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Abstract

Diffusion models have emerged as a powerful paradigm for modern generative
modeling, demonstrating strong potential for large language models (LLMs). Un-
like conventional autoregressive (AR) models that generate tokens sequentially,
diffusion models allow for parallel sampling, offering a promising path to accel-
erate generation and eliminate the left-to-right generation constraints. Despite
their empirical success, theoretical understandings of diffusion language models
remain underdeveloped. In this work, we develop convergence guarantees for
diffusion language models from an information-theoretic perspective. Our analysis
demonstrates that the sampling error, measured by the Kullback-Leibler (KL) di-
vergence, decays inversely with the number of iterations 7' and scales linearly with
the mutual information between tokens in the target text sequence. Crucially, our
theory covers the regime 7' < L, where L is the text sequence length. This justifies
that high-quality samples can be generated with fewer iterations than L, thereby
breaking the fundamental sampling bottleneck of L steps required by AR models.
We further establish matching upper and lower bounds, up to some constant factor,
that shows the tightness of our convergence analysis. These results offer novel
theoretical insights into the practical effectiveness of diffusion language models.

1 Introduction

Large language models (LLMs) fall within the domain of generative modeling, which aim to learn
the unknown probability distribution of natural language from training data. The state-of-the-art
LLM:s are typically trained using an autoregressive (AR) modeling paradigm. For a text sequence of

Ltokens x = (z(V),... (1)), an AR model factorizes the joint distribution as
L
p@) = p) [ o |20, 20, 0
i=2

and generate tokens sequentially from left to right. Despite its remarkable success (Radford et al.|
2018, 2019; |[Brown et al.| [2020), the AR approach suffers from several notable drawbacks. First,
token generation is constrained by a rigid left-to-right order, prohibiting the model from reasoning
earlier tokens based on later context. Second, the one-by-one generation is inherently slow, as tokens
are produced one at a time, limiting the efficiency of sampling.

Motivated by the above limitations and the extraordinary performance of diffusion models in various
generative modeling tasks (Sohl-Dickstein et al.,|2015; |Song and Ermon, [2019; Ho et al., |2020; |Song
et al.| |2020)), recent research has begun exploring diffusion models as an alternative approach to
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language modeling (Dieleman et al., [2022}; Han et al.| 2022; |Gulrajani and Hashimoto} 2023}, [He
et al.| 2022). Unlike the AR paradigm, diffusion language models allow parallel sampling of tokens
through an iterative denoising process, thereby eliminating left-to-right constraints and potentially
accelerating text generation. Discrete diffusion models have emerged as a promising framework for
LLMs in this vein (Austin et al., 2021} Campbell et al., [2022} [Lou et al., [2023)), which is tailored to
generate discrete-structured samples.

Among the discrete diffusion models, one notable class is the masked diffusion model (Austin
et al.,[2021} |Shi et al.| 2024} [Sahoo et al.| [2024). It introduces an absorbing state called mask and
achieves the best empirical performance. Identical to its continuous counterpart, the masked diffusion
model consists of two complementary processes: a forward process that progressively corrupts a text
sequence X ~ pqata drawn from the data distribution by masking out tokens:

mask mask mask mask
Xo = X1 = X = - = X

a reverse process that learns to reconstruct the original sequence by iteratively predicting the masked
tokens:
% unﬂsk % ungisk Y ungisk un(riisk %
0 1 2 e T-
The mask predictors—conditional distributions that take partially masked sequences as input and

predict masked tokens—serve a role analogous to the score estimators in continuous diffusion models,
guiding the reverse process to recover the text.

Compared to the AR paradigm, diffusion modeling offers several key advantages for language
generation:

» Sampling acceleration. By generating multiple tokens in parallel at each iteration, diffusion
models can reduce the number of sampling iterations and speed up the overall sampling
process compared to one-token-at-a-time AR generation®.

* Reversal reasoning. Without a unidirectional order, diffusion language models can perform
reverse generation tasks (for example, inferring earlier tokens from later ones) that are
impossible for standard AR models constrained to a forward-only generation.

» Controllable generation. Because diffusion models do not follow a strictly left-to-right
generation order, they can more easily incorporate global constraints or planning for long-
range dependencies, enabling more flexible control over the generated text (Li et al.| 2022).

These benefits have spurred a surge of interest in diffusion language models. A flurry of recent
works has demonstrated the viability of diffusion models for language models, showing that they can
achieve comparable performance to AR approaches in certain settings (Lou et al.} 2023} Sahoo et al.|
2024; Gong et al., [2024; |(Campbell et al.| 2024} Nie et al.| [2025; | Ye et al.,[2023)). Moreover, diffusion
language models have been shown to handle generation tasks beyond the reach of AR methods, such
as reversal reasoning, which standard AR models cannot perform (Nie et al., 2025).

However, despite their empirical promise, rigorous theory for diffusion language models remains in
its infancy. In particular, there is limited insights into how the quality of the generated text relates to
the sampling procedure or to the statistical structure of the underlying language distribution. Only
until very recently have researchers begun to explore its sampling guarantees. The work (Chen and
Ying, |2024)) examines convergence guarantees of discrete diffusion models in terms of total variation
(TV) distance and Kullback-Leibler (KL) divergence. However, their analysis is restricted to regimes
where, on average, less than one token is masked per step. This assumption does not align with
practical diffusion language models that mask a large fraction of tokens at each iteration (Yu et al.,
2025). Such a gap between practice and theory motivates the central question of our study:

Given accurate mask predictors, can we establish the convergence guarantees of diffusion language
models for general sampling procedures and data distribution?

3While diffusion language models enable parallel sampling, current practical implementations are typically
slower than highly optimized AR models with KV caching (Pope et al.,2023). Recent work demonstrates that
distillation can close part of this gap (Deschenaux and Gulcehre, 2024} Hayakawa et al.,|2024)); see Sahoo et al.
(2024| Fig. 2) for a comparison of text generation speed.



Main contributions. In light of the above gap, this paper takes an initial step towards a convergence
theory for diffusion language models from an information-theoretic perspective. We seek to rigorously
characterize the quality of the generated samples (i.e., sampling error) as a function of the number of
iterations steps and the statistical structure of target text distribution.

To make the analysis tractable, we adopt a standard decoupling approach in prior theoretical analyses
of diffusion models (Block et al., [2020; [De Bortoli et al., 2021} |Chen et al.,[2022a), 2023a; |Li et al.|
2024; L1 and Yanl 2024; L1 and Cai} 2024; |L1 et al.,|2025)), which separates the training stage (how to
learn the mask predictors) and the sampling phase (how to generate samples). Our work focuses on
the latter, assuming access to a given mask predictor and analyzing the sampling procedure.

Under this setup, we establish the first convergence guarantees of diffusion language models for
general sampling schemes and data distributions. In particular, our analysis shows that after T'
iterations, the KL divergence between the output distribution and the true data distribution decays on
the order of 1/T', with a coefficient governed by the information coupling among tokens. Specifically,
we prove an upper bound on the sampling error (measured by the KL divergence) of the form:

L
1 N (i
0<T;I(X<’>;X( >>> + Etrain,

where I(X (; X(=9) denotes the mutual information between the i-th token X (*) and the remaining
tokens X (—%) under the data distribution X ~ Ddatas and egin captures the training error due to
imperfect mask predictors (see Section 2] for a formal definition). Notably, our theory accommodates
the regime where the number of iterations 7" is smaller than the sequence length L, which provides
a formal justification for the sampling acceleration of diffusion language models over their AR
counterparts. Further, we complement this upper bound with a matching lower bound (up to constant
factors), showing that our convergence analysis is tight. In other words, the 1/T" decay of error and its
linear dependence on the sequence’s mutual information cannot be substantially improved in general.

Our theoretical findings, grounded in information theory, provide new insights into why diffusion
language models can be so effective in practice. The above guarantee holds for a broad class of
data distributions, suggesting that diffusion language models have robust performance across diverse
language data. Moreover, by linking convergence to the mutual information among tokens, our
results highlight how the statistical dependencies in language data influence the efficiency of parallel
diffusion sampling.

1.1 Other related work

Discrete diffusion models. While diffusion models were initially introduced for both discrete and
continuous state spaces in the seminal work (Sohl-Dickstein et al.| 2015)), subsequent studies have
predominantly focused on Gaussian diffusion processes in continuous domains. Applying diffusion
models to intrinsically discrete settings is challenging because Gaussian noise cannot be directly
applied to corrupt discrete-valued data. Prior works on discrete diffusion models can be broadly
categorized into two classes. The first class embeds discrete structures into a continuous space and
applies continuous diffusion (Chen et al.| 2022bj Dieleman et al.,|2022} |Gulrajani and Hashimoto,
2023; Han et al., 2022 L1 et al., 2022} [Lovelace et al., 2023} |Strudel et al., 2022). The second
class directly defines the forward process on discrete structures using various categorical Markov
transition matrices (Hoogeboom et al.,|202 1} |Austin et al., 2021; Sahoo et al., 2024), often under the
continuous-time Markov chain (CTMC) framework. This perspective has further led to methods for
adapting score matching (Song and Ermonl 2019) to discrete settings (Meng et al.l 2022} Sun et al.,
2022; Lou et al., [2023)).

Theory for diffusion models. Our work is closely related to the convergence theories for continuous
diffusion models in R%—a field that is considerably more mature than its discrete counterpart. These
studies address a fundamental question: given imperfect score estimates, how many iterations are
required to sample accurately from the target distribution? Under the assumption of L?-accurate score
estimates and a log-Sobolev inequality for the target distribution, Lee et al.|(2022) established the first
polynomial iteration complexity bounds. Later works relaxed these assumptions by either imposing
Lipschitz continuity on the scores (Chen et al., 2022a; [Lee et al., 2023)) or by requiring bounded
support/moment conditions for the target distribution (Chen et al.|[2023a). The current state-of-the-
art results, as derived in |Benton et al.| (2023)) and |Li and Yan| (2024)), achieve convergence rate of



O(4/d/T) in KL divergence and O(d/T) in total variation distance, respectively. In addition to the
convergence analysis, recent work has established end-to-end statistical guarantees by characterizing
the errors in the score estimation and sampling stage. These analyses yield rigorous bounds on the
sampling error in diverse distributional settings, such as smooth densities (Oko et al.,|2023; |Chen
et al., 2023b; Wibisono et al.| [2024; [Zhang et al.| [2024; |Dou et al., 2024} |Cai and Li| [2025) and
Gaussian mixture models (Gatmiry et al.} 2024} (Chen et al., 2024).

1.2 Notation

For integer n > 0, we denote [n] := {1,2,...,n}. For x > 0, we use [z] to denote the smallest
integer greater than or equal to x and |z | to denote the largest integer less than or equal to z. Let X
denote the (discrete) vocabulary of texts. We use M to denote the mask and extend the vocabulary X
by including a single point {M} to obtain X = XU {M}. For vector z € X, we use z(*) to represent
its i-th entry for ¢ € [L]. Moreover, for any set M C [L], we use z o M = (z;);ep to denote the

. , . . . .. <L
vector in XIM/| that consists of the entries of z indexed by the set M. In addition, let Py, : X - X
denote the projection defined as

Pul = {7 1500 @

For a random variable X, we use px to denote its distribution and probability density function
interchangeably for simplicity of notation. For random vectors (X,Y) ~ px, y with marginal

distributions px and py, let KL(px || py) = [px(z)log ’; X Eg dx denote the Kulback-Leibler
divergence between px and py . The mutual information between X and Y is defined as [(X;Y) =
KL(px y || pxpy). For random vectors (X,Y, Z) ~ px v z, the conditional mutual information

between X and Y given Z is defined as I(X;Y | Z) := KL(pxvy|zpz || x| 2Py |2P2)-

For two functions f(n), g(n) > 0, we use f(n) < g(n) or f(n) = O(g(n)) to mean f(n) < Cg(n)
for some absolute constant C' > 0. Similarly, we write f(n) 2> g(n) or f(n) = Q(g(n)) when
f(n) > C’g(n) for some absolute constant C’ > 0. We denote f(n) < g(n) or f(n) = ©(g(n))
when C'f(n) < g(n) < C’f(n) for some absolute constants C’ > C' > 0.

2 Preliminaries
In this section, we provide a brief introduction to diffusion language models.

Forward process. Consider a text sequence Xy € X of length L drawn from the data distribution
Ddata- The forward process gradually corrupts X by masking its tokens step by step until reaching

a fully masked sequence (M, ..., M) € X" In more detail, let {s:}I_, be a sequence of positive

integers such that Zthl s¢ = L. We call it mask size schedule since it defines how many tokens to
mask at each step. We then construct a sequence of increasing mask index sets @ = My C M; C

- C My = [L], where each M, is obtained by adding s; new indices chosen uniformly at random
from the previously unmasked positions My ;. Formally, at each step ¢ € [T], we select a subset
M, \ M;_1 of s; token positions from M} _; uniformly at random and mask those positions, and let
M, denote the set of all masked positions at step . We denote by X; the partially masked sequence at
step ¢, obtained from the original X by replacing tokens at the masked positions M; with the mask
symbol M. Using the projection operator Py¢ defined in (2), we can write the sequence at step  as

Xt = Pue(Xo), (3)
meaning X retains the original tokens in positions not in M; and has M in positions M;. After T’
steps, X7 = (M,...,M) € X" is the fully masked sequence.

Training. The reverse process aims to invert the forward masking: starting from the fully masked
sequence, it iteratively unmasks tokens to recover a sample from pgata. The core of the diffusion
language model is a mask predictor p(- | X;) that represents the conditional distribution of the
masked tokens given the partially observed sequence X;. To learn the mark predictor, we fit the



generative model to the data distribution by minimizing a variational upper bound on the negative
log-likelihood.

As directly modeling the joint distribution of all masked tokens can be intractable in high dimensions,
practitioners typically parametrize the mask predictor using a factorized form:

L
px| Xp) =[] pi=" | Xy), “

i=1

i.e., each token is predicted independently given X;. We then seek a product distribution p = Hle i
that solves the following minimization problem:

: L (i)
min  —E; x, m, | —— logpi(Xy~ | X-) |, >
p=IIi, pi ’ | M| iezl\; ’

where the expectation is taken over a random time 7 € [T] with P{7 =t} = s;/L fort € [T], a
training sample X ~ pgata draw from the data distribution, and a random mask set of size | M, |
chosen uniformly at random from [L]. Notice that the loss in (3) is computed over masked tokens. In
practice the objective in (3) is approximated by its empirical average over the finite training samples.

As aremark, let p* = HZ.LZI pr denote the optimal predictor (i.e., the minimizer of (3))). Then one can
verify that for each i € [L], p; (- | X;) coincides with the true conditional distribution p ;) X, (-] Xp)
§ X

of the i-token X éi) given the partially masked sequence X;.

Sampling procedure. Once the mask predictor p is trained, we generate new text by simulating the

reverse process. Initializing at step 7 with My = [L] and Y7 = (M,...,M) € XL, we iterate for
t=T,T—1,...,1as follows. We first choose a subset of s; masked positions to reveal, consistent
with the forward schedule. Formally, we sample a mask set M;_; C M; such that M; \ M;_,
consists of s, indices chosen uniformly at random from M; (the currently masked positions). Next,
we sample placeholder values for the tokens in M; \ M;_; using the learned mask predictor p and
current iterate Y;:

Yio1 = Pare (Vo) + Paroar, o (Xo) with X, ~5(- | V). (6)

Equivalently, we sample each masked position ¢ € M; \ M;_; from p;(- | ;) and leave the already
unmasked positions i ¢ M, as they are in Y;. We then fill in those sampled tokens to obtain the next
sequence Y;_1, while keeping other positions fixed. After repeating this procedure downtot = 1,
we output a fully unmasked sequence Yy € XF.

3 Main results

In this section, we present the convergence guarantees for the sampling procedure of diffusion
language models (see (6)).

To begin with, we introduce the following definition to characterize the quality of the mask predictor
p used in the sampling process.

Definition 1. For a mask predictor estimator p = HiT:1 Di, define its training error as

L
| M|

L ~ 3
M Z logpi(X(g) | X-)|

S logpt (X | X»] Erxont, [
ieM,
@)

Etrain = ET,XO,MT |:
ieM.

where p* is the minimizer of the objective (3).

In essence, the training error £,j, measures the likelihood gap caused by imperfect training of the
mask predictor.



3.1 Sampling error upper bound

With the above definition, we now state our main results. We first present the sampling error upper
bound. The proof is deferred to Section

Theorem 1. For any mask size schedule {s;}}-_,, let Syax == max;c(r) St be the maximum mask
size. Also, let M == (M, ..., M) denote the sequence of mask sets. Then the output Yy of the
sampling procedure (6) satisfies

2(10g2 Smax| _ 1 L

En [KL(px, || Py )] < — 1 ZI(XS”; Xé_“) + Etrain- ®)
i=1
Here, the expectation is taken over the randomness in the mask sets My, ..., Mr.

Our result demonstrates that the sampling erro—measured by the KL divergence between the output
distribution py, and the data distribution pgat,—consists of two components: an information-theoretic
term depending on the data distribution pgat, and an estimation term &y, arising from imperfect
mask predictions. It is noteworthy that the result holds for arbitrary mask size schedules {s;}7_;,
which covers parallel sampling schemes where multiple tokens are unmasked per step (s; > 1), and
thus the number of iterations 7" can be less than the sequence length L.

The first term captures the difficulty of modeling the token dependencies: it is the sum of mutual
information between each token and the rest of the sequence ZiL=1 I (X(()i); X((]_i) ), scaled by a
factor that depends on the mask size schedule {s;}7_;. The dependence on the mutual information
quantifies how the intrinsic coupling of tokens in the data affects the difficulty of sampling while the
second term &y, reflects the training error of the mask predictor.

Notably, if the mask predictor is optimal (i.e., £¢rain = 0), then the sampling error is governed purely
by the information structure of the data distribution. In general, the bound indicates that the more
statistically dependent the sequence tokens are (higher mutual information), the larger the potential
sampling error, unless more refined mask size schedules are used to compensate.

Furthermore, under a balanced mask size schedule where the mask sizes are set roughly uniform
across iterations (i.e., s; < L/T forall t € [T] and thus syax < L/T), the leading term in Theorem[l|
simplifies to O(1/T') and we obtain a cleaner bound:

Corollary 1. Suppose % Zthl St X Smax- Then the output Yy of the sampling procedure (6) satisfies

L
C , .
En [KL(pxo || Pyone)] < 71 ZI(XSU;X((] Z)) + Etrain 9

i=1

where C1 = T'Smax/ Zthl s¢ < 1 is an absolute constant. Here, the expectation is taken over the
randomness in the mask sets M, ..., Mrp.

In this regime, after 7" iterations the sampling error becomes O(1/T'), with a prefactor given by the

total mutual information 25:1 I (Xéz); X(gﬂ)) of the sequence. In the idealized case eiy,i, = 0, to
achieve a target error level € in KL divergence, one needs on the order of O(1/¢) iterations (up to a
maximum of order L, since we cannot iterate more times than the sequence length without saturating
the improvement). Meanwhile, if €4, 1S nonzero, the final sampling error will decrease to a floor on
the order of e.in. In other words, the sampling error increases proportionally to the training error,
underscoring the importance of accurate mask prediction.

Comparison with prior work. The recent work by [Feng et al|(2025) examines the efficiency of
masked diffusion models for n-gram language model, where each token is generated based on its
preceding n — 1 tokens (Brown et al.,|1992). To quantify token-level accuracy, they introduce token
error rate (TER), defined via perplexity:*

Definition 2. Given a data distribution px, and an output distribution py;, the TER is defined as

1
log, TER(py,;: px,) = —7Exq [log py, (Xo)]. (10)

“They also analyze the inefficiency of masked diffusion models via sequence error rate (SER), which falls
beyond the scope of this paper.




When n is a fixed constant (independent of the sequence length L), [Feng et al.| (2025) shows that
a masked diffusion model can achieve a small TER using a few iterations, which is independent

of sequence length L. However, their bound on TER scales as ((n — 1)/T’) L/m log |X|, which is
suboptimal for any n > 1 and becomes increasingly loose as n grows. Indeed, consider a trivial
baseline that samples Y ~ po uniformly at random from all length-L sequences, i.e., py ~ Unif(X%).
For this baseline, one can verify that log, TER(po; px,) — logs TER(px,; Px,) < log|X|. To beat
this when n > log L, the result of [Feng et al.| (2025) requires 7' > (n — 1)4™ > L, which is
substantially larger than the sequence length L. Consequently, their guarantee can be vacuous for
realistic values of n.

In contrast, our results offer a sharper guarantee, which covers arbitrary data distribution. Indeed, by
Corollary [T} we immediately obtain

log, TER(py,; px,) — logs TER(px,; Px,)

L
1 1 C1 i i
= pXUx [ pw) < ZEu (KU, o)) < 7 D IOG X7 + Fewan. (D)

where the first inequality makes use of the convexity of x — —log = and py, = Eas[py;|as]. Since

1(x$: x{y < H(xX$?) < log |X], our KL convergence bound implies a TER bound that decays
as O((log |X])/T) in the worst case. This means the token-level error in our framework drops on the
order of 1/T, regardless of n. Therefore, unlike Feng et al.[(2025)—which is confined to specific
n-gram distributions and degrades for high-order n—our bound improves the prior convergence
guarantees and holds for arbitrary distributions.

3.2 Sampling error lower bound

Given the upper bound in Theorem[I] a natural question is whether this convergence rate can be
improved. In other words, are there fundamental limits that prevent diffusion language models from
converging faster than O(1/7)?

We proceed to answer this by establishing a matching lower bound. In fact, we prove that the
dependence on the number of iterations 7" and the mutual information in Theorem ] is tight. In
particular, Theorem 2 below provides a refined expression for the error and shows that no substantially
faster rate is achievable in general. The proof can be found in Section 4}

For simplicity of presentation, we assume log, Smax and L/spax are integers without loss of general-
ity. Otherwise, the same bounds hold up to some constant factors.

Theorem 2. Consider an arbitrary mask size schedule {s;}T_| with spax = maxse(r) §¢ > 1. For

)

each token index i € [L] and mteger 0 < j <logy Smax, let W( Y C [L] be a random set such that

i¢ Wj(fi) and |W]-(7i)| = L — Smax277. Then the output Yy of the sampling procedure (6)) satisfies

Smax ] —1
Ear [KL(px, | Pyoar)] < ZZ? TE o [1X): Xo o WI)] +etain. (12)

i=1 5>0

Moreover; there exist some mask size schedule {s;}]_, with s; < Smax for all t € [T such that

Srn X 7 —1
Ear [KL(px, || pyonn)] = T67 222 By o [105G7: Xo o WI™)] +etain (13)
i=1 j>0

In summary, Theorem [2|demonstrates the sharpness of our analytic framework by refining the mu-
tual information term from Zf:l I(Xél); X(()_l)) in Theoremto Zle > i>0 27JE [I(Xél); Xpo
Wj(fi) )] , which is tight up to constant factors. The somewhat complex double sum can be understood

as a finer-grained decomposition of the mutual information between token Xéi) and the rest of the

sequence, split across different “scales” of conditioning (the sets Wj(fi)

subsets of other tokens whose size increases as j grows).

represent randomly chosen



Crucially, the lower bound (T3) guarantees the existence of a particular choice of {s;}7_; (satisfying
Smax/L =< 1/T) for which the sampling error does not decay faster than on the order of 1/T with
the same linear mutual-information dependence. In other words, it is impossible, in the worst case, to
achieve a substantially smaller error than our upper bound—the O(1/T) convergence rate and its
linear dependence on the mutual information are fundamental limits. This matching lower bound
highlights the optimality of diffusion language models’ convergence analysis: we establish the best
possible order of error decay for the parallel diffusion sampling scheme given the information-
theoretic complexity of the text data distribution.

It is worth emphasizing that the lower bound in does not hold universally for every mask
size schedule. For example, if we set s; = Sy.x and choose s; = 1 for all ¢ > 1, the resulting
sampling error becomes negligibly small. In this regime, a lower bound of the form (I3 no longer
applies. In particular, the number of iterations is 7' = L + 1 — syax, meaning the average mask size
T-1 EtT:1 s¢ is much smaller than s,,x. We conjecture that when the schedule is balanced—i.e.,

T-1 Zthl St = Smax, as in all practical settings—matching upper and lower bounds of order 1/7'
should still be attainable. Establishing this general result is an interesting direction for future work.
Remark 1. Our theory provides insights into the entropy-based unmasking strategy. Specifically, (T2)
reveals that the per-step contribution to the total sampling error is the conditional mutual information
between a newly revealed token and the remaining masked tokens. This suggests prioritizing the
unmasking of tokens whose conditional dependence on the rest of the sequence is weakest. A simple
heuristic to implement this strategy is to rank tokens by their conditional entropy at each step t:
use the learned mask predictor p; (- | ¥;) to estimate the conditional entropy H (X ®) | ;) for each
masked position ¢, and unmask the positions with the lowest conditional entropy. This approach
exploits the inequality I(X;Y | Z) < H(X | Z) for any random variables X,Y, Z, allowing us
to approximate the mutual-information criterion without requiring additional training or external
estimates. Unmasking positions with lower conditional entropy thus provides a principled way to
minimize the error contribution at each iteration.

4 Analysis

In this section, we provide the proof strategy for Theorem[I} The detailed proof for Theorem 2]and
auxiliary lemmas are deferred to the appendix.

Preparation. We find it helpful to introduce an auxiliary sequence (Y;*)Z_ using the optimal mask
predictor p* = HiL:1 p} (the minimizer of (§)). Specifically, we initialize Y = (M, ..., M) and for
each t € [T, define

Y;f**l = PMf (Y;*) + PMt\Alt—l (Xt*) with Xt* ~ p*(' | Y?), (14)
where we use the same mask schedule (M;)7_; as in the true sampling procedure (6).

Next, let us define W; := M¢ and Dy == W;_; \ W, for each t € [T]. By construction, (D;)~_,
forms a partition of [L] and |D;| = s; for all ¢ € [T]. Similar to M = (M, ..., Mr), we denote
W= (Wi,...,Wr)and D := (Dq,..., D) for brevity.

It is worth noting that by the construction of (Y;*) in (T4), given a mask schedule m = (my, ..., mr),
we can use the chain rule to express the distribution of Y as

T
pyy v (To | m) = pysay . onap (0 | M, .. mr) = HP*(UCO ody | xoowy), (15)
t=1

where we recall for any set w € [L], x o w denotes the vector in X’ with entries 2(*) for i € w.?
Similarly, the distribution of the output Y; of the sampling procedure (6)) given a mask schedule m
can be written as

T
Py (To | m) = pyy |y, mp (o | M1, .. ymr) = Hﬁ(fo ody | g owy). (16)

>Here and throughout this paper, we slightly abuse the notation: in (T3), we write p*(zo o d¢ | 2o 0 w;) ina
way that it accepts an input of length |w|, while p*, defined in (3], takes a masked sequence of length L. It is
not hard to see that the two are equivalent since the remaining tokens are replaced by the mask M.




With the above preparation complete, we now begin to prove Theorem|[I}

Step 1: Decoupling training error. We begin by separating the training error from the fundamental
sampling difficulty. For any mask schedule m, we can write:

KL(pxo () [l Pyapae (- | m)) = KL(px, () | pY*IM(' | m))

Py |M(l‘0|m / p*(zo 0 dy | T 0 w,)
/XL pXO(zO) og ————————~ nglM(xO ‘ m Zo Z pXo xo) og A(xo ody | To 0 wy) o)

(4)
ii X o O W
@ E / Px, (o) g log —0 [ 2o ) dzg

icd, () | zg o wy)

M:ml,

Here, (i) follows from py; a (2o | m) = Hf:lﬁ(xo ody | xo owt) and pys (o | m) =

iii)
(: ]E7'1X0

L pz*(XO | Xoo W)
o Z log ———
St i€D, pi<Xo | Xoo W)

]_[thl p*(xgody | g ow;) as shown in (T6) and (T3)), respectively; (ii) is true as p* and p are product
distributions; (iii) holds because P{7 = t} = s;/L. Since each set D; of size s; represents the
positions newly unmasked at step ¢, which are chosen uniformly at random from the previously
masked positions M; = W, taking expectations over all mask realizations yields:

Z X(()z)‘X()OW)
7'|1€]\4 XO)‘X(]OW)

= Etrain-

En [KL(pxo || Pyonr) — KL(px, || Py iar)] = Er 0.0, [

a7
where the last step follows from the definition of 4., in .
This decomposition shows that in order to control the KL divergence E s [KL(px, || Py, ar)] between

the distributions of the output Y5 and data X, it suffices to focus on the KL divergence E; [KL(px, ||
Pyy| )] between the distributions of the auxiliary output Y and data X.

Step 2: Parameterizing by maximum mask size. Our strategy is to establish a recursive inequality
that relates the sampling performance with maximum mask size s;,,x to those with smaller mask
sizes. Towards this, recall that the sizes of the mask sets {M;}1_, are determined by the mask size
schedule {s;}7_;. To establish our recursive bound, we parameterize the sampling difficulty by the
maximum mask size. Concretely, we define

€(Smax) = max e({s¢}), (18a)

{St}¢T=11 maxX¢e([T] St=5Smax
where for any mask size schedule {s;}7_;, define

e({s¢}) = Em [KL(px, | Py n)], (18b)

We now present the following key lemma that controls &(syax ); with proof deferred to Appendix@
Lemma 1. For any spax > 1, one has

£ (smax) < &([Smax/2]) 8’“3*21 X x50y, (19)

Given Lemmal|[I] we can apply the inequality (I9) recursively to obtain

[logs Smax |—1 9i L @ (<) 2|’log2 Smax | _ 1
E(smax) () + Y fZI(XO XN =e() 4 —m ZI W, x {7y,
j=0 i=1

(20)
Finally, note that when the maximum mask size is equal to 1, we have |M; \ M;_1| = 1 for all
t € [T, i.e., the sampling process unmasks tokens one by one. In this case, it is not hard to use the
construction of Y in (I4) and the fact that p} (- | X;) = Pxo|x (- | X¢) to deduce that (1) = 0.

o t

The claim (8) then immediately follows from and (20).



Em[KL(Px,||Pyyim)]
EmlKL(Px,||Pyyim)]

o]

[ a0 60 80 100 120 140

20
J1(X; Xx~): mutual information
7

10t
T: number of iteration
(a) (b)

Figure 1: (a) sampling error vs. number of iterations 7" where J = 2; (b) sampling error vs. mutual
information where 7' = 10.

5 Numerical Experiments

In this section, we present numerical experiments to validate our convergence theory developed in
Section For the data distribution pyat, of text X = (X (1), o, X (L)), we consider a K -state Potts
chain of length L with coupling parameter .J. Specifically, X (") ~ Unif([K]) and for i > 2,

exp(J 1{z = y})
exp(J)+ K -1’

This construction allows us to compute explicitly the mutual information I (X (@), X (=9 ), the optimal
mask predictor p* (- | X¢), and the distributions of both the data px, and the generated sample py, |M-
We implement the sampling process using the optimal mask predictor p*(- | X;) and a balanced
mask schedule where the number of unmasked tokens is the same at each iteration. Given the explicit
distributions of px, and py;|as, the expectation in the KL divergence, taken over both the mask
schedule M and the data distribution px,, is approximated via Monte Carlo simulations.

P{X® =y | XD =z} = Va,y € [K].

Set K = 10 and L = 100. Figure |I| (a) presents the sampling error (in KL divergence) vs. the
number of iterations 7'. As shown, the slope in the log-log plot is very close to —1, demonstrating
that the sampling error scales proportionally to 1/7". In addition, Figure|1|(b) plots the KL sampling
error vs. the mutual information (controlled by J). One can see that the sampling error increases
approximately linearly with the mutual information. Collectively, these numerical studies confirm
our main theoretical findings: the KL sampling error decays as O(1/T") with the number of iterations
and grows linearly with mutual information.

6 Discussion

In this work, we have made progress towards understanding the sampling process in diffusion
language models. Our results provide tight convergence guarantees, revealing that the sampling
error—quantified by the KL divergence—decreases on the order of 1/7" with the number of iterations
and increases linearly with the mutual information among tokens.

Looking ahead, our analysis suggests that the sampling error primarily stems from the discrepancy
between the true data distribution and the modeled product distribution. This observation motivates
future studies to explore low-dimensional structures or low-order Markov properties in the text
data, which may help reduce this discrepancy and thereby decrease the sampling error. Moreover,
establishing comprehensive end-to-end performance guarantees that account for both the mask
training phase and the sampling phase represents an important direction for further research. Finally,
while our current focus is on masked diffusion models, extending these insights to other types of
discrete diffusion models for language modeling is a compelling avenue for future investigation.
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A Proof of Lemma/(ll

Before proving the inequality (T9), we first introduce some notation and make a few preliminary
observations.

Recall that X o W € [X|I"I denote the sub-vector of X indexed by set . For simplicity of
presentation, for any set W C [L], we denote by
p(- | Xoo W) = pxyxeow (- | Xoo W)

the conditional distribution of X given the partial tokens Xyo W. Moreover, we define the associated
product distribution over X as

L
pe(- | XooW) =[] pi(- | XooW) with p;(-| XooW):
=1

= Px oo | XooW), i€ [L].

In a word, p;(- | Xo o W) denotes the conditional distribution of the i-th coordinate given the partial
tokens X o W and the product distribution p® (- | X o W) treats all coordinates as conditionally
independent.

Next, recall that for any mask schedule M = (My,..., Mr), we denote W; := M{ and D; =
W;_1 \ W;. Since { D, }]_, forms a partition of [L], we know from the chain rule that given a mask
schedule M, the distribution of X can be factorized as

T
Pxom(Xo | M) =[] p(Xo 0 Dy | Xo 0 W) (21)

t=1
Meanwhile, recall that the “ideal” sampling procedure (I4) yields that pys |y (20 | m) =
T1/_, p* (20 o d; | w0 o w;) and that the minimizer p} of () coincides with p;(- | X o W). Thus,
given the mask sequence M, the distribution of the auxiliary output Y5 of (I4) can be expressed as

T
pyg i (Xo | M) = []p®(Xo 0 Dy | Xo 0 W). (22)

t=1

Putting the above observations together implies given a mask sequence M, the KL divergence
between the data X and the auxiliary output Y;;" can be decomposed as a sum of KL divergences
between the true conditionals and their product-form counterparts at each sampling step:

T
Ear (KL, || oy a0)] = D Bt [KL(p(Xo 0 Dy | Xo 0 We) || % (Xo 0 Dy | Xo 0 W))).
t=1

(23)

With the above preparation in place, we are now ready to prove the inequality (T9). In light of
the definitions of €(smax) and e({s¢}) in (I8), it suffices to study the KL divergence term on the
right-hand side of (23) for each t € [T7].

To this end, let us fix an arbitrary mask size schedule {st}thl with maXie(T) St = Smax and consider
a mask set sequence M = (M, ..., M) such that |M; \ M;_1| = s;. We construct an intermediate
mask schedule whose maximum mask size equals [spax/2]. Specifically, for each ¢t € [T, let
W;_1/2 be arandom set such that Wy C W;_1,5 C W1 and W;_y /5 \ W, is a random subset of

Dy = W;_1 \ W, with size [s;/2]. For notional convenience, we define the following two sets:

Dy =Wy 0\ Wy (first set, size [s:/2])
Dy =W \ Wi_q2 (second set, size | s¢/2])

The key insight is that revealing D; = D, _ U D, . in two stages creates a dependency structure that
we can exploit. Conditioned on M = m, we can express each KL divergence on the right-hand-side
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of (23) as follows:

KL(p(Xo o d; | Xoow,) || p®(Xoodys | Xoow))
o KL(p(XO od — | Xoowy)p(Xoods | Xoowi_1/0)

| p®(Xo o de,— | Xoow)p®(Xoods | Xoow))

W KL (p(Xo 0 di— | Xo0wr) || p®(Xo o ds— | Xoow))

+ EXOOdt,, [KL(p(XO [e] dt7+ I Xo (e} wt,l/z) H p®(XO [e] dt7+ I Xo e} wt)) | XO o wt]

(D KL(p(XO ody_ | Xoow) || p?(Xood,— | Xgo wt))
+ Exgod,_ [KL(p(Xo 0 di,4 | Xoowi_12) || p¥(Xo o ds+ | Xoowi_1/2)) | Xo 0wy
+ 3 I(X§) Xgodi | Xoowy). 24)

i€dy, 4

Here, (i) holds as D; \ Dy = Dy y and W;_y /5 \ W; = D;__; (ii) applies the chain rule of the KL
divergence; (iii) makes use of the following identity:

p®(X0 ody 4 \ Xoo wt—1/2)
p®(XO [¢] dt7+ ‘ XO e} ’th)

P®(X(()i) | Xoowi_1/2)

/ p(Xo 0 ds | Xoow) p(Xoodsy | Xoows1/2)log

)
XoOdt_ | Xoowt) (XOOdt,+ | Xoowt_l/Q)log ;
Z PG | Xo ow)

pP(X§" | Xoo0 Wi—1/2)

11) Z / XO o] dt — | Xo o wt)p®(Xél) ‘ XO o wt—1/2) IOg

iy pP(XS | Xoowy)

iii . (x| X,0d, _. X,

(:) Z p(XOOdt_ | Xoowt)p®(XéZ) | Xoodt_,X()Ow,f) logp ( 0 | po t,—> Oowt)
: ’ ’ @(X | Xoowy)
Zedf,)+ b 0 0C W

= 3 I(X§ Xoody - | Xoow).

i€ds, 4

where (i) follows from our construction of the product distribution p®; (ii) is true as the marginal
distributions of p(Xg o dy 4 | Xo 0 wy_1/5) and p® (X o dy 4 | Xo 0 wy_y/2) are identical; (iii)
holds because W: N D, - = gand W, U D, _ = Wt_l/g.

Notice that in (24), the last term captures the dependency between the two sets of tokens while the
first two terms correspond to a sampling process with maximum mask size [$max/2].

Putting (23) and (24) together with the definition of &(smax) in (I8), we can derive

T
&(3max) < &([$max/2]) + Ew Z Z I(X"; Xo 0Dy | Xo 0 Wy)|. (25)
t=14€Dy,
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For the mutual information term, taking the expectation with respect to W = (W1, ..., Wr) (or
equivalently M = (M, ..., Mr)) and summing over t = 1,...,T yields

T
Ew |y > 1(X§”; Xoo Dy | Xoo Wt)]

t=14i€D; 4

. T .

o Z {%J Ew, Wi _ 1 jpimtnit(We_, ;) [I(Xél%Xo oDy | Xoo0Wy)]
t=1
1|y (i) ,

=3 I {gJ D Ew,w, . [I(X5"5 X0 0 Dy - | Xoo We) | i ¢ Wiy o]
t=1 i=1

L

t=1

T
STIXE) Xoo Dy | Xoo Wr) | i ¢ Wl/Q]

(D) Smax L 7 —1
< 2=y I(xgs X 7), (26)
=1

where (i) is true because Dy . is a random subset of W _; , with |Dy +| = |s¢/2]; (ii) arises from
the following bound:

T
Ew {ZI(XS”; XooDy_ | XgoWy) |i ¢ WMZ} < 1(x{: x5
t=1
due to W;_1 \ W, = D, = D, _ U D,y and the chain rule of mutual information that I(X;Y |
)+ 1(X;2)=1(X;Y,Z) forany X,Y, Z ~ px vy z.

Combining (23)) and (26)) establishes the recursive inequality (T9), thereby completing the proof of
Theorem 11

B Proof of Theorem 2

In this section, we prove Theorem[2] Our strategy is to establish the lower bound (T3) first, then
sharpen the factor in the upper bound (8) to obtain the refined upper bound (12).

B.1 Lower bound analysis

We begin by reminding the readers of the sampling process introduced in Section [2| Recall that
M; denotes the set of masked positions at step ¢ and that we define W; := [L] \ M, as the set of
unmasked positions. Equivalently, the sampling process creates a decreasing sequence of random
sets [L] = Wy 2 Wy D --- D Wr = &, where each W} is obtained from W;_; by removing s;
newly revealed positions. The sampler starts with a fully masked sequence Y7 = (M, ..., M) and
iteratively reveals tokens by going backwards through time ¢t =7, — 1, ..., 1. At each step ¢, the
sampler predicts s; tokens located in the unmask set W;_; \ W;.

Step 1: Auxiliary sampling process. To establish the lower bound, let us consider a specific mask
size schedule {s;}7_;. For some s,y > 1, each s; is independently chosen from {Smax;, Smax/2}
uniformly at random. Without loss of generality, we assume that L = Z?:l s¢, which implies that
T = (1+0(1))z2E.

3Smax

To analyze the sampling process with the chosen mask size schedule, we reorganize the original
T-step sampling process into a K -step process where K = 2L/spax. Let [L] = Wy 2 W D
.-+ O Wg = @ be a decreasing unmask sets where each W}, is a random subset of W _1 such
that [Wi_1 \ Wi| = Smax/2. In this reorganized view, each “super-step” in the K-step process
corresponds to revealing syax/2 positions. The correspondence between original steps and super-
steps is as follows:

* When $; = Smax/2 in the original process: the auxiliary sampler takes one super-step
k—k-1).
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* When s; = spyax in the original process: the auxiliary sampler takes two super-steps at once
k—k—2).

Since each s; is chosen uniformly from {Smax, Smax/2}, €ach type of transition occurs with proba-
bility 1/2.

The key insight comes from analyzing two-super-step transitions (kK — k — 2), which occur when
S¢ = Smax- Consider the case where the sampling process transitions from & to k — 2, which happens
with probability at least 1/4. For such transitions, define:

Dy, = Wy_o \ Wi, (all newly revealed positions)
Dy = Wy1 \ Wy, (first batch, size Smax/2)
Dy y = Wy_o \ Wi_1. (second batch, size $ax/2)

Using the non-negativity of the KL divergence and repeating the argument for (26)), we obtain the
following lower bound:

Enr [KL(px, || Pyojar)] — €train = Ear [KL(px, || Pyieiar)]

Y%
==
(=
=

(X" Xg 0 Dy _ | Xg0 Wk)}

Smax 7 .
- &ZZE{I(X[S ):Xgo0 Dy _ | XooWy) | i ¢ Wl}
=1 k=1
L
_ Smax (i). ,
— 82 ;E[I(XO s XooWh) | i ¢ Wil (27)

Step 2: Hierarchical decomposition. In what follows, we will develop a stronger lower bound
through a more sophisticated recursive analysis, which leads to the desired result (T3)). To this end, for
any super-step k with two-step transition, applying the decomposition in (24) and the non-negativity
of the KL divergence, we can derive: conditioned on W = w,
KL(p(Xo o di | Xo o wy) || p¥(Xo o di | Xo 0 wy))
> 37 I(X$ Xo o di— | Xo o)
i€dy, +
+ EXOOdk,_ [KL(p(XO (@) dk;’Jr | XO (e} U}kfl) || p® (XO @) dkﬁ, | XO e} wk,l))] . (28)

Consider the case & = 2 where the sampler uses W5 and Wy consecutively. The above inequality
(28) tells us that

Ew [KL(p(Xo 0 D2 | Xo 0 Wa) || p®(Xo 0 Da | Xgo0 Wa))]

Z]EW{ S I(X$: X0 Dy | Xo 0 Wa)

1€D2 4

+ Ew,xo00, _ [KL(p(X0 © D2y | Xo 0 W) || p¥(Xo 0 Dy y | Xo 0 Wh))].

By construction, one has |[Ws| = L — Smax, [W1| = L — Smax/2, and | Dy, _| = |Da 1| = Smax/2.

To leverage this structure, we define a hierarchical family of random sets: for any ¢ € [L], let
Wo(ﬂ) c...C Wj(ﬂ) C --- C [L] be a sequence of increasing random sets such that i ¢ Wj(ﬂ)
and |Wj(7i)| =L — smax2 7 forall 0 < j < logy smax. Consequently, we find that

Ew [KL(p(Xo 0 D2 | Xo 0 Wa) || p®(Xo 0 Da | Xoo0 Wa))]

(i) s
> II]&XEA(iv) /\(7)
= 2 W1 i 7W0 i

+Ew,xon,._ [KL(p(X0 0 D24 | Xo o W1) || p®(Xo 0 Day | Xo o0 Wh))]

[1(X57; X o W | X0 W)
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where the inequality holds as Wo(fi) - Wl(fi) and |W1(7i) \Wo(fi” = |Ds_| = |Da+| =
Smax /2. Applying the above relationship recursively across all hierarchical levels and invoking the
decomposition (23) yields

L 1ogs Smax

En [KL(px, | pY*\M)] P Smax Z Z 27 EW< D WD [I(X(()i);Xo O/W\j(ii) | Xo O/Wj(:?)]

=1

(29)

Now we simplify the hierarchical sum on the right-hand side of (29). Recall that for any ¢ € [L] and
j > 0, we define Wj(_l) C [L] to be a random set such that i ¢ Wj(_z) and |Wj(_l)| =L — spax277.
Combining {Wj(_i)}jzl with {Wj(_i)}jzl, we can derive

logs Smax

> 2B oo [ Xo o Wi | Xo o WD)

. 10g2 Smax

Z 2 Eg o oo XS Xo 0 W) = 1(X(7: X0 0 WD)

10g2 Smax 10g2 Smax

S g X W) 1S R LS X W)
J =
10g2 Smax
1 i —i , »
T2 2By o0 [1(XE"5 X0 0 W) "EW(-» [1(x s X0 0 W)
j=1
! (2) (—1)
* TEW [1(X5”; Xo 0 Wigy),.0)]
log2 Smax
> 1 oy 1 . y
5 Z W( o[ I(X(())’ OW( ))] - §EW(§*1-> [I(X(());XooWé ))].

where (i) uses the chain rule of the mutual information; (ii) holds as W( Y and /V[7j(7i) have the same
marginal distribution. Substituting the above bound into 29), we obtain

~

L logy Smax
Smax i —1 i —1
Eur [KL(px, || pyyim)] 2 { Z 27E <—1) I(X(()z);XOOWj( l))] —Eypen [I(Xé ) X 0 W Z))]}
(30)

Step 3: Combining bounds. Finally, it is not hard to deduce from the basic bound (27) that

Smax K2
En [KL(px, || pygin)] 2 ZEWM X575 Xo o Wi)]. 31)

Therefore, combining (30) and (31) with the training error bound (17) yields the desired lower

bound (T3).

B.2 Upper bound analysis

For the refined upper bound (12), we will use the introduced random sets {Wj(fi) }j>1 to improve
the analysis in step (ii) of @) Since W;_1 \ Wy = Dy = D, _ U D, 4, one can use the chain rule
of the mutual information to derive

Smax (3
Z S IX; Xoo Dy | Xoo Wy)| < ZEW o [1(x 7 X0 0 WD),
t= 1'LEDf+
(32)
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where we recall Wo(fi) C [L] to be a random set such that i ¢ Wo(fi) and |W0(7i)| = L — Smax-

Hence, applying the same recursive argument as for (29), this improvement allows us to obtain the
refined inductive relationship (T9) as follows. For any 0 < j < 10gy Smax:

L
E(smax2 ) < e(smax20FD) + ‘9;“%2—3' ; E[1(X{"; Xo 0 W), (33)
Applying this inequality recursively gives
() < (1) 4 S log2§‘jx_12—j XL:E[I(X(i)-X o W) (34)
max) S 27, 2 - o s Xo f .

Therefore, the desired refined upper bound (12) immediately follows from the fact that £(1) = 0.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work and future directions are discussed properly.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions and a complete (and correct) proof are provided.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results is
disclosed.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The synthetic data generation is described in the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the details necessary to understand the results are specified.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The results are accompanied by error bars suitably and correctly defined.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The numerical experiments on the synthetic data are not computationally
intensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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