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ABSTRACT

Traditional meta-learning approaches primarily focus on the generalization ability
of models across unfamiliar tasks. These methods typically involve fine-tuning
the model in the outer loop to perform well on new tasks. While this is valu-
able for enabling models to adapt to various tasks, it may overlook the details
of rapid adaptation within tasks. During rapid adaptation, the same task may ex-
hibit entirely different data distributions, features, and patterns in different training
phases, making it exceptionally challenging to determine an appropriate learning
rate. Consequently, conventional meta-learning methods often employ fixed learn-
ing rates or simple learning rate strategies, overlooking the dynamic nature within
tasks. In this paper, we propose an Meta-Learning with Personalized Learning
Rates (MLPLR) approach. Specifically, we adaptively generate negatively corre-
lated learning rates by evaluating the information loss between predicted values
and ground truth. When the information loss is low, indicating the model’s strong
performance on the current task, we can increase the learning rate to expedite the
learning process. This aids in faster convergence and adapting to specific patterns
and features within tasks. Conversely, when the information loss is high, indicat-
ing poor model performance on the current task, we reduce the learning rate to
ensure more stable and gradual parameter updates, thereby mitigating overfitting.
Extensive experiments and analyses demonstrate that our approach enhances the
performance of various meta-learning models in the contexts of few-shot classifi-
cation, few-shot fine-grained classification, and cross-domain few-shot classifica-
tion.

1 INTRODUCTION

In an era characterized by the rapid advancement of artificial intelligence technology, deep learn-
ing algorithms have found wide-ranging applications across various domains (Liu et al., 2016; He
et al., 2016; Nam & Han, 2016; Chen et al., 2017). However, these algorithms typically demand
substantial volumes of data and formidable computational resources to perform effectively. Yet,
real-world scenarios often impose constraints on the availability of data and computational capacity.
To address this challenge, meta-learning (Schmidhuber, 1987; Thrun & Pratt, 2012) emerges as a
highly anticipated solution. At the heart of meta-learning lies the fundamental concept of extracting
general knowledge and strategies from prior learning experiences, empowering machines to swiftly
adapt to new tasks. This implies that even when confronted with limited data samples, machines can
achieve favorable outcomes rapidly.

An important branch of meta-learning is metric-based meta-learning (Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018), where machine learning focuses on meta-learning by measuring the
similarity between tasks. Another significant branch of meta-learning is optimization-based meta-
learning(Finn et al., 2017; Nichol et al., 2018; Raghu et al., 2019), in which machine learning adapts
to new tasks through an optimization process. This typically involves bi-level optimization (Ravi
& Larochelle, 2016): outer optimization (Baik et al., 2020b; Grant et al., 2018; Finn et al., 2018;
Jamal & Qi, 2019; Vuorio et al., 2019; Yao et al., 2019) and inner optimization (Behl et al., 2019;
Lee & Choi, 2018; Li et al., 2017; Rusu et al., 2018). Outer optimization is used to learn how
to initialize model parameters for rapid adaptation to new tasks. Inner optimization, on the other
hand, fine-tunes model parameters on new tasks to achieve improved performance. These bi-level
optimization collaborate to accomplish the objectives of meta-learning. Unlike metric-based meta-
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learning, optimization-based meta-learning emphasizes how to rapidly adapt to new tasks through
optimization algorithms, rather than considering the similarity between task instances.

Optimization-based meta-learning approaches (Zucchet et al., 2022; Zhao et al., 2022; Chen et al.,
2022; Li et al., 2023; Sendera et al., 2023) do not rely on specific model architectures but rather
concentrate on learning general optimization strategies. This flexibility enables them to be appli-
cable to a variety of deep learning models, free from the constraints of particular model structures.
Consequently, optimization-based meta-learning methods are typically more versatile.

A prominent representative of optimization-based meta-learning is MAML (Model-Agnostic Meta-
Learning) (Finn et al., 2017). MAML introduces a universal optimization strategy that enables
models to perform well on new tasks with only a few gradient updates. Although MAML is a
powerful meta-learning method, it has its share of shortcomings and limitations (Rajendran et al.,
2020; Yin et al., 2019). To address challenges arising from diverse tasks and data distributions,
recent research has started to consider the introduction of scheduling strategies in task sampling,
effectively constructing classification tasks through adaptive sampling processes (Liu et al., 2020a;
Yao et al., 2021b;d). In recent studies, the application of task augmentation methods (Rajendran
et al., 2020; Yao et al., 2021c; Wu et al., 2022; Liu et al., 2020b; Yao et al., 2021a) has significantly
improved model performance in addressing issues caused by insufficient tasks. However, these
strategies represent just the tip of the iceberg in the field of meta-learning. Recent research suggests
that methods involving adaptive learning rates can also enhance model performance and robustness.

In traditional gradient descent algorithms, the learning rate is typically set as a static value, which
must be manually adjusted before training to perform well across various tasks and datasets. How-
ever, this "one-size-fits-all" approach often struggles to strike a balance between training speed and
convergence quality. Adaptive learning rates (Zou et al., 2021; Yu et al., 2021; Kim et al., 2022; Behl
et al., 2019), as a meta-learning strategy, aim to enable models to dynamically adjust the learning
rate during different tasks and learning stages. This capability allows models to better adapt to task
complexity and data variability, ultimately leading to improved generalization.

However, in existing adaptive learning rate methods, many approaches require the introduction of
additional computational resources to achieve adaptivity. This may involve extra model parameters,
computationally expensive iterative processes, or complex hyperparameter tuning. Therefore, we
propose an adaptive learning rate method that does not require the introduction of additional com-
putational resources. Specifically, we dynamically generate negatively correlated learning rates by
evaluating the information loss between the model’s predictions and the ground truth. The genera-
tion of these negatively correlated learning rates adapts to the current task based on its performance.
When the information loss is low, indicating that the model is performing well on the current task,
we can increase the learning rate to accelerate parameter updates and the learning process. This
helps the model converge faster and adapt better to specific patterns and features within the task,
thus improving training efficiency and performance. Conversely, when the information loss is high,
indicating poor model performance on the current task, we reduce the learning rate to slow down pa-
rameter changes to avoid overfitting and unstable parameter updates. This makes parameter updates
more stable and gradual, aiding the model in better adaptation to challenging tasks while reducing
the risk of overfitting.

This method for generating adaptive learning rates allows the model to employ different learning rate
strategies at various stages, aligning itself more effectively with the requirements of the task. Such a
strategy enhances the model’s performance across diverse tasks and data conditions while reducing
the need for hyperparameter tuning, making the training process more intelligent and efficient.

In summary, the main contributions of our work are as follows.

1. We propose a Meta-Learning with Personalized Learning Rates, designed to accommodate
dynamic variations in within-task rapid adaptation.

2. Our method stands out for its independence from additional computational resources, mak-
ing it effortlessly applicable across various computing environments without the need for
increased hardware or software costs.

3. Extensive experimentation has demonstrated the wide applicability of our method, irre-
spective of model constraints. It seamlessly integrates with various meta-learning models,
thereby enhancing their generalization performance.
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The rest of this paper is organized as follows. In Section 2 we review previous work related to our
approach. Section 3 elaborates on the details of our proposed meta-learning method for feature dis-
tribution alignment. Section 4 presents the experimental setup and results under different scenarios.
Finally, conclusions are given in Section 5.

2 RELATED WORK

Meta-learning, as a captivating field, is undergoing a vibrant development, aiming to address the
challenges of learning with limited data. Currently, meta-learning methods can be broadly catego-
rized into two main classes: metric-based methods and optimization-based methods.

Metric-based meta-learning methods perform classification by measuring the similarity between
example features and category centroids, with the objective of acquiring a shared distance metric for
cross-task applicability. One of the pioneering metric-based meta-learning approaches is Matching
Networks (Vinyals et al., 2016), which achieves rapid adaptation and classification through sample
encoding, learning mapping functions, and the incorporation of attention mechanisms. Prototypical
Networks (Snell et al., 2017), on the other hand, map input samples into a shared embedding space
and utilize prototype vectors for classification predictions. Conversely, Relation Networks (Sung
et al., 2018) express sample relationships through relation modules, avoiding direct involvement
with embedding spaces.

Optimization-based meta-learning methods, on the other hand, aim to enable rapid and efficient
adaptation to new tasks by iteratively updating global model parameters through multiple gradient
descent steps. Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) stands out as a rep-
resentative in this category due to its concise and versatile design. To mitigate the computational
complexity of MAML, researchers have introduced FOMAML, which substitutes tedious second-
order gradient calculations with a first-order approximation. Reptile (Nichol et al., 2018) takes a
further simplifying approach by utilizing the difference in approximate derivatives between parame-
ter estimates and initial values. Additionally, researchers have observed that MAML’s effectiveness
primarily stems from feature reuse, leading to the development of ANIL (Raghu et al., 2019), a
method that requires minimal internal loop updates and performs on par with MAML in terms of
performance.

Optimization-based methods focus on adjusting the optimization algorithms themselves to make
them widely applicable across various domains, offering significant potential for improvement.
Hence, this paper primarily investigates gradient-based meta-learning methods. While MAML and
its variants have achieved notable successes, there are still some potential limitations. MetaOpt-
Net (Lee et al., 2019) replaces the linear predictor with a support vector machine, and researchers
like Bertinetto et al. (Bertinetto et al., 2018) have constructed differentiable closed-form solvers to
further enhance performance. Recent research has started exploring the possibility of introducing
scheduling strategies in task sampling to more effectively construct classification tasks (Liu et al.,
2020a; Yao et al., 2021b). Moreover, the application of task augmentation methods has significantly
improved model performance in addressing issues caused by insufficient tasks. These methods
include injecting identical random noise into task labels (Rajendran et al., 2020), using task interpo-
lation techniques (Yao et al., 2021c), adversarial task oversampling (Wu et al., 2022), image rotation
strategies (Liu et al., 2020b), and mixing different task instances (Yao et al., 2021a), among others.

Although the above-mentioned methods have excelled in achieving impressive results, they seem
to overlook a crucial aspect, which is the variation in the model’s learning rate across different
tasks and learning stages. To address this issue, different methods have employed various strategies
to adjust learning rates and decay rates. MAML++ (Antoniou et al., 2018) uses step functions
or cosine functions for learning rate annealing to adaptively adjust learning rates during different
learning stages. Meta-LSTM (Ravi & Larochelle, 2016) takes a more complex approach by using
an LSTM (Hochreiter, 1998) network as the outer network to learn optimization parameters for the
inner network, including learning rates and decay rates. While this method can achieve dynamic
learning rates and decay rates, its feasibility in practical applications is lower due to the complexity
of LSTM training and its slower convergence. In contrast, Meta-SGD (Li et al., 2017) simplifies the
learning rate adjustment process by using the model’s own output results for learning rate updates,
improving practicality.
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Another approach is ALFA (Baik et al., 2020a), which designs a novel update rule to dynamically
generate learning rates and weight decay terms for each update step and task based on the gradients
and weights of the base learner. However, some of these dynamic learning rate methods may be
too simplistic to adapt well to complex tasks and data distributions, while others may require ad-
ditional computational resources or complex model structures. In practical applications, selecting
an appropriate learning rate adjustment method that suits specific tasks and resource constraints is
crucial.

Therefore, we propose a meta-learning method for adaptive learning rates that does not require the
introduction of additional computational resources. In the inner loop learning of meta-learning, we
dynamically generate negatively correlated learning rates by evaluating the information loss between
the model’s predictions and the ground truth. What sets this method apart is that it does not alter
the existing structure and time complexity of meta-learning models while achieving outstanding
results in terms of performance. Furthermore, its simplicity allows for easy integration with other
algorithms.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Meta-learning seeks to discover a model denoted as fθ capable of fast learning and adaptation across
a diverse range of tasks. Specifically, in the context of few-shot classification tasks, these tasks are
often framed as N -way K-shot classification. Here, N refers to the number of classes within each
task, while K signifies the number of available samples for each class.

In this setup, we assume the existence of a task distribution, denoted as p(T ), from which we draw
a mini-batch {T1, T2, · · · , TB} with a batch size of B. Staying consistent with the conventions of
N -way K-shot classification experiments, for each task Ti, we gather N ×K samples to construct a
support setDs = {Xs, Y s} and N×M samples to create a query setDq = {Xq, Y q}. Importantly,
it should be noted that there is no overlap between the Ds and the Dq .

In the context of meta-learning, parameter updates involve a two-stage optimization process. It
commences with the model learning from its initial parameters denoted as θ. In the inner loop, the
support set of each task plays a pivotal role by facilitating rapid adjustments of model parameters or
the computation of tailored distance metrics that align with the specific task requirements. Simul-
taneously, the outer loop focuses on updating the parameters of the meta-model, thereby enhancing
the model’s capacity for quick adaptation and learning across a variety of tasks.

To formally describe optimization-based meta-learning, we execute a sequence of gradient descent
steps in the inner loop, employing j steps where j = {1, 2, · · · , k}. Each step is updated according
to the following procedure:

θi,j+1 = θi,j − β∇θLDs

Ti
(fθi,j ) (1)

Where β is the inner loop learning rate. Following the acquisition of inner loop parameters
θ′i = θi,j+1 for the B tasks, the outer loop employs the query set for forward propagation. Dur-
ing this process, it computes the average cross-entropy loss for these B tasks. The calculation of the
average cross-entropy loss can be described as follows:

LDq

=
1

B

B∑
i=1

LDq

Ti
(fθ′

i
) (2)

The final model’s parameters undergo updating through the following procedure:

θ ← θ − α∇θLDq

(3)

Where α is the outer loop learning rate.
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3.2 META-LEARNING WITH PERSONALIZED LEARNING RATES

In the context of bi-level optimization, meta-learning’s outer optimization is used to learn how to
initialize model parameters, while the inner optimization fine-tunes model parameters on new tasks.
In previous methods, the training speed for each inner-loop task was consistent. However, due
to variations between different tasks at different stages, this uniform training strategy is not ideal.
Although some algorithms have started introducing adaptive learning rates to achieve some success,
these methods often require the introduction of additional model parameters, costly computational
iterations, or complex hyperparameter tuning, which may not be practical in real-world scenarios.
Therefore, we propose a personalized learning rate approach to address the dynamic changes in
rapid adaptation within tasks without the need for additional computational resources. The overall
framework is illustrated in Figure 1.
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Figure 1: The overall framework of our proposed MLPLR. Firstly, through forward propagation,
obtain the predictions (denoted as y′si,j) for the task and employ the information loss between these
predictions and the ground truth as the evaluation metric. Next, generate personalized learning rates
based on the information loss and use them along with the loss gradients on the support set for the
parameter updates within the inner loop.

Algorithm 1 summarizes the proposed personalized learning rates approach. First, the task’s predic-
tions, denoted as y′i,j , are obtained through forward propagation. Then, the information loss between
these task predictions y′i,j and the ground truth yi is employed as the evaluation metric. In this as-
sessment, we choose the Kullback-Leibler (KL) divergence as the measure, where its magnitude
reflects the performance of the current task. Information loss calculation is based on the following
equation:

LKDi,j
= DKL(p(y

′
i,j)∥p(yi)) (4)

The magnitude of the KL divergence provides an intuitive reflection of the current task’s perfor-
mance. A larger KL divergence value implies relatively poorer model performance on the current
task, while a smaller KL divergence suggests good performance on the current task. To personal-
ize the learning rate further, negative correlated learning rates are generated based on the current
task’s KL divergence. This negative correlation ensures an inverse relationship between the learn-
ing rate and performance, meaning that the learning rate decreases when performance is poor and
increases when performance is good, thus adapting more effectively to task variations.The variation
in learning rates is depicted in Figure 2.

However, to prevent excessively large or small learning rates from adversely affecting model perfor-
mance, it is necessary to impose constraints on the learning rate to ensure it stays within a reasonable
range. These constraints involve setting an upper limit, denoted as lrmax and a lower limit, denoted
as lrmin for the learning rate.The final computation for the adaptive learning rate λi,j is as follows:

λi,j =

{
lrmax − LKDi,j

, ifLKDi,j
≤ lrmax

lrmin, ifLKDi,j > lrmax
(5)
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Figure 2: Overview of the inner-loop optimization using the personalized learning rates. (a) Con-
ventional approaches employ the same learning rate for different tasks and across various stages of
learning. (b) We take into account the dynamic changes in rapid adaptation within tasks and person-
alize the learning rate based on the current task’s performance. This capability enables the model
to better adapt to the complexity of tasks and the variability of data, ultimately leading to improved
generalization.

After obtaining the personalized learning rates, the parameter updates for the inner loop are as
follows:

θi,j+1 = θi,j − λi,j∇θLDs

Ti
(fθi,j ) (6)

The final parameter updates for the outer loop of the model are as follows:

θ ← θ − α∇θ
1

B

B∑
i=1

LDq

Ti
(θi,k − λi,k∇θLDs

Ti
(fθi,k)) (7)

Algorithm 1 Meta-Learning with Personalized Learning Rates

Require: task distribution p(T )
Require: learning rates α

1: Randomly initialize parameter θ
2: while not done do
3: Sample a batch of tasks {T1, T2, · · · , TB}
4: for all Ti do
5: Initialize θi,0 = θ
6: for inner loop step j = 1 to k do
7: Obtain the predicted values y′ and the ground truth values y
8: Compute the information loss LKDi,j = DKL(p(y

′
i,j)∥p(yi)))

9: Calculate the personalized learning rate:

λi,j =

{
lrmax − LKDi,j

, ifLKDi,j
≤ lrmax

lrmin, ifLKDi,j > lrmax

10: Inner loop parameter update θi,j+1 = θi,j − λi,j∇θLDs

Ti
(fθi,j )

11: end for
12: Calculate query set loss LDq

Ti
(fθi,k+1

)
13: end for
14: Update meta model:

θ ← θ − α∇θ
1
B

∑B
i=1 LDq

Ti
(θi,k − λi,k∇θLDs

Ti
(fθi,k))

15: end while

4 EXPERIMENT

To thoroughly validate the efficacy of our approach, we conducted an extensive assessment across
diverse scenarios. In the subsequent sections, we will furnish in-depth descriptions of the datasets
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and experimental configurations employed in each scenario, along with the ultimate experimental
outcomes. This exhaustive scrutiny will empower us to comprehensively gauge the performance
of our method across a spectrum of tasks and datasets, affording us a deeper understanding of its
adaptability and capacity for generalization. For additional experiments see Appendix A.1.

4.1 DATASETS

In our experiments, we utilized a diverse set of five datasets, namely CIFAR-FS (Bertinetto et al.,
2018), miniImagenet (Vinyals et al., 2016), Aircraft (Yao et al., 2019), CUB (Caltech-UCSD Birds-
200-2011) (Cimpoi et al., 2014), Dogs (Maji et al., 2013).

The CIFAR-FS dataset, derived from CIFAR-100 (Krizhevsky et al., 2009), is a classification dataset
comprising 100 distinct classes representing various objects and concepts, including animals, ob-
jects, and people. Each class is composed of 600 color images, each measuring 32 × 32 pixels.

The miniImagenet dataset, a subset of ImageNet (Russakovsky et al., 2015), is tailored for few-shot
classification tasks. It encompasses 100 different classes, similar to CIFAR-FS, each class consists
of 600 color images, but with larger dimensions of 84 × 84 pixels.

The Aircraft is an aircraft classification dataset with 100 distinct aircraft classes, each containing
approximately 100 images of varying sizes, angles, and perspectives. We standardized the image
size to 84 × 84 pixels.

The CUB, dedicated to bird classification, encompasses 200 bird classes. Each class contains around
60 images of varying sizes, captured from different angles and environmental conditions. We resized
all images to 84 × 84 pixels and selected 100 classes for our experiments.

The Dogs dataset is designed for dog classification, featuring 120 unique dog classes, each with
about 100 images of varying sizes, poses, and backgrounds. We resized all images to 84 × 84
pixels.

4.2 IMPLEMENTATION DETAILS

In all our experiments, we employed a four-layer convolutional network as the backbone architec-
ture. This network structure consists of four convolutional blocks, each comprising the following
layers and parameter configurations: a convolutional layer (kernel size: 3x3, stride: 1, padding: 1,
and 64 filters), a batch normalization layer, a ReLU activation layer, and a 2x2 maximum pooling
layer. We selected the Adam optimizer with a learning rate of 0.001. Our task batch size was set to
4. During training, we utilized 5 gradient steps for parameter updates, while during evaluation, we
performed 10 gradient steps for model evaluation. To ensure the reliability of our experimental find-
ings, we report average accuracy with 95% confidence intervals, calculated across 600 randomly
generated tasks from the test set. We maintained the reproducibility of our results by fixing the
random seed at 1 and conducting all experiments under this seed.

4.3 FEW-SHOT CLASSIFICATION

In order to assess the adaptability of our approach, we conducted an examination of its performance
when integrated with various meta-learning techniques. Specifically, we explored the impact of in-
corporating our method alongside optimization-based approaches such as ANIL, MAML, and FO-
MAML. We quantitatively assessed the performance of these combinations on two well-established
benchmark datasets, CIFAR-FS and miniImagenet, and summarized the outcomes in Table 1.

The consistency of experimental results underscores that our approach has achieved significant per-
formance improvements when integrated with three distinct types of meta-learning algorithms. This
enhancement can be attributed to our method’s dynamic generation of negatively correlated learning
rates during the training process, accomplished through the assessment of information loss between
model predictions and ground truth. Our approach effectively adapts the learning rates in a task-
specific manner based on the current task’s performance.

During the training process, when information loss is low, it indicates that the model is performing
well on the current task. To expedite parameter updates and the learning process, we increase the
learning rate, facilitating faster model convergence and better adaptation to specific patterns and
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Table 1: Average classification accuracy of few-shot classification on CIFAR-FS and miniImagenet.
† denotes the local replication results.

Model CIFAR-FS miniImagenet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ANIL † 55.67 ± 0.97% 71.31 ± 0.76% 47.77 ± 0.92% 65.13 ± 0.75%
ANIL + MLPLR (ours) 57.87 ± 0.96%57.87 ± 0.96%57.87 ± 0.96% 72.44 ± 0.75%72.44 ± 0.75%72.44 ± 0.75% 48.60 ± 0.92%48.60 ± 0.92%48.60 ± 0.92% 67.57 ± 0.74%67.57 ± 0.74%67.57 ± 0.74%

MAML † 56.44 ± 0.9656.44 ± 0.9656.44 ± 0.96% 72.74 ± 0.75% 47.56 ± 0.92% 65.54 ± 0.74%
MAML + MLPLR (ours) 56.31 ± 0.96% 74.57 ± 0.72%74.57 ± 0.72%74.57 ± 0.72% 50.31 ± 0.92%50.31 ± 0.92%50.31 ± 0.92% 67.97 ± 0.73%67.97 ± 0.73%67.97 ± 0.73%

FOMAML † 55.71 ± 0.9655.71 ± 0.9655.71 ± 0.96% 71.91 ± 0.74% 45.90± 0.86% 65.81 ± 0.75%
FOMAML + MLPLR (ours) 55.50 ± 0.96% 72.45 ± 0.73%72.45 ± 0.73%72.45 ± 0.73% 46.43 ± 0.90%46.43 ± 0.90%46.43 ± 0.90% 66.60 ± 0.72%66.60 ± 0.72%66.60 ± 0.72%

features within the task, thus enhancing training efficiency and performance. Conversely, when
information loss is high, it signifies poorer model performance on the current task. To mitigate over-
fitting and unstable parameter updates, we decrease the learning rate to reduce the rate of parameter
changes, rendering parameter updates more stable and gradual while reducing the risk of overfitting.

These observations suggest that personalized learning rates represent a versatile technique capable of
integration with various meta-learning algorithms to enhance their performance across diverse tasks.
By adjusting learning rates on a task-specific basis during the training process, models become better
equipped to adapt to new tasks and improve their classification performance. This approach provides
an effective strategy for enhancing the robustness and adaptability of meta-learning algorithms.

4.4 FEW-SHOT FINE-GRAINED CLASSIFICATION

In contrast to few-shot classification, few-shot fine-grained classification necessitates the model to
exhibit precise classification capabilities when confronted with tasks characterized by intricate class
distinctions. Fine-grained classification tasks typically revolve around discriminating exceedingly
subtle differences between categories, such as distinguishing between various dog or bird breeds.
This imposes more significant demands on the model’s learning capacity and its capacity for gener-
alization in the context of few-shot fine-grained classification tasks.

To further substantiate the effectiveness of our model, we conducted experiments across three
datasets featuring diverse fine-grained categories: Aircraft, CUB, and Dogs. The outcomes of these
experiments are detailed in Table 2.

Table 2: Average accuracy of few-shot fine-grained classification on different datasets. † denotes the
local replication results.

Model Aircraft CUB Dogs
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ANIL † 57.37±0.89 70.81±0.6770.81±0.6770.81±0.67 46.78±0.93 61.73±0.85 42.30±0.82 57.05±0.7357.05±0.7357.05±0.73
ANIL + MLPLR (ours) 59.97±0.9159.97±0.9159.97±0.91 70.67±0.66 51.31±0.9551.31±0.9551.31±0.95 64.18±0.8264.18±0.8264.18±0.82 44.08±0.8344.08±0.8344.08±0.83 56.95±0.73

MAML † 55.15±0.88 72.81±0.64 48.84±0.92 68.70±0.82 42.38±0.83 58.82±0.73
MAML + MLPLR (ours) 60.54±0.9260.54±0.9260.54±0.92 74.48±0.6174.48±0.6174.48±0.61 53.37±0.9553.37±0.9553.37±0.95 70.13±0.7970.13±0.7970.13±0.79 47.73±0.6847.73±0.6847.73±0.68 60.01±0.7260.01±0.7260.01±0.72

FOMAML † 54.05±0.9054.05±0.9054.05±0.90 68.42±0.69 49.96±0.9549.96±0.9549.96±0.95 60.33±0.83 41.56±0.8141.56±0.8141.56±0.81 56.20±0.73
FOMAML + MLPLR (ours) 53.90±0.89 71.52±0.6471.52±0.6471.52±0.64 46.18±0.93 65.08±0.8565.08±0.8565.08±0.85 40.25±0.81 59.73±0.7459.73±0.7459.73±0.74

Through a comprehensive analysis of the results in Table 2, we can observe a interesting phe-
nomenon: regardless of the dataset used, the MAML + MLPLR method consistently demonstrates
performance improvements across various scenarios. However, among different meta-learning
methods, ANIL + MLPLR exhibits superior performance in 5-way 1-shot tasks, while FOMAML +
MLPLR excels in 5-way 5-shot tasks.

This observation raises an intriguing question: why does ANIL + MLPLR seem to possess stronger
learning and generalization capabilities in scenarios with limited samples, while FOMAML +
MLPLR requires more samples to effectively engage in meta-learning? We can attribute these per-
formance disparities to the distinct strengths and adaptabilities of different meta-learning methods
when dealing with varying tasks and datasets.
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This finding underscores the diversity of meta-learning approaches and reminds us to consider these
differences when selecting methods that are suitable for specific tasks and datasets. In summary,
the combination of personalized learning rates with appropriate meta-learning methods proves to be
beneficial in optimizing the meta-learning process, ultimately leading to superior performance.

4.5 CROSS-DOMAIN FEW-SHOT CLASSIFICATION

In practical real-world applications, the need often arises to transfer a pre-trained model to new
domains or tasks. To better gauge the practicality and versatility of our method, we undertake
cross-domain few-shot classification assessments. In this context, we introduce the cross-domain
few-shot classification scenario. Here, we engage in transfer learning within a 5-way 5-shot setting.
During the training phase, we utilize the miniImagenet dataset to train our model. Subsequently, we
apply the trained model to assess its performance on distinct domain datasets, including Aircraft,
CUB, and Dogs. This evaluation serves as a means to evaluate the adaptability and generalization
capabilities of our approach across a wide spectrum of domains and tasks.

Table 3: Average accuracy on 5-way 5-shot for cross-domain few-shot classification transferred
from miniImagenet. † denotes the local replication results.

Model miniImagenet miniImagenet miniImagenet
→ Aircraft → CUB → Dogs

ANIL † 35.25±0.54 50.94±0.66 44.87±0.64
ANIL + MLPLR (ours) 38.12±0.5638.12±0.5638.12±0.56 54.38±0.6654.38±0.6654.38±0.66 47.69±0.6547.69±0.6547.69±0.65

MAML † 36.02±0.55 52.00±0.68 45.34±0.65
MAML + MLPLR (ours) 40.38±0.5840.38±0.5840.38±0.58 54.38±0.7054.38±0.7054.38±0.70 49.15±0.7049.15±0.7049.15±0.70

FOMAML † 37.11±0.57 52.94±0.70 43.88±0.62
FOMAML + MLPLR (ours) 39.01±0.6039.01±0.6039.01±0.60 54.47±0.7154.47±0.7154.47±0.71 49.72±0.6749.72±0.6749.72±0.67

According to the findings extracted from Table 3, our methodology has consistently demonstrated
noteworthy enhancements in performance. A discerning observation reveals that, in comparison to
the other two datasets, the transfer performance on the Aircraft dataset appears to exhibit a relatively
suboptimal performance trend. This discrepancy can be principally ascribed to the composition of
the miniImagenet dataset, which encompasses categories associated with birds and dogs but notably
lacks categories pertaining to aircraft. Consequently, as the model is transposed from the familiarity
of miniImagenet to the unfamiliar terrain of the Aircraft dataset, a conspicuous domain disparity
emerges, which, may contribute to the observed performance decrement.

5 CONCLUSION

In this paper, we propose a novel meta-learning approach called MLPLR. This method overcomes
the limitation of fixed learning rates in traditional meta-learning methods. In MLPLR, we dynami-
cally adjust the learning rates using the information loss between task predictions and ground truth,
enabling them to adapt autonomously based on the performance of the current task. Encouragingly,
the MLPLR method not only collaborates effectively with various meta-learning models but also
requires relatively fewer additional computational resources. We conducted extensive experiments
on five widely used meta-learning datasets to demonstrate the compatibility and effectiveness of our
approach. These experimental results not only validate the applicability of MLPLR but also under-
score its potential in enhancing meta-learning performance. The introduction of MLPLR presents a
flexible and efficient new approach to the field of meta-learning, offering robust support for future
research and applications.

REPRODUCIBILITY STATEMENT

To ensure the thorough validation and reproducibility of our research outcomes, we have included
comprehensive code within the supplementary materials. This code encompasses the entire exper-
imental workflow, including aspects such as model construction, model training and evaluation,
hyperparameter configuration, and more.
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Przemysław Spurek. Hypershot: Few-shot learning by kernel hypernetworks. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2469–2478, 2023.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

11



Under review as a conference paper at ICLR 2024

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. Advances in neural information processing systems, 32,
2019.

Yichen Wu, Long-Kai Huang, and Ying Wei. Adversarial task up-sampling for meta-learning. Ad-
vances in Neural Information Processing Systems, 35:31102–31115, 2022.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
In International Conference on Machine Learning, pp. 7045–7054. PMLR, 2019.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International conference on
machine learning, pp. 11887–11897. PMLR, 2021a.

Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu Lian, and Chelsea Finn.
Meta-learning with an adaptive task scheduler. Advances in Neural Information Processing Sys-
tems, 34:7497–7509, 2021b.

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpo-
lation. arXiv preprint arXiv:2106.02695, 2021c.

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpo-
lation. arXiv preprint arXiv:2106.02695, 2021d.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. arXiv preprint arXiv:1912.03820, 2019.

Runsheng Yu, Yu Gong, Xu He, Yu Zhu, Qingwen Liu, Wenwu Ou, and Bo An. Personalized
adaptive meta learning for cold-start user preference prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 10772–10780, 2021.

Mandi Zhao, Pieter Abbeel, and Stephen James. On the effectiveness of fine-tuning versus meta-
reinforcement learning. Advances in Neural Information Processing Systems, 35:26519–26531,
2022.

Yingtian Zou, Fusheng Liu, and Qianxiao Li. Unraveling model-agnostic meta-learning via the
adaptation learning rate. In International Conference on Learning Representations, 2021.

Nicolas Zucchet, Simon Schug, Johannes Von Oswald, Dominic Zhao, and João Sacramento. A con-
trastive rule for meta-learning. Advances in Neural Information Processing Systems, 35:25921–
25936, 2022.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 FEW-SHOT CLASSIFICATION

We deliberated upon the influence of varying class quantities on model accuracy. As depicted in
Figure 3, the results demonstrate that as the number of classes increases, the efficacy of personalized
learning rates becomes more pronounced. With the escalation in class count, discernible disparities
may manifest among different tasks, potentially leading to divergent convergence rates during the
training process. In such circumstances, the adoption of personalized learning rates facilitates the
model in better accommodating the idiosyncrasies of each task, allowing for tailored adjustments
according to the requisites of each task, thus enhancing the overall performance of the model.
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Figure 3: Classification results for different numbers of task classes.
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