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Abstract—Cardiovascular diseases (CVDs) are a significant
global health concern, causing more deaths than several types
of cancer combined. Early detection and proper treatment are
crucial for better clinical outcomes. Electrocardiograms (ECGs)
offer valuable insights into the presence of CVDs. However,
extracting powerful features from raw ECG signals for reliable
automated diagnostics remains challenging due to high inter- and
intra-patient variability, diversity of rhythmic and morphological
abnormalities, and noise distributions. This paper proposes a
deep learning architecture for the automated detection of dis-
eases in 12-lead ECG data, capable of recognizing concurrent
irregularities through multi-label classification. Moreover, we
present a novel method that combines deep feature extraction
with binary machine learning classifiers. To account for the
distinct characteristics of various ECG leads, we use a multi-loss
optimization strategy. Our methodology is rigorously evaluated
through 10-fold cross-validation using the publicly available
CPSC 2018 dataset. With macro F1 and AUC scores reaching up
to 85.2% and 98.0%, respectively, our approach demonstrates
advantage over existing state-of-the-art methods. At the same
time, our architecture remains lightweight with approximately 1.7
million trainable parameters, which represents a reduction in the
number of parameters of up to 68% compared to previous meth-
ods. Assessing the generalizability of our approach, we further
evaluated it on the PTB-XL dataset and achieved macro F1, AUC,
and accuracy scores comparable to existing methods, demonstrat-
ing the robustness of our model across diverse datasets. This
advancement holds promise for enhanced automated diagnosis
and improved patient care in the context of CVDs. Our code is
available at: https://github.com/VanessaBorst/MACRO.

Index Terms—ECG signal, Ensemble, Gradient boosting,
Healthcare, Multi-head attention, Multi-label classification.

I. INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of death
worldwide, accounting for approximately 17.9 million deaths
annually according to the World Health Organization [1].
Timely diagnosis is crucial, and the electrocardiogram (ECG)
has become a vital, non-invasive, and cost-effective modality
for detecting CVD by capturing the heart’s electrical activity
through strategically placed body electrodes that convert it into
a distinctive waveform. Deviations in these waveform patterns
serve as indicative markers for the presence of CVD [2]. In
clinical practice, the 12-lead ECG, consisting of the six limb
leads (I, II, III, aVL, aVR, and aVF) and the six precordial or
chest leads (V1, V2, V3, V4, V5, and V6), provides different
perspectives of the heart’s electrical activity by recording it
from distinct angles [3]. As a result, different leads incorporate
lead-specific characteristics. However, automated detection of

irregularities faces challenges that cause significant misdiagno-
sis in computerized interpretation of the ECG (CIE), even with
existing commercial algorithms [4]. These challenges include
inter- and intra-patient variability, common features leading to
similar ECG findings across different cardiac abnormalities,
co-occurrence of multiple irregularities, and artefacts intro-
duced during acquisition.

Despite these challenges, researchers have proposed a
plethora of techniques for CVD detection, including traditional
statistical and machine learning (ML) methods [5], [6]. How-
ever, these methods typically require complex preprocessing
and feature extraction (FE) prior to detection [5]. As a result,
deep learning (DL) paradigms have emerged as end-to-end
solutions that eliminate the need for extensive preprocessing
and labor-intensive manual feature engineering. Many of these
combine FE and classification [7], [8], where some process
raw ECG data directly [9] or only require minimal modi-
fications like padding [10]. Convolutional Neural Networks
(CNNs) have been extensively explored for ECG classification
at both the heartbeat level [11] and in methods processing ECG
sequences [8]. While CNNs excel at extracting discriminative
features from spatially and locally related data, they often
neglect the temporal properties of ECG signals [12]. In con-
trast, Recurrent Neural Networks (RNNs), such as LSTMs and
GRUs, are designed for handling sequential data of varying
lengths but lack local information [12]. Capturing temporal
dynamics inherent in ECGs, RNNs have been applied to
both heartbeat [13] and sequence-based [14] classification. In
addition, hybrid approaches stacking CNNs and RNNs [7],
[15] have proven successful, leveraging the strengths of both
to extract local features and aggregate them along time [12].

Mostly within the last five years, advanced deep learning
concepts have been adopted for 12-lead CVD detection, often
inspired by breakthroughs in domains such as computer vi-
sion [16] or natural language processing [17]. Such adoptions
include residual neural networks [18], [19], various types
of attention mechanisms [10], [20], [21], and transformer
models [22]. Residual networks (ResNets) exhibit numerous
variants, such as the integration of handcrafted (expert) fea-
tures [23] or their combination with RNNs [24]. ResNets
with attention modules, such as squeeze-and-excitation (SE)
blocks [25] or convolutional block attention (CBAM) mod-
ules [26], and methods that merge (SE)ResNets with trans-
former variants [27], [28] have also been successfully applied.



Lastly, approaches that process different ECG leads sepa-
rately [21], [29], [30] or in groups [31] by dedicated feature ex-
traction components per lead (group) within different network
branches have made notable contributions. However, despite
recent advances, certain limitations remain:

1) Expert-Driven FE and Limited Temporal Scope of
ML Traditional ML approaches are less data-intensive
and therefore well-suited for domains with limited labeled
data, like medicine. However, they often require expert-
crafted features, such as RR intervals, rather than auto-
matically learning features from the data [2]. Moreover,
existing methods frequently restrict their scope to single
heartbeats [5] or short windows [6], thus failing to
account for the dynamic ECG evolution over time.

2) Large Model Size of DL Methods: Despite their con-
siderable success and end-to-end training capabilites, the
model size of advanced deep learning architectures, such
as Transformer [17], continues to grow. This not only
results in enormous training costs and increased hard-
ware requirements, but also impedes their applicability
in hardware-constrained real-world scenarios.

3) Independent Lead Analysis: Most methods concatenate
all ECG channels into a single 2D input matrix. Although
DL models can learn to extract useful features from
multivariate data implicitly or through network internals
such as attention [20], without special operations (e.g.,
group convolution), all leads are initially treated equally
and as a whole [27], [28]. However, from a medical
perspective, certain heart conditions, such as atrial fib-
rillation (AF), show characteristic patterns in one or a
few rather than in all leads [3]. Given that different leads
can contribute differently to CVD detection, the ability
of a model to capture comprehensive diagnostic informa-
tion may be improved by learning class-specific features
from the respective leads. However, most techniques lack
mechanisms for extracting lead-specific features per class,
such as analyzing leads separately in dedicated branches.

To address these limitations, we introduce a multi-branch
(MB) architecture that independently extracts features from all
twelve ECG leads and then fuses them into a comprehensive
representation. Each branch, denoted as BranchNet, processes
a single lead with a shared structure. Leveraging the concept of
lead-specific features, we employ our MB network as a feature
extractor coupled with individual binary classifiers for each
label. This allows the models to assign varying importance to
distinct lead-specific features based on the specific class. In
summary, our key contributions are as follows:

1) Multi-Branch Framework with Lead-Individual FE:
We introduce MACRO, a Multi-Head Attentional
Convolutional Recurrent Network for the classification
of Co-Occurring diseases in 12-Lead ECGs, and Multi-
Branch MACRO (MB-M). MB-M uses the structure of
MACRO in twelve specialized BranchNets, each focused
on extracting features from a single ECG lead. Then, it
unifies the intermediate feature maps of these branches
for a holistic understanding of cardiac activity.

2) Novel Fusion of Deep FE and ML Ensemble: In order
to combine the strengths of ML and DL, we repurpose
MB-M as deep feature extractor and integrate it with an
ensemble of binary classifiers, training dedicated gradient
boosting models per class.

3) Detailed Model Size and Performance Evaluation: We
thoroughly evaluate our framework through 10-fold cross-
validation on the public CPSC 2018 benchmark dataset,
where it outperforms existing methods while maintaining
a small parameter count. Ablation studies explore the
impact of specific network components.

The remainder of this paper is structured as follows. Sec-
tion II details the MACRO architecture, its multi-branch vari-
ant MB-M, and the gradient boosting classifiers. Section III
outlines the experimental setup. Finally, we report and analyze
results in Section IV, and we draw conclusions in Section V.

II. METHODOLOGY

To address co-occurring diseases, we formulate the problem
as a 12-lead multi-label classification task. Our models process
ECG recordings x ∈ RL×12 of length L. Their goal is to
predict one or more classes from a pool of C potential classes
for each recording concurrently.

A. The MACRO Architecture

As summarized in Fig. 1, our MACRO model comprises a
convolutional feature extraction module, a bidirectional gated
recurrent unit (BiGRU), a multi-head attention mechanism,
and a classification head. Inspired by Chen et al. [10], the
winners of the China Physiological Signal Challenge (CPSC)
2018, it shares a similar overall structure with the 130 models
constituting their ensemble. However, we do not adhere to
their ensemble strategy but utilize MACRO as a standalone
model. Furthermore, we introduce substantial architectural
modifications, such as refining the CNN module with features
like residual connections and varying channel amounts, and
incorporating multi-head attention. Chen et al.’s architecture
serves as a baseline in our study.

1) Convolutional Feature Extraction: In the first submodule
of MACRO, a stack of five blocks is employed (cf. [10]),
as illustrated in orange in Fig. 1. Each contains two 1D
convolutional layers with kernel size three and stride one,
followed by a downsampling operation that is realized as 1D
convolution with stride two. The downsampling layers have a
kernel size of 24 in the first four CNN blocks and 48 in the
last block. Non-linear transformations are applied using leaky
rectified linear units (LeakyReLU) with a negative slope value
of 0.3, and each block concludes with a dropout layer set at
a rate of 0.2.

Compared to Chen et al.’s model, we make several benefi-
cial alterations based on preliminary experiments: First, we
introduce skip connections [16] within all network blocks,
implementing the pre-activation design paradigm [32]. Linear
projections, utilizing dedicated (1 × 1) convolutional layers
with a stride of two, are employed to align spatial and
channel dimensions. Second, an initial block with a single 1D
convolutional layer with a kernel size of 16 is added. Third,
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Fig. 1: Overview of the proposed MACRO architecture

we vary the amount of channels across blocks (cf. right side of
Fig. 1), and finally, we incorporate batch normalization into
the CNN module. The introduced skip connections, aligned
with the pre-activation design, establish a ”clean” pathway,
enhancing information propagation and facilitating the direct
flow of gradients. The additional initial block prevents the
transfer of raw signals through shortcuts, bypassing any nor-
malization or scaling. The progressive increase in the count
of feature maps within the first half of the CNN module and
subsequent reduction in the second half aim to first enrich
and later compress knowledge for the comparatively small
BiGRU module that follows. Lastly, the inclusion of batch
normalization within the CNN enhances training effectiveness.

2) Bidirectional Gated Recurrent Unit (BiGRU): The CNN
output feature map, denoted as fCNN , is fed into a BiGRU
layer with 12 units. This BiGRU interprets fCNN as a time
series of length T , processing it in both forward and backward
directions. At any time step t, the forward GRU aggregates
information from time steps 1 to t, and the backward GRU
gathers information from time steps T to t. Combining both,
the forward hidden state h

(f)
t ∈ R12 and the backward hidden

state h
(b)
t ∈ R12 are concatenated into a single vector, denoted

as hBiRNN
t = [h

(f)
t , h

(b)
t ] ∈ R24, encapsulating contextual

information surrounding the input xt at time step t. Finally,
these concatenated vectors undergo a LeakyReLU activation
function and a dropout layer with a rate of 0.2.

3) Multi-Head Attention (MHA): The multi-head attention
(MHA) layer of MACRO determines the importance weights
for the BiGRU hidden states across different time steps. It
combines the 24-dimensional input vectors hBiRNN

t of all
time steps into a single 24-dimensional output vector using a
weighted sum, providing a comprehensive data representation.
While our reimplemented baseline model uses Chen et al.’s
attention mechanism, we will discuss the MHA of MACRO
next. A detailed visualization is available in Fig. 2.

In a MHA mechanism with h heads, the attention function
is computed independently h times in parallel [17]. Each head
hi has its own linear projection matrices W

(Q)
i ∈ Rdmodel×dq ,

W
(K)
i ∈ Rdmodel×dk , and W

(V )
i ∈ Rdmodel×dv , which are

used to project the dmodel-dimensional queries, keys, and
values to dq, dk and dv dimensions, respectively. In this
work, all dimensions are set to be the same, specifically
dq = dk = dv = dmodel/h with dmodel = 24. For each time
step t, the BiGRU output vector hBiRNN

t is used as both
the key and value. Differing from the self-attention used in
Transformers [17], the query q is initialized as a random
vector and jointly learned. We apply a tanh activation function
after each head’s linear key transformation through W

(K)
i to

maintain the non-linearity within key derivation, similar to the
attention mechanism in our baseline.

In practice, the attention function is computed over all
T time steps simultaneously. The keys and values hBiRNN

t

for all time steps t ∈ 1, ..., T are combined into matrices
K ∈ RT×dmodel and V ∈ RT×dmodel . The query q ∈ Rdmodel

remains a single vector used across all time steps. Thus,
the calculation for head hi can be summarized as follows,
producing a vector of dimension dv:

hi = Attention
(
q W

(Q)
i ,K W

(K)
i , V W

(V )
i

)
(1)

= Attention(qi,Ki, Vi) (2)

= 1.5-Entmax

(
qiKi

T

√
dk

)
Vi (3)

Unlike the non-scaled dot-product in the baseline attention
mechanism, the MHA layer uses a scaled dot-product. We also
employ the α-entmax function [33] with α = 1.5 instead of
softmax, producing sparse probability distributions for weight
determination. Moreover, a dropout with a rate of 0.2 is applied
to the Entmax scores to prevent overfitting (cf. Fig. 2).
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Fig. 2: Detailed view of our MHA with α− Entmax from a zoomed-in perspective.

Lastly, the outcomes from all h heads are concatenated
into a vector of dimension h · dv . It undergoes further
processing through a single-layer MLP with weight matrix
WO ∈ Rh·dv×dmodel , producing a result vector of dimension
dmodel as follows:

MultiHead(q,K, V ) = concat(h1, ..., hh)W
O (4)

This MHA mechanism enables simultaneous attention to di-
verse parts of the input sequence, augmenting the model’s
capacity to capture complex relations.

4) Classification Head: After the MHA layer, its output
undergoes further transformations: batch normalization for
scaling, LeakyReLU activation for non-linearity, dropout with
rate 0.2 for regularization, and finally, a dense layer with a
Sigmoid activation function. This dense layer maps the inputs
to a nine-dimensional output vector, representing the model’s
predicted probabilities for the nine distinct categories.

B. The Multi-Branch MACRO (MB-M) Architecture
Inspired by Zhang et al.’s MLBF-Net [30], we extend the

MACRO architecture to create Multi-Branch MACRO (MB-
M). This enhancement includes twelve lead-specific branches,
each tailored to the unique characteristics of different ECG
leads. These branches are then consolidated into a concate-
nated overall network, providing a holistic view that considers
all twelve ECG channels for signal classification. Fig. 3 shows
an overview of the proposed MB-M model and the main
components are described in the following paragraphs.

1) Twelve Independent BranchNets: Each BranchNet
closely resembles the MACRO architecture (cf. Fig. 1), with
minor alterations in the number of channels, processing a
single lead’s ECG signal instead of the full 12-lead ECG.
Hence, all hyperparameters remain consistent with MACRO,
except for the number of channels in the input and conse-
quently, between the five convolutional block, as indicated at
the bottom of Fig. 3.

2) Branch Fusion and Convolutional Reduction Block:
This module concatenates all feature maps hBiRNN

t ∈ R24

from the BiGRUs across all branches along the channel axis.
Subsequently, it gradually decreases the concatenated channels

from 24 ∗ 12 = 288 to 24. This ensures that the dimensions
of the subsequent MHA layer matrices remain within a rea-
sonable range. The reduction is accomplished through three
convolutional layers, each, except the last, followed by batch
normalization and LeakyReLU activation layers. Notably, the
final convolution lacks the normalization, which aligns with
the original MACRO architecture, where the BiGRU feature
maps remain unnormalized before entering the MHA layer.

3) MHA Layer and Classification Head: The last two
components maintain the structure of MACRO. Firstly, the
concatenated and reduced BiGRU feature maps undergo a
MHA mechanism with h = 24 heads. Secondly, they pass
through the classification head, which is identical to MACRO.

4) Multi-Loss Objective Function: To jointly optimize the
concatenated network and the twelve individual branches, we
employ a multi-loss objective function structured as follows:

L = Lc + λ(L1 + ...+ L12) (5)

Here, Lc and Li represent the binary cross-entropy (BCE)
loss of the concatenated network and the i-th BranchNet,
respectively. Following insights from Zhang et al. [30], we set
the parameter λ to 1 to effectively balance the contributions
of lead-specific features from individual branches and the
comprehensive features derived from the overall network.

C. MB-M and Gradient Boosting Classifiers

Previously, individual BranchNets were optimized indepen-
dently with a multi-loss approach, but their direct contribution
to final classification was absent. In a shift towards ensemble
modeling principles, we repurpose the deep learning archi-
tecture MB-M as a feature extractor, and introduce gradient
boosting models for classification [34]. Employing a dedicated
binary classifier for each of the nine classes, we experiment
with three variants of input features:

1) Predicted probabilities (PPs) from all twelve BranchNets
and MB-M (117 feat.)

2) PPs only for the class of interest (13 feat.)
3) PPs only for the class of interest w/o MB-M (12 feat.)
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Fig. 3: Overview of the proposed Multi-Branch MACRO architecture

III. EXPERIMENTAL SETUP

A. Datasets
Our architectures are developed and assessed on the widely

used benchmark dataset of the China Physiological Signal
Challenge (CPSC) 2018 [35]. This real-world dataset from
11 hospitals encompasses nine classes, including sinus nor-
mal rhythm (SNR) and eight rhythmical and morphological
abnormalities. We utilize the 6,877 records from the publicly
available training set, as the test set remains private. Most
records are 6 to 60 seconds long, with a few extending up to
144 seconds. While primarily single-labeled, 476 records have
multiple labels. To assess generalizability, we utilize PTB-
XL [36], a large multi-label dataset of 21,799 clinical 12-lead
ECG records of 10 seconds each. PTB-XL contains 71 ECG
statements, categorized into 44 diagnostic, 19 form, and 12
rhythmic classes. In addition, the diagnostic category can be
divided into 24 sub- and 5 coarse-grained super-classes. In
alignment with the recent SOTA method proposed by Tao et
al. [37], we utilize the super-diagnostic labels for classification.

B. Data Management and Preprocessing
In initial experiments and for hyperparameter tuning, we

employed a fixed split of the 6,877 samples from the CPSC
2018 dataset: 60% for training, 20% for validation, and 20%
for testing. For the final evaluation, including ablation studies
and model comparisons, we used 10-fold cross-validation
(CV) with random partitions. Our preprocessing, tailored for
clinical practicality, remains minimal: signals are downsam-
pled from 500 Hz to 250 Hz, and record durations are
standardized to 60 seconds. Over-length samples are truncated,
and shorter ones are zero-padded. For PTB-XL, we used the
recommended train-valid-test splits, sampled at 100 Hz to en-
sure comparability with existing methods. Moreover, we select
only samples with at least one label in the superdiagnostic
category, without applying any further preprocessing.

C. Evaluation Metrics
We assess model performance using established metrics,

such as F1 score, AUC, and subset accuracy. In binary
classification, TP, TN, FP, and FN represent true positives,
true negatives, false positives, and false negatives, respectively.
Accuracy (Acc), Precision (Prec), Recall (Rec), and F1 score
are defined as:

Acc =
TP + TN

TP + FP
(6)

Prec =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2× Prec×Rec

Prec+Rec
(9)

AUC quantifies the area under the curve generated by plot-
ting the true positive rate (TPR) against the false positive
rate (FPR) at different discrimination thresholds. For multi-
label classification, we apply weighted and macro averaging.
Weighted averaging considers class contributions based on
support, addressing class imbalance, while macro averaging
is a common practice in recent approaches. The exact match
ratio (MR) is also used to assess the percentage of samples
with all labels correctly predicted.

D. Implementation Details

We implemented our approach using Python 3.10.12 and
PyTorch 2.0.1 on a server with two partitioned Nvidia A100
GPUs, each with 80 GB RAM. The baseline, MACRO,
and MB-M models were trained end-to-end using the Adam
optimizer with default settings, a learning rate of 0.001, and
a batch size of 64. We used binary cross-entropy (BCE) loss
and applied early stopping with a patience of 20 epochs on the
validation set. We saved the model’s weights at the time of the
last improvement and opted for the macro F1 score as stopping
criterion. To train and fine-tune the gradient boosting (GB)
classifiers for each class of CPSC 2018, we reemployed the 10-
fold cross-validation (CV) approach with data splits identical
to those used in the end-to-end MB-M training to prevent data
leakage and maintain test set integrity. In each iteration, we
merged the folds of the training and validation sets to form a
new training set. Using this set, sklearn’s stratified k-fold CV
(k=3) and grid search were used to fine-tune GB hyperparame-
ters for each class. The best per-class models were then applied
to the probabilities generated by the BranchNets and MB-
M for the corresponding test fold, depending on the feature
selection. The final classification resulted from combining the
binary predictions of each individual GB classifier. For PTB-
XL, we followed a similar process but used the recommended
train-valid-test split instead of cross-validation.

IV. RESULTS

A. Classification Performance of Our Models

The 10-fold CV results for our MACRO and Multi-Branch
MACRO (MB-M) models, compared to our reimplemented
baseline [10], are given at the left of Table I. The F1 score and
AUC metrics, reflecting the models’ predictions on nine dis-
tinct classes, are averaged across respective test datasets from
the ten rounds. These average values, along with the standard
deviation (sd), are reported. Additionally, macro and weighted
averages across all classes and folds are provided. The input
for all three models remains consistent (x ∈ R12×15,000).



TABLE I: 10-fold CV results (mean±sd) in percentage on the CPSC 2018 dataset. N denotes the number of samples per class.

Type (N) Baseline [10] MACRO MB-M MB-M + GB-12 MB-M + GB-13 MB-M + GB-all

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

SNR (918) 79.6±3.7 97.2±0.9 81.5±3.0 97.5±0.5 82.8±1.6 97.8±0.3 79.3±3.0 97.7±0.4 83.0±1.9 97.8±0.5 83.1±2.6 97.9±0.4
AF (1221) 90.3±1.8 98.6±0.5 92.1±1.4 98.9±0.5 93.7±1.4 99.1±0.4 93.9±1.6 99.2±0.4 94.1±1.3 99.2±0.3 94.6±1.1 99.2±0.5
IAVB (722) 86.1±2.7 98.5±0.9 86.8±4.0 98.2±1.1 88.6±3.6 99.0±0.5 89.2±3.3 99.1±0.5 89.2±3.6 98.9±0.7 88.8±3.6 99.0±0.6
LBBB (236) 85.0±8.9 98.1±2.0 86.3±7.5 98.6±1.3 86.6±5.7 98.4±2.2 89.0±5.7 98.7±1.6 89.6±5.1 98.8±1.4 90.3±6.4 98.3±2.1
RBBB (1857) 92.0±1.3 98.6±0.4 92.7±1.1 98.9±0.3 92.9±0.8 98.9±0.2 94.1±0.8 99.1±0.3 93.8±1.0 99.0±0.3 93.9±0.8 99.1±0.3
PAC (616) 72.2±2.5 95.3±1.3 73.4±4.8 96.4±1.6 79.2±4.0 97.4±1.3 80.2±4.9 98.2±0.9 79.1±4.7 98.1±0.9 81.4±3.8 97.7±1.4
PVC (700) 84.7±4.5 98.0±0.7 85.4±2.3 98.3±0.6 86.0±2.1 97.9±0.8 88.1±1.7 98.8±0.4 87.8±2.0 98.5±0.6 88.0±1.9 98.4±0.9
STD (869) 77.0±4.0 94.8±2.0 79.1±4.0 96.1±1.4 79.0±3.4 96.3±1.1 82.6±3.2 97.4±0.7 83.2±3.4 97.2±0.8 83.4±2.6 97.4±0.7
STE (220) 43.1±12.0 90.0±4.7 51.0±11.1 92.4±2.8 55.7±6.2 94.4±3.8 60.3±6.0 94.4±2.7 64.3±9.0 95.7±2.8 63.0±5.1 95.4±2.5

Macro-AVG 78.9±1.6 96.6±0.6 80.9±2.1 97.3±0.5 82.7±1.4 97.7±0.6 84.1±1.1 98.1±0.4 84.9±1.2 98.1±0.3 85.2±1.2 98.0±0.5
Weighted-AVG 83.9±1.2 97.4±0.4 85.4±1.3 97.8±0.4 86.7±1.1 98.1±0.3 87.5±1.2 98.5±0.2 88.1±1.0 98.4±0.2 88.4±0.8 98.4±0.3

In summary, the transition from the baseline to MACRO and
to MB-M results in a noticeable improvement across multiple
metrics. Specifically, there is an increase of 2.0 pp and 3.8 pp
in macro-averaged F1 and 0.7 pp and 1.1 pp in AUC scores,
respectively. For weighted averages, the increments are 1.5 pp
and 2.8 pp for the F1 and 0.4 pp and 0.7 pp for the AUC
scores. When examining the F1 scores for each class, there
is a consistent increase in mean performance scores across all
ten folds for all classes. The only exception is a negligible
decrease of 0.1 pp for STD when comparing MACRO to
MB-M. Similar observations can be made for the class-specific
AUC scores, with only three minor exceptions. Furthermore,
all three models consistently demonstrated proficiency in the
two majority classes, RBBB and AF, but faced challenges in
effectively handling the minority class STE. Interestingly, the
second minority class, LBBB, was quite well recognised, with
all three models achieving an average F1 score of at least 0.85.
Although the sample sizes for STE (220) and LBBB (236)
were similar, this difference in performance may be due to the
considerable disagreement between physicians in diagnosing
STE from ECGs [38]. The complexities in recognizing STE
are further underscored by examining the standard deviation
(sd) across the 10 folds. For STE, all three models showed the
highest sd in F1 scores, followed by the other minority class
LBBB, which had the second-highest sd across the models.

As shown at the right-hand side of Table I, the usage
of gradient boosting (GB), utilizing diverse input features,
considerably improves the overall performance. For all three
variants, there is a consistent improvement over MB-M of
1.4 pp, 2.2 pp, and 2.5 pp in the macro average F1 scores,
accompanied by a macro AUC score increase of ≥ 0.3 pp.
In particular, the minority classes STE and LBBB experience
substantial improvement in all cases. When using GB classi-
fiers with all 117 input features, we observe enhancements in
all class-wise F1 scores and both averages. The AUC scores
improve or remain constant for all labels, except for LBBB.
Restricting the GB input features to the BranchNets and MB-
M outputs for the specific class of interest (13 ft.) yields
similar positive outcomes, with increased F1 scores for all
classes except PAC and improved or consistent AUC scores,
except for I-AVB. Further limiting the GB inputs by excluding
the MB-M probability (12 ft.) follows a similar pattern of

improved F1 scores and either enhanced or unchanged AUC
scores compared to the raw MB-M. Notably, the sole exception
is observed in normal sinus rhythm (SNR), where there is a
notable 3.5pp decrease in the F1 score. To provide context,
the few exceptions noted for the other GB variants yield a
decrease of only 0.01 pp.

While the integration of GB classifiers contributes signif-
icantly to improved performance regardless of the specific
feature set, no consistent trends are observed within the
different GB variants. A stringent rise in F1 scores, moving
from 12 to 13 to all 117 features, is evident for only four
of the nine classes (SNR, AF, LBBB, and STD), along with
macro and weighted averages. In the case of I-AVB, RBBB,
and PVC, both F1 and AUC scores show minor differences
(≤0.5 pp) across feature sets. Conversely, for PAC and STE,
more substantial variations are observed across both metrics.
Consequently, our focus will be on two versions: GB-all,
utilizing all 117 features and demonstrating the best overall
performance, and GB-13, incorporating only 13 features, while
exhibiting superior performance for the minority class STE.

B. Comparison to Existing SOTA Techniques

This section compares the performance of our method with
previous work for 12-lead ECG classification on the CPSC
2018 dataset, provided that the respective methods have been
evaluated by 5- or 10-fold CV. As shown in Table II, MACRO
and in particular, Multi-Branch MACRO (MB-M) without
gradient boosting (GB) achieve competitive results compared
to recent state-of-the-art (SOTA) methods. When MB-M is
used as a feature extractor combined with GB classifiers, it
outperforms existing SOTA approaches, demonstrating supe-
rior F1 scores across various classes and, especially, the macro
F1, AUC, and Acc scores. In more detail, the combination
of MB-M and the GB-all classifier surpasses current SOTA
methodologies in terms of all three macro averages and
three out of nine class-specific F1 scores. Even when using
only 13 input features per classifier (GB-13), our approach
achieves superior performance. This includes improved macro
F1, AUC, and Acc scores, as well as a superior F1 score
for class I-AVB compared to existing techniques. Thus, the
proposed architecture effectively addresses the complexities
of detecting concurrent cardiac disorders.



TABLE II: Comparison of our 10-fold CV results (in %) with exist. SOTA methods applying 5- or 10-fold CV on CPSC 2018.

Approach Class-wise F1 Macro AVG

Method Year SNR AF I-AVB LBBB RBBB PAC PVC STD STE F1 ↓ AUC Acc

Res. att. modules + LSTM [26] 2019 80.0 84.5 83.3 81.0 87.2 73.1 81.8 79.0 55.3 78.4 - -
ResNet + BiLSTM [24] 2019 75.5 84.6 87.0 86.9 78.0 75.1 82.9 79.1 70.4 79.9 - -
LightX3ECG [21] 2023 75.5 94.0 89.2 88.7 94.4 63.1 79.2 78.5 57.8 80.0 - -
CNN + BiLSTM [15] 2020 79.9 91.7 88.1 88.1 93.9 59.3 81.2 81.4 58.8 80.3 96.2 96.2
ResNet + expert features [23] 2018 82 91 87 87 91 63 82 81 60 81 - -
(Interpretable) ResNet [18] 2021 80.5 91.9 86.4 86.6 92.6 73.5 85.1 81.4 53.5 81.3 97.0 96.6
ASTLNet [20] 2023 79.0 92.3 86.7 89.2 93.7 75.7 83.7 79.8 55.8 81.8 97.0 80.0
ResNet with SE blocks [25] 2021 79 92 87 87 93 78 86 81 59 82.5 - -
Multi-task neural network [27] 2023 82.4 92.5 88.2 93.7 93.9 73.4 76.7 83.5 60.0 82.7 97.7 96.6
DAMS-Net [28] 2023 81.9 91.5 88.1 87.8 93.6 75.5 87.6 81.9 68.4 83.9 - -
LFG-Net [29] 2024 79.2 93.2 89.1 89.4 93.7 75.6 87.4 82.1 68.2 84.2 - -
MSGformer [22] 2024 84.0 92.3 83.8 84.9 93.5 73.1 85.6 85.6 59.8 84.7 - -

MACRO 2024 81.5 92.1 86.8 86.3 92.7 73.4 85.4 79.1 51.0 80.9 97.3 96.6
MB-M 2024 82.8 93.7 88.6 86.6 92.9 79.2 86.0 79.0 55.7 82.7 97.7 96.9

MB-M + GB-13 2024 83.0 94.1 89.2 89.6 93.8 79.1 87.8 83.2 64.3 84.9 98.1 97.2
MB-M + GB-all 2024 83.1 94.6 88.8 90.3 93.9 81.4 88.0 83.4 63.0 85.2 98.0 97.2

C. Ablation Studies and Amount of Parameters

We evaluate different model variants by 10-fold CV to un-
derstand their contributions. Our baseline, adapted from Chen
et al. [10], is compared to MACRO, its multi-branch version
and two intermediate alternatives in terms of macro (m) and
weighted (w) F1 and AUC scores, as well as MR. To examine
the impact of the multi-head attention (MHA), we replace the
simple attention in the baseline while optimizing MHA param-
eters for the simplified CNN. Identified optimal parameters
(h = 8, dropout = 0.4) yield marginal improvements with
a negligible parameter increase. Conversely, substituting the
CNN module enhances performance across metrics, notably
a 1.7pp increase in macro F1, but comes with a significant
rise in trainable parameters. Since the CNN module is the first
component of the network and does not require any adaptation
to preceding layers, it is replaced with MACRO’s version
without parameter tuning. The combined variant, featuring
both the improved CNN and the MHA module (resulting
in MACRO), exhibits further improvements across metrics.
Although marginal compared to the baseline with modified
CNN, these enhancements are noteworthy compared to both
the baseline and its MHA-only version. Ultimately, the fusion
of twelve MACRO models into MB-M leads to additional
performance gains across all metrics, albeit with a further in-
crease in trainable parameters. Nevertheless, MB-M maintains
a low number of trainable parameters compared to existing
SOTA approaches. Table IV summarizes this for all methods
from Table II that provide either information on the number of
parameters or their source code. With the exception of LFG-
Net [29], which requires 1.02M parameters for pure inference,
but necessitates the use of another 12 parallel networks for
training, and He et al.’s method [24], whose achieved macro
F1 score (m-F1) is 5 pp. below ours, our approach achieves a
reduction in parameters of between 29% (wrt. [20]) and 68%
(wrt. [21]). This underscores a thoughtful balance between
model complexity and computational efficiency on the one
hand, and classification performance on the other hand.

TABLE III: Performance of model variants by 10-fold CV.

Approach m-F1 w-F1 m-AUC w-AUC MR Params ↓

Baseline (BL) 78.9 83.9 96.6 97.4 78.6 28,005
BL + MHA 79.3 84.1 96.8 97.4 78.7 29,805
BL + mod. CNN 80.6 85.1 97.2 97.8 79.9 190,113
MACRO 80.9 85.4 97.3 97.8 80.0 191,913
MB-M 82.7 86.7 97.7 98.1 81.9 1,713,081

TABLE IV: Parameter count PC in million of MACRO (M),
MB-M, and MB-M + GB-all (ours) compared to others.

[24] [21] [18] [20] [25] [29] M MB-M Ours

PC 1.16 5.34 3.87 2.42 3.5 1.02 0.19 1.71 1.71
m-F1 79.9 80.0 81.3 81.8 82.5 84.2 80.9 82.7 85.2

D. Investigation of Generalizability

To assess the generalizability of our approach, we trained
and evaluated MACRO, MB-M, and its GB-all extension
without modifications on the super-diagnostic task of PTB-XL.
Table V presents and compares our results with other methods.

TABLE V: Results and comparison with others on PTB-XL.

Method Year PC m-F1 ↓ m-AUC m-Acc

LightX3ECG [21] 1,2 2023 5.34 71.9 92.0 88.4
ECG-DNN [19] 1,2 2019 10.48 71.9 92.4 88.4
SE-ResNet12 1,3 2022 ≈45 72.5 92.3 88.0
Resnet34 1d 1,3 2016 ≈7.2 72.6 90.8 88.2
ASTLNet [20] 2 2023 2.42 73.6 91.3 62.7
Xresnet1d101 1 2021 1.81 73.7 92.9 88.5
Image CNN 1,2 2018 135.38 74.1 92.1 88.8
DNN zhu 1 2020 n/a 76.2 91.8 89.0
2D-ECGNet [37] 1 2024 n/a 77.0 92.9 89.2

MACRO 0.19 73.1 92.0 87.6
MB-M 1.71 74.9 92.4 88.8
Ours (MB-M + GB-all) 1.71 74.6 92.7 89.1
1 Models detailed in [37] 2 PC (in M) estimated from existing code
3 PC roughly estimated from similar model code (SE-ResNet152/ResNet34)



While the transition from MACRO to MB-M results in
improvements of 1.8 pp in F1, 0.4 pp in AUC, and 1.1 pp
in accuracy on PTB-XL, these gains are less pronounced than
those observed on CPSC. The addition of GB-all classifiers
provides only minimal benefits of 0.3 pp regarding AUC
and accuracy. This limited impact may stem from PTB-XL’s
minority classes: With the lowest class representing around
10% of samples, they may not experience the same boost
from binary classifiers as seen on CPSC, where the STE
class constitutes just 3%. In comparison to existing SOTA
techniques, our approach achieves comparable results while
simultaneously exhibiting a relatively low parameter count.

V. CONCLUSION

In this study, we proposed the MACRO and Multi-Branch
MACRO (MB-M) architectures for detecting concurrent car-
diac abnormalities in 12-lead ECG signals. Both models inte-
grate CNNs and RNNs with a multi-head attention mechanism,
achieving highly competitve performance on the CPSC 2018
dataset and demonstrating good generalizability, as indicated
by competitive results on the PTB-XL dataset. While MACRO
processes the 12-lead ECG input as a whole, the MB-M
model integrates twelve lead-specific branches into a com-
prehensive architecture to provide a holistic understanding of
cardiac activity. It adeptly captures the unique characteristics
of different ECG leads, improving the classification of dif-
ferent abnormalities beyond the already strong capabilities of
MACRO. By repurposing MB-M as a feature extractor to train
individual gradient boosting (GB) classifiers for each label, we
further increased classification performance on CPSC 2018,
particularly for minority classes. The combination of MB-M
and GB classifiers outperforms current SOTA methods in 10-
fold cross-validation on CPSC 2018, while reducing trainable
parameter count by up to 68%. In addition to its parameter
efficiency and SOTA performance on a widespread ECG
dataset, our approach has been shown to be effective across
different data splits, as demonstrated in extensive evaluations
and ablation studies. Lastly, we advance the field of cardiac
abnormality detection by providing insights into ensemble
modelling using a novel combination of deep feature extractors
and traditional machine learning classifiers. In the future, we
plan to evaluate the generalizabilty of our method in more
depth through further experiments, including other PTB-XL
categories, and to assess its transfer learning potential.
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