The Impact of Quantization on Large Reasoning
Model Reinforcement Learning

Medha Kumar Zifei Xu Xin Wang
Pennsylvania State University* d-Matrix d-Matrix
University Park, PA Santa Clara, CA Santa Clara, CA
mkumar @psu.edu xuzifei @d-matrix.ai poincare.disk @gmail.com
Tristan Webb
d-Matrix

Santa Clara, CA
twebb@d-matrix.ai

Abstract

Strong reasoning capabilities can now be achieved by large-scale reinforcement
learning (RL) without any supervised fine-tuning. Although post-training quantiza-
tion (PTQ) and quantization-aware training (QAT) are well studied in the context
of fine-tuning, how quantization impacts RL in large reasoning models (LRMs)
remains an open question. To answer this question, we conducted systematic exper-
iments and discovered a significant gap in reasoning performance on mathematical
benchmarks between post-RL quantized models and their quantization-aware RL
optimized counterparts. Our findings suggest that quantization-aware RL training
negatively impacted the learning process, whereas PTQ and QLoRA led to greater
performance.

1 Introduction

Large reasoning models are trained in data and algorithmic pipelines. Commonly, LLMs are first
"pre-trained" on trillions of input tokens, to develop a strong general ability to model the distribution
of the training data, as well as showing “sparks. .. of intellegence” [Bubeck et al., 2023]. Post
pre-training, models undergo further fine tuning, and one popular technique pioneered by Shao et al.
[2024] is to apply reinforcement learning to have the LLMs solve problems in domains with verifiable
rewards, such as math or programming.

Quantization is a widespread technique for improving LLM memory and compute efficiency. As of
2025, new LLM "base" models commonly are released in FP16 or BF16 precision. Quantization
is often left to fine tuners or software framework maintainers downstream from a model’s official
release. The intersection of RL and highly specialized agentic AI may lead to situations where many
different LRM agents are derived from the same full precision base model, but specialized to different
tasks through RL, and at some point quantized for inference performance. We study the question:
how do we perform quantization to ensure the best test-time memory/performance tradeoff?

Prior work from authors Krishnan et al. [2019] found that during distributed training, the quantized
actors could save energy. We are not aware of any other work examining the effect of quantization of
training large reasoning models.

*Work done while interning at d-Matrix

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

2 Methods

Our main investigation was to evaluate the reasoning performance of LLM models under different
quantization strategies, and to explore the trade-offs between strategies in practice. Our general setup
is that we have been provided with a base LLM which will be fine tuned through reinforcement
learning on a specialized downstream tasks (such as mathematics) to produce a LLM with enhanced
reasoning, or in other words a large reasoning model (LRM). Broadly speaking, a practitioner can
choose from quantization strategies that can be divided into a number of different categories: such
as post training quantization (PTQ), quantization aware training/fine-tuning (QAT/QAFT), and low-
rank adapter fine tuning techniques, such as QLoRA. After quantization to a selected precision, we
evaluate the models on a test dataset. We have released our training and evaluation code online at
github.com/d-matrix-ai/rlquant.

=

<

O

g

hel

g

=

o

&
— drGRPO
— QLoRA

0.6 — 8-bit STE ||

L L L L L
0 100 200 300 400 500 600
Training Step

Figure 1: Mean training reward observed during RL training of Qwen3-8B, windowed moving
average (window size = 25) shown.

2.1 Verifiable Reward RL training

We utilized both the GRPO [Shao et al., 2024] and drGRPO [Liu et al., 2025] algorithms to fine-tune
base models from the Qwen3 [Yang et al., 2025] family of models on a variety of math benchmarks.
We trained on the same MATH [Hendrycks et al., 2021] level 3-5 questions used by authors Liu
et al. [2025], and evaluated on questions from AIME2024, AMC, MATHS500, Minerva Math and
OlympiadBench on data also open sourced by the the same authors. Simulations were run using the
GRPO and drGRPO training from the TRL library. Simulations were trained on 10,000 samples
from the MATH dataset for 1 epoch, with a learning rate of 1075, In Fig. 1 we show the training
reward over the course of the run. Our reward function assigned a reward of 1 for responses from
the LLM that were mathematically correct, and furthermore added a reward of 0.1 to responses that

provided correct output formatting for the reward, which means rewards would be sampled from the
set {0,0.1,1.1}.

2.1.1 QAFT with 8-bit STE

One of the simplest methods to perform quantization aware fine tuning is before calculating activation
to preform a Round to Nearest (RTN) quantization to the weight and then perform straight through
estimation (STE) of the quantization gradients to avoid any non-differentiable sections of the graph.
In our experiments, we quantized all of the linear layer weights (not activations) in the attention
blocks to INTS.

https://github.com/d-matrix-ai/rlquant

Qwen

Model 06B | 1.7B | 4B | SB

(Base) 0.164 | 0212 | 0451 | 0.473
(GRPO) 0.307 | 0.418 | 0.555 | 0.594
(drGRPO) 0.287 | 0.389 | 0.541 | 0.584
(STE 8-bit) 0.242 | 0325 | 0.443 | 0.496

(PTQ BnB 8-bit) | 0.222 | 0.366 | 0.528 | 0.579
(PTQ AWQ 8-bit) | 0.22 | 0.364 | 0.526 | 0.583
(QLoRA 4-bit) 0.24 | 0.382 | 0.554 | 0.556
(PTQ BnB 4-bit) | 0.223 | 0.369 | 0.527 | 0.581
(PTQ AWQ 4-bit) | 0.225 | 0.366 | 0.533 | 0.574

Table 1: Evaluation mean reward (rounded to 3 decimal places). (Base): full precision official
Qwen3-Base models; (GRPO, drGRPO): full precision RL training; (STE): INT8 RTN, straight-
through-estimator RL training; (PTQ): each method was performed on the full precision GRPO
checkpoint evaluated above it.

2.1.2 QLoRA

Another quantization that is used during the RL training process is QLoRA [Dettmers et al., 2023].
This method is considered "parameter-efficient" since it introduces low-rank adapter matrices and
during the RL process only the parameters in the smaller adapter matrices are updated while keeping
the quantized weights frozen. QLoRA training was accomplished using the PEFT module from
HuggingFace, and bitsandbytes (BnB) for quantization to NF4. QLoRA training used a learning

rate of 10™%, a rank of 8, and a = 16. The higher learning rate was required for the model to learn
despite the quantization noise. QLoRA utilizes full numerical precision during model training, and
the low rank adapter matrices can be merged into the base model resulting in a quantized model.

2.2 PTQ via AWQ and bitsandbytes

There are numerous PTQ techniques a modern practitioner could choose from to quantize a LRM after
it has been fine-tuned. Beyond the other PTQ approaches we studied, there exist many other accessible
approaches, such GPTQ [Frantar et al., 2022], SpinQuant [Liu et al., 2024], GGUF [Gerganov, 2023],
and many others. We chose two approaches that capture two different flavors of PTQ: data-free
approaches, and those that use data to calibrate. With that, we selected the bitsandbytes and
AWQ [Lin et al., 2023] to produce PTQ models at both 8 and 4-bit precision. We applied PTQ directly
to the same GRPO checkpoints we show evaluation results for in Table 1. With bitsandbytes we
specified a HuggingFace Quantization config to load the bit precision, and used the NF4 data type
for 4-bit quantization. We used the AWQ implementation from llmcompressor [Al and vLLM
Project, 2024].

3 Results

Our main results are shown in Table 1. We found that quantizing the network to 8-bit precision
through QAFT style STE training results in the greatest quantization error in networks larger than
0.6B. We found the two PTQ techniques we examined performed well even at 4-bits. Overall, using
4-bit QLoRA during reinforcement learning training resulted in networks with the lowest quantization
error in almost all cases.

3.1 Impact of completion length on model performance

For the 0.6B and 1.7B models we set a completion length (for both training and evaluation) of 512
tokens to obtain the evaluation scores shown in the results table. However, this completion length
caused sub-optimal performance for the 4B and the 8B models. Table 2 shows the mean evaluation
reward at varying completion lengths for 4B and 8B. Increasing the completion length helped both
models learn more from the same number of training steps.

Qwen

Model 4B B
(GRPO @ 1024 tokens) | 0.555 | 0.594
(GRPO @ 512 tokens) 0.487 | 0.540

Table 2: Impact of token length on GRPO fine-tuned model performance. The same length is used in
both training and evaluation.

3.2 Evaluation score versus model size

Figure 2 shows a plot of the performance/memory trade-off for different models we evaluated, across
sizes, RL training, and quantization. Our analysis shows that quantization generally offers stronger
performance than using smaller full precision networks.

= 0.6(e 8 ------- fe==mmmmmm=m———- W]
S g Py “
g / M °
1] [J
T o4 s o :
z Bo % 06B e Base
% gt % 7B O GRPO
2 ' % 1B % drGRPO
ERND) & ° % 8B o 8bitSTE
g ° A 8-bit BnB o 8-bit AWQ
= ®4-bit QLORA @ 4-bit BnB
e 4-bit AWQ
O | | | | | | | |
0 2 4 6 8 10 12 14 16
Model Size (GB)

Figure 2: Evaluation reward vs. model size across all the models that we evaluated. We show the
optimum pareto frontier as a dashed line.

4 Discussion

Our results show a strong trend across different model sizes. Techniques such as QAFT have generally
been a sample efficient method[Xu et al., 2024] to quantize neural networks and maintain performance.
However, techniques like reinforcement learning produce a unique challenge for the quantization
of LLMs, in that a discrete rewards are sampled from LLM generated responses, and quantized
models produce worse policies. Our results show that techniques that quantize models downstream
from training such as PTQ and QLoRA result in models that reason better on downstream tasks and
result in better performance/memory trade offs. We find these techniques very effective at preserving
reasoning ability, even at 4-bit precision.

Our study should not be interpreted discouraging the use of QAT during large reasoning models
pre-training. Rather, we show that a sudden shock of quantization during the reinforcement learning
process is damaging to learning. If QAT/QAFT was initiated prior to reinforcement learning training,
perhaps the model would have already adapted to the lower bit-precision and would have learned
effectively. We leave this and the discovery of more efficient quantization techniques for large
reasoning models to future work, and present this work as a guide for the modern practitioner.

References

R. H. AI and vLLM Project. LLM Compressor, 8 2024. URL https://github.com/
vllm-project/1l1lm-compressor.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712, 2023.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. QLoRA: Efficient finetuning of quantized
LLMs. Advances in Neural Information Processing Systems, 36:10088—-10115, 2023.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. GPTQ: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

G. Gerganov. llama.cpp: Port of Meta’s Llama model in C/C++. https://github.com/
ggerganov/1lama. cpp, 2023. Accessed: [Date of Access, e.g., August 24, 2025].

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Mea-
suring mathematical problem solving with the MATH dataset. arXiv preprint arXiv:2103.03874,
2021.

S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-Maron, A. Faust, and V. J. Reddi. QuaRL:
Quantization for fast and environmentally sustainable reinforcement learning. arXiv preprint
arXiv:1910.01055, 2019.

J. Lin, J. Tang, H. Tang, S. Yang, X. Dang, and S. Han. AWQ: Activation-aware weight quantization
for LLM compression and acceleration. arxiv 2023. arXiv preprint arXiv:2306.00978, 2023.

Z. Liu, C. Zhao, 1. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi, V. Chandra, Y. Tian,
and T. Blankevoort. SpinQuant: LLM quantization with learned rotations. arXiv preprint
arXiv:2405.16406, 2024.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin. Understanding R1-zero-like
training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
DeepSeekMath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

Z. Xu, S. Sharify, T. Webb, X. Wang, et al. Understanding the difficulty of low-precision post-training
quantization for llms. arXiv preprint arXiv:2410.14570, 2024.

A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, et al. Qwen3
technical report. arXiv preprint arXiv:2505.09388, 2025.

https://github.com/vllm-project/llm-compressor
https://github.com/vllm-project/llm-compressor
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp

	Introduction
	Methods
	Verifiable Reward RL training
	QAFT with 8-bit STE
	QLoRA

	PTQ via AWQ and bitsandbytes

	Results
	Impact of completion length on model performance
	Evaluation score versus model size

	Discussion

