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ADAS: A High Computational Utilization Dynamic

Reconfigurable Hardware Accelerator for Super Resolution

LIANG CHANG, XIN ZHAO, and JUN ZHOU, University of Electronic Science and Technology of

China, China

Super-resolution (SR) based on deep learning has obtained superior performance in image reconstruction. Re-

cently, various algorithm efforts have been committed to improving image reconstruction quality and speed.

However, the inference of SR contains huge amounts of computation and data access, leading to low hardware

implementation efficiency. For instance, the up-sampling with the deconvolution process requires consider-

able computation resources. In addition, the sizes of output feature maps of several middle layers are extraor-

dinarily large, which is challenging to optimize, causing serious data access issues. In this work, we present

an all-on-chip hardware architecture based on the deconvolution scheme and feature map segmentation strat-

egy, namely ADAS, where all the generated data by the middle layers are buffered on-chip to avoid large data

movements between on- and off-chip. In ADAS, we develop a hardware-friendly and efficient deconvolution

scheme to accelerate the computation. Also, the dynamic reconfigurable process element (PE) combined with

efficient mapping is proposed to enhance PE utilization up to nearly 100% and support multiple scaling factors.

Based on our experimental results, ADAS demonstrates real-time image SR and better image reconstruction

quality with PSNR (37.15dB) and SSIM (0.9587). Compared to baseline and validated with the FPGA platform,

ADAS can support scaling factors of 2, 3, and 4, achieving 2.68×, 5.02×, and 8.28× speedup.
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1 INTRODUCTION

As one of the successful artificial intelligent algorithms, deep convolution neural networks have
been widely employed in various tasks, such as object detection, automatic driving, and image
classification [4, 14, 20, 44]. Recently, a series of super-resolution (SR) works employed deep
convolution neural networks, including FSRCNN, IDN, and DRCN [3, 5, 9–12, 17, 18, 21, 43, 45],
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which has improved the reconstruction performance compared to traditional methods [13, 16, 27,
35]. For hardware accelerators, the performance of deep-learning-based SR hardware implemen-
tations [15, 22, 25, 26, 33, 36] is also better than that of the traditional method-based SR hardware
implementations [2, 23, 27, 39]. However, the deep-neural-network-based SR algorithm contains
an up-sampling process like the deconvolution layer, inducing massive computation operations
for hardware implementation. Sufficient computational resources are required to accelerate the
deconvolution layer to meet the real-time requirement.

Although the deconvolution layer can be optimized on the hardware acceleration with various
methods [6, 30, 42], several obstacles are still challenging to be solved. On the one hand, low
processing element (PE) utilization and data load unbalance can be further explored to improve
the computation efficiency. On the other hand, the function of data-intensive SR is to reconstruct
images or videos and generate the output with higher resolution. The process of forward inference
produces a large amount of output data between different layers due to up-sampling and the large
size of the input feature map. In addition, with the development of display technology, ultra-high
resolution is required by many types of advanced display equipment, such as 4K and 8K monitors.
Consequently, data access becomes a foreseeable bottleneck to obstacle hardware performance.
The frequent data access between on-chip logic and off-chip memory may result in extremely
high power consumption and low system throughput for bandwidth limitation.

Based on the above observations, several solutions can be employed. For instance, the compres-
sion technique can be used to reduce memory overhead [24, 28]. Layer fusion can decrease data
access between on- and off-chip memory to relieve the pressure of bandwidth [1]. In addition, var-
ious acceleration methods provide solutions to SR, including Winograd convolution and im2col
scheme [31, 40, 41] to accelerate computation by reducing the number of multiplications and con-
verting convolution to matrix multiplication. In this article, to further improve the performance of
the SR-based hardware accelerator, we explore an end-to-end hardware implementation on FPGA.
We develop A high computational utilization Dynamic reconfigurable hardware Accelerator for SR,
namely ADAS. The ADAS is equipped with a hardware-friendly and efficient deconvolution scheme
to develop a high-computational-efficiency intelligent SR acceleration system. Also, the all-on-chip
strategy is executed to reduce the data movements between on-chip logic and off-chip memory, cor-
respondingly saving the bandwidth. The contributions of this article can be summarized as follows:

• We present an all-on-chip super-resolution hardware architecture, namely ADAS, based on
the proposed deconvolution scheme and the idea of feature map segmentation. Only the
input and output of ADAS access with the off-chip, which can avoid the data access between
the middle layer and off-chip memory, further improving the system throughput to maintain
real-time super-resolution. In addition, the interpolation and color space conversion modules
are simplified to further lightweight hardware resources.
• We propose an efficient deconvolution scheme and a dynamic reconfigurable PE, namely
DR_PE. The DR_PE is based on exploring computing resource utilization and load bal-
ance. This method can support different scaling factors, achieving nearly 100% PE utilization
and eliminating the problem of load unbalance. Correspondingly, a significant end-to-end
speedup is achieved in super-resolution. In addition, the proposed output data alignment
strategy can realize the sequential output of the feature map after super-resolution and alle-
viate the data re-arrangement outside the chip. To the best of our knowledge, our deconvo-
lution scheme has achieved 100% computational utilization for the first time without a load
unbalance problem.
• We re-train and quantize the SR network to ensure image reconstruction quality while re-

ducing logical resource overhead. In order to adapt to the all-on-chip architecture, several
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Table 1. The Structure of FSRCNN

Layer Operation Kernel Size Output Size (MB)a

L1 Convolution + PReLu 5 × 5 442.96
L2 Convolution + PReLu 1 × 1 94.92
L3 Convolution + PReLu 3 × 3 94.92
L4 Convolution + PReLu 3 × 3 94.92
L5 Convolution + PReLu 3 × 3 94.92
L6 Convolution + PReLu 3 × 3 94.92
L7 Convolution + PReLu 1 × 1 442.96
L8 Deconvolution 9 × 9 7.92

a Output feature map size is obtained with the input size of 1080p (1920 × 1080) in

fp32 precision.

optimization strategies are used to re-train the network to obtain a higher peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM). In addition, quantization is applied
to facilitate hardware deployment.

The remainder of this article is organized as follows. Section 2 introduces the basic knowledge of
deconvolution and super-resolution and then analyzes the existing problems. Section 3 discusses
the designed all-on-chip super-resolution architecture. Section 4 explores the optimization space
of deconvolution and proposes the optimization method. Section 5 illustrates the experimental
results and detailed analyses. Finally, we conclude this work in Section 6.

2 PRELIMINARY AND OBSERVATION

2.1 Super-resolution

Super-resolution refers to the reconstruction of low-resolution images or videos to obtain high-
resolution ones without losing image quality as much as possible [34]. It can be used in many fields
such as industrial detection, live broadcast, medicine, and security [19, 37]. Typically, the super-
resolution methods contain interpolation, reconstruction, and learning schemes. The learning-
based scheme has demonstrated superior results and performance compared to the traditional
scheme. Here, the commonly used evaluation metrics for image reconstruction quality of super-
resolution include the PSNR and SSIM index [38]. Usually, the PSNR is used to evaluate the SR-
based hardware model, where this work employs both the PSNR and SSIM to facilitate comparison.

2.1.1 Observation (I). Super-resolution is different from conventional neural networks like im-
age classification. Traditionally, in the process of forward inference, the feature map size of the
next layer decreases, and the amount of data decreases gradually. However, in super-resolution,
the amount of data of the output feature map in each layer does not decrease and occasionally
increases. In addition, the input feature map processed by SR is generally much larger than that
of other CNNs. For instance, the FSRCNN network takes 1080p images as input for the SR system,
getting many inter-layer output data. First, the inter-layer data induces a serious data interaction
problem to deploy the SR on FPGA, as shown in Table 1. Moreover, such output data of each layer
causes high-memory-access power and reduces the system’s overall performance. Furthermore,
storing all intermediate data on-chip requires a significant memory resource, and it is challenging
to find a current FPGA solution to meet the requirement.

2.2 Deconvolution

In a convolution neural network, there are two types of sampling units: down-sampling and up-
sampling. For example, pooling is the down-sampling unit. On the contrary, deconvolution belongs
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Fig. 1. An example of deconvolution operation. For the enlarged input feature map, the blue, green, and gray
boxes indicate the valid data from the original input feature map, the interpolated “0” value, and the padding
data, respectively.

to the up-sampling unit, which is used to enlarge the input feature map. With different scaling
factors, output feature maps with different sizes can be obtained. The deconvolution unit is com-
mon in neural networks such as super-resolution [12] and Generative Adversarial Networks

(GANs) [46]. The deconvolution layer on hardware is typically developed via interpolation to en-
large the input feature map. The enlarged input feature map is then processed by the traditional
convolution method to obtain the final output feature map. Consequently, deconvolution compu-
tation is much larger than convolution computation due to input and kernel size enlargement.
Figure 1 indicates the computation flow of deconvolution, where the width and height of the input
feature map are 2, and the scaling factor is set to 2 (i.e., double the size of the input feature map).
Initially, the input feature map is filled with “0” to get an enlarged input feature map with the size
of 6 × 6. Then, a 3 × 3 convolution is carried out to obtain the output feature map with the size of
4 × 4, twice larger than the original input feature map.

2.2.1 Observation (II). The above implementation is inefficient since a large number of “0” val-
ues should be inserted into the input feature map. The inserted “0” is recognized as invalid compu-
tation to the final results. As shown in Figure 1, the proportion of invalid computation is as high
as 52.1%. In this article, we discuss the optimization of inserted “0” rather than the optimization
of “0” value brought by the padding operation. In addition, the larger scaling factor will induce
more invalid computations. Here, the critical issue is eliminating the invalid computation of the
deconvolution layer to improve the computation efficiency.

2.3 Structure of FSRCNN

FSRCNN is a high-performance and effective SR network with the learning-based scheme, which
is adopted in most SR-based hardware works, as shown in Table 1, where a 5×5 convolution layer
is used for feature extraction [12]. Two 1 × 1 convolution layers are applied to the compression
and decompression of the computation, where the former is employed to ensure the computation
reduction of four middle 3 × 3 convolution layers. At the same time, the latter is used to provide
sufficient sampling data for deconvolution. In the whole network, the deconvolution layer with
9×9 kernel size accounts for 69.6% of the computation, which needs to be optimized. In this article,
we implement and optimize the SR to the FPGA based on FSRCNN.

2.4 Related Work

Based on the above observations, two innovation designs can be considered: improving the com-
putation efficiency of the deconvolution layer and optimizing memory accesses. To improve
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the computation efficiency of the deconvolution layer, [7] employed the transforming

deconvolution-to-convolution (TDC) method. The original deconvolution operation could be
converted into multiple convolution operations and reduce the convolution kernel size by com-
pressing the invalid zero computation. For example, the deconvolution with kernel size 5 × 5 can
be decomposed and compressed to four convolution operations with kernel size 3 × 3, 3 × 2, 2 ×
3, and 2 × 2. Correspondingly, the load time is 9, 6, 6, and 4, with the computational utilization of
100%, 67%, 67%, and 44%, respectively, where the loading time is imbalanced and computational
utilization is low for hardware implementation. [6] is an extension work of [7], which improved
the load balance. Specifically, [6] distributes the one-third computation of convolution 3 × 3 to
convolution 2× 2, which made the load time to 6 (9 – 3), 6, 6, and 7 (4 + 3), with the computational
utilization of 67%, 67%, 67%, and 78%, respectively. As a result, the loading time balance is improved
while the computational utilization is still low.

The computational utilization and load balance can be further improved with both the algorithm
and the hardware innovation. [31] proposed a Winograd fast algorithm-based deconvolution layer,
reducing the number of multiplications. In addition, the input frames can be divided into multiple
blocks, reducing the data capacity of the middle layer feature map, which dramatically reduces
the required on-chip memory resources [15, 31]. For bandwidth optimization, [8] developed a
bandwidth-efficient architecture based on the layer fusion mechanism, reducing the bandwidth by
98.4%. [28] and [26] proposed a tile-based selective SR chip SRNPU, which can reduce communi-
cation bandwidth with external memory by 78.8% by enabling efficient caching of intermediate
feature maps with short reuse distance.

We mainly focus on hardware innovation in our ADAS architecture. We improve the computa-
tion utilization of the deconvolution layer and achieve load balance on the FPGA. All the interme-
diate data are handled on-chip to reduce the memory accesses and improve the performance of
the SR-based hardware accelerator.

3 THE PROPOSED ADAS HARDWARE ARCHITECTURE

This section presents the proposed ADAS architecture and each component of ADAS. The opera-
tions and all-on-chip mechanism are discussed. The detailed design of the core computation engine
for the deconvolution layer will be provided in the next section.

3.1 Overall Architecture

Figure 2 provides the all-on-chip ADAS hardware architecture, including accelerator cores with
dynamic reconfigurable PE (DR_PE), activation/weight (A/W) distributor, Share Adder Tree
with inter-layer buffer, Nearest/T-buffer units, RGB2YCbCr and YCbCr2RGB units, Output Re-
shaper, special process unit (SPU), and Global Controller. Several necessary design components,
such as weight/input buffers, direct memory access (DMA) unit, and off-chip memory, are also
demonstrated in Figure 2. In the ADAS architecture, the inter-layer output feature map data can
communicate with the inter-layer buffer according to the all-on-chip mechanism without moving
into the off-chip memory (❶). The DR_PE locates in a fixed core to accelerate the deconvolution
layer (❷), and the A/W distributor is used to balance the computation in different cores (❸). SPU
is used for activation, data truncation, and other operations. The Global Controller unit controls
the interactions among units in the hardware architecture.

For the end-to-end processing of ADAS, the input feature map and weight data are transferred
from off-chip memory to the on-chip buffer through the DMA engine. For weight data, we load
the entire weight data of the network into the weight buffer at once. The RGB2YCbCr unit pre-
processes the input feature map data and then sends to the PE cores and the traditional interpo-
lation unit for subsequent operation, respectively. Before the PE core performs computation, the
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Fig. 2. ADAS architecture. ❶ indicates that the all-on-chip mechanism is adopted, and the feature map data
output from the middle layer does not interact with the off-chip memory. ❷ indicates that the proposed
dynamic reconfigurable PE (DR_PE) is used for the deconvolution operation. ❸ realizes efficient mapping in
the process of deconvolution (or convolution).

data to be computed is first distributed to the corresponding PE unit through the A/W Distributer.
The PE computation results are added via the Shared Adder Tree and then output to the Output Re-
shaper. The computation results are processed by the post-processing unit YCbCr2RGB and then
output to the off-chip.

3.2 Design Components and Operations

3.2.1 RGB2YCbCr (Preprocessing). For the input RGB image, we first convert it to YCbCr color
space. The specific conversion is shown in Equations (1) to (3). We can see that each component
coefficient is a fractional value. In order to simplify the computation, we shift all the coefficients
to the right by 12 bits, which becomes integer coefficient multiplication:

Y = (16 + 0.504G ) + (0.257R + 0.098B) (1)

Cb = (128 + 0.439B) − (0.148R + 0.291G ) (2)

Cr = (128 + 0.439R) − (0.368G + 0.071B). (3)

The specific hardware structure is shown in Figure 3. The integer coefficients are stored in the
Coefficient Map unit, which remains unchanged during the computation. The input of RGB color
space is dispatched to the multiplication unit, multiplied by the corresponding coefficients, and
then sent to the adder tree. Before output, the intermediate results are processed by the Data Cut
unit, and the lower 12 bits are rounded off. Then, YCbCr results are obtained. Because the human
eye is more sensitive to the luminance component Y, we use the neural network method to process
the Y component. Thereby, the data of the Y component is dispatched to the PE block. Meanwhile,
for the chrominance component Cb and Cr, we use the traditional interpolation method and send
them to the nearest unit.

3.2.2 PE Cores (Computation for Y Channel). As shown in Figure 2, only the PE for deconvo-
lution is dynamically reconfigurable. In the whole network, the convolution size includes 1 × 1,
3 × 3, and 5 × 5. Correspondingly, in addition to the DR_PE for deconvolution, there are also PEs
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Fig. 3. Structure of RGB2YCbCr unit.

Fig. 4. Mapping of the nearest neighbor interpolation. The blue indicates the original data, and the orange
indicates three copies of the original data.

for convolution, which are PE_1 (kernel size 1 × 1), PE_3 (kernel size 3 × 3), and PE_5 (kernel size
5 × 5). In order to make the computation resource distribution in balance, we divide the inference
of the whole network into three parts and map them to corresponding PE cores to complete the
computation. Among them, core 1 completes 5 × 5 and 1 × 1 convolution, corresponding to the
first two layers of the network. Core 2 implements 3 × 3 convolution, corresponding to the mid-
dle four layers with 3 × 3 convolution. Core 3 accomplishes the operation of the last two layers,
including 1 × 1 convolution and 9 × 9 deconvolution. The A/W Distributor maps input feature
map data and weight data to the specific PE units, and the Shared Adder Tree unit completes the
accumulation of PE results. The final output data from PE blocks are sent to the Output Reshaper
unit for data alignment. Because the all-on-chip structure is adopted, the data generated between
layers is stored in the Inter-layer Buffer.

3.2.3 Nearest Unit and T-buffer in Interpolation (Computation for Cb and Cr Channel). We adopt
a simple interpolation scheme for the data from Cb and Cr channels, namely the nearest neighbor
interpolation. According to the interpolation theory, we design a simple mapping scheme, that is, to
make three copies of each data, and this method can be implemented without logical computation,
as shown in Figure 4, so the resource overhead is low. T-buffer is used to store interpolated data
temporarily.

3.2.4 YCbCr2RGB (Post Processing). The Y, Cb, and Cr component data obtained via PE cores
and the nearest unit are sent to the YCbCr2RGB unit, converted to RGB color space, packaged,
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Fig. 5. An example of feature map segmentation. The blue indicates valid data, and the gray indicates
padding data. An original feature map is segmented into four small features in this case.

and transferred to the off-chip memory through the DMA engine. The conversion operation and
hardware implementation are similar to RGB2YCbCr, while the coefficients differ.

3.3 All-on-chip Mechanism

From observations (I) and (II), one of the significant super-resolution challenges is that the size of
the inter-layer output feature map is very large, requiring a large storage capacity and frequent
data access, which undoubtedly reduces the hardware efficiency. As shown in the last column
of Table 1, if the output feature map data is directly stored in the inter-layer buffer, it is almost
impossible to realize due to the limited on-chip memory resources of FPGA. Accordingly, it is an
important issue how to relieve the pressure of memory access effectively.

3.3.1 Exploration. The feasible idea is to reduce the size of the input feature map so that the size
of the output feature map is correspondingly shrunk, reducing the capacity required for on-chip
storage and off-chip memory access. In other words, we can directly divide the input feature map
into several small feature maps, send them to the network for inference, and then splice several
small output feature maps as the final output. As shown in Figure 5, a significant feature map is
segmented into four small feature maps and processed in turn. However, after the experimental
evaluation, there is a noticeable decrease in PSNR and SSIM of the output feature maps. The main
reason is that the segmentation operation destroys the spatial information features at the junction
of small feature maps. Based on this problem, we refer to the block convolution method proposed
by Li et al. [29], whose basic idea is to divide the original feature map into multiple blocks during
training. In this way, it can eliminate the spatial correlation between blocks.

3.3.2 Procedure. Based on the above exploration, we modified the original training process. It
mainly includes two differences: (1) we segment each input image in the training set into N × N
(N is an even number) small feature maps and then send them to the network for retraining, and
(2) in the experimental evaluation, the PSNR and SSIM metrics are evaluated after several small
feature maps are spliced into a large feature map.

3.3.3 Results. We retrain the modified model and evaluate the PSNR and SSIM of the network
when the parameter N takes different values. When the parameters N are set as 4, 8, 16, 24, 32, and
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Fig. 6. Deconvolution optimization. (a) Interpolated input feature map; four boxes with different colors in-
dicate four convolution inputs with size 9 × 9. (b) Four compressed convolution inputs with different sizes
from (a). (c) Output feature map, where four colors represent that four outputs are achieved simultaneously.

40, respectively, we conduct retraining and evaluation on Set5, Set14, and BSD100 datasets. The
results show that the PSNR and SSIM decreases are less than 0.02dB and 0.0005, respectively. The
main reason is that the network size is small and the structure is simple, thus resulting in little
impact on the final result after the segmentation operation. When the input image size is 1080p,
we set the parameter N to 40. Compared with the traditional implementation, the feature map size
is reduced by 1,600 times so that all the middle layer feature maps can be stored in the inter-chip
buffer, significantly reducing the off-chip access and on-chip memory capacity.

4 HARDWARE-FRIENDLY AND EFFICIENT DECONVOLUTION DESIGN FOR ADAS

This section provides the problems and the optimization space of the deconvolution layer. Based
on analyses, the efficient deconvolution scheme and hardware design are proposed.

4.1 Exploration of Efficient Deconvolution

As aforementioned, an optimization of the deconvolution layer is to remove the “0” value from
the computation. In the following discussion, we employ scaling factor 2 (X2 SR) to analyze the
computation efficiency of the deconvolution layer with the kernel size 9 × 9. Figure 6(a) is an
interpolated input feature map; only 25 data in the red box are valid, and the remaining 69.1% of
the data is a “0” value, which can be weeded out from the computation. As shown in Figure 6(b),
we compress the “0” value to obtain valid input with size 5 × 5 marked in red, and the kernel
size is also compressed to 5 × 5, realizing the convolution from 9 × 9 to 5 × 5. Using the above
compression method and continuing to slide the convolution kernel, we can get a total of four
inputs of different sizes, which are 5 × 5 (marked in red), 5 × 4 (marked in orange), 4 × 5 (marked
in sky blue), and 4 × 4 (marked in purple), respectively.

4.1.1 Exploration of Computing Resource Utilization and Load Balance. As shown in Figure 6(a),
the adjacent four inputs marked by different colors are calculated with corresponding weights to
perform convolution operation. We observe that the required input data remains unchanged. Only
the corresponding weights should be adjusted where the resource can be shared. In other words,
no new input data is introduced for these four convolutions. In order to improve the parallelism of
calculation, four convolutions with size 9 × 9 can be calculated simultaneously for the same inter-
polated input as shown in Figure 6(a). Figure 6(b) illustrates the compressed input corresponding
to the four convolutions. Correspondingly, the PE with size 5 × 5 is usually used to meet the
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requirements of four convolutions concurrently. However, for computing resources, there will be
different degrees of resource waste for the input size smaller than 5× 5. Take 5× 4 convolution as
an example: 20% of multiplication resources are not used. In general, 0%, 20%, 20%, and 36% of PE
resources are wasted for the above four convolutions.

In addition, the PE may not be fully utilized when the input data size is smaller than the hard-
coded kernel, causing a computation load to unbalance. Several solutions tend to solve the load
unbalance issue. For example, the TDC method redistributes computing tasks to different PEs [7].
However, the load unbalance problem still influences the computation performance, and PE uti-
lization can be further increased. Therefore, we develop a dynamic reconfigurable PE, recognized
as DR_PE, which can simultaneously compute the full four convolutions. The PE utilization can
reach nearly 100%.

4.1.2 Exploration of Data Alignment. Figure 6(c) shows the output feature map, where four
different colors represent that four results are obtained simultaneously under the parallelism of
4. However, the upper and lower adjacent four output results are located in two different rows
instead of output continuously in a row sequence, which should be re-arranged. We modify the
output buffer and design a data reshaper to make the data output in sequence, only inducing a
slight overhead.

4.2 ADAS Acceleration for Deconvolution Layer

Based on the above analyses, we develop a hardware structure to support the efficient acceleration
of the deconvolution layer, as shown in Figure 7(a). The overall structure consists of an A/W data
distributor, PE array, shared adder tree, output data truncation, and reshaper unit, which are also
core components of ADAS architecture as shown in Figure 2. The A/W distributor realizes the
mapping of the input feature map and weight and assigns them to different PEs to accomplish
the computation. The PE array includes nine DR_PE units. Each DR_PE unit can complete nine
MAC (multiplication and addition) operations. The shared adder tree unit accumulates the results
of DR_PEs to obtain the intermediate results of convolutions. The output data is truncated in the
data truncation unit and then sent to the output reshaper unit to realize data alignment and get
the final output in sequence.

4.2.1 DR_PE Design. The structure of DR_PE is shown in Figure 7(a), which can realize the
MAC operations of nine pairs of feature map data Ai and weight data Wi . The DR_PE can work
on three computation modes controlled by two multiplexers (MUX). The details of the different
modes are as follows:

Mode 0: output one convolution result with an input data length of 9.
Mode 1: output two convolution results with input data lengths of 7 and 2, respectively.
Mode 2: output three convolution results with input data lengths of 4, 3, and 2, respectively.
Based on the above three modes, the DR_PE can perform the up-sampling operation (i.e., decon-

volution) at different scaling factors with only slightly additional logic resource overhead, where
just two multiplexers are added for DR_PE compared with the traditional method.

4.2.2 Mapping Scheme. The integer SR scaling factor is primarily used in the practical appli-
cation of the SR model. In addition, there are few super-resolution application scenarios based
on fractional scaling factors, and its hardware implementation overhead is significant, resulting
in extremely low computational efficiency. Therefore, based on the DR_PE unit, we discuss three
commonly used scaling factors, 2, 3, and 4, respectively. We first introduce the mapping method
at different scaling factors. Concurrently, the corresponding PE utilization and computation load
are analyzed.
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Fig. 7. Efficient deconvolution hardware structure for ADAS. (a) Proposed deconvolution hardware design
and DR_PE structure. (b) Data truncation circuit. (c) Output Reshaper diagram. PW and pr represent the
write pointer and read pointer, respectively. The operation process is ❶→ ❷→ ❸→ ❹.

Table 2. X2 SR Convolution Compression, Decomposition, and Mapping

Convolution Size
after Compression

Convolution Length
after Decomposition

Mapped DR_PE and
Corresponding Working Mode

5 × 5 9 + 9 + 7 DR_PE(0_0) M0a , DR_PE(0_1) M0, DR_PE(0_2) M1
5 × 4 9 + 9 + 2 DR_PE(1_0) M0, DR_PE(1_1) M0, DR_PE(0_2) M1
4 × 5 9 + 9 + 2 DR_PE(2_0) M0, DR_PE(2_1) M0, DR_PE(2_2) M1
4 × 4 9 + 7 DR_PE(1_2) M0, DR_PE(2_2) M1

a M0 and M1 represent mode 0 and mode 1, respectively.

X2 SR: If the scaling factor is 2, four deconvolutions can be computed simultaneously. Follow-
ing the compression method introduced in Section 4.1 and for four convolutions with size 9 × 9,
we can compress them to 5 × 5, 5 × 4, 4 × 5, and 4 × 4, respectively. Here, 81 MAC operations
are required, consistent with the number of MACs supported by the PE array. To adapt the com-
putation mode of DR_PE, we decompose and map the four compressed convolutions. The specific
decomposition process is shown in column 2 of Table 2; 5 × 5 convolution can be decomposed into
two convolutions with a length of 9 and one convolution with a length of 7. Both 5 × 4 and 4 × 5
convolutions can be decomposed into two convolutions with a length of 9 and one convolution
with a length of 2. The 4 × 4 convolution can be decomposed into one convolution with a length
of 9 and one convolution with a length of 7.

Next, we map the decomposed convolutions to the corresponding DR_PEs working in different
modes, shown in column 3 of Table 2. The kernel size of convolution is 5 × 5. It is mapped to
DR_PE numbered (0_0), (0_1), and (0_2), working in mode 0, mode 0, and mode 1, respectively. A
more intuitive mapping can be seen in Figure 8(a), where seven DR_PEs work in mode 0 and two
DR_PEs work in mode 1 in the PE array. In this case, every DR_PE in the PE array works with
100% utilization if not considering padding data. Correspondingly, there is no waste of computing
resources, thus avoiding computation load unbalance.
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Fig. 8. DR_PE allocation. (a) PE array under the scaling factor 2. (b) PE array under the scaling factor 3.
(c) PE array under the scaling factor 4. DR_PE marked in blue works in mode 0, DR_PE marked in orange
works in mode one, and DR_PE marked in brown works in mode 2.

Table 3. X3 SR Convolution Compression, Decomposition, and Mapping

Convolution Size
after Compression

Convolution Length
after Decomposition

Mapped DR_PE and
Corresponding Working Mode

3 × 3 9 DR_PE(0_0) M0
3 × 3 9 DR_PE(0_1) M0
3 × 3 9 DR_PE(0_2) M0
3 × 3 9 DR_PE(1_0) M0
3 × 3 9 DR_PE(1_1) M0
3 × 3 9 DR_PE(1_2) M0
3 × 3 9 DR_PE(2_0) M0
3 × 3 9 DR_PE(2_1) M0
3 × 3 9 DR_PE(2_2) M0

X3 SR: If the scaling factor is set to 3, nine convolution results can be output simultaneously.
The input data of nine convolutions (upper and lower) are the same. Nine convolutions are com-
pressed to obtain nine convolutions with size 3× 3, which do not need to decompose. Correspond-
ing convolution compression and DR_PE mapping are shown in Table 3. Compared with X2 SR,
all compressed convolutions work in mode 0, and the computation is common. The intuitive cor-
responding DR_PE allocation in the PE array is shown in Figure 8(b). In this case, every DR_PE
in the PE array also works with 100% utilization if not considering padding data, thus avoiding
computation load unbalance.

X4 SR: If the scaling factor is 4, 16 convolution results can synchronously be obtained. The input
data of 16 convolutions (upper and lower) remain unchanged. Compress the input data, and the
corresponding 16 compressed convolutions and mappings are shown in Table 4. It can be found
that except for one DR_PE that works in mode 0, the others work in mode 2. The specific PE array
allocation is shown in Figure 8(c). In this case, 100% utilization of each DR_PE is also obtained
without considering padding data.

The mapping method can be predetermined for the above three scaling factors because the spe-
cific deconvolution parameters are known. With our DR_PE unit, different scaling-factor deconvo-
lutions can be realized, which supports dynamic reconfiguration. The hardware implementation
is efficient without additional computing resource overhead (i.e., multiplier and adder). Under dif-
ferent scaling factors, PE utilization is nearly 100%, alleviating the load imbalance problem.

4.2.3 Data Truncation. For the fixed-point results output by convolution operation, data trun-
cation is required to keep the input and output data widths consistent. The specific circuit is shown
in Figure 7(b), which mainly includes the sign decision part and overflow decision part. First,
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Table 4. X4 SR Convolution Compression, Decomposition, and Mapping

Convolution Size
after Compression

Convolution Length
after Decomposition

Mapped DR_PE and
Corresponding Working Mode

3 × 3 9 DR_PE(0_0) M0
3 × 2 3 + 3 DR_PE(0_1) M2, DR_PE(0_2) M2
3 × 2 3 + 3 DR_PE(1_0) M2, DR_PE(1_1) M2
3 × 2 3 + 3 DR_PE(1_2) M2, DR_PE(2_0) M2
2 × 3 3 + 3 DR_PE(2_1) M2, DR_PE(2_2) M2
2 × 2 4 DR_PE(0_1) M2
2 × 2 4 DR_PE(0_2) M2
2 × 2 4 DR_PE(1_0) M2
2 × 3 2 + 2 + 2 DR_PE(1_0) M2, DR_PE(1_1) M2, DR_PE(1_2) M2
2 × 2 4 DR_PE(1_1) M2
2 × 2 4 DR_PE(1_2) M2
2 × 2 4 DR_PE(2_0) M2
2 × 3 2 + 2 + 2 DR_PE(2_0) M2, DR_PE(2_1) M2, DR_PE(2_2) M2
2 × 2 4 DR_PE(2_1) M2
2 × 2 4 DR_PE(2_2) M2
2 × 2 2 + 2 DR_PE(0_1) M2, DR_PE(0_2) M2

determine the positive or negative of the data. M represents the highest bit of the input data IN. If
IN[M] = 1, the data is negative, and the lower half of the circuit is activated. Inversely, the upper
half of the circuit is activated. Second, determine the overflow of the data. Typically, the truncated
data may be from the most significant bits (MSBs) to the least significant bits (LSBs). Take
positive data as an example. Skipping the sign bit, the input data from the highest bit to the MSB
executes the NOR operation bit by bit. If the output is 0, there is no overflow, and the truncated
data is directly output, that is, IN[MSB:LSB]. On the contrary, overflow occurs, and the maximum
value is output. The overflow decision of negative data is similar; the only difference is that the
NAND operation carries out the logic operation.

4.2.4 Data Alignment. As mentioned in Section 4.1, the final output is not in sequence. There-
fore, we implement data alignment based on the output buffer. As shown in Figure 7(c), we use
two buffers, each of which can store two lines of data, and two buffer pointers are set to represent
the read pointer and write pointer, respectively. Take X2 SR, for example, where each operation
can output four data simultaneously. Initially, the write pointer points to buffer 1. For the four
final output data, the first two data are stored in line 1 of buffer 1, and the last two ones are in
line 2 of buffer 1. Repeat the above operation until buffer 1 is full. Then, the write pointer points
to buffer two while the read pointer points to buffer one and outputs the final results in sequence.
Compared with the traditional output buffer, it not only introduces almost no control resource
overhead but also realizes the sequential output.

5 EXPERIMENT AND EVALUATION

This section introduces the experiment setup, including network training, hardware configuration,
and network quantization. Also, we discuss evaluation results on image quality and hardware
performance. Then, the analyses and future work are presented.

5.1 Experiment Setup

The experiment setup contains network training for the hardware optimization and hardware
configuration for FPGA implementation.
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Fig. 9. Network quantization. (a) The optimal PSNR under different DWs. (b) When DW is 12 and FW alters,
the changes in PSNR.

5.1.1 Network Training. Before training, data enhancement is implemented for initial training
images, such as rotation and scaling, to ensure that more helpful image information is obtained
during training. Inspired by [29], we modify the training process to retrain the network. In the
training process, several tricks are applied. First, we segment each training set image into multi-
ple small images to reduce memory resources on-chip. The image reconstruction quality can be
maintained with our all-on-chip mechanism. Second, we change the optimizer to Adam, which
can achieve a better training effect through various experimental tests.

5.1.2 Hardware Configuration. In the hardware deployment and evaluation, the Xilinx Vivado
2019.2 development environment and Verilog HDL are used to realize the hardware SR architecture
ADAS, and Xilinx VC707 Evaluation Board is selected for implementation and analyses.

5.2 Network Quantization

We quantize the feature map and weight data from the 32-bit floating points to the fixed points.
To begin with, we represent the fixed-point data by data width (DW), composed of [S, IW, FW],
indicating the sign bit, integer bits, and fractional bits, respectively. We select Set5, Set14, and
BSD100 datasets and quantize them at different scaling factors. The specific process consists of
two steps. Step 1 and for DW with a given width: we traverse the corresponding PSNR when
IW and FW are in different bit widths. Then, the highest PSNR is selected. Next, we change the
width of DW in turn and repeat the above operations to find the optimal DW. Figure 9(a) shows
the corresponding maximum PSNR under different DWs. It can be seen that the PSNR inclines
with the increase of DW. When it reaches 12 bits, the PSNR remains stable. Therefore, we use
the fixed-point data when DW is 12 bits. Step 2 and to search the corresponding IW and FW:
Figure 9(b) indicates the relationship among FW, data accuracy, and quantization error. When
FW increases, the data accuracy increases, corresponding quantization error decreases, and PSNR
gradually increases. The PSNR reaches the maximum while the FW becomes 7.

Based on the above analyses, we determine the DW of quantized fixed-point data to 12 bits, and
the specific combination is [1, 4, 7]. Without quantization, the ADAS software optimized version
(ADAS-SW) can achieve a PSNR of 37.15dB, higher than the original FSRCNN network [12], as
shown in Table 5. Based on the proposed quantization method, the PSNR of the ADAS entirely
hardware (ADAS-FH) can reach 37.08dB under the scaling factor of 2 and dataset Set5.

5.3 Image Quality Evaluation

5.3.1 PSNR Comparison with Different Scaling Factors. For comparison, we choose the
Set5, Set14, and BSD100 datasets for the evaluation. Specifically, the PSNRs of ADAS-SW and
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Table 5. PSNR Comparison of Image Quality

PSNR

(dB)

X2 X3 X4

Set5a Set14b BSD100c Set5 Set14 BSD100 Set5 Set14 BSD100

FSRCNN [12] (Baseline) 37.00 32.63 31.53 33.16 29.43 28.53 30.71 27.59 26.98

ADAS-SW (32b) 37.15 32.68 33.35 33.25 29.58 28.81 30.66 27.62 27.76

ADAS-FH (12b) 37.08 32.63 33.20 33.14 29.45 28.78 30.64 27.61 27.75

Accuracy comparison

(ADAS-SW vs. Baseline)
+0.15 +0.05 +1.82 +0.09 +0.15 +0.28 -0.05 +0.03 +0.78

a Set5 contains five images for the test.
b Set14 contains 14 images for the test.
c BSD100 contains 100 images for the test.

Fig. 10. Visual quality comparison of different SR networks with the scaling factor 2.

ADAS-FH are tested under the scaling factor of X2, X3, and X4, respectively. Table 5 demonstrates
the comparison results. The PSNR of ADAS-SW is higher than the original FSRCNN network with
scaling factors 2 and 3 for the effect tricks applied in our ADAS-SW training. When the scaling
factor is 4, only the PSNR of the case for the Set5 dataset is lower than the original network.
The primary reason is that the Set5 dataset lacks sample images and image information. On the
contrary, the BSD100 dataset contains more realistic images, and the sample size is large enough
to get good image quality.

Figure 10 illustrates the experimental visual quality of ADAS under the Set5 dataset. With the X2
scaling factor, we test the SR networks such as Bicubic, SRCNN, FSRCNN, ADAS-SW, and ADAS-
FH. As a result, both ADAS-SW and ADAS-FH can achieve much better image quality in terms of
processing texture and edge details.

5.3.2 SSIM Comparison with Different Scaling Factors. Compared with PSNR, SSIM can better
reflect the subjective feeling of human eyes by measuring image similarity from luminance, con-
trast, and structure. The test results are shown in Table 6, where the SSIM of the ADAS version
is better than other counterparts in most cases. Only the case of X4 SR under the Set5 dataset is
lower than that of the original network. For the BSD100 dataset, the SSIM of our proposed ADAS

can achieve significant improvement.

5.4 Hardware Metrics Comparison and Analyses

The target of ADAS is hardware acceleration with high image quality. Here, we discuss the
hardware-based image quality, memory access, and performance to validate the efficiency of our
proposed techniques. Fair comparisons are also demonstrated in our contributions and the novelty
of this work.
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Table 6. SSIM Comparison of Image Quality

SSIM
X2 X3 X4

Set5 Set14 BSD100 Set5 Set14 BSD100 Set5 Set14 BSD100

FSRCNN [12] (Baseline) 0.9558 0.9088 0.8920 0.9140 0.8242 0.7910 0.8657 0.7535 0.7150

ADAS-SW (32b) 0.9587 0.9134 0.9206 0.9226 0.8405 0.8043 0.8644 0.7612 0.7465

ADAS-FH (12b) 0.9586 0.9132 0.9200 0.9223 0.8401 0.8039 0.8643 0.7610 0.7463

Accuracy comparison

(ADAS-SW vs. Baseline)
+0.0029 +0.0046 +0.0286 +0.0086 +0.0163 +0.0133 -0.0013 +0.0077 +0.0315

Fig. 11. Comparison of hardware-based image quality. (a) PSNR comparison. (b) SSIM comparison. ADAS is
compared to Chang et al. [6], Kim et al. [24], Sun et al. [32], and Yen et al. [40], respectively. Note that the
work of Yen et al. [40] has no experimental data for the BSD100 dataset.

5.4.1 Hardware-based Image Quality Analyses. Figure 11 demonstrates the comparison of im-
age quality, including both PSNR and SSIM, obtained by different SR-based hardware on the Set5,
Set14, and BSD100 datasets, respectively. We notice that several compared hardware works only
support the scaling factor of 2. We indicate X2 SR ADAS in the comparison. Based on the image
quality comparison, our proposed ADAS-FH obtains the best results in terms of PSNR and SSIM
metrics. The main reason is that we optimized the original FSRCNN considering both the algo-
rithm’s trimming and our hardware deployment target. We optimize the algorithm to try various
retraining parameters and analyze the best quantization condition.

5.4.2 Memory Access Analyses. Figure 12(a) provides the comparison of on-chip and off-chip
memory access between ADAS-FH and baseline hardware without optimization. Our proposed
ADAS can reduce memory accesses by 99.28%, 98.57%, and 97.59% with scaling factors X2, X3,
and X4 SR, respectively. Based on our proposed all-on-chip ADAS architecture, the output feature
maps of middle layers are stored on the chip with small-size memory. Only the first and last layer
feature maps need to interact with off-chip memory, which reduces the memory access between
on-chip and off-chip, alleviates the pressure of bandwidth, and ensures real-time performance.

Figure 12(b) compares memory access with previous SR hardware. ADAS-FH can achieve the
maximum bandwidth reduction of 97% and obtains a maximum bandwidth improvement of 1.23×.
In addition, compared with the state of the art on bandwidth optimization, ADAS-FH can still
achieve nearly 3% bandwidth improvement.

5.4.3 Performance Analyses. ADAS can provide high performance based on our developed de-
convolution scheme and all-on-chip architecture. Figure 13 compares our ADAS-FH with baseline
and several great SR hardware works. The latency represents the inference time speedup of hard-
ware after adopting different optimization strategies. Compared to the non-optimized hardware
baseline, the end-to-end latency of the proposed hardware architecture ADAS-FH can be improved
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Fig. 12. Comparison of memory access. (a) Memory access comparison. (b) Bandwidth reduction comparison.
The above three works, Shi et al., Lee et al., and Chih et al., are from references [31], [26], and [8], respectively.

Fig. 13. Comparison of performance. (a) Latency comparison. Without mem. opti. indicates ADAS-FH does
not adopt a memory optimization mechanism. (b) Performance comparison. The above five works, Shi et al.,
Chang et al., Kim et al., Sun et al., and Yen et al., are from references [31], [6], [24], [32] and [40], respectively.

by 2.68×, 5.02×, and 8.28×, respectively, in the case of X2, X3, and X4 SR, as shown in Figure 13(a).
The improvements are mainly from two aspects. On the one hand, the hardware implementation of
the deconvolution layer reduces invalid computation and thus improves hardware efficiency. The
convolution compression technique is employed to skip the invalid computation with the value
“0”, which reduces nearly 75% of the MAC operation of the deconvolution layer. In addition, the
DR_PE technique allocates computing resources to improve hardware utilization, reducing end-to-
end latency. In this way, ADAS-FH can achieve latency improvement of 2.01×, 3.75×, and 6.20×,
respectively, in the case of X2, X3, and X4 SR, which can be seen in the column ADAS-FH (without
mem. opti.) of Figure 13(a).

On the other hand, the proposed all-on-chip architecture significantly reduces memory access
between on-chip and off-chip as described in the above analyses, which further reduces the latency,
as shown in the column ADAS-FH of Figure 13(a). In summary, ADAS-FH achieves a good acceler-
ation efficiency based on the breakdown of the latency improvement, where the deconvolution op-
timization scheme provides 75% latency improvement. In order to evaluate the performance of our
architecture ADAS, we compared our work with previous SR hardware. As shown in Figure 13(b),
the proposed architecture ADAS-FH can achieve a maximum performance improvement of 4.18×.
Even if the all-on-chip architecture based on memory access optimization is not adopted, ADAS-FH
can still achieve a performance improvement of 3.13×. Further, compared with the state-of-the-art
work of Yen et al. [40], our architecture can achieve a performance improvement of 1.52×.

5.4.4 Architecture Overall Comparison. Table 7 demonstrates the comparison of different
hardware-based SR architectures in recent years. Our proposed architecture ADAS can support
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Table 7. Comparison of Different Hardware Architectures

From
Chang et al.

[6]

Kim et al.

[24]

Shi et al.

[31]

Sun et al.

[32]

Yen et al.

[40]

ADAS-FH

(Proposed)

SR Methods FSRCNN-based CNN-based FSRCNN-based RNN-based IDN-based FSRCNN-based

Supported Scales 2, 3, 4 2 2 2 2 2, 3, 4

Technology
Xilinx

XC7K410T

Xilinx

XCKU040

Xilinx

ZCU102

Xilinx

XCKU15P

SYNOPSYS

32nm EDK

Xilinx

XC7VX485T

Frequency (MHz) 130 150 200 160 200 200

Precision 13 bit 10-14 bit 16 bit 12-16 bit 12 bit 12 bit

HW Resourcesa

LUT:167K,

REG:158K,

DSP:1,512

LUT:151K,

REG:121K,

DSP:1,920

LUT:173K,

REG:-,

DSP:746

LUT:98K,

REG:57K,

DSP:1,820

3,114K

LUT:105K,

REG:123K,

DSP:1,558

Memory Size (KB) 945 194 1,396 4,842 - 1,118

Target Resolution 4K UHD 4K UHD 4K UHD 4K UHD 1080P FHD 4K UHD

Frame Rate (fps) 62.7 60 120.4 76 60 96.4
a A two-input NAND gate is counted as one equivalent gate.

three different scaling factors, X2, X3, and X4, while most other SR architectures only support one
scaling factor, X2. Concerning logical resource overhead, the lookup table and register resources
occupation are much lower than the other two hardware systems based on the FSRCNN network.
And the two networks based on FSRCNN have been trimmed [6, 31]. However, since we do not
trim the original FSRCNN network, the network size is larger than the other two. In order to en-
sure performance, DSP occupies more than [31]. Specifically, the amount of computation required
in ADAS is 54.1GOPS , while the network used in [31] is a lightweight FSRCNN-s, which only re-
quires 24.3GOPS , 55.1% less than the network FSRCNN used by ADAS. In addition, [31] adopts the
Linear Total Variation Algorithm, which computes the linear Total Variation (TV) value of small
image blocks. If it is higher than the threshold value, the image blocks will be sent to the neural
network FSRCNN-s to complete computation; otherwise, traditional interpolation algorithms will
be used. This way, the computation can be further reduced, but the PSNR is degraded. In order
to highlight the advantages of ADAS, the FSRCNN-s used in [31] is implemented with ADAS, and
finally can reach nearly 305f ps , which is 2.5× that of [31].

Due to the employment of a feature map segmentation strategy, the memory size is small for
an all-on-chip architecture. From Section 5.4.1, ADAS-FH can achieve the highest PSNR and SSIM
in the image quality evaluation. In addition, high performance is obtained from Section 5.4.3, and
ADAS-FH can achieve a frame rate of 96.4f ps,which has higher real-time performance than other
architectures.

5.5 Discussion

5.5.1 Tradeoff Analyses. In our proposed hardware ADAS architecture, due to the dynamically
reconfigurable characteristic of DR_PE, we can dynamically obtain the output of different scaling
factors with the same PE array. Here, the smaller scaling factor can get a better SR result. Thus,
a small scaling factor is usually adopted. For 4K output, we can use 1080p as input and realize
4K high-resolution output based on X2 SR. For 8K output, there is a tradeoff between speed and
accuracy. On the one hand, to pursue high image quality, we can continue to set the scaling factor
as 2. In this case, the input size is 4K, and it will lead to more computation. On the other hand, if X4
SR is used, the input becomes 1080p, which can achieve faster speed, but the image quality could
be better than the former due to the degraded accuracy. According to the practical application
requirements, we can adopt different SR methods.

5.5.2 Future Work. The proposed ADAS architecture can achieve 100% utilization under the
deconvolution layer of the FSRCNN model. We hope the ADAS architecture can support different
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Table 8. 7 × 7 Deconvolution Compression, Decomposition, and Mapping

Convolution Size

after Compression

Convolution Length

after Decomposition

Mapped DR_PE and

Corresponding Working Mode

4 × 4 4 + 4 + 4 + 4 DR_PE(0_0) M2, DR_PE(0_1) M2, DR_PE(0_2) M2, DR_PE(1_0) M2

4 × 3 3 + 3 + 3 + 3 DR_PE(0_0) M2, DR_PE(0_1) M2, DR_PE(0_2) M2, DR_PE(1_0) M2

3 × 4 2 + 2 + 2 + 2 + 2 + 2
DR_PE(0_0) M2, DR_PE(0_1) M2, DR_PE(0_2) M2,

DR_PE(1_0) M2, DR_PE(1_1) M2, DR_PE(1_2) M2

3 × 3 9 DR_PE(2_2) M0

4 × 4 4 + 4 + 4 + 4 DR_PE(1_1) M2, DR_PE(1_2) M2, DR_PE(2_0) M2, DR_PE(2_1) M2

4 × 3 3 + 3 + 3 + 3 DR_PE(1_1) M2, DR_PE(1_2) M2, DR_PE(2_0) M2, DR_PE(2_1) M2

deconvolution kernel sizes. In addition, how to support more super-resolution models to improve
the versatility of ADAS architecture needs further exploration in the future.

The specific exploration is as follows:

• To explore the universality of the deconvolution scheme. Our ADAS also can support other
deconvolution kernel sizes beyond the kernel size 9 × 9. For example, set the deconvolution
size as 7 × 7, and compress it using the proposed method. In the case of X2 SR, a total
of four convolutions of different sizes can be obtained, which are 4 × 4, 4 × 3, 3 × 4, and
3 × 3. In order to improve the computational utilization, the DR_PE array can compute six
compressed convolutions at the same time, which are 4 × 4, 4 × 3, 3 × 4, 3 × 3, 4 × 4, and
4 × 3, and the specific allocation and mapping are shown in Table 8. The average utilization
can reach 95.1%, and the speedup is 3.63 compared with the baseline.
Further, we need to design a general mapping algorithm. In this way, we can use automatic
tools to search for a mapping scheme with the highest computational utilization for any
deconvolution of different sizes.
• Exploration on the universality of ADAS architecture. In order to support different super-

resolution models, we should adopt more operators in the ADAS architecture. For example,
we need to add the implementation of operations such as concatenation and slice for the
IDN model. In addition, the data flow control needs to be further designed to switch to the
computation of different super-resolution models efficiently.
• To explore the all-on-chip mechanism. Although our all-on-chip mechanism has achieved

good results in the FSRCNN network, when the network structure becomes more complex,
we need to guarantee the same image quality. In addition, compared with reference [29],
which method is more robust and versatile also needs further comparison.

6 CONCLUSION

In this article, we proposed an ADAS hardware accelerator with a hardware-efficient deconvolu-
tion scheme, which significantly reduces the amount of computation required for inference. Also,
the ADAS improves PE utilization and eliminates computing load unbalances. Furthermore, the
ADAS significantly alleviates the memory wall problem caused by the bandwidth limitation. ADAS
can achieve better reconstruction performance through the FPGA-based implementation and a se-
ries of experimental analyses. Besides, the significant speedup is achieved under different scaling
factors. Concurrently, it can dynamically support various scaling factors to produce 4K and 8K
ultra-high resolution. We will explore the optimization space for super-resolution in hardware
deployment in future work.
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