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Abstract

Entity set expansion, taxonomy expansion, and001
seed-guided taxonomy construction are three002
representative tasks for automatically enrich-003
ing an existing taxonomy with emerging con-004
cepts. Previous studies have treated them as005
separate tasks, leading to techniques that are006
specialized for one task but lack generalizabil-007
ity and a holistic perspective. In this paper,008
we propose a unified solution to address all009
three tasks. Specifically, we identify two fun-010
damental skills facilitating the three tasks: find-011
ing “siblings” and finding “parents”. To this012
end, we introduce a taxonomy-guided instruc-013
tion tuning framework that trains a large lan-014
guage model to generate siblings and parents015
for query entities, where the joint pre-training016
process enables mutual reinforcement of these017
two skills. Extensive experiments on multiple018
benchmark datasets validate the effectiveness019
of our proposed TAXOINSTRUCT framework,020
demonstrating its superiority over task-specific021
baselines across all three tasks.022

1 Introduction023

Entities are fundamental to natural language024

processing. To better capture their semantics,025

taxonomies are constructed across various do-026

mains, including science (Shen et al., 2018b),027

e-commerce (Mao et al., 2020), and social me-028

dia (Gonçalves et al., 2019), to characterize the029

parent-child relationship between entities. While030

taxonomies are often initially curated by domain031

experts, the continuous emergence of new concepts032

necessitates automatic expansion to maintain their033

freshness and completeness. To this end, previous034

studies have explored three key tasks for integrating035

new entities into existing knowledge.036

(1) Entity Set Expansion (Wang and Cohen, 2007;037

Rong et al., 2016; Shen et al., 2017):Given a set038

of entities belonging to a specific semantic class,039

the goal is to identify more entities within the040

same class. For example, given the seed entities 041

{Database, Information Retrieval, Operating Sys- 042

tem}, an entity set expansion algorithm should re- 043

trieve other computer science subfields such as 044

Data Mining and Human-Computer Interaction. 045

From a taxonomy perspective, this task can be 046

viewed as finding “siblings” of existing entities. 047

(2) Taxonomy Expansion (Shen et al., 2020b; Yu 048

et al., 2020; Zeng et al., 2021): The goal of this 049

task is to insert a provided new entity into an ex- 050

isting taxonomy by identifying its most appropri- 051

ate “parents”. For instance, consider a taxonomy 052

with the root node Scientific Fields and its chil- 053

dren Computer Science, Mathematics, Physics, and 054

Chemistry. Given a new concept Data Mining, a 055

taxonomy expansion model should place it as a 056

child of Computer Science. 057

(3) Seed-Guided Taxonomy Construction (Shen 058

et al., 2018a): Given a seed taxonomy with a small 059

number of entities, the goal is to construct a more 060

comprehensive taxonomy that expands upon the ini- 061

tial structure. For example, if the input consists of 062

Computer Science, Chemistry, and several of their 063

subfields (e.g., Data Mining and Organic Chem- 064

istry), the expected output should include more sci- 065

entific fields (e.g., Mathematics and Physics) and 066

their subfields (e.g., Database, Algebra, and Astro- 067

physics), with explicitly identified parent-child re- 068

lationships. To approach this problem, we can first 069

discover new entities at each layer and then figure 070

out the parent-child edges between adjacent layers. 071

Essentially, this can be framed as pipelining the 072

steps of finding “siblings” and finding “parents”. 073

As evident from the discussion above, all three 074

tasks can be cast as finding entities that share a 075

specific type of relationship with the given entities: 076

entity set expansion involves finding “siblings”; 077

taxonomy expansion relies on finding “parents”; 078

seed-guided taxonomy construction integrates both. 079

However, existing studies typically address only 080

1



Heart 
Rupture

Heart 
Defect

Heart 
Block

Heart 
Failure Arrhythmia

Expansion 

Expanded Entities

Disease

Heart Disease Vascular Disease

Stroke
High Blood 
Pressure

Lung 
Disease

Ischemic 
Stroke

New 
Concept

Find 
Parent

Heart 
Enlargement

New
Concept

Heart 
Disease

Heart 
Enlargement

Heart 
Rupture

Vascular 
Disease

Disease

Arterial 
Occlusion

Vessel 
Obliteration

Lung 
Cancer

Lung Disease
Cerebral 
Disease

Brain Tumor

Step 1: Find New Entities

Step 2:
Find Parent

(a) Entity Set Expansion (b) Taxonomy Expansion (c) Seed-Guided Taxonomy Construction

Seed Entities
Heart 

Enlargement

Find 
Parent

Figure 1: Illustrations of the three tasks.

one of the three tasks, proposing task-specific tech-081

niques with little attention to their underlying com-082

monalities. Intuitively, the processes of finding083

“siblings” and “parents” can reinforce each other.084

For example, recognizing that Data Mining is a085

sibling of Database and Information Retrieval can086

help predict its parent as Computer Science, and087

vice versa. By improving the accuracy of both sib-088

ling and parent prediction, we can leverage them089

as fundamental building blocks to solve all three090

tasks in a more holistic and unified manner.091

Contributions. Building on the insights above,092

this paper proposes a unified framework to simul-093

taneously address entity set expansion, taxonomy094

expansion, and seed-guided taxonomy construc-095

tion. Specifically, we leverage existing taxonomies096

as rich sources of sibling-sibling and parent-child097

relationships to pre-train a model for identifying098

both siblings and parents. This pre-trained model099

can then be fine-tuned on domain-specific data100

(e.g., parent-child pairs from the input taxonomy101

in the taxonomy expansion task) to perform down-102

stream tasks effectively. To implement this frame-103

work, we harness the instruction-following capabil-104

ities of large language models (LLMs) (Wei et al.,105

2022a; Ouyang et al., 2022). Our proposed TAX-106

OINSTRUCT framework employs task-specific in-107

structions to train an LLM to generate sibling en-108

tities and identify parent entities for one or more109

query entities. The joint pre-training process en-110

ables mutual enhancement between these two skills111

and benefits overall performance of all three tasks.112

To evaluate TAXOINSTRUCT, we conduct exten-113

sive experiments on 6 benchmark datasets span-114

ning entity set expansion, taxonomy expansion,115

and seed-guided taxonomy construction. The re-116

sults demonstrate that TAXOINSTRUCT, as a uni-117

fied framework, significantly outperforms strong118

task-specific baselines across all three tasks. Addi-119

tionally, we examine the impact of different LLM120

backbones (Touvron et al., 2023; Jiang et al., 2023a; 121

Team et al., 2024) within TAXOINSTRUCT, show- 122

ing that its effectiveness is robust and does not 123

depend on a specific LLM choice. 124

2 Task Definition 125

In this section, we formally introduce the three 126

representative tasks for populating a taxonomy with 127

new entities. 128

Entity Set Expansion. As shown in Figure 1(a), 129

the entity set expansion task seeks to identify a 130

set of "sibling" entities that belong to the same 131

semantic class as a few example entities (referred 132

to as "seeds"). Formally, 133

Definition 1. (Entity Set Expansion) Given a small 134

set of seed entities S = {s1, s2, ..., sM}, the task 135

is to discover more entities S+ = {sM+1, sM+2, 136

..., sM+N}, where s1, s2, ..., sM+N fall into the 137

same semantic category. 138

Taxonomy Expansion. As shown in Figure 1(b), 139

taxonomy expansion involves inserting a set of new 140

entities into an existing taxonomy by identifying 141

an appropriate “parent” node in the taxonomy for 142

each new entity. Formally, 143

Definition 2. (Taxonomy Expansion) Given an ex- 144

isting taxonomy T (which contains a set of entities 145

S and the parent-child relationship between the 146

entities PARENT(·) : S → S ∪ {sROOT}) and 147

a set of new entities S+, the task is to expand 148

the taxonomy to a more complete one T + with 149

entities S ∪ S+ and the parent-child relationship 150

PARENT+(·) : S ∪ S+ → S ∪ {sROOT}. 151

Seed-Guided Taxonomy Construction. As shown 152

in Figure 1(c), seed-guided taxonomy construction 153

involves two steps: first, identifying a set of new 154

entities to be added to the taxonomy, and then deter- 155

mining the appropriate parent for each new entity. 156

Definition 3. (Seed-Guided Taxonomy Construc- 157

tion) Given a small set of seeds that form a 158
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Instruction: Given a list of entities, output the most likely parent class for the entity given by user.
Input: Find the parent class for {Heart Enlargement, Heart Rupture, Heart Defect}.

Instruction: Given a category and an entity set belonging to this category, output other entities 
belonging to this category and sharing the same granularity as the seeds.
Input: Find other entities belonging to the category Heart Disease and sharing the same 
granularity as the seeds {Heart Enlargement, Heart Rupture, Heart Defect}.

Entity Set Expansion

Instruction: Given a set of candidate parent classes and an entity, output the most likely parent 
class for the entity given by user.
Input: Given candidate parents {Heart Disease, Vascular Disease, Heart Enlargement, High Blood 
Pressure, Stroke}, find the parent class for Ischemic Stroke.

Taxonomy Expansion

Instruction: Given a category and an entity set belonging to this category, output other entities 
belonging to this category and sharing the same granularity as the seeds.
Input: Find other entities belonging to the category Disease and sharing the same granularity as …

Seed-Guided Taxonomy Construction

Instruction: Given a set of candidate parent classes and an entity, output the most likely parent 
class for the entity given by user.
Input: Given candidate parents {Heart Disease, Vascular Disease, Lung Disease, Cerebral Disease}, 
find the parent class for Lung Cancer.

TaxoInstruct

Response: The parent class is Heart Disease.

Response: The expanded entities are {Heart 
Block, Heart Failure, Arrhythmia, …}.

Response: The parent class is Stroke.

Response: The expanded entities are {Vessel 
Obliteration, Lung Cancer, Brain Tumor, …}.

Response: The parent class is Lung Disease.

Figure 2: Illustration of the TAXOINSTRUCT framework.

tree structure T = (S0,S1, ...,SL), where S0 is159

{sROOT}, Sl (1 ≤ l ≤ L) denotes the set of160

seeds at layer l, and the parent-child relationship is161

characterized by a mapping function PARENT(·) :162

Sl → Sl−1, the task aims to discover more entities163

at each level (denoted by the sets S+
1 , ...,S+

L , where164

entities in Sl and S+
l belong to the same seman-165

tic class) and predict their parent-child relation-166

ship (characterized by PARENT+(·) : Sl ∪ S+
l →167

Sl−1 ∪ S+
l−1).168

3 Model169

Inspired by the intuition that entity set expan-170

sion, taxonomy expansion, and seed-guided tax-171

onomy construction all rely on two fundamen-172

tal skills—finding “siblings” and finding “par-173

ents”—we aim to train a unified model that simul-174

taneously learns both skills, thereby facilitating all175

three tasks. To implement this idea, in this section,176

we propose TAXOINSTRUCT, a unified taxonomy-177

guided instruction tuning framework.178

3.1 Entity Set Expansion179

Given a set of seeds S = {s1, s2, ..., sM}, the en-180

tity set expansion task imposes two constraints181

on the expanded entities S+ = {sM+1, sM+2,182

..., sM+N}. First, sM+n (1 ≤ n ≤ N) must be-183

long to the same semantic category as s1, s2, ...,184

sM . For example, in Figure 1(a), both Heart En-185

largement and Arrhythmia belong to the category186

Heart Disease. Second, sM+n must share the same187

level of granularity as s1, s2, ..., sM . For exam-188

ple, while Congenital Heart Defect also belongs to189

Heart Disease, it should not be expanded in Figure190

1(a) because it is more fine-grained than the seed191

Heart Defect. These two restrictions inherently 192

describe the concept of “siblings” in a taxonomy, 193

as siblings share the same parent and reside at the 194

same hierarchical level. 195

Inspired by this, we frame the entity set expan- 196

sion task (from a taxonomy perspective) as identi- 197

fying other siblings of the seed entities. We tackle 198

this problem by leveraging the ability of LLMs to 199

follow task-specific instructions (Wei et al., 2022a; 200

Ouyang et al., 2022). Briefly, given a set of INPUT 201

entities S = {s1, s2, ..., sM} that share the same 202

parent node PARENT(S), we INSTRUCT an LLM 203

(e.g., Llama-3 8B (Dubey et al., 2024)) to generate 204

more children of PARENT(S) in its RESPONSE. 205

Nevertheless, the parent entity PARENT(S) is 206

not available in the standard entity set expansion 207

task (Rong et al., 2016; Shen et al., 2017). Thus, we 208

first prompt the LLM to generate the parent entity 209

for the seed set S. Following the (INSTRUCTION, 210

INPUT, RESPONSE) schema of Llama-3, we form 211

the instruction as follows: 212

INSTRUCTION: Given a list of entities, output the most
likely parent class for the entity given by user.
INPUT: Find the parent class for {s1, s2, ..., sM}.
RESPONSE: The parent class is

The generated parent entity PARENT(S) is then 213

used to guide the expansion process: 214

INSTRUCTION: Given a category and an entity set be-
longing to this category, output other entities belonging
to this category and sharing the same granularity as the
seeds.
INPUT: Find other entities belonging to the category
PARENT(S) and sharing the same granularity as the
seeds {s1, s2, ..., sM}.
RESPONSE: The expanded entities are

The LLM will generate a set of expanded en- 215

3



tities, which we denote as R = {r1, r2, ..., rK}.216

After that, we perform a ranking step to sort these217

entities. To be specific, we use a pre-trained en-218

coder language model (e.g., BERT (Devlin et al.,219

2019)) to compute the similarity score between220

each generated entity r ∈ R and PARENT(S):221

sim(r, PARENT(S)) = cos
(
E(r),E(PARENT(S))

)
, (1)222

where E(·) denotes the average output token em-223

bedding after feeding the entity name into the pre-224

trained encoder. All entities in R are then ranked225

according to sim(·, PARENT(S)). Afterwards, we226

add the top-ranked entities to the seed entity set S227

and rerun the expansion process with the enriched228

seed set. This process can be conducted iteratively,229

following the common practice of previous entity230

set expansion algorithms (Shen et al., 2017; Zhang231

et al., 2020). After the final iteration, we rank all232

seeds and expanded entities (except the original233

seeds which should not appear in the output) ac-234

cording to sim(·, PARENT(S)) and obtain a list,235

S+, of expanded entities.236

3.2 Taxonomy Expansion237

Taxonomy expansion is a parent-finding task.238

Given an INPUT entity sq ∈ S+, we INSTRUCT239

an LLM to identify the correct parent node240

PARENT(sq) from a provided list of candidates241

S = {s1, s2, ..., sM} (i.e., entities in the existing242

taxonomy):243

INSTRUCTION: Given a set of candidate parent classes
and an entity, output the most likely parent class for the
entity given by user.
INPUT: Given candidate parents {s1, s2, ..., sM}, find
the parent class for sq .
RESPONSE: The parent class is

In practice, however, the input taxonomy may244

contain a large number of (e.g., more than 10,000)245

entities (Shen et al., 2020b). If we include all of246

them as candidates and put them into the instruc-247

tion, the LLM may be overwhelmed by the overly248

large label space and can hardly follow the instruc-249

tion. To tackle this problem, we first retrieve a set250

of candidates from the taxonomy and thus reduce251

the label space for the LLM. More specifically,252

given the query sq, we select top-U (e.g., U = 20)253

entities Uq ⊆ S with the highest similarity to sq.254

Uq = arg max
U⊆S,|U|=U

∑
s∈U

cos
(
E(sq),E(s)

)
. (2)255

The retrieved subset Uq will replace the entire can-256

didate list in the INPUT.257

Since the input taxonomy contains a wealth of 258

(parent, child) entity pairs, we leverage this infor- 259

mation to fine-tune the LLM, enhancing its under- 260

standing of parent-child relationships and domain- 261

specific knowledge. To be specific, given a node si 262

in the input taxonomy and its parent PARENT(si), 263

we construct fine-tuning data in two different ways. 264

First, we take the siblings of PARENT(si) as dis- 265

tractors. In other words, the LLM needs to identify 266

the true parent PARENT(si) from the candidates 267

{PARENT(si)} ∪ SIBLING(PARENT(si)). 268

Second, we use Eq. (2) to find the set of top-U 269

entities Ui that are closest to si. Then, the LLM 270

needs to identify the true parent PARENT(si) from 271

the candidates {PARENT(si)} ∪ Ui. 272

Filling si and the candidates into our instruc- 273

tion template, we fine-tune the LLM to generate 274

PARENT(si). 275

3.3 Seed-Guided Taxonomy Construction 276

As shown in Figure 1(c), seed-guided taxonomy 277

construction can be naturally divided into two sub- 278

tasks: (1) expanding the entity set at each layer to 279

discover new entities (i.e., finding “siblings” and 280

“cousins”1) and (2) expanding the taxonomy by 281

specifying the proper “parent” for each new en- 282

tity. Since these two subtasks closely align with 283

entity set expansion and taxonomy expansion, re- 284

spectively, we can leverage similar instructions as 285

outlined in Sections 3.1 and 3.2. 286

Finding “Siblings” and “Cousins”. Given the 287

input taxonomy T = (S0,S1, ...,SL) where S0 = 288

{sROOT} and Sl = {sl,1, sl,2, ..., sl,Ml
} (1 ≤ l ≤ 289

L), we adopt the following instruction: 290

INSTRUCTION: Given a category and an entity set be-
longing to this category, output other entities belonging
to this category and sharing the same granularity as the
seeds.
INPUT: Find other entities belonging to the category
sROOT and sharing the same granularity as the seeds
{sl,1, sl,2, ..., sl,Ml}.
RESPONSE: The expanded entities are

The major difference between this instruction and 291

that for entity set expansion is that we put sROOT 292

rather than PARENT(Sl) into the INPUT to discover 293

not only “siblings” but also “cousins” of Sl. We 294

1In the first step of seed-guided taxonomy construction, the
goal is to find entities that share the same semantic granularity
as the seeds at each layer. These entities are required only to
be descendants of the root node and may not necessarily share
the same parent as the seeds. Therefore, this step involves
discovering not just “siblings” but also “cousins”.
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denote the expanded entities at layer l as S+
l =295

{sl,Ml+1, sl,Ml+2, ..., sl,Ml+Nl
} (1 ≤ l ≤ L).296

Finding “Parents”. For each newly discovered en-297

tity sl,Ml+n ∈ S+
l \Sl, we need to insert it into the298

taxonomy by finding its parent from all entities that299

are one layer coarser. When l = 1, this problem is300

trivial because the parent is sROOT. When l ≥ 2,301

we consider the following instruction:302

INSTRUCTION: Given a set of candidate parent classes
and an entity, output the most likely parent class for the
entity given by user.
INPUT: Given candidate parents {sl−1,1, sl−1,2, ...,
sl−1,Ml−1+Nl−1}, find the parent for sl,Ml+n.
RESPONSE: The parent class is

The major difference between this instruction and303

that for taxonomy expansion is that the candidate304

parent list in the INSTRUCTION contains entities at305

layer l − 1 only (i.e., S+
l−1) rather than the entire306

input taxonomy.307

In seed-guided taxonomy construction, similar308

to taxonomy expansion, we are given a taxonomy309

structure T as input. Thus, we can also construct310

training data from T to fine-tune the LLM. Follow-311

ing Section 3.2, for each seed sl,m ∈ Sl (l ≥ 2),312

we train the LLM to pick the correct parent node313

PARENT(sl,m) from Sl−1.314

3.4 A Unified Pre-training Framework315

With the above instructions, an LLM can be directly316

prompted or fine-tuned to perform each task sep-317

arately. However, task-specific training data may318

be too limited for the model to effectively learn the319

necessary skills for identifying siblings and parents.320

For instance, the input taxonomy for seed-guided321

taxonomy construction typically contains about 10322

entities only (Shen et al., 2018a). To address this323

limitation, we propose to first continuously pre-324

train a general-purpose LLM on a large existing325

taxonomy using the aforementioned instructions.326

This pre-training step allows the model to acquire327

broader knowledge and skills, which can then be328

transferred to the three tasks, enhancing its perfor-329

mance even with limited task-specific data.330

Pre-training Data. To largely avoid overlap be-331

tween pre-training data and evaluation benchmarks332

in downstream tasks (e.g., Wikipedia, SemEval,333

and DBLP), we adopt only one existing large-scale334

taxonomy for pre-training: Comparative Toxicoge-335

nomics Database (CTD) (Davis et al., 2022), where336

we take its MEDIC taxonomy of disease entities.337

Pre-training Tasks. Given a set of sibling entities338

S = {s1, s2, ..., s|S|} and their parent PARENT(S) 339

in the taxonomy used for pre-training, we randomly 340

pick M entities from S as seeds. For ease of nota- 341

tion, we denote the seeds as s1, s2, ..., sM . 342

For the sibling-finding task, the pre-training 343

objective is to generate sM+1, ..., s|S| from the 344

seeds, where the instruction follows the sibling- 345

finding template in Section 3.1. For the parent- 346

finding task, the pre-training objective is to gener- 347

ate PARENT(S) for each individual seed si (1 ≤ 348

i ≤ M) as well as for the entire set of seeds 349

{s1, s2, ..., sM}, where the instruction follows the 350

parent-finding template introduced in Section 3.2. 351

Intuitively, the two pre-training tasks mutually ben- 352

efit each other because accurately predicting the 353

siblings sM+1, ..., s|S| of s1, s2, ..., sM helps infer- 354

ring the parent PARENT(S) of s1, s2, ..., sM , and 355

vice versa. 356

4 Experiments 357

We now evaluate the effectiveness of TAXOIN- 358

STRUCT across all three tasks by comparing it with 359

competitive baselines on benchmark datasets. De- 360

tails of the baselines and evaluation metrics are 361

provided in Appendices A.1 and A.2, respectively. 362

4.1 Entity Set Expansion 363

Datasets. Following previous studies (Shen et al., 364

2017; Yan et al., 2019; Zhang et al., 2020), we 365

use two benchmark datasets, APR and Wiki, to 366

evaluate entity set expansion algorithms. The two 367

datasets are derived from news articles (published 368

by Associated Press and Reuters) and Wikipedia 369

articles, respectively. 370

Baselines. The baselines for entity set expansion in- 371

clude EgoSet (Rong et al., 2016), SetExpan (Shen 372

et al., 2017), SetExpander (Mamou et al., 2018), 373

CaSE (Yu et al., 2019), SetCoExpan (Huang et al., 374

2020), CGExpan (Zhang et al., 2020), SynSetEx- 375

pan (Shen et al., 2020a), ProbExpan (Li et al., 376

2022), and Llama-3.1 70B (Dubey et al., 2024). 377

Additionally, since TAXOINSTRUCT is pre-trained 378

on both parent-finding and sibling-finding tasks, 379

we investigate whether the former enhances the 380

latter. To assess this, we introduce an ablation vari- 381

ant, NoParentPretrain, which is pre-trained on 382

the sibling-finding task only. 383

Evaluation Metric. Following previous stud- 384

ies (Shen et al., 2017; Yan et al., 2019; Zhang 385

et al., 2020), we adopt the Mean Average Preci- 386

sion (MAP@k) as the evaluation metric. 387
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Table 1: Performance of compared methods in the entity
set expansion task. Bold: the best score. *: TAXOIN-
STRUCT is significantly better than this method with
p-value < 0.05. †, ‡, and ▷: the scores of this method
are reported in Zhang et al. (2020), Huang et al. (2020),
and Li et al. (2022), respectively.

Method APR Wiki
MAP@10 MAP@20 MAP@10 MAP@20

EgoSet † 0.758∗ 0.710∗ 0.904∗ 0.877∗

SetExpan † 0.789∗ 0.763∗ 0.944∗ 0.921∗

SetExpander † 0.287∗ 0.208∗ 0.499∗ 0.439∗

CaSE † 0.619∗ 0.494∗ 0.897∗ 0.806∗

SetCoExpan ‡ 0.933∗ 0.915∗ 0.976∗ 0.964∗

CGExpan † 0.992 0.990∗ 0.995 0.978∗

SynSetExpan ▷ 0.985∗ 0.990∗ 0.991∗ 0.978∗

ProbExpan ▷ 0.993 0.990∗ 0.995 0.982
Llama-3.1 70B 0.9933 0.9788∗ 0.9861∗ 0.9748∗

TAXOINSTRUCT 0.9956 0.9928 0.9957 0.9875
NoParentPretrain 0.9867∗ 0.9689∗ 0.9746∗ 0.9720∗

Implementation Details. We initialize our model388

with Llama-3 8B (Dubey et al., 2024) and continu-389

ously pre-train/fine-tune it using Low-Rank Adap-390

tation (LoRA) (Hu et al., 2022). The optimizer is391

AdamW (Loshchilov and Hutter, 2017), and the392

batch size is 64. We adopt SPECTER (Cohan et al.,393

2020) as the pre-trained encoder E(·) in Eqs. (1)394

and (2).395

Experimental Results. Table 1 presents the396

MAP@10 and 20 scores of compared methods in397

the entity set expansion task. We run TAXOIN-398

STRUCT multiple times and report the average per-399

formance. To assess statistical significance, we400

conduct a two-tailed Z-test comparing TAXOIN-401

STRUCT against each baseline, with significance402

levels indicated in Table 1. We can observe that: (1)403

TAXOINSTRUCT consistently outperforms all base-404

lines, including those leveraging language model405

probing (e.g., CGExpan and ProbExpan). In most406

cases, the advantage of TAXOINSTRUCT is statis-407

tically significant. (2) TAXOINSTRUCT performs408

significantly better than NoParentPretrain, suggest-409

ing that even in entity set expansion—where iden-410

tifying siblings is the primarily required skill—pre-411

training TAXOINSTRUCT to find parents still en-412

hances the performance. This finding validates413

our motivation for pre-training a unified model to414

jointly address different yet related tasks.415

4.2 Taxonomy Expansion416

Datasets. Following (Jiang et al., 2023b), we use417

two benchmark datasets, Environment and Sci-418

ence, from the shared task in SemEval 2016 (Bor-419

dea et al., 2016). Entities in these two datasets420

are scientific concepts related to environment and421

general science, respectively.422

Table 2: Performance of compared methods in the tax-
onomy expansion task. Bold and *: the same meaning
as in Table 1. †, ‡, and ▷: the scores of this method are
reported in Jiang et al. (2023b), Zeng et al. (2021), and
Liu et al. (2021), respectively.

Method Environment Science
Acc Wu&P Acc Wu&P

TAXI † 0.167∗ 0.447∗ 0.130∗ 0.329∗

HypeNET † 0.167∗ 0.558∗ 0.154∗ 0.507∗

BERT+MLP † 0.111∗ 0.479∗ 0.115∗ 0.436∗

TaxoExpan † 0.111∗ 0.548∗ 0.278∗ 0.576∗

Arborist ‡ 0.4615∗ – 0.4193∗ –
Graph2Taxo ‡ 0.2105∗ – 0.2619∗ –
STEAM † 0.361∗ 0.696∗ 0.365∗ 0.682∗

TMN ‡ 0.3793∗ – 0.3415∗ –
TEMP ▷ 0.492∗ 0.777∗ 0.578∗ 0.853
GenTaxo ‡ 0.4828∗ – 0.3878∗ –
BoxTaxo † 0.381∗ 0.754∗ 0.318∗ 0.647∗

Llama-3.1 70B 0.3654∗ 0.6957∗ 0.4471∗ 0.7310∗

TAXOINSTRUCT 0.5115 0.8300 0.6165 0.8480
NoSiblingPretrain 0.4616∗ 0.7911∗ 0.5953∗ 0.8559

Baselines. The baselines for taxonomy expansion 423

include TAXI (Panchenko et al., 2016), HypeNET 424

(Shwartz et al., 2016), BERT+MLP (Devlin et al., 425

2019), TaxoExpan (Shen et al., 2020b), Arborist 426

(Manzoor et al., 2020), Graph2Taxo (Shang et al., 427

2020), STEAM (Yu et al., 2020), TMN (Zhang 428

et al., 2021), TEMP (Liu et al., 2021), GenTaxo 429

(Zeng et al., 2021) BoxTaxo (Jiang et al., 2023b), 430

and Llama-3.1 70B (Dubey et al., 2024). Addi- 431

tionally, to investigate if sibling finding helps par- 432

ent finding, we introduce an ablation version of 433

TAXOINSTRUCT, NoSiblingPretrain, for the tax- 434

onomy expansion task, which is pre-trained on the 435

parent-finding task only. 436

Evaluation Metrics. We adopt Accuracy (Acc) 437

and Wu & Palmer Similarity (Wu&P) (Wu and 438

Palmer, 1994) as the evaluation metrics. Previous 439

studies (Yu et al., 2020; Zeng et al., 2021; Jiang 440

et al., 2023b) also consider the mean reciprocal 441

rank (MRR) as an evaluation metric. However, it 442

requires a model to rank all nodes in the taxonomy 443

according to their likelihood of being the parent, 444

which is not applicable to TAXOINSTRUCT that 445

generates only one predicted parent entity. 446

Experimental Results. Table 2 shows the per- 447

formance of compared methods in taxonomy ex- 448

pansion. Our key observations are: (1) TAXOIN- 449

STRUCT significantly outperforms all baselines in 450

nearly every case. The only exception is that TEMP 451

achieves a higher Wu&P score on the Science 452

dataset. Apart from TEMP, GenTaxo is a strong 453

baseline that follows a generative paradigm for 454

taxonomy expansion. However, unlike TAXOIN- 455

STRUCT, which leverages LLMs to fully harness 456
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Table 3: Performance of compared methods in the seed-
guided taxonomy construction task. Bold and *: the
same meaning as in Table 1.

Method
DBLP PubMed-CVD

Sibling Parent Sibling Parent
nDCG nDCG nDCG nDCG

HSetExpan 0.8814∗ 0.8268∗ 0.6515∗ 0.5085∗

NoREPEL 0.8830∗ 0.8152∗ 0.6705∗ 0.6216∗

NoGTO 0.9527∗ 0.8855∗ 0.7395∗ 0.6428∗

HiExpan 0.9524∗ 0.9045 0.7365∗ 0.7132∗

Llama-3.1 70B 0.9708∗ 0.8607∗ 0.8934∗ 0.8010

TAXOINSTRUCT 0.9817 0.9210 0.9220 0.8034
NoParentPretrain 0.9668∗ 0.7836∗ 0.8920∗ 0.7864
NoSiblingPretrain 0.9425∗ 0.9114 0.7930∗ 0.6838∗

the strengths of the generative approach, GenTaxo457

relies solely on a Gated Recurrent Unit (GRU) ar-458

chitecture, resulting in suboptimal performance. (2)459

TAXOINSTRUCT outperforms NoSiblingPretrain460

across most columns, suggesting that even in the461

taxonomy expansion task—where identifying par-462

ent entities is the primary objective—pre-training463

the model to accurately identify siblings remains464

beneficial. Combined with our ablation analysis465

from entity set expansion, this finding supports the466

conclusion that sibling-finding and parent-finding467

skills can mutually enhance each other.468

4.3 Seed-Guided Taxonomy Construction469

Datasets. We use the DBLP and PubMed-CVD470

datasets introduced by Shen et al. (2018a). The471

seeds in our experiments are identical to those472

in Shen et al. (2018a). Both datasets have a two-473

layer input taxonomy. For DBLP, there are 5 seeds474

at the top layer (i.e., Machine Learning, Data Min-475

ing, Natural Language Processing, Information476

Retrieval, and Wireless Networks) and 11 seeds at477

the bottom layer. For PubMed-CVD, there are 3478

seeds at the top layer (i.e., Cardiovascular Abnor-479

malities, Vascular Diseases, and Heart Disease)480

and 10 seeds at the bottom layer.481

Baselines. The baselines for seed-guided taxon-482

omy construction include HSetExpan (Shen et al.,483

2017), HiExpan (Shen et al., 2018a), two abla-484

tion versions of HiExpan—NoREPEL (Shen et al.,485

2018a) and NoGTO (Shen et al., 2018a)—as well486

as Llama-3.1 70B (Dubey et al., 2024). Besides,487

following our practice in the previous two tasks, we488

consider two ablation variants, NoParentPretrain489

and NoSiblingPretrain.490

Evaluation Metrics. At the top layer, both our491

TAXOINSTRUCT model and most baselines achieve492

near-perfect accuracy. Therefore, our evaluation493

focuses on the more challenging bottom layer. We494

Table 4: Performance of TAXOINSTRUCT with different
LLM backbones. For the seed-guided taxonomy con-
struction task (i.e., DBLP and PubMed-CVD), we show
Sibling nDCG@50; for the taxonomy expansion task
(i.e., Environment and Science), we show Wu&P.

Method DBLP PubMed-CVD Environment Science

Strongest Baseline 0.9708 0.8934 0.777 0.853

TAXOINSTRUCT

Llama-3 8B 0.9817 0.9220 0.8300 0.8480
Llama-2-chat 7B 0.9713 0.8923 0.7739 0.7370
Mistral 7B 0.9635 0.9162 0.7552 0.8437
Gemma 7B 0.9685 0.8627 0.7893 0.8713

use Sibling nDCG@k to assess the accuracy of 495

the sibling-finding step and Parent nDCG@k to 496

evaluate the accuracy of the parent-finding step. 497

Experimental Results. Table 3 demonstrates the 498

Parent and Sibling nDCG@50 scores of compared 499

methods in seed-guided taxonomy construction. 500

We find that: (1) TAXOINSTRUCT clearly outper- 501

forms all baselines in both the sibling-finding and 502

parent-finding steps across both datasets. Notably, 503

identifying correct sibling terms that are relevant 504

to the taxonomy is a prerequisite for accurately de- 505

termining their parent categories. If an expanded 506

sibling is incorrect (i.e., it does not belong at this 507

layer or anywhere in the taxonomy), predicting its 508

correct parent becomes impossible. This explains 509

why the Sibling nDCG@50 score is always higher 510

than the corresponding Parent nDCG@50 score. 511

(2) TAXOINSTRUCT consistently outperforms the 512

two ablation versions, which is intuitive, as seed- 513

guided taxonomy construction relies on the synergy 514

of both skills. 515

4.4 Effect of the LLM Backbone 516

Although we use Llama-3 8B as the backbone for 517

TAXOINSTRUCT in previous experiments, it is im- 518

portant to emphasize that TAXOINSTRUCT is a ver- 519

satile framework that can be instantiated with vari- 520

ous off-the-shelf generative LLMs. To demonstrate 521

the generalizability of TAXOINSTRUCT, we eval- 522

uate its performance when Llama-2-chat 7B (Tou- 523

vron et al., 2023), Mistral 7B (Jiang et al., 2023a), 524

and Gemma 7B (Team et al., 2024) are plugged in. 525

Table 4 presents the performance of TAXOIN- 526

STRUCT with different LLM backbones. Due to 527

space limitations, we only display results for 4 528

datasets (out of the 6 used in the previous experi- 529

ments) and one metric for each dataset. From Ta- 530

ble 4, we observe that: (1) On DBLP, both Llama-3 531

8B and Llama-2-chat 7B allow us to outperform 532

the strongest baseline—Llama-3.1 70B, which has 533

a much larger number of parameters; on PubMed- 534
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CVD, this could be achieved using Llama-3 8B and535

Mistral 7B. (2) On the Environment dataset, both536

Llama-3 8B and Gemma 7B enable our framework537

to beat the best-performing baseline (i.e., TEMP).538

On the Science dataset, even our default choice539

Llama-3 8B does not perform the best in Table 3,540

using Gemma 7B allows us to surpass the state of541

the art. To summarize, the effectiveness of TAX-542

OINSTRUCT is built upon the power of our pro-543

posed framework and LLMs in general, rather than544

a specific choice of Llama-3 8B.545

5 Related Work546

Entity Set Expansion. EgoSet (Rong et al., 2016)547

pioneers entity set expansion using skip-grams548

and word2vec embeddings (Mikolov et al., 2013).549

Following this, SetExpan (Shen et al., 2017) em-550

ploys an iterative bootstrapping framework, while551

CaSE (Yu et al., 2019) rank candidates via distribu-552

tional similarity among context-free embeddings to553

rank candidate entities according to the seeds. With554

pre-trained contextualized language models such555

as BERT (Devlin et al., 2019) and GPT-2 (Rad-556

ford et al., 2019), CGExpan (Zhang et al., 2020)557

generates class names to prevent semantic drift,558

ProbExpan (Li et al., 2022) refines entity represen-559

tations using contrastive learning, and GAPA (Li560

et al., 2023) leverages autoregressive models for561

context pattern generation. However, all afore-562

mentioned approaches do not explore the power563

of LLMs with billions of parameters and the abil-564

ity to follow instructions, while TAXOINSTRUCT565

extensively exploits the effectiveness of LLMs in566

entity set expansion.567

Taxonomy Expansion. Earlier, lexical pat-568

terns (Panchenko et al., 2016) and distributional569

word representations (Shwartz et al., 2016) are used570

to infer the hypernym-hyponym relationship. Later,571

TaxoExpan (Shen et al., 2020b) and STEAM (Yu572

et al., 2020) propose to encode local ego-graphs573

and mini-paths, respectively, corresponding to each574

entity in the taxonomy. In addition, TMN (Zhang575

et al., 2021) examines candidate parents and chil-576

dren via a triplet matching network. Most recently,577

TaxoPrompt (Xu et al., 2022) and TacoPrompt (Xu578

et al., 2023) adopt prompt tuning on BERT-based579

encoder models to generate contextualized repre-580

sentations of the global taxonomy structure; Box-581

Taxo (Jiang et al., 2023b) uses box embeddings to582

replace single-vector embeddings to better capture583

the hierarchical structure of concepts. Introducing584

a more challenging version of taxonomy expan- 585

sion, Shen et al. (2018a) study seed-guided taxon- 586

omy construction which requires the initial step 587

of extracting new entities from text corpora given 588

a small set of seeds before performing taxonomy 589

expansion. Different from previous approaches 590

that utilize context-free embeddings, graph neu- 591

ral networks, and BERT-based language models, 592

our TAXOINSTRUCT model unleashes the power 593

of LLMs such as Llama-3. More recently, there are 594

studies (Zeng et al., 2024a,b) leveraging GPT-4 and 595

advanced prompting techniques for taxonomy ex- 596

pansion. By contrast, TAXOINSTRUCT is a unified 597

framework aiming to jointly solve entity set expan- 598

sion, taxonomy expansion, and seed-guided taxon- 599

omy construction rather than any of them alone. 600

Structure-Aware Prompting and Instruction 601

Tuning. There has been increasing attention on 602

prompting and instruction-tuning LLMs to learn 603

from (text-rich) structured data (Jin et al., 2023; Li 604

et al., 2024; Chen et al., 2024). For instance, Wang 605

et al. (2023a) strategically prompt LLMs to solve 606

graph problems such as shortest paths and maxi- 607

mum flows; InstructGLM (Ye et al., 2024) shows 608

that LLMs fine-tuned on node classification and 609

link prediction can outperform competitive graph 610

neural network baselines; Zhang et al. (2024) put 611

entity triplets into an instruction template for LLMs 612

to perform knowledge graph completion; Guo et al. 613

(2023) conduct a benchmark study on LLMs’ abil- 614

ity to understand graph data by using formal lan- 615

guage to describe graphs. Different from these 616

studies that focus on graph structures (e.g., aca- 617

demic networks), our work specifically explores 618

how taxonomy structures can guide the instruction 619

tuning process to unleash LLMs’ potential to solve 620

entity enrichment tasks in a unified way. 621

6 Conclusions 622

In this paper, we present TAXOINSTRUCT, a uni- 623

fied framework designed to jointly address en- 624

tity set expansion, taxonomy expansion, and seed- 625

guided taxonomy construction. We introduce a 626

taxonomy-guided instruction tuning technique that 627

effectively exploits the existing large-scale taxon- 628

omy to teach LLMs the commonality of the three 629

tasks (i.e., the skills of sibling finding and parent 630

finding). Through extensive experiments on widely 631

used benchmarks for all three tasks, we demon- 632

strate the superiority of TAXOINSTRUCT over com- 633

petitive task-specific baselines. 634

8



Limitations635

Our work has the following limitations. First, since636

our primary goal is to verify the universal effec-637

tiveness of LLM instruction tuning across all three638

tasks, we intentionally keep our framework as sim-639

ple as possible, avoiding complex signals utilized640

in previous studies such as paths (Liu et al., 2021;641

Jiang et al., 2022) and local graphs (Mao et al.,642

2020; Wang et al., 2021). Second, after instruction643

tuning, TAXOINSTRUCT can be further equipped644

with inference-time techniques such as chain-of-645

thought prompting (Wei et al., 2022b) and self-646

consistency reasoning (Wang et al., 2023b). In-647

tegrating these techniques into TAXOINSTRUCT648

could further enhance its performance, which we649

leave for future work.650
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A Appendix 902

A.1 Details of Baselines 903

For all three tasks, we use Llama-3.1 70B (Dubey 904

et al., 2024) as one of our baselines, which is di- 905

rectly prompted with the same instructions as TAX- 906

OINSTRUCT. Besides, we consider the following 907

task-specific baselines. 908

A.1.1 Baselines of Entity Set Expansion 909

• EgoSet (Rong et al., 2016) uses skip-gram con- 910

text features and word2vec embeddings to ex- 911

pand entity sets in multiple facets. 912

• SetExpan (Shen et al., 2017) iteratively selects 913

skip-gram context features from the corpus and 914

proposes a rank ensemble mechanism for scoring 915

and selecting entities. 916

• SetExpander (Mamou et al., 2018) learns dif- 917

ferent text embeddings from different types of 918

context features and trains a classifier to predict 919

whether an entity belongs to a set. 920

• CaSE (Yu et al., 2019) integrates skip-grams and 921

word2vec embeddings to score and rank entities 922

from the corpus. 923

• SetCoExpan (Huang et al., 2020) generates aux- 924

iliary sets as negative sets that are closely related 925

to the target set and simultaneously co-expand 926

multiple sets. 927

• CGExpan (Zhang et al., 2020) infers the tar- 928

get semantic class names by probing a lan- 929

guage model and then utilizes the generated class 930

names to expand new entities. 931

• SynSetExpan (Shen et al., 2020a) jointly con- 932

ducts two related tasks—synonym discovery and 933

entity set expansion—and utilizes synonym in- 934

formation to enhance expansion performance. 935

• ProbExpan (Li et al., 2022) devises an entity- 936

level masked language model with contrastive 937

learning to refine the representation of entities 938

for entity set expansion. 939

A.1.2 Baselines of Taxonomy Expansion 940

• TAXI (Panchenko et al., 2016) first extracts 941

hypernym-hyponym pairs from text corpora us- 942

ing substrings and lexico-syntactic patterns, then 943

it organizes the extracted terms into a coherent 944

taxonomy. 945
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• HypeNET (Shwartz et al., 2016) employs946

LSTM to concurrently capture the distributional947

and relational information between term pairs948

along dependency paths.949

• BERT+MLP (Devlin et al., 2019) first acquires950

term embeddings from a pre-trained BERT951

model and then inputs the embeddings into a952

multi-layer perceptron to predict the hypernymy953

relationship.954

• TaxoExpan (Shen et al., 2020b) leverages graph955

neural networks to encode local ego-graphs in956

the input taxonomy to improve entity represen-957

tations. In the original paper, context-free word958

embeddings are used as input features. Follow-959

ing (Yu et al., 2020), we replace context-free960

embeddings with more powerful BERT embed-961

dings for this baseline.962

• Arborist (Manzoor et al., 2020) explores hetero-963

geneous edge semantics by employing a large-964

margin ranking loss to ensure an upper limit on965

the shortest-path distance between predicted and966

actual parent nodes.967

• Graph2Taxo (Shang et al., 2020) utilizes cross-968

domain graph structures and constraint-based969

learning of directed acyclic graphs.970

• STEAM (Yu et al., 2020) learns representations971

for each pair of (new entity, existing entity) from972

multiple views using paths sampled from the973

taxonomy.974

• TMN (Zhang et al., 2021) proposes a triplet975

matching network to match a query with976

hypernym-hyponym pairs. It enables insertion977

of non-leaf query concepts into an existing tax-978

onomy.979

• TEMP (Liu et al., 2021) employs pre-trained980

contextual encoders to predict the position981

of new concepts by ranking the generated982

taxonomy-paths.983

• GenTaxo (Zeng et al., 2021) learns the contex-984

tual embeddings from their surrounding graph-985

based and language-based relational information986

and leverages the corpus for pre-training a con-987

cept name generator.988

• BoxTaxo (Jiang et al., 2023b) represents entities989

as boxes to capture their parent-child relation-990

ship. It optimizes the box embedding (Vilnis991

et al., 2018) of each entity from a joint view of 992

geometry and probability. 993

A.1.3 Baselines of Seed-Guided Taxonomy 994

Construction 995

• HSetExpan (Shen et al., 2017) iteratively ap- 996

plies SetExpan at each layer of the input taxon- 997

omy. For each expanded bottom-layer node, it 998

uses REPEL (Qu et al., 2018), a weakly super- 999

vised relation extraction model, to find the most 1000

proper parent at the top layer. 1001

• HiExpan (Shen et al., 2018a) combines the tech- 1002

niques of flat set expansion, parent-child rela- 1003

tionship inference, and global optimization of 1004

the taxonomy structure by jointly utilizing skip- 1005

grams, context-free text embeddings, and entity 1006

types. 1007

• HiExpan-NoREPEL (Shen et al., 2018a) is an 1008

ablation version of HiExpan, which does not 1009

utilize REPEL for parent-child relationship in- 1010

ference. Instead, it uses context-free text embed- 1011

dings only. 1012

• HiExpan-NoGTO (Shen et al., 2018a) is an ab- 1013

lation version of HiExpan, which does not have 1014

the global optimization optimization module. 1015

Shen et al. (2018a) have released the output tax- 1016

onomies2 of the four baselines above on DBLP and 1017

PubMed-CVD, which we use for evaluation. 1018

A.2 Details of Evaluation Metrics 1019

A.2.1 Metric for Entity Set Expansion 1020

We use MAP@k as the evaluation metric. For- 1021

mally, given a set of seeds S = {s1, ..., sM} 1022

and the top-k expanded entities S+ = {sM+1, ..., 1023

sM+k}, the average precision AP@k is defined as 1024

AP@k(S,S+) =
1

k

∑
i:1≤i≤k,
sM+i∼S

∑i
j=1 I(sM+j ∼ S)

i
. (3) 1025

Here, sM+j ∼ S denotes that the expanded entity 1026

sM+j and the seed entities in S belong to the same 1027

semantic class; I(·) is the indicator function. Since 1028

there are multiple testing queries (i.e., multiple 1029

sets of seeds) S1, ...,SC and their corresponding 1030

expansion results S+
1 , ...,S+

C , the MAP@k score 1031

is defined as 1032

MAP@k =
1

C

C∑
i=1

AP@k(Si,S+
i ). (4) 1033

2http://bit.ly/2Jbilte
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A.2.2 Metrics for Taxonomy Expansion1034

We use Accuracy (Acc) and Wu & Palmer Similar-1035

ity (Wu&P) as the evaluation metrics.1036

Acc is the exact match accuracy of the predicted1037

parent node of each testing entity. Formally, as-1038

sume the testing set has C samples x1, ..., xC , and1039

their ground-truth parents in the input taxonomy1040

are y1, ..., yC , respectively. Then the accuracy of1041

the learned parent-child relationship PARENT+(·)1042

is defined as1043

Acc =
1

C

C∑
i=1

I(PARENT+(xi) = yi). (5)1044

Wu&P (Wu and Palmer, 1994) calculates the1045

similarity between the predicted parent and the1046

ground-truth parent based on their distance in the1047

taxonomy.1048

Wu&P =
1

C

C∑
i=1

2× depth(LCP(PARENT+(xi), yi))

depth(PARENT+(xi)) + depth(yi)
,

(6)1049

where LCP(·, ·) is the lowest common ancestor of1050

two nodes, and depth(·) denotes the depth of a1051

node in the taxonomy.1052

A.2.3 Metrics for Seed-Guided Taxonomy1053

Construction1054

We use Sibling nDCG@k and Parent nDCG@k1055

as the evaluation metrics. Formally, in a two-1056

layer taxonomy, given the bottom-layer seeds S2 =1057

{s2,1, ..., s2,M}, we examine the top-k expanded1058

bottom-layer entities S+
2 = {s2,M+1, ..., s2,M+k}.1059

Sibling nDCG@k evaluates the accuracy of the1060

sibling-finding step (i.e., whether s2,M+i and S21061

belong to the same semantic class).1062

Sibling nDCG@k =

∑k
i=1

I(s2,M+i∼S2)

log2(i+1)∑k
i=1

1
log2(i+1)

. (7)1063

Parent nDCG@k evaluates the accuracy of the1064

parent-finding step. For each expanded bottom-1065

layer entity s2,M+i, let s1,p(i) denote its ground-1066

truth parent at the top layer. Then, this metric can1067

be defined as1068

Parent nDCG@k =

∑k
i=1

I(PARENT+(s2,M+i)=s1,p(i))

log2(i+1)∑k
i=1

1
log2(i+1)

.

(8)1069
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