automated analysis in HIE MRI interpretation and
outcome prediction tasks.

A.2. Benchmark Distribution

Figure 6 illustrates the label distributions for three key aspects: lesion grading, MRI injury scores, and neurocognitive
outcomes. Table 6 provides a detailed breakdown of six critical reasoning tasks (e.g., lesion grading, anatomical assessment,
and rare location identification) in the HIE-Reasoning benchmark. This benchmark emphasizes a comprehensive evaluation
of lesion severity, anatomical analysis, injury scoring, and neurocognitive outcome prediction, advancing automated
reasoning for clinical HIE diagnosis and prognosis.
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Lesion Grading Distribution MRI Injury Score Distribution Outcome Distribution

Figure 6. Distribution of benchmark labels.

Table 6. The HIE-Reasoning benchmark includes six critical reasoning tasks related to neonatal HIE in MRI analysis. It consists of six
question-answer (QA) pairs focusing on specific reasoning aspects.

Tasks QA Pairs

Q1: Lesion Grading 133
Q2: Lesion Anatomy 133
Q3: Lesion in Rare Locations 133
Q5: MRI Injury Score 133
Q5: Neurocognitive Outcome Prediction 84
Q6: Interpretation Summary 133

Total MRI: 133 749

B. Visual Knowledge
B.1. Raw MRI: ADC

In the clinical flow of HIE, apparent diffusion coefficient (ADC) maps are pivotal imaging modalities, supplemented by
structural MRIs, for detecting HIE-related abnormalities (Douglas-Escobar & Weiss, 2015; Wei et al., 2019; Liauw et al.,
2009). Neuroradiologists rely on ADC maps to identify acute brain injuries associated with HIE by locating regions with
abnormally low ADC values. These low values indicate restricted water diffusion, a hallmark of ischemic necrosis caused
by hypoxic-ischemic insult within the first week after birth (Weiss et al., 2019). In alignment with these clinical insights,
HIE-Reasoning includes patient-specific ADC maps as part of the MRI data, as illustrated in Figure 7 (A).

B.2. Derived Lesion Probability

Distinguishing abnormally low ADC values from normal regional variations remains challenging, even for experienced
neuroradiologists, as normal ADC values vary across brain regions (Ou et al., 2017; Sotardi et al., 2021). To address
this issue, (Bao et al., 2025b) introduced ZADC maps, which normalize ADC values by quantifying how many standard
deviations a patient’s ADC value at a given voxel deviates from the mean normal ADC value at that anatomical location(Pinto
et al., 2018). These ZADC maps, residing in the patient’s raw ADC image space, enable consistent comparisons across brain
regions.

As highlighted by (Bao et al., 2025b), ZADC values are effective for segmenting HIE-related lesions, with thresholding-based
segmentation achieving a Dice score comparable to machine learning algorithms (Murphy et al., 2017). Applying a threshold
of −2, the most straightforward value for ZADC maps, yielded the highest Dice score (0.54± 0.28). Accordingly, we used
this threshold to generate lesion prediction masks for each patient, as shown in Figure 7 (B) (ZADC) and Figure 7 (C)
(lesion mask from thresholded ZADC , and lesions are colored by red).
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A. Raw MRI: ADC

B. ZADC

C. ZADC Computed Lesion Map

D. Brain Anatomy

Figure 7. Example of visual knowledge from patient 10. (A) Raw ADC maps from MRI, representing apparent diffusion coefficient values
used to identify hypoxic-ischemic injury. (B) ZADC maps, which normalize ADC values to quantify deviations from regional means in
healthy neonatal ADCs, highlighting abnormalities. (C) Lesion prediction map generated by applying a threshold of -2 to the ZADC

map, with lesions visualized in red. (D) Patient-specific brain anatomy map, showcasing ROIs mapped from standard brain anatomical
space to individual patient space. Different colors represent different brain ROI. Together, these visual knowledge facilitate tasks in
HIE-Reasoning.

B.3. Brain Anatomy

The brain is divided into 62 regions of interest (ROIs) based on standard anatomical references (Doshi et al., 2016; Morton
et al., 2020), which are crucial for accurate interpretation of patient-specific MRI interpretation. Figure 7 (D) illustrates the
brain ROIs mapped into patient space, generated by transforming the standard brain anatomy ROIs into the patient-specific
space using the DRAMMS tool (Ou et al., 2011). Figure 8 illustrates the predefined 62 ROIs of standard brain structure
space used in clinical practice. Although the generated ROIs may not achieve 100% accuracy, they represent the most
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reliable brain anatomy that can be produced with maximal information and minimal effort.

Figure 8. Brain Anatomy. Standard brain structure map is divided into 62 regions of interest (ROIs) based on predefined anatomical
references. Each ROI is assigned a unique label and color for visualization, encompassing major anatomical areas such as gray matter
(GM), white matter (WM), ventricles, and basal ganglia. These ROIs provide a detailed knowledge for region-specific analysis and lesion
localization in HIE-Reasoning tasks.

C. CGoT Knowledge Details
In this section, we provide a detailed explanation of how professional-level clinical knowledge is used to guide the model in
correctly addressing each node task, ultimately forming the CGoT pipeline.

Table 7. Clinical knowledge proposed in CGoT for HIE-Reasoning tasks is summarized in the table. Meta Knowledge encompasses
essential clinical knowledge for HIE clinical reasoning, while Individual Knowledge refers to clinical knowledge tailored to each individual
patient for each task.

Task Meta Knowledge Individual Knowledge

Lesion Grading Lesion definition Lesion detectionLesion grading levels

Lesion Anatomy Brain ROI regions Lesion detection
Lesion anatomy

Lesion in Rare Location HIE commonly affected regions Lesion anatomy

MRI Injury Score Definition of MRI injury score Lesion grading
Lesion anatomy

Neurocognitive Outcome
Relationship between

MRI biomarkers and outcome

Lesion grading
Lesion anatomy
MRI injury score

MRI Interpretation MRI interpretation template

Lesion grading
Lesion anatomy
Lesion in rare locations
MRI injury score
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Table 7 summarizes the various types of clinical knowledge utilized across the proposed in CGoT in HIE-Reasoning tasks.
These include lesion definitions, lesion grading levels, lesion detection, brain ROI regions, and lesion anatomy (as illustrated
in the previous section). In the following sections, we further illustrate the brain regions commonly affected by HIE, the
definition of the MRI injury score, and the relationship between MRI biomarkers and neurocognitive outcomes.

C.1. HIE Commonly Affected Brain Regions

HIE commonly affected brain regions

Left Basal Ganglia, Right Basal Ganglia
Left Thalamus, Right thalamus

Brainstem, Vermis, Corpus Callosum
Frontal WM Left, Frontal WM Right

Parietal WM Left, Parietal WM Right,
Temporal WM Left, Temporal WM Right

Anterior Limb IC Left,  Anterior Limb IC Right
PLIC Left, PLIC Right

Parietal Lateral GM Left, Parietal Lateral GM Right
Parietal Medial GM Left, Parietal Medial GM Right

Figure 9. The left panel displays the lesion frequency atlas for HIE, illustrating the statistical distribution of lesions across brain regions
based on cohort data. Higher frequencies are represented by warmer colors (yellow to red), indicating areas most commonly affected by
HIE-related brain injury. The right panel lists the high-probability brain regions associated with HIE, including basal ganglia, thalamus,
brainstem, corpus callosum, anterior limb of the internal capsule (IC), and etc. These regions were identified based on clinical thresholds
and expert validation.

To address Task 4, which focuses on lesions in rare locations, it is essential to first identify the regions commonly affected
by HIE. According to the study (Bao et al., 2025b), the lesion atlas provided by (Bao et al., 2025b) (left panel) visualizes
the distribution of HIE lesions. Based on recommendations from a neonatal radiologist, a threshold of 22.5% was applied
to identify high-probability regions of HIE lesions. The resulting list of regions (right panel) was further validated by a
national radiologist, confirming these areas as high-probability brain injury regions associated with HIE.

C.2. MRI Injury Score

Score MRI Finding

0 No injury detected

1A Minimal cerebral injury without BGT, ALIC, PLIC or WS injury

1B More extensive cerebral injury without BGT, APLC, PLIC, or WS injury

2A Any BGT, ALIC, PLIC, or WS injury without other cerebral injury

2B Any BGT, ALIC, PLIC or WS injury with other cerebral injury

3 Cerebral hemisphere devastation

A. Key Regions in the NICHD-NRN scoring criteria B. NRN MRI scoring criteria

ALIC (Anterior Limb of the 
Internal Capsule)

PLIC (Posterior Limb of 
the Internal Capsule)

Basal Ganglia

Thalamus
BGT

Figure 10. NRN MRI biomarker system. (A) Key regions in the NICHD-NRN scoring criteria, highlighting the basal ganglia, thalamus
(BGT), anterior limb of the internal capsule (ALIC), and posterior limb of the internal capsule (PLIC) as critical areas for assessing
HIE-related brain injury. (B) The NRN MRI scoring criteria used for severity grading, ranging from 0 (no injury detected) to 3 (cerebral
hemisphere devastation). Intermediate scores (1A, 1B, 2A, 2B) describe varying levels of cerebral and subcortical injuries involving BGT,
ALIC, PLIC, or watershed (WS) regions, with increasing severity correlating with adverse neurocognitive outcomes.

To address Task 5 of predicting neurocognitive outcomes, it is crucial to incorporate MRI biomarkers from clinical
trials for HIE. The Neonatal Research Network (NRN) score, developed by the National Institute of Child Health and
Human Development (NICHD), is the most widely used method in clinical trials to assess the severity of brain injury and
predict 2-year neurocognitive outcomes in infants with HIE (Shankaran et al., 2015; 2012). This scoring system relies on
neuroradiological experts evaluating the severity of brain injuries based on neonatal brain MRI. As shown in Figure 10, the
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NRN MRI score is based on the anatomic locations and extent of HIE lesions visualized on brain MRIs. The score ranges
across six levels (0, 1a, 1b, 2a, 2b, and 3), where 0 represents the absence of HIE injury, and 3 indicates the most extensive
injury within the brain. In our task, we simplify the scoring by grouping 1a and 1b into a single score of 1 and 2a and 2b
into a single score of 2, as recommended by neonatal radiologists. This adjustment accounts for the ambiguity and lack of
distinct quantitative boundaries between these subcategories and relies on clinical expert judgment.

C.3. MRI Biomarkers for Neurocognitive Outcome

Predicting 2-year neurocognitive outcomes in HIE remains a significant clinical challenge (Bao & Ou, 2024; Weiss et al.,
2019; Bao et al., 2025b; Laptook et al., 2017a; Shankaran et al., 2017a). Medical experts continue to explore more accurate
MRI biomarkers to improve outcome prediction (Shankaran et al., 2005; Edwards et al., 2010; Azzopardi et al., 2009;
Laptook et al., 2017a; Shankaran et al., 2017a). Current clinical consensus indicates that the higher the MRI injury score,
the more severe the brain injury, with the MRI injury score serving as a biomarker strongly associated with adverse 2-year
neurocognitive outcomes. A score of 3 is nearly 100% predictive of adverse outcomes. Additionally, injuries to critical
regions such as the vermis, cerebellum, brainstem, and hippocampus are linked to adverse neurocognitive outcomes. Patients
with lower MRI injury scores or fewer lesion regions are likely to have normal neurocognitive outcomes after 2 years. In
this context, the answers provided by Task 1 (lesion grading), Task 2 (lesion anatomy), and Task 4 (MRI injury score) align
closely with the consensus knowledge and deliver essential information to aid in neurocognitive outcome prediction.

C.4. Knowledge Prompts

Knowledge Example for Task 1. Lesion Grading

Meta Knowledge:
[Input Description] Suppose you are an expert in detecting Neonatal Brain Injury for Hypoxic Ischemic
Encephalopathy, and you are allowed to use any necessary information on the Internet to answer questions.
I will give you a set of MRI scanning slices of neonatal brains, these slices are marked with corresponding
slice labels, like “Slice 10” and “Slice 11”. The label means the slice depth of this slice, for example, “Slice
11” is in the middle layer between “Slice 10” and “Slice 12”.
[Lesion Definition] I will give you a pair of images (actually two images) marked with the same “Slice xx”
label. The one with the title “Slice x” is the original ADC value of MRI scanning, while the one with the
title “ZADC Slice x” is the ZADC value visualization of the gray-scale scan processed by a lesion detection
algorithm, where the highly possible abnormal (lesion) region pixel is marked with red (indicating their ZADC
values are less than -2). If there is no red pixel, there should be no lesion in this MRI. You should make
comprehensive judgments based on both your domain knowledge and the ZADC visualization.
[Lesion Grading Levels] The lesion percentage is defined as the area with ZADC value less than -2 divided
by the area with ADC value greater than 0. This will help you better answer the following questions. You
need to judge the lesion level of the brain MRI slices by the following rules:
If the lesion region percentage ≤ 0.01, answer with "level1, <lesion region percentage>",
If 0.01 ≤ lesion region percentage ≤ 0.05, answer with "level2, <lesion region percentage>",
If 0.05 < lesion region percentage ≤ 0.5, answer with "level3, <lesion region percentage>",
If 0.5 < lesion region percentage ≤ 1.0, answer with "level4, <lesion region percentage>".
The output format should be like "level4, 0.7344".

Individual Knowledge:
[Visual Input] Refer to Figure 7 (A) and (C).

Question & Answer:
[Multiple Choices] What is the severity level of the HIE lesions?
[Open Ending] What is HIE lesion percentage in this MRI?
[Task 1 Answer] level 3, 0.2206.
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Knowledge Example for Task 2. Lesion Anatomy

Meta Knowledge:
[Input Description] Suppose you are an expert in detecting Neonatal Brain Injury for Hypoxic Ischemic
Encephalopathy, and you are allowed to use any necessary information on the Internet to answer questions.
I will now provide you with a series of MRI scanning slices and some pre-processed slices as visual input.
The titles of these images include slice sequence labels, such as“Slice 10” and “Slice 11”. These labels indi-
cate the depth of the slice; for example, “Slice 11” represents the layer between “Slice 10” and “Slice 12”.
These images can be grouped into sets of three based on the same slice label. For instance, the images titled
“Slice 10”, “ZADC Slice 10”, and “ROI Slice 10” form one group, indicating that they all correspond to the
same scanning depth. These three images, based on their titles, represent the following:
“Slice 10”: This is the original MRI scanning ADC value at depth 10, visualized in grayscale.
“ZADC Slice 10”: This is the gray-scale visualization of the ZADC values processed by a lesion detection
algorithm. In this image, pixels with a high probability of being abnormal (lesions) are marked in red, indi-
cating that their ZADC values are less than -2. If no red pixels are present, it suggests that this MRI scan
contains no lesions. It is also possible that the individual has no lesions but has a few areas marked in red.
“ROI Slice 10”: This represents different ROI areas of the brain appearing at this scanning depth, with each
area highlighted in a different color. The color-to-ROI mapping is provided in the legend on the right side of
the image. Note that the ROI regions appearing in slices of different depths are not exactly the same, as only
the ROI regions present at a particular depth are displayed. However, for the same cross-slice ROI region, the
color used remains consistent across slices.
[Brain ROI List] ID and Region Name Relationship:
95 corpus callosum, 62 Right Ventral DC, 61 Left Ventral DC, 71 vermis, 39 Right cerebellum,
38 Left cerebellum, 30 Right Basal Ganglia, 23 Left Basal Ganglia, 60 Right thalamus, 59 Left thalamus,
92 Anterior limb IC right, 91 Anterior limb IC left, 94 PLIC right, 93 PLIC left, 32 Right amygdala,
48 Right hippocampus, 31 Left amygdala, 47 Left hippocampus, 105 Right Inferior GM, 104 Left Inferior
GM,
103 Right insula, 102 Left insula, 121 Frontal Lateral GM Right, 120 Frontal Lateral GM Left,
125 Frontal Medial GM Right, 124 Frontal Medial GM Left, 113 Frontal Opercular GM Right,
112 Frontal Opercular GM Left, 82 Frontal WM Right, 81 Frontal WM Left, 101 Limbic Cingulate GM
Right,
100 Limbic Cingulate GM Left, 117 Limbic Medial Temporal GM Right, 116 Limbic Medial Temporal GM
Left, 161 Occipital Inferior GM Right, 160 Occipital Inferior GM Left, 129 Occipital Lateral GM Right,
128 Occipital Lateral GM Left, 109 Occipital Medial GM Right, 108 Occipital Medial GM Left,
84 Occipital WM Right, 83 Occipital WM Left, 107 Parietal Lateral GM Right, 106 Parietal Lateral GM Left,
149 Parietal Medial GM Right, 148 Parietal Medial GM Left, 86 Parietal WM right, 85 Parietal WM left,
123 Temporal Inferior GM Right, 122 Temporal Inferior GM left, 133 Temporal Lateral GM Right,
132 Temporal Lateral GM Left, 181 Temporal Supratemporal GM Right, 180 Temporal Supratemporal GM
left, 88 Temporal wm right, 87 Temporal wm left, 4 3rd ventricle, 11 4th ventricle, 50 Right ventricle,
49 Left ventricle, 35 Brainstem, 46 CSF.
You need to choose the names of the ROIs from the above 62 ROI list that contain lesions in this case
and output them along with their IDs in the format like: 4 3rd ventricle, 123 Temporal Inferior GM Right,
84 Occipital WM Right, 116 Limbic Medial Temporal GM Left.

Individual Knowledge:
[Visual Input] Refer to Figure 7 (A), (C) and (D).

Question & Answer:
[Question] What brain regions are affected by HIE in this MRI?
[Task 2 Answer] The affected regions include Right Basal Ganglia, Left thalamus, Right thalamus, . . .
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Knowledge Example for Task 3. Lesion in rare Locations

Meta Knowledge:
[HIE Common Injured Regions] Refer to Figure 9.

Individual Knowledge:
[Task 2 Answer] Your previous answer for the lesion anatomy task is Right Basal Ganglia, Left thalamus,
Right thalamus, ...

Question & Answer:
[Open Question] Are there regions that are uncommonly injured in HIE?
[Task 3 Answer] Limbic Cingulate GM Left, Limbic Cingulate GM Right,. . . are not typical for common
HIE injury regions.

Knowledge Example for Task 4. MRI Injury Score

Meta Knowledge:
[Input Description] Refer to [Input Description] in knowledge for Task 2.
[Lesion Definition] Refer to [Lesion Definition] in knowledge for Task 1.
[Lesion Grading Levels] Refer to [Lesion Grading Levels] in knowledge for Task 1.
[Brain ROI List] Refer to [Brain ROI List] in knowledge for Task 2.
[Definition of MRI Injury Score] We have introduced a new diagnostic metric called MRI Injury Score. This
metric consists of four levels: Score 0, Score 1, Score 2, and Score 3. Each score level is determined by the
injury regions within the ROIs in a given case and the severity of the injury in certain regions.

Score 0: Defined as no injury detected in this case.
Score 1: Defined as either the following a) or b) situation occurs:

a). Minimal cerebral injury without BGT region, ALIC region PLIC region, or detected
WS (watershed) injury.
b). More extensive cerebral injury without BGT region, ALIC region PLIC region, or
detected WS (watershed) injury.
NOTE: BGT region (including left BGT and right BGT), ALIC region (including
left ALIC and right ALIC), PLIC region (including left PLIC and right PLIC).

Score 2: Defined as either the following a) or b) situation occurs:
a). Any BGT region, ALIC region, PLIC region, or WS injury detected without other
cerebral injury.
b). Any BGT region, ALIC region, PLIC region, or WS injury detected with other cerebral
injury.
NOTE: BGT region (including left BGT and right BGT), ALIC region (including
left ALIC and right ALIC), PLIC region (including left PLIC and right PLIC).

Score 3: Defined as cerebral hemisphere devastation.

Individual Knowledge:
[Visual Input] Refer to Figure 7 (A), (C) and (D).
[Task 1 Answer] Your previous answer for the lesion grading task is level 3, 0.2206.
[Task 2 Answer] Your previous answer for the lesion anatomy task is Right Basal Ganglia, Left thalamus,
Right thalamus, ...

Question & Answer:
[Question] What is the MRI injury score of this MRI?
[Task 4 Answer] Score 2.
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Knowledge Example for Task 5. Neurocognitive Outcome

Meta Knowledge:
[Input Description] Refer to [Input Description] in knowledge for Task 2.
[Lesion Definition] Refer to [Lesion Definition] in knowledge for Task 1.
[Lesion Grading Levels] Refer to [Lesion Grading Levels] in knowledge for Task 1.
[Brain ROI List] Refer to [Brain ROI List] in knowledge for Task 2.
[Definition of MRI Injury Score] Refer to [Definition of MRI Injury Score] in knowledge for Task 4.
[Relationship between MRI Injury Biomarkers and Outcome] The higher the MRI injury score, the more
severe the brain injury. The MRI injury score is a biomarker strongly associated with adverse HIE 2-year
neurocognitive outcomes. If the score is 3, then towards 100% adverse outcome. Injuries to the vermis, cere-
bellum, brainstem, and hippocampus are also related to adverse neurocognitive outcomes. If an individual is
a current patient, it doesn’t necessarily mean he/she will still be a patient in 2 years. Patients with lower MRI
injury scores, or fewer lesion regions are likely to become normal in 2 years.

Individual Knowledge:
[Visual Input] Refer to Figure 7 (A), (C) and (D).
[Task 1 Answer] Your previous answer for the lesion grading task is level 3, 0.2206.
[Task 2 Answer] Your previous answer for the lesion anatomy task is Right Basal Ganglia, Left thalamus,
Right thalamus, ...
[Task 4 Answer] Your previous answer for the MRI injury score task is Score 2.

Question & Answer:
[Question] What is the predicted neurocognitive outcome for this patient at 2 years?
[Task 5 Answer] 1 (Adverse).

Knowledge Example for Task 6. MRI Interpretation

Meta Knowledge:
[MRI Interpretation Template]
The MRI shows <Task 1 Answer> of the brain volume injured.
The affected regions include <Task 2 Answer>.
For uncommon areas, <Task 3 Answer> are not typical for common HIE injury regions.
The MRI injury score for this MRI is <Task 4 Answer>.

Individual Knowledge:
[Task 1 Answer] 22.06%
[Task 2 Answer] Right Basal Ganglia, Left thalamus, Right thalamus, ...
[Task 3 Answer] Limbic Cingulate GM Left, Limbic Cingulate GM Right, ...
[Task 4 Answer] Score 2

Caption:
The MRI shows 22.06% of the brain volume injured.
The affected regions include Right Basal Ganglia, Left thalamus, Right thalamus, ....
For uncommon areas, Limbic Cingulate GM Left, Limbic Cingulate GM Right, ... are not typical for common
HIE injury regions.
The MRI injury score for this MRI is Score 2.

21



Visual and Domain Knowledge for Professional-level Graph-of-Thought Medical Reasoning

D. Model Details
In this section, we provide additional details about the baselines used in the experimental section. The baselines are directly
accessed using public APIs or implemented using publicly available source code.

D.1. General-Purpose LVLMs

As detailed in Section C, for the three general-purpose LVLMs, we arranged selected MRI slices into a sequence as visual
input, paired with specifically designed prompts, and integrated input from previous steps where applicable to form the input
context for the proposed CGoT pipeline. The Gemini-1.5-Flash (Team, 2024) responded effectively to our prompts, whereas
GPT4o-Mini (OpenAI, 2024) and GPT4o (OpenAI, 2024) declined to answer certain questions with high uncertainty.
GPT4o faild to respond to all five tasks introduced in Figure 2 of the main paper when directly feeding the MRI images
and task descriptions. Consequently, we used the quantitative results from GPT4o-Mini to represent the performance of
GPT4o-Series models on these tasks. Similarly, after adapting the GPT4o model into CGoT-GPT4o, it still refused to answer
lesion grading, lesion anatomy, and lesion-in-rare-locations tasks, but it successfully addressed the MRI injury score and
Neurocognitive Outcome tasks based on the answers of previous tasks generated by CGoT-GPT4o-Mini. Thus, we reported
CGoT-GPT4o-Mini’s evaluation results for the first three tasks and CGoT-GPT4o’s performance for the remaining tasks.
This fusion approach provided a comprehensive and effective evaluation of the capabilities of the CGoT-GPT4o-Series
models.

D.2. Medical-Purpose LVLMs

For the three medical LVLMs—MiniGPT4-Med (Alkhaldi et al., 2024)1, LLava-Med (Li et al., 2024)2, and Med-
Flamingo (Moor et al., 2023)3—we selected implementations directly from the respective papers where these models
were implemented or introduced. To ensure a fair comparison, we used the 7B parameter versions of each model, as this
configuration provides a balanced trade-off between model performance and computational resource requirements. In line
with their instruction-finetuning approach, we combined all selected MRI slices into a single image, annotated with titles
indicating their scanning depth, and paired them with task briefings and evaluation questions. However, as demonstrated
in the results, these models performed only at or even below the random-guess level, with Med-Flamingo even failing to
generate valid outputs for certain tasks.

Since the models are primarily trained on 2D general-purpose or medical images, while brain MRI scanning data inherently
represents a 3D structural format where slices at different depths are interrelated, we propose to unroll 3D volumes into
sequential 2D slices in order, serving as the visual input for the LVLMs. However, for the three mentioned medical LVLMs,
since their fine-tuning or instruction-tuning data mainly consists of single image-text pairs, they fail to provide satisfactory
zero-shot responses when queried about 2D-slice sequence input. Therefore, we arrange the series of slices sequentially
as subplots within a unified image and annotate subplots with corresponding scanning depth information to ensure input
compatibility with these models.

E. More Ablation Studies

Table 8. Ablation study on three types of visual inputs.
Lesion

Grading
Lesion

Anatomy
Lesion in

Rare Locations
MRI Injury

Score
Neurocognitive

Outcome
Interpretation

Summary
Raw ADC ZADC Brain Anatomy Acc (↑) MAE (↓) F1 Score (↑) F1 Score (↑) Acc (↑) Inter Class Acc (↑) ROUGE-L (↑)

✓ ✓ ✓ 62.41% 0.0703 43.57% 41.47% 49.62% 71.73% 53.68%
✓ ✓ 58.64% 0.0849 42.78% 41.22% 47.37% 68.11% 51.07%

✓ ✓ 46.62% 0.1152 26.96% 25.10% 30.83% 60.44% 34.55%
✓ ✓ 62.41% 0.0703 39.90% 37.98% 39.85% 64.05% 47.97%

1Code available at: https://github.com/OpenGVLab/Multi-Modality-Arena
2Code available at: https://github.com/microsoft/LLaVA-Med
3Code available at: https://github.com/snap-stanford/med-flamingo
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Table 9. Ablation study on different thresholds of ZADC .

ZADC

Lesion
Grading

Lesion
Anatomy

Lesion in
Rare Locations

MRI Injury
Score

Neurocognitive
Outcome

Interpretation
Summary

Acc (↑) MAE (↓) F1 Score (↑) F1 Score (↑) Acc (↑) Inter Class Acc (↑) ROUGE-L (↑)

ZADC < –1.8 58.64% 0.0782 43.04% 41.42% 47.14% 68.23% 51.42%
ZADC < –2.2 60.90% 0.0867 42.58% 38.19% 37.59% 70.93% 50.67%
ZADC < –2.0 62.41% 0.0703 43.57% 41.47% 49.62% 71.73% 53.68%

E.1. Effectiveness of visual knowledge

Each visual knowledge type (ADC, ZADC , brain anatomy) has complementary roles. Raw ADC provides signal details,
ZADC identifies abnormal regions, and brain anatomy supply anatomical priors. Removing any component degrades
performance, but removing ZADC has the crucial effect, as it provides the probability of abnormal brain regions—crucial
for MRI injury interpretation.

E.2. Robustness to varying ZADC threshold values

Justification of ZADC thresholding on –2: The threshold of –2 aligns with clinical understanding and prior studies for HIE
abnormal regions probabilities (Weiss et al., 2019; Bao et al., 2025b), indicating ADC values below two standard deviations
from the normal atlas—often interpreted as abnormally reduced diffusion in neonatal HIE ADC maps—and serves as a
marker for potential brain injury regions.

Across ZADC threshold variations, CGoT outperforms baselines, demonstrating robust and effective performance. The drop
at ZADC < –2.2 in MRI injury stems from an overly strict threshold that misses mild injuries. NRN includes mild cases (0
and 1), which are often excluded by this threshold, leading to missed low-grade injuries. ZADC < –2 better captures these
signals, yielding optimal performance.
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