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Abstract

In the modern analysis of time series, one may want to forecast several hundred or thousands
of times series with possible missing entries. We introduce a novel algorithm to address
these issues, referred to as Sliding Mask Method (SMM). SMM is a method based on the
framework of predicting a time window and using completion of nonnegative matrices. This
new procedure combines nonnegative factorization and matrix completion with hidden values
(i.e., a partially observed matrix). From a theoretical point of view, we prove the statistical
guarantees on uniqueness and robustness of the solutions of the completion of partially
observed nonnegative matrices. From a numerical point of view, we present experiments on
real-world and synthetic data-set confirm forecasting accuracy for the novel methodology.

1 Introduction

This article investigates the forecasting of several times series from partial observations. We study times
series for which one can provide a lower bound on the observations. In this case, one can assume that
the times series are entry-wise nonnegative, and one can exploit Nonnegative Matrix Factorization (NMF)
approaches, see for instance Paatero & Tapper (1994) and Lee & Seung (1999). For further details, we
refer the interested reader to the surveys Wang & Zhang (2013); Gillis (2015; 2017) and references therein.
NMF has been widely used in the contexts of document analysis Xu et al. (2003); Essid & Fevotte (2013),
hidden Markov chain Fu et al. (1999), representation learning in image recognition Lee & Seung (1999),
community discovery Wang et al. (2011), and clustering methods Turkmen (2015). This paper introduces
a novel NMF-like procedure for forecasting of several time series. Forecasting for temporal time series has
been previously done before through a mixed linear regression and matrix factorization as in Yu et al. (2016),
matrix completion for one temporal time series as in Gillard & Usevich (2018), and tensor factorization as
in de Araujo et al. (2017); Yokota et al. (2018); Tan et al. (2016).

Our proposed method, the Sliding Mask Method (SMM), inputs the forecast values and it can be viewed as
a nonnegative matrix completion algorithm under low nonnegative rank assumption. This framework raises
two issues. A first question is the uniqueness of the decomposition, also referred to as identifiability of the
model. In Theorem 7, we introduce a new condition that ensures uniqueness from partial observation of
the target matrix M. An other challenge, as pointed by Vavasis (2009) for instance, is that solving exactly
NMF decomposition problem is NP-hard. Nevertheless NMF-type problems can be solved efficiently using
(accelerated) proximal gradient descent method Parikh & Boyd (2013) for block-matrix coordinate descent
in an alternating projection scheme, e.g., Javadi & Montanari (2020a) and references therein. We rely on
these techniques to introduce algorithms inputting the forecast values based on NMF decomposition, see
Section 2.3. Theorem 10 complements the theoretical analysis by proving the robustness of the solutions of
NMF-type algorithms when entries are missing or corrupted by noise.

Notation: Denote by A> the transpose of matrix A. We use Rn×p+ to denote n× p nonnegative matrices.
It would be useful to consider the columns description Ak ∈ Rn1 of matrix A = [A1 · · ·An2 ] and the row
decomposition A(k) ∈ Rn2 of a matrix A using A> = [(A(1))> · · · (A(n1))>] for A ∈ Rn1×n2 . Notation Ai,j
indicates the elements of matrix A; [n] represents the set {1, 2, . . . , n}; 1d is the all-ones vector of size d;
and 1A is the indicator function of A, such that 1A = 0 if condition A is verified, ∞ otherwise.
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1.1 The problem of forecasting several time series

This article considers N ≥ 1 times series on the same temporal period of length T ≥ 1 in a setting where N
and T could be such that N ≥ T and possibly N � T . We would like to forecast the next F ≥ 1
times. Additionally, one may also aim at reduce the ambient dimension N × T while maintaining a good
approximation of these times series. The observed times series can be represented as a matrix M of sizeN×T .
A row M(i) of M represents a time series and a column Mj of M represents timestamp records. We assume
that there exists a target matrix M? with

M = M?
T + E ,

where E is some noise term and M?
T ∈ R

N×T
+ is a block given by

M? :=
[

M?
T︸︷︷︸

past

M?
F︸︷︷︸

future

]
of the target matrix of size N × (T + F ). We decompose the target matrix using the timestamps up to
time T , namely M?

T ∈ R
N×T
+ , and the timestamps of the future time period M?

F ∈ R
N×F
+ to be forecasted.

The statistical task is the following: given the observation M predict the future target values M?
F , and

incidentally a low dimensional representation M?
T .

1.2 The nonnegative analysis and the archetypal analysis

We aim to decompose a nonnegative matrix M ∈ RN×T+ as the product of nonnegative matrix W ∈ RN×K
and matrix H ∈ RK×T by minimizing the Frobenius norm of the difference between the matrix M and the
reconstructed matrix M̂ := WH, as in Cichocki et al. (2009),

min
W≥0,H≥0

‖M−WH‖2F , (NMF)

which is convex in W (with fixed H) and H (with fixed W), but not convex in both varaibles. Another
approach consists in the archetypal analysis:

min
W≥0,W1=1
V≥0,V1=1

‖M−WH‖2F + λ‖H−VM‖2F , (AMF)

where λ > 0 is a tuning parameter, see for instance Javadi & Montanari (2020a). Different normalisation and
constraints can be considered, we exhibit seven variants (see Table 7 in Appendix). We will be particularly
interested in

min
W≥0,W1K=1N

H≥0

‖M−WH‖2F . (NNMF)

In (NMF), the sample given by the rows of M are represented by a conic combination (i.e., sum of nonnegative
weights) of the rows of H. Archetypal analysis (AMF) penalises the reciprocal: the rows of H should
be represented as a convex combination of the sample points given by the rows of M. Note that, both
parameters K and λ can be tuned by cross-validation Arlot & Celisse (2010), as done in our experiments,
see Section 3.

1.3 Contribution: Nonnegative matrix completion for the analysis of several time series

Given the observation of several time series M such that M = M?
T +E, one would like to estimate the target

forecast M?
F where M? := [M?

T M?
F ]. We will use a nonnegative matrix factorization to address it. This

factorization can be obtained by solving a block convex program, updating W then H and repeating the
step. This class of algorithms can handle linear constraints. We will therefore allow ourselves to perform a
linear transformation on M to predict M?

F . In particular, the operation which consists in taking a matrix V
and looking at the successive values given by a sliding window running through V in the lexicographic order,
is a linear operation.
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General framework: We consider any injective linear map Φ : RN×(T+F ) → Rn×p with n ≥ N and
p ≥ F such that

∀A ∈ RN×T ,B ∈ RN×F , Φ([A B]) =
[

Φ1(A) Φ2(A)
Φ3(A) B

]
,

where Φk (k = 1, 2, 3) are linear maps.

Remark 1 An example of a linear map relevant for the forecast of several time series is presented in Sec-
tion 2, with n := (B −W + 1)N > N and p := WP > F .

We denote by
X0 = Φ(M?) , X = Φ([M 0N×F ]) ,
X? = Φ([M?

T 0N×F ]) and F = Φ([E 0N×F ]) .
Note that the identity M = M?

T + E implies that X = X? + F. Consider a so-called mask operator T(N)
that sets to zero N × F values of an n× p matrix N. Namely, given N ∈ Rn×p, we define

T(N) =
[

N1 N2
N3 0N×F

]
and T⊥(N) =

[
0 0
0 N4

]
,

where (Ni)4
i=1 are blocks of N =

[
N1 N2
N3 N4

]
. Note that T(X0) = X?.

A nonnegative matrix completion problem: Our goal is the following matrix completion problem:
Given a noisy and incomplete observation

X = T(X0) + F , (1)

where F is some noise term, find a good estimate of the target X0.

We introduce the Mask NNMF:

min
W1=1,W≥0

H≥0
T(N)=X

‖N−WH‖2F , (mNMF)

where solutions N ∈ Rn×p are such that T(N) = X (observed values) and T⊥(N) = T⊥(WH) (forecast
values). This latter formulation is an instance of Matrix Completion Nguyen et al. (2019). Forecasting
problem reduces to Matrix Completion problem, whose aim is finding the nonnegative matrix factorization
N 'WH of observed matrix X such that T(N) = X.

Remark 2 Problem (mNMF) is NNMF when T = I, where I is the identity operator.

One can drop the constraint H ≥ 0 which leads to an other approach referred to as Mask AMF:

min
W≥0,W1=1
V≥0,V1=1

T(N)=X

‖N−WH‖2F + λ‖H−VN‖2F (mAMF)

Remark 3 When T = I, Problem (mAMF) reduces to standard AMF formulation (AMF).

1.3.1 Uniqueness from partial observations

Recall that X? is the mask of X0 since

X? = T(X0) =
[

X1 X2
X3 0N×F

]
,

where X1 ∈ R(n−N)×(p−F ), X2 ∈ R(n−N)×F , and X3 ∈ RN×(p−F ) are blocks of X0. Let us consider
Ttrain(X0) := [X1 X2] , Ttest(X0) := [X3 0N×F ] ,

TT (X0) :=
[ X1

X3

]
, TF (X0) :=

[ X2
0N×F

]
.
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Remark 4 Let X0 := W0H0, H0 := [H0T H0F ], and W>
0 := [W0

>
train W0

>
test], then

Ttrain(X0) = W0trainH0 , X3 = W0testH0T ,

TT (X0) = W0H0T , X2 = W0trainH0F .

A first issue is the uniqueness of the decomposition W0H0 given partial observations, namely proving that
Partial Observation Uniqueness (POU) property holds:

If T(WH) = T(W0H0) Then (W,H) ≡ (W0,H0) , (POU)

where ≡ means up to positive scaling and permutation: if an entry-wise nonnegative pair (W,H) is given
then (WPD,D−1P>H) is also a nonnegative decomposition WH = WPD × D−1P>H, where D scales
and P permutes the columns (resp. rows) of W (resp. H). When we observe the full matrix X0 = W0H0, the
issue on uniqueness has been addressed under some sufficient conditions on W,H, e.g., Strongly boundary
closeness of Laurberg et al. (2008), Complete factorial sampling of Donoho & Stodden (2004), and Separability
of Recht et al. (2012). A necessary and sufficient condition exists as given by the following theorem.

Theorem 5 (Thomas (1974)) The decomposition X0 := W0H0 is unique up to permutation and positive
scaling of columns (resp. rows) of W0 (resp. H0) if and only if the K-dimensional positive orthant is the
only K-simplicial cone verifying Cone(W>

0 ) ⊆ C ⊆ Cone(H0) where Cone(A) is the cone generated by the
rows of A.

Our first main assumption is:

• Assumption (A1) In the set given by the union of sets:

{C : Cone(W0train
>) ⊆ C ⊆ Cone(H0)}

⋃
{C : Cone(W>

0 ) ⊆ C ⊆ Cone(H0T )} ,

the nonnegative orthant is the only K-simplicial cone.

It is clear that this property is implied by the following one, namely (A’1) ⇒ (A1).

• Assumption (A’1) In the set

{C : Cone(W0train
>) ⊆ C ⊆ Cone(H0T )}

the nonnegative orthant is the only K-simplicial cone.

We consider the following standard definition.

Definition 6 (Javadi & Montanari (2020a)) The convex hull conv(X0) has an internal radius µ > 0 if
it contains an K − 1 dimensional ball of radius µ.

Our second main assumption is that:

• Assumption (A2) Assume that

conv(Ttrain(X0)︸ ︷︷ ︸
=W0trainH0

) has internal radius µ > 0 . (A2)

Theorem 7 The Assumption (A1) implies the Property (POU). Moreover, if (A1) and (A2) holds,
T(WH) = T(W0H0) and W01 = W1 = 1 then (W,H) = (W0,H0) up to permutation of columns
(resp. rows) of W (resp. H), and there is no scaling.
Proof. Proofs are given in Supplement Material.

Remark 8 By Theorem 5, observe that (A’1) is a necessary and sufficient condition for the uniqueness of
the decomposition X1 = W0trainH0T . Then, using (A’1) ⇒ (A1), we understand that if decomposition of
X1 = W0trainH0T is unique then (POU) holds.
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1.3.2 Robustness under partial observations

The second issue is robustness to noise. To the best of our knowledge, all the results addressing this issue
assume that the noise error term is small enough, e.g., Laurberg et al. (2008), Recht et al. (2012), or Javadi
& Montanari (2020a). In this paper, we extend these stability result to the nonnegative matrix completion
framework (partial observations) and we also assume that noise term ‖F‖F is small enough.

In the normalized case (i.e., W1 = 1), both issues (uniqueness and robustness) can be handle with the
notion of α-uniqueness, introduced by Javadi & Montanari (2020a). This notion does not handle the matrix
completion problem we are addressing. To this end, let us introduce the following notation. Given two
matrices A ∈ Rna×p and B ∈ Rnb×p with same row dimension, and C ∈ Rna×nb , define the divergence
D(A,B) as

D(A,B) := min
C≥0 , C1nb=1na

na∑
a=1

∥∥∥A(a) −
nb∑
b=1

CabB
(b)
∥∥∥2

F
,

= min
C≥0 , C1nb=1na

‖A−CB‖2F .

which is the squared distance between rows of A and conv(B), the convex hull of rows of B. For B ∈ Rn×p
define

D̃(A,B) := min
C≥0 , C1n=1na

T(N−B)=0

‖A− CN‖2F .

Definition 9 (Tα-unique) Given X0 ∈ Rn×p,W0 ∈ Rn×K ,H0 ∈ RK×p, the factorization X0 = W0H0
is Tα-unique with parameter α > 0 if for all H ∈ RK×p with conv(X0) ⊆ conv(H):

D̃(H,X0)1/2 ≥ D̃(H0,X0)1/2 + α
{
D(H,H0)1/2 +D(H0,H)1/2

}
.

Our third main assumption is given by:

• Assumption (A3) Assume that

X0 = W0H0 is Tα-unique (A3)

Theorem 10 If (A2) and (A3) hold then there exists positive reals ∆ and Λ (depending on X0) such that,
for all F such that ‖F‖F ≤ ∆ and 0 ≤ λ ≤ Λ, any solution (Ŵ, Ĥ) to (mAMF) (if λ 6= 0) or (mNMF) (if
λ = 0) with observation (1) is such that:∑

`≤[K]

min
`′≤[K]

‖H0` − Ĥ`′‖22 ≤ c ‖F‖2F ,

where c is a constant depending only on X0.

Proof. Proofs are given in Supplement Material.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we discuss the Sliding Mask Method (SMM). We
present numerical experiments in Section 3, while conclusions are drawn in Section 4. A repository on the
numerical experiments can be found at [link redacted to comply with double blind reviewing]

2 The Sliding Mask Method

2.1 Sliding window as forecasting

One is given N time series M(1), . . . ,M(N) ∈ RT over a period of T dates. Recall M ∈ RN×T is the matrix
of observation such that M> = [(M(1))> · · · (M(N))>] and assumed entry-wise nonnegative. We assume
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some periodicity in our time series, namely that M? can be split into B matrix blocks of size N × P where
P = (T + F )/B, see Figure 1.

Figure 1: Target matrix M? can be split into B blocks of same time length P .

Given W ≥ 1 and a T × N matrix M, we define Π(M) the linear operator that piles up W consecutive
sub-blocks in a row, as depicted in Figure 2. This process looks at W consecutive blocks in a sliding manner.
Note that Π(M) is an incomplete matrix where the missing values are depicted in orange in Figure 2, they
correspond to the time-period to be forecasted. Unless otherwise specified, these unobserved values are set
to zero. Remark that Π(M) has W columns blocks, namely WP columns and (B −W + 1)N rows. By an
abuse of notation, we also denote

Π : RN×(T+F ) → R(B−W+1)N×WP

the same one-to-one linear matrix operation on matrices of size N × (T + F ). In this case, X0 := Π(M?) is
a complete matrix where the orange values have been implemented with the future values of the target M?

F .

Figure 2: The operator Π(M) outputs an incomplete (B−W +1)N×WP matrix given by a mask where the
NF orange entries are not observed. These entries corresponds to future times that should be forecasted.

The rationale behind is recasting the forecasting problem as a supervised learning problem where one ob-
serves, at each line of Π(M), the WP − F first entries and learn the next F entries. The training set is
given by rows 1, 3, 5, 7 in Π(M) of Figure 2 and the validation set is given by rows 2, 4, 6, 8 where one aims
at predicting the F missing values from the WP − F first values of these rows.

2.2 Mask NNMF and Mask AMF

Consider a matrix completion version of NMF with observations

X = Π(M) = Π(M?
T )︸ ︷︷ ︸

X?

+ Π(E)︸ ︷︷ ︸
F

,

and

min
W1=1,W≥0,H≥0

‖X−T(WH)‖2F , (2)
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where the “mask” operator T is defined by zeroing the “future” values (in orange in Figure 2). Note that

T(Π(M?)︸ ︷︷ ︸
X0

) = Π(M?
T ) = X? .

Moreover, note that Problem (2) is equivalent to mask NNMF (mNMF). If we drop the nonnegative con-
straints on H and consider the archetypal approach, we obtain mask AMF (mAMF). In particular, Theo-
rem 10 applies proving that (mNMF) and (mAMF) are robust to small noise.

2.3 Algorithms

2.3.1 Alternating Least Squares for (mNMF)

The basic algorithmic framework for matrix factorization problems is Block Coordinate Descent (BCD)
method, which can be straightforwardly adapted to (mNMF) (see Supplement Material). BCD for (mNMF)
reduces to Alternating Least Squares (ALS) algorithm (see Algorithm 4 in Appendix), when an alternative
minimization procedure is performed and matrix WH is projected onto the linear subspace T(N) = X by
means of operator PX, as follows:

N := PX(WH) : T(N) = X and T⊥N = WH .

Hierarchical Alternating Least Squares (HALS) is an ALS-like algorithm obtained by applying an exact
coordinate descent method Gillis (2014). Moreover, an accelerated version of HALS is proposed in Gillis &
Glineur (2012) (see Supplement Material).

2.3.2 Projected Gradient for (mAMF)

Proximal Alternative Linear Minimization (PALM) method, introduced in Bolte et al. (2014) and applied
to AMF by Javadi & Montanari (2020a), can be also generalized to (mAMF) (see Algorithm 1).

Algorithm 1 PALM for mAMF
1: Initialization: chose H0, W0 ≥ 0 such that W01 = 1, set N0 := PX(W0H0) and i := 0.
2: while stopping criterion is not satisfied do
3: H̃i := Hi − 1

γi1
Wi> (WiHi −Ni

)
. Gradient step on H, objective first term

4: Hi+1 := H̃i − λ
λ+γi1

(
H̃i − Pconv(Ni)(H̃i)

)
. Gradient step on H, objective second term

5: Wi+1 := P∆

(
Wi − 1

γi2

(
WiHi+1 −Ni

)
Hi+1>

)
. Projected gradient step on W

6: Ni+1 := PX

(
Ni + 1

γi3

(
Wi+1Hi+1 −Ni

))
. Projected gradient step on N

7: i := i+ 1
8: end while

Pconv(A) is the projection operator onto conv(A) and P∆ is the projection operator onto the (N − 1)-
dimensional standard simplex ∆N . The two projections can be efficiently computed by means, e.g., Wolfe
algorithm Wolfe (1976) and active set method Condat (2016), respectively.

Theorem 11 Let ε > 0. If γi1 > ‖Wi>Wi‖F , γi2 > max
{
‖Hi+1Hi+1>‖F , ε

}
, and γi3 > 1, for each

iteration i, then the sequence
(
Hi,Wi,Ni

)
generated by Algorithm 1 converges to a stationary point of

Ψ(H,W,N) := f(H) + g(W) + p(N) + h(H,W,N), where:

f(H) = λD(H,N) , g(W) =
∑K
k=1 1{Wk∈∆} ,

p(N) = 1{N=PX(WH)} , h(H,W,N) = ‖N−WH‖2F .

Proof. Proof is given in Supplement Material.
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Algorithm 2 iPALM for mAMF
1: Initialization: H0, W0 ≥ 0 such that W01 = 1, set N0 := PX(W0H0), H−1 := H0, W−1 := W0,

N−1 := N0, and i := 0.
2: while stopping criterion is not satisfied do
3: Hi

1 := Hi + αi1
(
Hi −Hi−1), Hi

2 := Hi + βi1
(
Hi −Hi−1) . Inertial H

4: H̃i := Hi
1 − 1

γi1
Wi> (Hi

2Wi −Ni
)

. Gradient step on H, objective first term

5: Hi+1 := H̃i − λ
λ+γi1

(
H̃i − Pconv(Ni)(H̃i)

)
. Gradient step on H, objective second term

6: Wi
1 := Wi + αi2

(
Wi −Wi−1), Wi

2 := Wi
1 + βi2

(
Wi −Wi−1) . Inertial W

7: Wi+1 := P∆

(
Wi

1 − 1
γi2

(
Wi

2Hi+1 −N i
)
Hi+1>

)
. Projected gradient step on W

8: Ni
1 := Ni

1 + αi3
(
Ni −Ni−1), Ni

2 := Ni
1 + βi3

(
Ni −Ni−1) . Inertial N

9: Ni+1 := PX

(
Ni

1 + 1
γi3

(
Wi+1Hi+1 −Ni

2
))

. Projected gradient step on N
10: i := i+ 1
11: end while

Finally, the inertial PALM (iPALM) method, introduced for NMF in Pock & Sabach (2016), is generalized
to (mAMF) in Algorithm 2.

Remark 12 If, for all iterations i, αi1 = αi2 = 0 and βi1 = βi2 = 0, iPALM reduces to PALM.

2.3.3 Stopping criterion for normalized NMF

For NNMF, KKT conditions regarding matrix W are the following (see Supplement Material):

W ◦
(
(WH−N)H> + t1>K

)
= 0 .

By complementary condition, it follows that, ∀j, ti = ((WH−N)H>)i,j . Hence, we compute ti by selecting,
for each row W (i), any positive entry Wi,j > 0.

Remark 13 Numerically to obtain a robust estimation of ti, we can average the corresponding values cal-
culated per entry Wi,j.

Let εW, εH, and εR be three positive thresholds. The stopping criterion for the previous algorithms consists
in a combination of:

1. the maximum number of iterations;

2. the Frobenius norm of the difference of W and H at two consecutive iterations, i.e., the algorithm
stops if ‖Wi+1 −Wi‖F ≤ εW ∧ ‖Hi+1 −Hi‖F ≤ εH ;

3. a novel criterion based on KKT condition, i.e., the algorithm stops if it holds that ‖R(Wi+1)‖F +
‖R(Hi+1)‖F ≤ εR where matrices R(W) and R(H) are defined as R(W)i,j := |(WH−N)H>)i,j+
ti|1{Wi,j 6=0} and R(H)i,j := |W>(WH−N))i,j |1{Hi,j 6=0}, respectively.

2.4 Large-scale data-set

Assume the observed matrix X = Π(M) is large scaled, namely one has to forecast a large number N of
times series (e.g. more than 100, 000) and possibly a large number of time stamps T . The strategy, described
in Section 1.3.1 in Cichocki et al. (2009) for NMF, is to learn the H ∈ RK×T matrix from a sub-matrix
Nr ∈ Rr×T of K ≤ r � N rows of N ∈ Rn×T , and learn the W ∈ RN×K matrix from a sub-matrix
Nc ∈ RN×c of K ≤ c � T columns of N ∈ RN×T . We denote by Hc the sub-matrix of H given by the
columns appearing in Nc and Wr the sub-matrix of H given by the columns appearing in Nc.
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This strategy can be generalized to (mNMF) and (mAMF). For (mNMF) this generalization is straightfor-
ward, and for (mAMF) one need to change Steps 3-5 in Algorithm 1 as follows:

H̃i := Hi − 1
γi1

(Wi
r)>

(
Wi

rHi −Ni
r

)
Hi+1 := H̃i − λ

λ+ γi1

(
H̃i − Pconv(Ni)(H̃i)

)
Wi+1 := P∆

(
Wi − 1

γi2

(
WiHi+1

c −Ni
c

)
(Hi+1

c )>
)
.

Same approach is exploited for Algorithm 2.

3 Numerical Experiments

We tested SMM with random initialization of matrices H0,W0. Each entry in H0 is randomly selected
in [0, h] where h > 0 is chosen by practitioner. Each row of matrix W0 is randomly generated in the
corresponding standard simplex.

For SMM we implemented both HALS for (mNMF) and PALM for (mAMF). Moreover, we consider two
different strategies to define matrix Π(M): with non-overlapping (mAMF and mNMF) and overlapping
sliding intervals (mAMFo and mNMFo). In the overlapping strategy, we replicate the half of each sub-block
in which the matrix M is sub-divided.

Moreover, we have compared our method with other classically-designed mainstream time series forecasting
methods such as Random Forest Regression (RFR) and EXponential Smoothing (EXS), Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) deep neural networks with preliminary data standard-
ization Shewalkar et al. (2019), and Seasonal Auto-Regressive Integrated Moving Average with eXogenous
factors (SARIMAX) models Douc et al. (2014). In our computational experiments, we consider hundreds
of time series, so we do not benchmark against time series transformer model, which are suitably designed
instead for huge-scale time series forecasting problems.

The quality of the forecasted matrix MF is measured by the relative root-mean-squared error (RRMSE) and
the relative mean-percentage error (RMPE):

RRMSE = ‖MF −M?
F ‖F

‖M?
F ‖F

, RMPE = ‖MF −M?
F ‖1

‖M?
F ‖1

.

The interested reader may find a github repository on numerical experiments at [link redacted to comply
with double blind reviewing]

We run all the numerical tests on a MacBook Pro mounting macOS Ventura 13.6.1 with Apple M2 chip and
8 GB LPDDR5 memory RAM.

3.1 Real-world data-sets

The numerical experiments refer to the following real-world data-sets:

• weekly and daily electricity consumption data-sets of 370 Portuguese customers during the period
2011-2014, Trindade (2015)

• twin gas measurements data-set of five replicates of an 8-MOX gas sensor, Fonollosa (2016)

• Istanbul Stock Exchange returns with seven other international index for the period 2009-2011,
Akbilgic (2013)

• demand forecasting orders in a Brazilian logistics company collected for 60 days, Ferreira et al.
(2017)

9
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• daily electricity transformer temperature (ETT) measurements, Zhou et al. (2020)

Tables 1-2 (see Appendix) report the cross-validated RRMSE and RMPE on observed values obtained
during the computational tests for each method. Table 5 reports the CPU time for the forecasting phase.
We highlight best results in bold, and second best results are underlined.

Our method is always the best or the second best one among all the approaches for all the data-set we tested
in terms of RRMSE and RMPE indices, and there is no other method performing better. Concerning the
CPU times, our novel methods are competitive against EXP, being the fastest or the second fastest ones.

mAMFo seems to be the most promising algorithm in terms of efficacy for the first five data-sets, while mAMF
and mNMF are the best methods for the last four ETT data-sets. The ETT data-sets are characterized by a
pronounced periodicity: in this case the plain methods performs quite well; while the first five data-sets are
less markedly periodic and in this case the overlap versions aims to introduce a sort of artificial periodicity
in the dataset by replicating portions of the sub-block in which each row of M is split.

3.2 Synthetic data-sets

Further computational experiments have been realized by considering additional synthetic data-sets. In
particular, we generated three data sets by replicating 1, 000 short time series (with 10 time periods) 10
times and adding white noise multiplied by a constant factor σ to each time series entry separately. We
choose σ ∈ {0.005, 0.1, 1}. We refer to the these data-sets as “low noise”, “medium noise”, and “high noise”,
respectively.

An additional synthetic data-set has been generated by considering few probability vectors, and computing
the entire matrix W by randomly choosing a probability vector and adding white noise. A completely
randomly generated matrix H is multiplied to W to obtain the whole matrix M∗ := WH. We refer to this
dataset as “few distribution”.

Finally, the last synthetic data-set is obtained by generating matrix H by replicating a small time series
(with 50 time periods) 100 times and adding white noise multiplied by a constant factor σ = 1 and matrix
W of suitable dimensions, whose rows are uniformly distributed over the corresponding dimensional simplex.
Then, we set matrix M∗ := WH. We refer to this last dataset as “periodic archetypes”.

Tables 3-4 and 6 (see Appendix) report the cross-validated RRMSE and RMPE indices, and the CPU time
for the forecasting phase, respectively, referring to synthetic generated datasets. The more pronounced
the periodicity of the time series or of the archetypes, the better the performances of our proposed NMF-
like methods: in this case, the more realistic the hypothesis that the whole data-set can be expressed
as convex combinations of few archetypes, having a low-rank representation. We are able to replicate
SARIMAX performances in a much shorter time; while, for the last two synthetic data-sets, mAMF and
mNMF outperform the benchmarks.

4 Conclusions and Perspectives

In this paper, we have introduced and described a novel approach for the time series forecasting problem
relying on nonnegative matrix factorization. We apply this algorithm to realistic data-sets and synthetics
data-sets, showing the forecasting capabilities of the proposed methodology.

Moreover, we have shown several uniqueness and robustness theoretical results for the solution of the matrix
factorization problems faced by the proposed algorithm, namely the Sliding Mask Method.

The strength of the proposed methodology consists in its relatively loose assumptions, mainly by supposing
that time series matrix can be efficiently described by a low rank nonnegative decomposition, and that the
time series are periodic for the Sliding Mask Method. Moreover, the Sliding Mask Method can be applied in
presence of missing entries in the dataset: in this latter case, in the mask operation one should consider only
the known past values of each time series.

10
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Future works consists in embedding side information in the forecasting procedure by extending algorithms
in Mei et al. (2019) to the Sliding Mask Method.
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A Variants of Nonnegative Matrix Factorization problems

Acronym Name Objective Constraints: W ≥ 0 +

NMF Nonnegative Matrix Factorization F1 H ≥ 0Cichocki & Zdunek (2006)
SNMF Semi NMF Gillis & Kumarg (2015) F1
NNMF Normalized NMF F1 H ≥ 0, W1 = 1
SNNMF Semi Normalized NMF F1 W1 = 1

AMF Archetypal Matrix Factorization F2 W1 = 1, V ≥ 0, V1 = 1Javadi & Montanari (2020a)
ANMF Archetypal NMF F2 H ≥ 0, V ≥ 0, V1 = 1
ANNMF Archetypal Normalized NMF F2 W1 = 1, H ≥ 0, V ≥ 0, V1 = 1

mNMF Mask NNMF F3 T(N) = X,W1 = 1,H ≥ 0
mAMF Mask AMF F4 T(N) = X,W1 = 1, V ≥ 0, V1 = 1

Table 7: The seven block convex programs achieving matrix factorization of nonnegative matrices. The
objectives are F1 := ‖M−WH‖2F and F2 := ‖M−WH‖2F + λ‖H−VM‖2F . The two last lines are SMM
procedures with sliding operator Π and objectives F3 := ‖N−WH‖2F and F4 := ‖N−WH‖2F+λ‖H−VN‖2F .

B Proofs

B.1 Proof of Theorem 7

• We start by proving that Condition (A1) is sufficient for (POU).

Let H0 := [H0T H0F ], W>
0 := [W0

>
train W0

>
test], H := [HT HF ], and W> := [W>

train W>
test]. Assumption

(A1) implies that decomposition W0trainH0 and W0H0T are unique. By Theorem 1, it holds

W0trainH0 = WtrainH =⇒ (W0train,H0) ≡ (Wtrain,H)
W0H0T = WHT =⇒ (W0,H0T ) ≡ (W,HT ) ,

where ≡ stands for equality up to permutation and positive scaling of columns (resp. rows) of W0 (resp. H0).
Hence, if (A1) holds, then

(W0trainH0 = WtrainH) ∧ (W0H0T = WHT ) =⇒ (W0,H0) ≡ (W,H) . (3)

Moreover, note T(W0trainH0) = Ttrain(X0) = W0trainH0 and T(W0H0T ) = TT (X0) = W0H0T (same
equations holds for (W,H)). We deduce that T(W0H0) = T(WH) implies (W0trainH0 = WtrainH) ∧
(W0H0T = WHT ). We deduce the result by (3).

• We prove that If (A1) and (A2) holds, T(WH) = T(W0H0) and W01 = W1 = 1 then (W,H) =
(W0,H0) up to permutation of columns (resp. rows) of W (resp. H), and there is no scaling.

By the previous point, we now that (A1) implies (W0,H0) ≡ (W,H). So that there exist λ1, . . . , λK
positive and a permutation σ(1), . . . , σ(K) such that

∀i ∈ [n−N ],∀k ∈ [K] , (W)(i)
k = λσ(k)(W0)(i)

σ(k) .

Recall that W1 = 1 (resp. W01 = 1) so that the rows of W (resp. W0) belongs to the affine space

A1 :=
{
w ∈ RK : 〈w,1〉 = 1

}
.
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Namely, for a given row i ∈ [n−N ], we have

(W0)(i)1 = 1⇒
K∑
k=1

(W0)(i)
k = 1

W(i)1 = 1⇒
K∑
k=1

λσ(k)(W0)(i)
σ(k) = 1

Which proves that (W0)(i) ∈ A1 ∩ Aλσ−1 , for all i ∈ [n−N ], where

Aλσ−1 :=
{
w ∈ RK :

K∑
k=1

λσ−1(k)wk = 1
}
,

is the affine space orthogonal to d := (λσ−1(1), . . . , λσ−1(K)). We deduce that the rows (W0)(i) belong to the
affine space

A :=
{
w ∈ RK : 〈w,1〉 = 1 and 〈w,d〉 = 1

}
which is of:
• co-dimension 2 if d is not proportional to 1;
• co-dimension 1 if there exists λ > 0 such that d = λ1. In this latter case, λ = 1 and for all k ∈ [K], λk = 1,
namely there is no scaling of the columns.

If A is of co-dimension 2 then A is of dimension K − 2 and Conv(W0,train) ⊆ A cannot contain a ball of
dimension K−1, which implies that Conv(Ttrain(X0)) ⊆ A×H is of dimension at most K−2 and it cannot
contain a ball of dimension K − 1 (i.e., co-dimension 1), where A×H = {x : ∃a ∈ A s.t. x = a>H}. This
latter is a contradiction under (A2). We deduce that A is of co-dimension 2, and so there is no scaling.

B.2 Proof of Theorem 10

This proof follows the pioneering work Javadi & Montanari (2020a). In this latter paper, the authors consider
neither masks T nor nonnegative constraints on H as in (mNMF). Nevertheless,
1/ considering the hard constrained programs (4) and (6) below;
2/ remarking that it holds D̃(H,X) ≤ D(H,X) and D(X,H) ≤ D(X,H);
then a careful reader can note that their proof extends to masks T and nonnegative constraints on H. For
sake of completeness we reproduce here the steps that need to be changed in their proof. A reading guide of
the 60 pages proof of Javadi & Montanari (2020b) is given in Section C.

Step 1: reduction to hard constrained Programs (4) and (6)

Consider the constrained problem:
Ĥ ∈ arg min

H
D̃(H,X)

s.t. D(X,H) ≤ ∆2
1 .

(4)

where
D(X,H) := min

W≥0 , W1=1
‖T(X−WH)‖2F

Then (mAMF) can be seen as Lagrangian formulation of this problem setting ∆2
1 = D(X, Ĥ(mAMF)),

where Ĥ(mAMF) is a solution to (mAMF). We choose ∆1 so as to bound the noise level ‖F‖F

∆2
1 ≥ ‖F‖2F . (5)

Consider the constrained problem:
Ĥ ∈ arg min

H≥0
D̃(H,X)

s.t. D(X,H) ≤ ∆2
2 .

(6)
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Then (mNMF) can be seen as Lagrangian formulation of this problem setting ∆2
2 = D(X, Ĥ(mNMF)),

where Ĥ(mNMF) is a solution to (mNMF). We choose ∆1 so as to bound the noise level ‖F‖F

∆2
2 ≥ ‖F‖2F . (7)

Step 2: First bound on the loss

Denote D :=
{
D(H,H0)1/2 +D(H0,H)1/2}. By Assumption (A2) we have

z0 + UBK−1(µ) ⊆ conv(X0) ⊆ conv(H0) ,

where z0 + UBK−1(µ) is a parametrization of the ball of center z0 and radius µ described in Assumption
(A2) with U a matrix whose columns are K − 1 orthonormal vectors. Using Lemma 15, we get that

µ
√

2 ≤ σmin(H0) ≤ σmax(H0) ,

where σmin(H0), σmax(H0) denote its largest and smallest nonzero singular values. Then, since z0 ∈
conv(H0) we have z0 = H>0 α0 for some α0 s.t. α01 = 1. It holds,

‖z0‖2 ≤ σmax(H0)‖α0‖2 ≤ σmax(H0). (8)

Note that

σmax(Ĥ − 1z>0 ) ≤ σmax(Ĥ) + σmax(1z>0 ) = σmax(Ĥ) +
√
K‖z0‖2. (9)

Therefore, using Lemma 17 we have

D ≤ c

[
K3/2∆1/2κ(P 0(Ĥ)) +

σmax(Ĥ)∆1/2K
1/2

µ
+
K∆1/2‖z0‖2

µ

]
+ c
√
K‖F‖F , (10)

where ∆1/2 equals ∆1 for problem (4) and ∆2 for problem (6), and κ(A) stands for the conditioning number
of matrix A. In addition, Lemma 18 implies that

L(H0, Ĥ)1/2 ≤ 1
α

max
{

(1 +
√

2)
√
K,
√

2κ(H0)
}
D . (11)

Step 3: Combining and final bound

By Lemma 19 it holds

D ≤ c
[ K3/2D∆1/2

α(µ− 2∆1/2)
√

2
+
K2σmax(H0)∆1/2

(µ− 2∆1/2)
√

2
+
DK1/2∆1/2

αµ

+
σmax(H0)∆1/2K

µ
+
K∆1/2‖z0‖2

µ

]
+ c
√
K‖F‖F . (12)

We understand that D = O∆1/2→0(∆1/2) and for small enough ∆1/2 there exists a constant c > 0 such that

D ≤ c∆1/2 + c
√
K‖F‖F

By (5) and (7), it yields that for small enough noise error ‖F‖F one has

D ≤ c‖F‖F ,

for some (other) constant c > 0. Plugging this result in (11) we prove the result.

B.3 Proof of Theorem 11

N 7→ ∇Nh(H,W,N) is Lipschitz continuous with moduli L = 2. The statement follows from Proposition
4.1 in Javadi & Montanari (2020a) and from Theorem 1 in Bolte et al. (2014).
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C Propositions and Lemmas

• Results that we can use directly from Javadi & Montanari (2020b): Lemma B.1, Lemma B.2, Lemma B.3.

• Results of Javadi & Montanari (2020b) that has to be adapted: Lemme B.4 (done in Lemma 15), Lemma
B.5 (done in Lemma 16), and Lemma B.6 (done in Lemma 17).

Proposition 14 For Ĥ solution to (4) (or (6)) one has D̃(Ĥ,X) ≤ D̃(H0,X).

Proof. Observe that D(X,H0) = ‖F‖2F . By (5) and (7), H0 is feasible for (4) (or (6)) then D̃(Ĥ,X) ≤
D̃(H0,X)

Lemma 15 (Adapted version of Lemma B.4 of Javadi & Montanari (2020b)) If H is feasible for
problem (4) (or (6)) and has linearly independent rows, then we have

σmin(H) ≥
√

2(µ− 2∆1/2) , (13)

where ∆1/2 equals ∆1 for problem (4) and ∆2 for problem (6).

Proof. Consider the notation and the outline of proof Lemma B.4 in Javadi & Montanari (2020b). The
adaptation is simple here. The trick is to only consider rows in the training set, Ttrain(X0): the indice i
of proof of Lemma B.4 in Javadi & Montanari (2020b) correspond to the n −N first rows in our case (the
training set); and one should replace X0 by Ttrain(X0). This proof requires only feasibility of H and works
no matter if a nonnegative constraint on H is active (as in Program (6)).

Lemma 16 (Adapted version of Lemma B.5 of Javadi & Montanari (2020b)) For Ĥ solution to
(4) (or (6)), it holds

D̃(Ĥ,X0)1/2 ≤ D̃(H0,X0)1/2 + c
√
K‖F‖F .

Proof. Consider the notation and the outline of proof Lemma B.5 in Javadi & Montanari (2020b). Note that
Eq. (B.103) holds by Proposition 14. Form Eq. (B.104), the proof remains unchanged once one substitutes
D by D̃.

Lemma 17 (Adapted version of Lemma B.6 of Javadi & Montanari (2020b)) For Ĥ the optimal
solution of problem (4) (or (6)), we have

α(D(Ĥ,H0)1/2 +D(H0, Ĥ)1/2) ≤ c
[
K3/2∆1/2κ(P 0(Ĥ)) +

∆1/2
√
K

µ
σmax(Ĥ − 1zT

0 )
]

+ c
√
K‖F‖F (14)

where P 0 : Rd → Rd is the orthogonal projector onto aff(H0) (in particular, P 0 is an affine map), and ∆1/2
equals ∆1 for problem (4) and ∆2 for problem (6).

Proof. Invoke the proof of Lemma B.6 in Javadi & Montanari (2020b) using the fact that D̃(H,X) ≤
D(H,X) and D(X,H) ≤ D(X,H).

Lemma 18 Let H,H0 be matrices with linearly independent rows. We have

L(H0,H)1/2 ≤
√

2κ(H0)D(H0,H)1/2 + (1 +
√

2)
√
KD(H,H0)1/2 , (15)

where κ(A) stands for the conditioning number of matrix A.

Proof. See Lemma B.2 in Javadi & Montanari (2020b)

Lemma 19 It holds
κ(P 0(Ĥ)) ≤

[ D
α(µ− 2∆1/2)

√
2

+ K1/2σmax(H0)
(µ− 2∆1/2)

√
2

]
.

Proof. The proof is given by Equations B.189-194 in Javadi & Montanari (2020b).
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D Algorithms for mNMF

In this section we report Block Coordinate Descend (BCD) Algorithm (see Algorithm 3) and accelerated
Hierarchical Alternate Least Square (HALS) for mNMF (see Algorithm 5), which is a generalization of
Algorithm described in Gillis & Glineur (2012) to the matrix factorization with mask.

Algorithm 3 BCD for mNMF
1: Initialization: choose H0 ≥ 0,W0 ≥ 0, and N0 ≥ 0, set i := 0.
2: while stopping criterion is not satisfied do
3: Hi+1 := update(Hi,Wi,Ni)
4: Wi+1 := update(Hi+1,Wi,Ni)
5: Ni+1 := update(Hi+1,Wi+1,Ni)
6: i := i+ 1
7: end while

Algorithm 4 ALS for mNMF
1: Initialization: choose H0 ≥ 0,W0 ≥ 0, set N0 := PX(H0W0) and i := 0.
2: while stopping criterion is not satisfied do
3: Hi+1 := minH≥0 ‖Ni −WiH‖2F
4: Wi+1 := minW≥0,W1=1 ‖Ni −WHi+1‖2F
5: set Ni+1 := PX(Wi+1Hi+1)
6: i := i+ 1
7: end while

Algorithm 5 accelerated HALS for mNMF
1: Initialization: choose H0 ≥ 0,W0 ≥ 0, nonnegative rank K, and α > 0. Set N0 = PX(W0H0),
ρW := 1 + n(m+K)/(m(K + 1)), ρH := 1 +m(n+K)/(n(K + 1)), and i := 0.

2: while stopping criterion is not satisfied do
3: A := NHi>, B := HiHi>

4: for k ≤ kW := b1 + αρWc do
5: for ` ∈ [K] do
6: C` :=

∑`−1
j=1W

k+1
j Bj` +

∑K
j=`+1W

k
j Bj`

7: W k
` := max(0, (A` − C`)/B``)

8: end for
9: WkW := P∆(WkW)

10: end for
11: N := PX(WkWHi)
12: A := WkWN, B := WkW>WkW

13: for k ≤ kH := b1 + αρHc do
14: for ` ∈ [K] do
15: C` :=

∑`−1
j=1H

k+1
j Bj` +

∑n
j=`+1H

k
j Bj`

16: Hk
` := max(0, (A` − C`)/B``)

17: end for
18: end for
19: Wi+1 := WkW , Hi+1 := HkH

20: N := PX(Wi+1Hi+1)
21: i := i+ 1
22: end while
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E KKT conditions for mNMF

In this section we determine the KKT condition for mNMF problem, namely

min
W1=1,W≥0

H≥0
T(N)=X

‖N−WH‖2F =: F(N,W,H) . (mNMF)

Let us introduce the dual variables V ≥ 0, G ≥ 0, t ∈ Rn, and Z ∈ range(Π) such that T(Z) = Z. The
Lagrangian of mNMF problem is

L(N,W,H,V,G, t,Z) = F(N,W,H)− 〈W,V〉+ 〈W1K − 1N , t〉 − 〈H,G〉 − 〈N−X,Z〉 .

The KKT condition are the following:

∇NL = N−WH− Z = 0 ⇐⇒ T(N−WH) = Z ∧T⊥(N−WH) = 0 (16)
∇WL = (WH−N)H> −V− t1>K = 0 ⇐⇒ V = (WH−N)H> − t1>K (17)
∇HL = W>(WH−N)− G = 0 ⇐⇒ G = W>(WH−N) (18)
〈W,V〉 = 0 ⇐⇒ 〈W,∇WF − t1>K〉 = 0 (19)
〈H,G〉 = 0 ⇐⇒ 〈H,∇HF〉 = 0 (20)

From the complementarity conditions (19), it follows:

Wi,j > 0 =⇒ Vi,j = 0 =⇒ ti = −(∇WF)ij ∀j

In order to compute ti, we can select a row W (i), find any entry Wi,j > 0 and apply the previous formula.
In the practical implementation phase, in order to make numerically more stable the estimation of ti’s, we
can adopt a slightly different strategy by averaging the values of ti computed per row entry Wi,j > 0.
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