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Abstract

Diffractive optical neural networks (DONNs) have emerged as a promising optical
hardware platform for ultra-fast and energy-efficient signal processing. However,
previous experimental demonstrations of DONNs have only been performed using
coherent light, which is not present in the natural world. Here, we study the role of
spatial optical coherence in DONN operation. We propose a numerical approach
to efficiently simulate DONNs under input illumination with arbitrary spatial co-
herence and discuss the corresponding computational complexity using coherent,
partially coherent, and incoherent light. We also investigate the expressive power
of DONNs and examine how coherence affects their performance. We show that
under fully incoherent illumination, the DONN performance cannot surpass that
of a linear model. As a demonstration, we train and evaluate simulated DONNs
on the MNIST dataset using light with varying spatial coherence.

1 Introduction

Machine learning models are currently executed using specialized electronic hardware, such as
graphics processing units (GPUs) and tensor processing units (TPUs), which harness immense pro-
cessing power and data parallelism. However, the growing compute requirements from advanced
deep learning models are far outpacing hardware improvements anticipated by Moore’s law scal-
ing [1]. Given the constraints imposed by digital electronics, optics has gained recognition as a
promising platform for machine learning applications with low latency, high bandwidth, and low
energy consumption [2].

Diffractive optical neural networks (DONNs) are specialized hardware architectures that harness
diffraction effects to process optical signals in free space [3; 4]. DONNs are generally composed of
several successive modulation surfaces, denoted as diffractive layers, that modify the phase and/or
amplitude of the incident optical signals through light-matter interactions, as shown in Fig. 1. The
diffractive layers contain discrete pixels, each with an independent complex-valued transmittance
coefficient. The output of the DONN corresponds to the total intensity of the optical field incident
on designated detection regions in the output plane.

DONNs are usually trained in silico, i.e., the physical DONN is modeled using a computer to simu-
late the evolution of the optical signals through the system. The modulation patterns of the diffractive
layers are optimized to achieve the desired transformation between the input and target output of the
DONN, which is analogous to optimizing the weights in standard neural network models [5]. Dur-
ing training, the transmittance coefficient of each pixel in the diffractive layers is iteratively updated
using an optimization algorithm to minimize the error in the model’s output with respect to the train-
ing set. The backpropagation algorithm is used to efficiently calculate the gradient of the loss with
respect to the transmittance coefficients [6].

37th First Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2023 (MLNPCP 2023).



<latexit sha1_base64="lvMUPnwAOWrOfXolpdiAXrfw0Sg="></latexit>

P̂0

<latexit sha1_base64="LS2hYrwn8S06eHJcylAh2947XyE="></latexit>

P̂1

<latexit sha1_base64="sdljbYqiL7HsYtf022I1CmBPahc="></latexit>

P̂L

Figure 1: Illustration of a DONN trained to identify handwritten digits. The DONN is comprised of
L diffractive layers that modulate the optical field as it propagates through the system. The output
plane encompasses ten detection regions, which are each associated with a unique digit, and the
predicted output corresponds to the region with the highest optical intensity. The transmission and
propagation operators at the l-th layer are denoted by T̂l and P̂l, respectively.

DONNs are particularly well-suited for use with real-world optical signals, as the optical fields can
be directly fed into the system. However, such signals are typically incoherent. In contrast, most of
the existing experimental work with DONNs is performed using fully-coherent illumination from
laser sources. In this paper, we introduce a computationally efficient framework for simulating
and training DONNs using incident illumination with arbitrary spatial coherence and evaluate the
performance of simulated DONNs trained on the MNIST dataset of handwritten digits.

2 DONN operation with spatial coherence

2.1 Coherent illumination

In this section, we introduce a formalism for describing the evolution of coherent, monochromatic
optical fields through DONNs using scalar diffraction theory [7]. We treat the optical field as a
complex scalar quantity and employ Dirac notation to represent the transverse profile of the field
at discrete spatial positions using ket-vectors. This discretization does not affect the generality of
our treatment as long as the spatial sampling interval (i.e., pixel pitch) is much smaller than the
characteristic transverse field feature size. The transformations applied to the field as it evolves
through the DONN, which include free-space propagation and transmission through modulation
surfaces, are expressed using linear operators.

At each layer in the DONN, the optical field is modulated by the diffractive surface and subsequently
propagates through free space to the next layer. The incident field at the m-th discrete pixel of the
l-th diffractive layer, before modulation, is represented by ψl(m), where the time dependence of
the signal is absent. The transverse profile of the field can be expressed using Dirac notation as
|ψl⟩ =

∑
m ψl(m) |m⟩, where the set {|m⟩} of all pixels forms an orthonormal basis. The mapping

between the optical fields in the l-th and (l+1)-th layers can be expressed as |ψl+1⟩ = P̂lT̂l |ψl⟩,
where T̂l and P̂l are the transmission and free-space propagation operators, respectively.

The transmission operator T̂l describes the phase and/or amplitude modulation applied to the optical
field by each pixel in the l-th diffractive layer. The corresponding matrix is diagonal:

T̂l =
∑
m

tl(m) · |m⟩⟨m| , (1)

where tl(m) is the complex-valued transmittance coefficient at the m-th pixel in the l-th diffractive
layer, which satisfies |tl(m)| ≤ 1.

The operator P̂l describes the free-space propagation of the field between the l-th and (l+1)-th
diffractive layers using the Rayleigh-Sommerfeld solution [7]:

P̂l =
∑
m,n

h(m,n) · |n⟩⟨m| , (2)
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with

h(m,n) =
1

iλ
exp

(
i2πr(m,n)

λ

)
d

r(m,n)2
(3)

being the point-spread function, i.e., the amplitude distribution in the (l+1)-th layer if only the m-
th pixel of the l-th layer is illuminated. In the above equation, λ is the wavelength of the coherent
optical signal (the central wavelength for quasimonochromatic light), d is the axial distance between
the two diffractive layers, and r(m,n) is the Euclidean distance between the m-th and n-th pixels
in the l-th and (l+1)-th layers, respectively. The above expression is valid when the axial distance
between layers is much greater than the (central) wavelength of light.

The input image processed by the DONN is encoded in the initial field |ψin⟩. The output optical
field, represented by |ψout⟩, can then be expressed as

|ψout⟩ = Û |ψin⟩ , (4)

where Û is the evolution operator of the DONN that maps the input optical field onto the output field
(i.e., the spatial impulse response of the system):

Û =

L∏
l=1

(
P̂lT̂l

)
P̂0, (5)

where the DONN has L diffractive layers. At the output plane of the DONN, the intensity of the
evolved field is measured using image sensors:

Iout(n) = | ⟨n|ψout⟩ |2 = |ψout(n)|2. (6)

For classification tasks, the output of the DONN corresponding to each class c is defined as the total
intensity incident on a specified spatial detection region Dc in the output plane:

o(c) =
∑
n∈Dc

Iout(n). (7)

Training DONNs using a computer (i.e., in silico) requires simulating the evolution of coherent
optical fields through the system. The calculated optical field at each layer is then used during the
backward pass to compute the gradient of the loss function with respect to the diffractive layer trans-
mittance coefficients. The propagation operator P̂l can be evaluated in O(N logN) time by utilizing
the fast Fourier transform algorithm [8]. Additionally, the transmission operator T̂l is described by
a diagonal matrix and can be evaluated in O(N) time. Therefore, calculating the evolution of B
different input fields through a DONN with L layers and N pixels per layer has a computational
complexity of O(BLN logN), and the backward pass has the same complexity.

2.2 Arbitrary spatial coherence illumination

Using DONNs for real-world applications requires the ability to process incoherent and partially
coherent light. We assume quasimonochromatic illumination conditions, which is a good approxi-
mation for many cases. These conditions require that the input light is narrowband and its coherence
length is much greater than the maximum path length difference between diffractive layers [9]. At
the same time, we assume the coherence time to be much shorter than the inverse detection band-
width, so the detection averages in time over the non-stationary interference pattern.

The spatial coherence of the optical field in the l-th layer is characterized by the mutual intensity
function, which determines the time-averaged correlation of the field at two separate pixels [9; 10]:

Jl(m,m
′) = lim

T→∞

1

T

∫ T/2

−T/2

ψl(m; t)ψ∗
l (m

′; t) dt,

where T is the detection time. This matrix represents an operator

Ĵl = lim
T→∞

1

T

∫ T/2

−T/2

|ψl(t)⟩⟨ψl(t)| dt, (8)
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Table 1: Computational complexity of modeling the evolution ofB input examples through a DONN
with L layers and N pixels per layer under different illumination conditions.

Spatial Coherence Computational Complexity

Coherent O(BLN logN)
Arbitrary Coherence O(BLN2 logN)
Incoherent O(BN2) +O(LN2 logN)

where Jl(m,m′) = ⟨m|Ĵl|m′⟩. The time-averaged intensity of the field is given by the diagonal
elements of the mutual intensity operator, such that

Il(m) = Jl(m,m). (9)

Similar to the evolution of coherent fields through DONNs, the evolution of the mutual intensity
operator can be expressed using the transmission and propagation operators. The input mutual
intensity operator Ĵin describes the spatial coherence of the initial field that encodes the input image
to be processed by the DONN. The output mutual intensity operator is given by

Ĵout = Û Ĵin Û
†, (10)

where Û is the evolution operator of the DONN defined in Eq. (5). The output of the DONN
corresponds to the total time-averaged intensity, defined in Eq. (9), incident on the spatial detection
regions along the output plane:

o(c) =
∑
n∈Dc

Jout(n, n). (11)

The evolution of the mutual intensity operator and the corresponding DONN output can be simu-
lated on a computer using Eqs. (10) and (11). Analogous to the previously discussed method, the
fast Fourier transform can be leveraged to evaluate the propagation operator P̂l applied to an arbi-
trary mutual intensity operator described by an N ×N matrix, which scales as O(N2 logN). The
transmission operator T̂l can similarly be evaluated in O(N2) time. Hence, simulating the evolution
of B different input fields with arbitrary spatial coherence through a DONN with L layers and N
pixels per layer has a computational complexity of O(BLN2 logN). The backward pass executed
during training has the same computational complexity.

The computational cost of simulating DONNs with fully incoherent illumination can be amortised
for multiple input examples using the impulse response that characterizes the system. A summary
of the computational complexities of simulating DONNs under coherent, arbitrary coherence, and
incoherent illumination is shown in Table 1.

3 Results

3.1 Expressivity of DONNs

The expressive power of DONNs is dependent on the spatial coherence of the input light. Under
coherent illumination, DONNs have been shown to outperform linear models [3]. Since the co-
herent field evolves linearly through the system, this improvement in performance results from the
nonlinear intensity measurement of the complex-valued field at the output plane (6), followed by
the linear summation of the intensities over the detection regions (7). Thus, DONNs using coherent
illumination can be understood as standard neural networks that consist of a complex-valued linear
layer with a nonlinear activation function, followed by a real-valued linear layer.

In contrast, under incoherent illumination, the time-averaged output intensity is the sum of the in-
tensity patterns from individual pixel sources in the input plane. Therefore, DONNs with incoherent
input illumination cannot perform better than a linear model, as the time-averaged input and output
intensity distributions are linearly related according to the intensity impulse response.

The improved expressive power of a coherently illuminated DONN arises from the off-diagonal el-
ements in the input mutual intensity operator, which are absent for incoherent light. These elements
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Figure 2: DONN training results on the MNIST dataset under coherent and incoherent illumination.
a Validation accuracy attained by the models at each epoch during training. b, c Confusion matrix
of the model trained using coherent (b) and incoherent (c) illumination evaluated on the test set.

represent the spatial coherence between two different pixels in the input image. For an arbitrary
input mutual intensity operator Jin, the output intensity can be expressed, using Eqs. (9) and (10),
as

Iout(n) =
∑
m,m′

Jin(m,m
′) · ⟨n|Û |m⟩ · ⟨m′|Û†|n⟩ . (12)

This summation includes off-diagonal elements of the mutual intensity operator, which depend non-
linearly on the field. Due to this nonlinearity, the performance of DONNs under partially coherent
illumination can surpass that with incoherent light, as demonstrated in the following section.

3.2 Performance on MNIST dataset

Using the formalism introduced in the previous section, we trained simulated DONN models to iden-
tify handwritten digits from zero to nine using incoherent, partially coherent, and coherent illumi-
nation. The models were trained over 50 epochs using 55,000 images (5,000 images for validation)
from the MNIST dataset, each consisting of 28× 28 pixels [11]. The DONNs are composed of five
diffractive layers, each with 100 × 100 pixels, which modulate the phase of the incident light and
are spaced 5 cm apart. Each model was trained using a uniform, normalized optical field incident
on the input image of the handwritten digit with a central wavelength of 700 nm. The cross-entropy
loss function was used during training to calculate the output error of the model. Each pixel in
the diffractive layers has a surface area of 10 × 10 µm2, while each pixel in the input pattern is
30 × 30 µm2. Each detection region in the output plane, which is associated with a unique digit, is
250× 250 µm2.

The spatial coherence of the input illumination is given by
Jin(m,m

′) =
√
Iin(m)I∗in(m

′)µrnorm(m,m′), where Iin(m) is the time-averaged intensity at
the m-th pixel in the input image, rnorm(m,m′) is the Euclidean distance between the m-th and
m′-th input pixels, normalized by the pixel pitch, and µ quantifies the degree of spatial coherence:
µ = 1 for fully coherent and µ = 0 for fully incoherent light. We first trained two DONN models
to process handwritten digits using fully coherent and incoherent illumination. During the training
phase, we saved the model parameters that yielded the highest validation accuracy. We then
evaluated the performance of these models using a test set of 10,000 images that were not shown
during training. The models trained using coherent and incoherent light achieved test accuracies of
97.54% and 91.17%, respectively. The validation accuracy attained during training, as well as the
performance of the models on the test set, are shown in Fig. 2.

We then trained DONNs using input illumination with partially coherent light, where each model
was trained to process light with a different degree of spatial coherence. The performance of the
models was evaluated, and the test accuracies are shown in Fig. 3a. We also evaluated the robust-
ness of the models by testing their performance using input light with degrees of spatial coherence
different from that used during training (Fig. 3b). As expected, the best performance is achieved
when the model is evaluated under the same coherence conditions used during training. However,
models trained using incoherent illumination are more robust against changes in spatial coherence.
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Figure 3: Performance of DONN models on the MNIST dataset with varied coherence. a Test
accuracy achieved with input light of a specified degree of spatial coherence µ. b Accuracies attained
by models trained with illumination of spatial coherence µtrain but tested using input illumination
with spatial coherence µtest. The test accuracies along the diagonal correspond to using the same
illumination conditions for training and testing, as shown in (a).

4 Discussion

We have demonstrated that the performance of DONNs is dependent on the spatial coherence of the
incident illumination. Models using incoherent illumination cannot outperform linear models for
information processing tasks. However, as demonstrated in Fig. 3a, the degree of spatial coherence
required to achieve optimal performance need not be high: µ ∼ 0.6 means that the mutual coherence
between points separated by four pixels is reduced by a factor of 0.13. That is, performance almost
at the fully coherent level can be reached even when the transverse coherence length is much less
than the size of a whole MNIST digit. This implies that neighboring pixels contain more relevant
information for pattern recognition compared to distant pixels. As a result, the DONN model can
capture relevant nonlinear relationships without requiring full spatial coherence between all pixels.

A deep-learning based method was recently proposed for implementing linear transformations with
DONNs under spatially incoherent illumination [12]. The method approximates incoherence for
a single input example by averaging the output intensity patterns from numerous coherent input
fields with random phase distributions. In contrast, our approach operates with the mutual intensity
function (i.e., mutual coherence function), which is a compact and efficient way to represent the
statistical properties of a partially coherent field [10]. This enables us to compute the evolution of
light with arbitrary coherence more efficiently and accurately.

We emphasize that the above relation between the input coherence and DONN expressivity assumes
that no further processing of the DONN data is implemented. If, for example, the DONN is followed
by an electronic neural network with nonlinear activation layers, the DONN can surpass a linear
model even if illuminated incoherently. For example, Rahman et al. trained a DONN to classify
MNIST by associating two detection regions with each digit and then applying a rational function
to compute the network prediction from the intensities of these regions. In this way, the accuracy
reached was above that of a linear classifier [12].

Incoherently illuminated DONNs are more broadly applicable to real-world environments, as coher-
ent illumination requires a laser source. However, some degree of coherence can also be achieved
by illuminating the object with a distant incoherent source of narrow spatial extent according to the
van Cittert – Zernike theorem [10]. As discussed above, illumination with even a short transverse
coherence length can significantly enhance the DONN performance.
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