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Abstract

This paper addresses the important yet under-001
explored task of multi-class sentiment anal-002
ysis (MCSA), which remains challenging due003
to subtle semantic differences between ad-004
jacent sentiment categories and the scarcity005
of high-quality annotated data. To tackle006
these challenges, RD-MCSA (Rationales and007
Demonstrations-based Multi-Class Sentiment008
Analysis) is proposed as an In-Context Learn-009
ing (ICL) framework designed to improve010
MCSA performance under limited supervi-011
sion by integrating classification rationales and012
adaptively selected demonstrations. First, se-013
mantically grounded classification rationales014
are generated from a representative, class-015
balanced subset of annotated samples selected016
using a tailored balanced coreset algorithm.017
These rationales are then paired with demon-018
strations selected via a similarity-based mecha-019
nism powered by a multi-kernel Gaussian pro-020
cess (MK-GP), enabling large language mod-021
els (LLMs) to better capture fine-grained senti-022
ment distinctions. Experiments on five bench-023
mark sentiment datasets show that RD-MCSA024
consistently outperforms both supervised base-025
lines and standard ICL methods across various026
evaluation metrics.027

1 Introduction028

Multi-Class Sentiment Analysis (MCSA) extends029

beyond basic sentiment polarity classification (e.g.,030

positive or negative) by distinguishing varying lev-031

els of emotional intensity (e.g., differentiating be-032

tween “very positive” and “generally positive”).033

By capturing finer sentiment distinctions, MCSA034

enables deeper insights into sentiment expression,035

making it essential for applications requiring fine-036

grained sentiment analysis (Wang et al., 2023). For037

instance, in opinion dynamics research, an essential038

step involves categorizing users’ natural language039

expressions into five or more sentiment or opinion040

categories (Chuang et al., 2024).041

Despite its importance, MCSA remains challeng- 042

ing due to subtle semantic differences between 043

adjacent sentiment levels, which are often diffi- 044

cult to distinguish accurately (Mamta and Ekbal, 045

2023). Additionally, sentiment categorization cri- 046

teria can vary considerably across domains and 047

applications (Rosenthal et al., 2019), further com- 048

plicating the modeling process. Addressing a new 049

MCSA task typically requires a substantial amount 050

of high-quality, task-specific annotated data (Kro- 051

suri and Aravapalli, 2023), which are frequently 052

limited in low-resource settings. 053

Large Language Models (LLMs) have demon- 054

strated strong performance in sentiment analysis, 055

making them a promising tool for MCSA. However, 056

while LLMs perform well in basic sentiment clas- 057

sification, they often struggle with nuanced distinc- 058

tions between adjacent sentiment categories (Zhang 059

et al., 2024). In-Context Learning (ICL), which 060

enhances LLM capabilities through task demon- 061

strations, has achieved state-of-the-art performance 062

across various NLP tasks. Nevertheless, its applica- 063

tion to classification scenarios involving multiple 064

sentiment categories remains underexplored (Randl 065

et al., 2024). Our experimental results further in- 066

dicate that conventional ICL approaches are insuf- 067

ficient for effectively handling the complexity of 068

MCSA. 069

To address these limitations, this paper proposes 070

RD-MCSA, a novel framework aimed at improv- 071

ing ICL performance for MCSA. RD-MCSA re- 072

fines the two core components of ICL—prompt 073

design and demonstration selection—by incorpo- 074

rating classification rationales and an adaptive ex- 075

ample selection mechanism. This design enables 076

LLMs to better capture fine-grained sentiment dis- 077

tinctions and improve classification accuracy. 078

The main contributions of this paper are summa- 079

rized as follows: 080

1. Rationale-Augmented ICL: An ICL frame- 081
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work that integrates classification rationales082

and demonstration examples is proposed, en-083

abling LLMs to more effectively capture fine-084

grained sentiment distinctions in MCSA.085

2. Classification Rationale Generation via Tai-086

lored Balanced Coreset: A rationale genera-087

tion strategy is designed that guides LLMs to088

produce linguistically and semantically rich089

classification rationales, based on represen-090

tative and class-balanced samples selected091

through a tailored balanced Coreset algorithm.092

3. Adaptive Demonstration Selection via MK-093

GP: A novel demonstration selection method094

based on a multi-kernel Gaussian process095

(MK-GP) is proposed, enabling adaptive sim-096

ilarity modeling beyond fixed metrics such097

as cosine similarity, marking the first use of098

kernel-based selection in the ICL setting.099

A series of comprehensive experiments con-100

ducted on five diverse and representative datasets101

validate the effectiveness of RD-MCSA, highlight-102

ing its advantages and identifying key challenges103

in MCSA tasks.104

2 Related Work105

2.1 Multi-class Sentiment Analysis106

Multi-class sentiment analysis (MCSA), also re-107

ferred to as fine-grained or graded sentiment analy-108

sis (Sharma et al., 2024), extends traditional senti-109

ment classification by categorizing sentiments into110

multiple distinct classes. It refines sentiment in-111

tensity beyond basic polarity classification (e.g.,112

“positive”/“negative”) by introducing subcategories113

such as “very positive” and “slightly positive,” or114

by adopting rating scales (e.g., 1–5) (AlQahtani,115

2021). This provides a more nuanced understand-116

ing of sentiment in text.117

Traditional MCSA models rely on supervised118

machine learning (Wang et al., 2023) and are com-119

monly applied to texts such as tweets, movie re-120

views, and product reviews. In many cases, senti-121

ment analysis focuses on specific targets or aspects.122

Widely used MCSA datasets include SemEval-123

2017 Task 4 (Rosenthal et al., 2019), SST-5 (Socher124

et al., 2013), and Amazon Reviews (AlQahtani,125

2021).126

Another research direction treats sentiment inten-127

sity assessment as a regression problem, where sen-128

timent is predicted on a continuous scale. Notable129

tasks and datasets include SemEval-2017 Task 130

5 (Cortis et al., 2017), FiQA 2018 (de França Costa 131

and da Silva, 2018), and recent dimABSA tasks at 132

SIGHAN-2024 (Lee et al., 2024). 133

Despite ongoing advances, MCSA still faces 134

key challenges, such as limited classification ac- 135

curacy and the high cost of large-scale anno- 136

tation—especially as sentiment granularity in- 137

creases (Krosuri and Aravapalli, 2023). Fine- 138

grained sentiment analysis for specific entities of- 139

ten requires distinct annotated datasets, making 140

large-scale deployment impractical. 141

To address these challenges, this study aims to 142

enhance MCSA performance under limited labeled 143

data conditions, while maintaining broad applica- 144

bility across diverse MCSA scenarios. 145

2.2 Text Analysis Using LLMs 146

Large-scale language models outperform smaller 147

models across many NLP tasks, especially when an- 148

notation resources are limited (Zhang et al., 2024), 149

making them a promising solution for MCSA. 150

Recent research on LLM-based text analysis has 151

focused on in-context learning, where carefully se- 152

lected demonstration examples guide the model’s 153

predictions. Common strategies for selecting exam- 154

ples include similarity-based selection (Liu et al., 155

2022), diversity-based selection (Levy et al., 2023), 156

LLM feedback (Shi et al., 2022), information- 157

theoretic criteria (Wu et al., 2023), task-level se- 158

lection (Li and Qiu, 2023), active learning (Zhang 159

et al., 2022a), and contrastive learning (Chen et al., 160

2024). For MCSA, a recent study (Chuang et al., 161

2024) applies similarity-based demonstration selec- 162

tion within ICL to analyze opinion dynamics. 163

Despite their potential, LLMs still face chal- 164

lenges in many NLP tasks. While effective for 165

simpler tasks, they struggle with nuanced senti- 166

ment analysis (Zhang et al., 2024). Additionally, 167

few-shot ICL requires further research on optimal 168

prompt design (Liu et al., 2022). To our knowledge, 169

no prior work has explored few-shot prompting 170

for multi-class prediction with a large number of 171

classes (Randl et al., 2024). Long prompts may 172

overload LLMs (Liu et al., 2024), and context win- 173

dow limitations may restrict the effective represen- 174

tation of all classes. 175

This study focuses on two key components of 176

ICL—prompt construction and demonstration se- 177

lection, addressing how to effectively provide clas- 178

sification information to LLMs and how to adapt 179

both components to better serve MCSA tasks. 180
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Figure 1: The framework of RD-MCSA: The lower half of the figure (below the long dashed line) corresponds
to Section 3.1, while the upper half (above the long dashed line) corresponds to Section 3.2. The training of the
MK-GP (described in Subsection 3.2.2) is omitted in the figure.

3 The Methodology of RD-MCSA181

The RD-MCSA framework, illustrated in Fig. 1,182

consists of the following key components. Given183

an annotated MCSA datasetD: 1) a balanced Core-184

set B is constructed to generate classification ratio-185

nalesR (Section 3.1); 2) a multi-kernel Gaussian186

process G is trained (Subsection 3.2.2) to model187

adaptive similarity; 3) for MCSA on a new input,188

ICL is performed using a prompt that incorporates189

bothR and a set of demonstrations selected from190

D via G (Subsection 3.2.3).191

3.1 Classification Rationale Generation via192

Balanced Coreset Selection193

The classification rationales R are generated by194

an LLM through reasoning over the semantic and195

linguistic features of a representative subset of D.196

To ensure that this subset (denoted as B) preserves197

the semantic diversity and key distinguishing char-198

acteristics of each sentiment class—while also mit-199

igating class imbalance—a balanced Coreset se-200

lection algorithm is proposed.201

3.1.1 The Balanced Coreset Algorithm202

The proposed algorithm extends the classical Core-203

set formulation (Sener and Savarese, 2017) by in-204

corporating importance-weighted sampling and205

class-aware stratification, ensuring that the se-206

lected subset B maintains both intra-class diversity 207

and inter-class balance, thereby facilitating higher- 208

quality rationale generation. 209

To enforce class balance, the number of selected 210

samples per class is capped by λ′B =
⌈
λB
u

⌉
, where 211

u denotes the number of unique sentiment classes 212

in D, and λB is a hyperparameter specifying the 213

total Coreset size. 214

1) Importance-Weighted Sampling Probability. 215

To prioritize semantically informative and poten- 216

tially ambiguous instances, each sample is assigned 217

a score based on its distance from the centroid of 218

its respective class (Cohen-Addad et al., 2021). 219

For a given text sample (ti, yi) ∈ D, let x(ti) ∈ 220

Rd denote the embedding of ti, where yi = c is 221

its class label. The centroid µc of class c is com- 222

puted as µc = 1
|Dc|

∑
j:yj=c

x(tj), where Dc ⊂ D 223

denotes the set of samples belonging to class c. 224

The importance weight is defined as the squared 225

Euclidean distance w(ti, yi) = ‖x(ti)− µc‖
2
2. 226

Within each class, importance weights are nor- 227

malized to form a probability distribution. The 228

sampling probability of ti, denoted as Pc(ti), is 229

defined as: 230

Pc(ti) =
w(ti, yi)∑

j:yj=c
w(tj , yj)

. (1) 231
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2) Stratified Weighted Random Sampling.232

Sample selection is performed independently for233

each class 1 ≤ c ≤ u, based on the corresponding234

sampling probabilities:235

• If |Dc| ≤ λ′B, all instances from class c are236

included in B.237

• If |Dc| > λ′B, a subset of λ′B samples is drawn238

from Dc via weighted sampling with Pc(ti),239

forming the subset Bc:240

Bc ⊂ Dc, |Bc| = λ′B, Bc ∼ Pc.241

The final balanced Coreset B is obtained by ag-242

gregating all class-specific subsets Bc.243

3.1.2 Classification Rationale Generation via244

LLM Reasoning245

To extract class-discriminative knowledge from246

the Coreset B, classification rationalesR are gen-247

erated using an LLM guided by a carefully de-248

signed prompt. The use of LLMs for rationale249

generation leverages their advanced reasoning abil-250

ities (Wang, 2025), offering a scalable and seman-251

tically informed alternative to manual annotation.252

In addition, since LLMs are later employed for253

ICL in downstream MCSA tasks, generating clas-254

sification rationales with the same model family255

enhances alignment between rationale formulation256

and model interpretation.257

Based on the representative examples provided
below, generate detailed descriptions for each
sentiment label.

Examples: {Balanced Coreset B}
Sentiment Labels: {str(label_list)}

For each sentiment label, provide a compre-
hensive description covering:
• Lexical Patterns
• Semantic-Pragmatic Features
• Domain-Attribute Associations

Figure 2: Prompt template for generating classification
rationales using the balanced coreset B.

The prompt instructs the LLM to identify key258

linguistic and semantic features that distinguish259

sentiment classes (as shown in Figure 2), fo-260

cusing on: 1) Lexical Patterns: Characteristic261

sentiment-bearing words, phrases, and affective ex- 262

pressions; 2) Semantic-Pragmatic Features: Con- 263

textual meaning shifts and pragmatic implications 264

across classes; 3) Domain-Attribute Associations: 265

Domain-specific entities and properties linked to 266

sentiment expression. 267

The LLM is further guided to ground its analy- 268

sis in representative examples from B, referencing 269

specific lexical or syntactic patterns. This ensures 270

the resulting rationales are both interpretable and 271

empirically supported. 272

3.2 Demonstration Selection via Multi-Kernel 273

Gaussian Process Similarity Evaluation 274

RD-MCSA leverages a multi-kernel Gaussian 275

process for text similarity evaluation to select 276

ICL demonstrations. This method benefits from 277

Multiple Kernel Learning’s ability to model and 278

adapt to complex data distributions (Ghasempour 279

and Martínez-Ramón, 2023). 280

3.2.1 Gaussian Process 281

Gaussian Process (GP) (Liu et al., 2021) can be 282

applied to model categorical data with u categories 283

by introducing a set of latent functions {fc(x)}uc=1, 284

one for each class. Each latent function is modeled 285

as an independent Gaussian Process (Wang, 2023): 286

287

fc(x) ∼ GP(ec(x), kc(x,x
′)), (2) 288

where ec(x) denotes the mean function, and 289

kc(x,x
′) represents the covariance function (also 290

referred to as the kernel) for the c-th class. 291

Following prior work such as (Bonilla et al., 292

2007), this study adopts a shared kernel k(xi,xj) 293

and a shared mean function across all categories. 294

This design choice not only reduces computa- 295

tional complexity but also capitalizes on structural 296

similarities commonly observed among different 297

classes within the same dataset. In this framework, 298

the mean function is modeled as a learnable con- 299

stant, and the kernel is defined as a multi-kernel 300

function, as described in Section 3.2.2. 301

3.2.2 Multi-Kernel Gaussian Process 302

Multi-Kernel Gaussian Process (MK-GP) extends 303

the standard Gaussian Process by integrating Mul- 304

tiple Kernel Learning. A weighted combination of 305

the Matérn kernel (Borovitskiy et al., 2021) and 306

the polynomial kernel (Song et al., 2021) is em- 307

ployed, enabling the model to effectively charac- 308

terize both stationary and non-stationary behav- 309

iors in the data (Lawler, 2018). The combined 310
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kernel function is defined as follows:311

k(xi,xj) =
N∑
n=1

αnkMatérn,n(xi,xj)+

M∑
m=1

βmkPoly,m(xi,xj),

(3)312

where kMatérn,n(xi,xj) denotes the n-th Matérn313

kernel, and kPoly,m(xi,xj) denotes the m-th poly-314

nomial kernel. The coefficients αn and βm are315

learnable weights constrained to be non-negative316

(αn, βm ≥ 0). Additional details are provided in317

Appendix A.318

Let X = {xi}Ki=1 denote the training data and319

y represent the corresponding labels. Let f(x) =320

[f1(x), . . . , fu(x)]T denote the vector of latent321

function values at input x, and let f = {f(xi)}Ki=1322

denote the collection of latent outputs over the train-323

ing set. An MK-GP model G is trained by mini-324

mizing the loss function, which is the negative325

log-marginal likelihood (Artemev et al., 2021):326

L = − log

∫
p(y | f) p(f |X) df . (4)327

3.2.3 Similarity-Based Demonstration328

Selection via the Kernel Function329

Similarity-based demonstration selection, which330

selects examples most similar to the test sample,331

has proven effective for ICL (Margatina et al.,332

2023). In this work, we adopt a similarity-based ap-333

proach leveraging the kernel function of the trained334

MK-GP model G to guide demonstration selection.335

Given a test sample t0, its similarity to a candidate336

example ti ∈ D is computed as:337

sim(t0, ti) = k(x(t0),x(ti)), (5)338

where x(t0) and x(ti) (or, for brevity, x0 and xi)339

are the embeddings of t0 and ti, respectively. As340

shown in Figure 3, the embeddings are mapped341

into a Hilbert space via a kernel function. With342

a well-chosen kernel, the transformed representa-343

tions exhibit improved class separability relative to344

the original embedding space (Elen et al., 2022).345

This enhanced structure enables more discrimi-346

native similarity computation for ICL. A higher347

kernel value (as learned in Section 3.2.2) reflects348

greater similarity between examples in the feature349

space (Thickstun, 2019). Additional implementa-350

tion details are provided in Appendix B.351

Original Texts Embedding Space Hilbert Space

... 
Kernel

Mapping

Embedding
�1  

�� 

�0  
��(�0),  ��(�1),  . . . ,  ��(��)

Figure 3: Kernel mapping enhances class separability.
Circles in two different colors represent samples from
distinct classes.

The S examples most similar to t0 are se- 352

lected as demonstration examples. These exam- 353

ples, along with their corresponding labels, de- 354

noted as {(t1, y1), . . . , (tS , yS)}, are then concate- 355

nated with the classification rationaleR to form a 356

‘prompt’ (as shown in Figure 4) for the LLM. This 357

process is defined as follows: 358

ŷ0 = LLM(t0 ⊕R⊕ (t1, y1)⊕ · · · ⊕ (tS , yS)), 359

where ŷ0 is the predicted label for t0, and ⊕ repre- 360

sents the concatenation operation. 361

Analyze the sentiment expressed in the given
Query Text toward the specified target {tar-
get}. The sentiment label must be selected
from the following set: {str(label_list)}. Refer
to the provided label descriptions and example
demonstrations to guide your classification.

Label Descriptions: {RationalesR}
Demonstrations: {(t1, y1), . . . , (tS , yS)}

Query Text: {query_text}

Figure 4: Prompt template of ICL for MCSA.

4 Experimental Setup 362

4.1 Experimental Datasets 363

To evaluate RD-MCSA, experiments were con- 364

ducted on five diverse datasets across various do- 365

mains and sentiment classification granularities as 366

shown in Table 1: 367

Dataset Size Classes Granularity & Text type
SST51 11,855 5 Sentence-level Movie Reviews
SemEval172 20,632 5 Topic-based Tweets
ABSIA3 4,650 7 Restaurant-related Reviews
PR_Baby4 183,531 5 Baby-product Reviews
PR_Software5 12,804 5 Software Product Reviews

Table 1: Summary of experimental datasets.
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These datasets cover a range of sentiment classi-368

fication tasks, from sentence-level analysis to fine-369

grained aspect-based sentiment analysis, enabling370

a comprehensive evaluation of RD-MCSA.371

4.2 Experimental Implementation Details372

In the experiments, 1,000 instances were randomly373

sampled from each dataset to construct the an-374

notated dataset D, ensuring a fair evaluation of375

RD-MCSA across datasets. This also provided in-376

sights into the amount of labeled data required for377

MCSA tasks, aiding in determining the annotation378

needed to outperform traditional classifiers trained379

on large-scale datasets. The balanced Coreset size380

for generating the classification rationale was set to381

λB = 100. Taking into account both efficiency and382

effectiveness, the number of demonstrations was383

set to S = 10.384

Experiments were conducted using three groups385

of LLMs: GPT6, DeepSeek7, and ERNIE8. For386

each group, the more capable (and expensive)387

model (GPT-4o, DeepSeek-R1, and ERNIE X1388

Turbo) was employed for classification rationale389

generation, whereas the more cost-efficient vari-390

ant (GPT-4o-mini, DeepSeek-V3, and ERNIE 4.5391

Turbo) was utilized for ICL in MCSA tasks.392

The following settings were applied uniformly393

across all datasets: N = 9 and M = 9 were used394

in the MK-GP model (Equation (3)). The Adam395

optimizer was adopted with a learning rate of 0.01396

over 500 training epochs, and all other optimizer397

parameters were set to their default values. Optimal398

hyperparameters were selected via grid search and399

cross-validation.400

Most experiments were conducted on an401

NVIDIA GeForce RTX 3080 GPU. On average,402

a single unit of this GPU required 170.86 seconds403

to complete 500 epochs of Gaussian process train-404

ing across various datasets. For API-based models,405

remote inference was employed instead.406

4.3 Comparison Models407

Baseline models were selected from two categories:408

(1) classic machine learning and (2) language mod-409

els for sentiment classification. The selected mod-410

1https://huggingface.co/datasets/SetFit/sst5
2https://huggingface.co/datasets/midas/semeval2017
3https://www.iitp.ac.in/ãi-nlp-ml/resources.html#ABSIA
4https://snap.stanford.edu/data/web-Amazon-links.html
5https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon_v2
6https://openai.com/api/
7https://www.deepseek.com/
8https://yiyan.baidu.com/

els were: 1) Naïve Bayes (Rennie, 2001): Multi- 411

nomial Naïve Bayes with TF-IDF features, using 412

class weighting to address class imbalance. 2) 413

SVM (Li et al., 2011): Support Vector Classifier 414

with a linear kernel, balanced class weights, and TF- 415

IDF features. 3) BERT (Sun et al., 2019): BERT- 416

base model fine-tuned with Focal Loss to mitigate 417

class imbalance. 4) BERTweet (Nguyen et al., 418

2020): Pretrained model for English tweets, also 419

optimized with Focal Loss to address imbalance. 420

All baseline models were trained and evaluated 421

on the datasets using an 80%/20% train-test split. 422

Given the recent success of ICL approaches 423

in text classification, several ICL-based selection 424

strategies were included as comparison methods: 425

1) Random: Selected in-context examples ran- 426

domly from the candidate set. 2) Coreset (In- 427

dyk et al., 2014): Selected representative sam- 428

ples that reflect overall dataset diversity. 3) Cos- 429

Similarity (de Vos et al., 2022): Selected the 430

top-S examples based on cosine similarity. 4) 431

BM25 (Robertson et al., 2009): Selected the top- 432

S examples using BM25 scoring. 5) Complex- 433

CoT (Fu et al., 2022): Selected examples based on 434

complexity, measured via the number of newline 435

characters. 6) Auto-CoT (Zhang et al., 2022b): 436

Clustered candidate examples and selected those 437

closest to each cluster center. 438

To ensure a fair comparison, all ICL-based meth- 439

ods were applied to the same annotated dataset 440

of 1,000 labeled samples as RD-MCSA, with 100 441

demonstrations (S = 100). In addition, all prompts 442

incorporated classification rationales generated by 443

the same method. 444

4.4 Evaluation Metric 445

Due to the multi-class nature of MCSA and the 446

class imbalance in the experimental data, Accuracy 447

and weighted-average F1 score were used to evalu- 448

ate performance (Sokolova and Lapalme, 2009). 449

5 Experimental Results and Analysis 450

5.1 Main Results 451

Table 2 summarizes the performance of various 452

methods on three datasets. The results for the re- 453

maining two datasets are presented in Appendix C. 454

The following observations can be made: 455

1) Effectiveness of ICL. ICL achieved the high- 456

est Accuracy and weighted F1 scores across 457

all datasets, outperforming both traditional ma- 458

chine learning models and language model clas- 459
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Table 2: Experimental results of baseline methods and ICL approaches across three datasets, using three groups of
LLMs. The best-performing method within each category is highlighted in bold.

Method SST5 SemEval17 ABSIA

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Baseline
Models

Naïve Bayes 37.2 37.0 44.9 44.0 34.8 31.0
SVM 37.1 37.0 56.7 58.0 49.9 50.0
BERT 49.9 50.0 59.2 61.0 51.2 52.0

BERTweet 48.7 47.0 63.4 65.0 52.4 52.0

ICL based on
GPT-4o

+GPT-4o-mini

Random 55.0 54.90 57.7 60.22 51.6 52.87
Coreset 55.7 55.44 59.4 62.07 53.2 55.39

Cos-Similarity 55.6 55.08 60.1 61.92 52.8 53.58
BM25 56.5 56.02 61.6 63.53 53.0 54.66

Complex-CoT 56.5 54.30 62.5 63.12 52.9 55.26
Auto-CoT 56.6 54.18 62.2 63.09 53.4 55.62

RD-MCSA 57.6 56.03 63.9 64.69 54.3 56.01

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 56.1 55.18 67.2 67.71 51.2 53.26
Coreset 56.2 55.09 67.6 68.4 52.7 53.98

Cos-Similarity 56.3 55.21 68.4 68.62 53.2 55.41
BM25 56.6 55.75 67.3 67.99 53.1 54.72

Complex-CoT 56.1 53.84 67.5 67.31 52.2 53.36
Auto-CoT 56.3 54.64 67.7 68.11 52.7 54.99

RD-MCSA 57.9 57.00 68.6 68.55 54.6 56.50

ICL based on
ERNIE X1 Turbo

+ERNIE 4.5 Turbo

Random 51.3 48.80 67.2 66.91 50.5 50.59
Coreset 53.3 52.21 67.4 66.97 51.2 52.23

Cos-Similarity 55.1 53.26 67.5 67.00 52.9 52.21
BM25 54.7 53.18 67.7 67.14 52.8 52.47

Complex-CoT 56.1 53.74 67.9 67.27 52.1 52.36
Auto-CoT 52.2 51.47 67.6 67.21 52.7 52.51

RD-MCSA 57.1 55.99 69.1 68.31 53.4 53.46

sifiers. Remarkably, ICL used only 1,000 la-460

beled examples—substantially fewer than the461

tens of thousands required by the baseline meth-462

ods—demonstrating both superior efficiency and463

effectiveness.464

2) Effectiveness of RD-MCSA: RD-MCSA con-465

sistently outperformed other methods on most466

datasets, with the exception of SemEval17, where467

the cosine similarity-based ICL method achieved a468

slightly higher F1 score. These results underscore469

the robustness and effectiveness of RD-MCSA, fur-470

ther corroborated by additional ablation studies.471

3) Comparison of Demonstration Selection472

Methods: Structured demonstration selection473

strategies, such as Coreset, Auto-CoT, and474

similarity-based approaches including BM25, Co-475

sine, and RD-MCSA, consistently outperformed476

random sampling. Among these methods, RD-477

MCS demonstrated the highest effectiveness in478

identifying informative examples for ICL.479

5.2 Ablation Analysis480

For further analysis, ablation studies were con-481

ducted with the following model variants: 1) LLM-482

only: Relied solely on the LLM’s inherent rea- 483

soning for classification, without classification ra- 484

tionales or demonstration examples. 2) CR-only: 485

Used only classification rationales in the prompt, 486

excluding demonstration examples. 3) DE-only: 487

Used only demonstration examples, excluding clas- 488

sification rationales. 4) UnBa-CR: Omitted cate- 489

gory balancing when generating classification ra- 490

tionales. 5) SK-only: Employed only stationary 491

kernel functions in the MK-GP algorithm. 6) NSK- 492

only: Employed only non-stationary kernel func- 493

tions in the MK-GP algorithm. 494

Figure 5 presents the results of the ablation study 495

conducted on three datasets (results for the remain- 496

ing two datasets are provided in Appendix D). The 497

following conclusions can be drawn: 498

1) Effectiveness of Rationales: Incorporating 499

classification rationales led to improved perfor- 500

mance compared to direct classification. Rationales 501

enhanced the LLM’s ability to interpret label mean- 502

ings, thereby improving classification accuracy. 503

2) Effectiveness of Demonstrations: Including 504

demonstration examples significantly boosted per- 505

formance compared to direct classification. These 506
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Figure 5: Experimental results from ablation studies across all datasets demonstrate that the removal of any
component from the RD-MCSA algorithm leads to a measurable decline in performance.

demonstrations served as concrete references that507

guided the LLM’s decision-making process.508

3) Impact of Label Imbalance in Rationale509

Generation: Generating classification rationales510

from imbalanced training samples resulted in no-511

ticeable performance degradation. The scarcity512

of examples from minority classes impaired the513

LLM’s ability to generalize and reduced the quality514

of the generated rationales.515

4) Effectiveness of Combined Stationary and516

Non-Stationary Kernels: Combining stationary517

and non-stationary kernels resulted in better per-518

formance than using either type alone. This com-519

bination more effectively captured structural com-520

plexity and enabled the selection of more similar521

examples in ICL, thereby improving classification522

accuracy.523

5.3 Time Cost Analysis524

The computational overhead of RD-MCSA com-525

prises two main components: (1) the offline stage,526

which involves Coreset pool construction, ratio-527

nale generation, and MK-GP training; and (2) the528

ICL inference stage. Statistical analysis based on529

Table 3, which reports the per-sample average in-530

ference time of various ICL methods across three531

datasets (with results for additional datasets pro-532

vided in Table 5, Appendix E), indicates that there533

is no statistically significant difference in inference-534

time cost among the evaluated algorithms. Detailed535

results are presented in Appendix E. Therefore, the536

additional computational overhead introduced by537

RD-MCSA is limited to the offline preprocessing538

stage.539

6 Conclusions540

This paper presents a novel framework for multi-541

class sentiment analysis (MCSA) that leverages542

Table 3: Per-sample average inference time (in seconds)
of various ICL methods on three datasets.

Backbone Method SST5 SemEval17 ABSIA

ICL based on
GPT-4o

+GPT-4o-mini

Random 8.72 9.05 7.58
Coreset 8.83 8.93 7.62
Cos-Similarity 8.86 9.15 7.72
BM25 9.02 9.22 7.81
Complex-CoT 8.74 9.13 7.25
Auto-CoT 8.81 9.21 7.43
RD-MCSA 8.91 9.17 7.73

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 12.90 12.61 7.78
Coreset 13.14 13.34 8.42
Cos-Similarity 13.50 13.20 8.23
BM25 13.21 13.64 8.61
Complex-CoT 12.97 12.81 8.25
Auto-CoT 13.12 12.78 8.11
RD-MCSA 13.17 13.82 8.57

ICL based on
ERNIE X1 Turbo

+ERNIE 4.5 Turbo

Random 10.98 11.01 7.66
Coreset 11.07 11.21 7.79
Cos-Similarity 11.82 11.17 8.21
BM25 11.23 11.61 8.33
Complex-CoT 11.19 11.32 8.91
Auto-CoT 11.11 11.49 7.98
RD-MCSA 11.36 11.44 8.11

in-context learning (ICL) by integrating classifica- 543

tion rationale generation based on balanced Core- 544

set sampling and demonstration selection using 545

multi-kernel Gaussian processes (MK-GP). The 546

proposed approach effectively addresses key chal- 547

lenges such as class imbalance and the high cost of 548

large-scale annotation, while also capturing subtle 549

and nuanced sentiment expressions. 550

Extensive experiments across five diverse 551

datasets demonstrate the superior performance, ro- 552

bustness, and generalizability of the method. 553

Future research directions include extending the 554

framework to other sentiment analysis tasks, incor- 555

porating multimodal data (e.g., audio and visual 556

inputs), improving computational efficiency, and 557

designing strategies to mitigate the effects of sub- 558

jectivity in annotation. These advancements are 559

expected to further contribute to the development 560

of more accurate, efficient, and scalable sentiment 561

analysis systems. 562
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Limitations563

This paper has the following limitations:564

1. Although the proposed method has been vali-565

dated on five diverse datasets, its applicability566

remains somewhat limited. In particular, it has567

not yet been evaluated on multimodal datasets,568

which are increasingly important in real-world569

scenarios.570

2. The overall performance of the proposed571

method, while promising, is still not suffi-572

ciently high. Even traditional supervised mod-573

els trained on tens of thousands of samples574

often struggle to surpass 80% accuracy. A ma-575

jor challenge in MCSA tasks stems from the576

inherent subjectivity of annotations—different577

annotators may assign different labels to the578

same sample, thus limiting classification per-579

formance. Additionally, the quality of bench-580

mark datasets may vary, and a thorough anal-581

ysis of this factor has not been conducted.582

3. Although the MK-GP approach demonstrates583

strong results, it is computationally more in-584

tensive than some similarity evaluation meth-585

ods, especially in the offline stage. Enhancing586

its computational efficiency represents an im-587

portant avenue for future research that remains588

unexplored in the current work.589

Ethics Statement590

Our study uses publicly available datasets, and no591

personally identifiable information is included. We592

acknowledge potential biases in sentiment classifi-593

cation tasks and have taken steps to mitigate them,594

such as dataset balancing and bias analysis. No595

human subjects were involved in the study, and no596

additional ethical approval was required. While our597

method could be used for sentiment analysis appli-598

cations, we do not foresee direct misuse. We will599

release the code and models responsibly, ensuring600

compliance with ethical guidelines.601

LLMs (mainly GPT) are applied in our writing602

to help correct grammatical and word usage errors,603

but they do not generate any ideas, data, images, or604

tables for us.605
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A Properties of Kernel Functions 837

The polynomial kernel is expressed as: 838

kPoly,m(xi,xj) = (γm〈xi,xj〉+ cm)dm , 839

where γm is a scaling factor, cm is an offset (both 840

learnable parameters), and dm is the degree of the 841

polynomial, treated as a hyper-parameter. Here, 842

〈xi,xj〉 denotes the dot product of xi and xj . 843

The Matérn kernel is defined as follows, where 844

ν and ` are the kernel parameters: 845

kMatérn(xi, xj) = 846

21−ν

Γ(ν)

(√
2ν
‖xi − xj‖

`

)ν
Bν

(√
2ν
‖xi − xj‖

`

)
, 847

where Γ(ν) represents the Gamma function, de- 848

fined as: 849

Γ(ν) =

∫ ∞
0

tν−1e−t dt, 850

Here, Bν(z) denotes the modified Bessel function 851

of the second kind, defined as: 852

Bν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)
. 853

where Iν(z) is the modified Bessel function of the 854

first kind, given by: 855

Iν(z) =

∞∑
k=0

(
z
2

)ν+2k

k!Γ(ν + k + 1)
, 856

The following analysis reveals the limiting be- 857

havior of the Matérn kernel, which approaches two 858

commonly used stationary kernels—namely, the 859

RBF kernel and the Laplace kernel—under differ- 860

ent conditions. This serves as the motivation for 861

employing the Matérn kernel in this paper to char- 862

acterize stationarity. 863
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Table 4: Experimental results of baseline methods and ICL approaches using three groups of LLMs on two datasets,
with the best-performing method in each category shown in bold.

Method PR_Baby PR_Software

Acc (%) F1 (%) Acc (%) F1 (%)

Baseline
Models

Naïve Bayes 47.86 47.0 44.8 45.0
SVM 50.96 51.0 58.1 59.0
BERT 58.18 58.0 60.3 61.0

BERTweet 57.74 56.0 59.9 58.0

ICL based on
GPT-4o

+GPT-4o-mini

Random 57.9 57.88 62.3 63.57
Coreset 58.1 58.06 62.6 63.68

Cos-Similarity 58.9 59.03 64.7 65.86
BM25 59.2 59.36 63.1 64.25

Complex-CoT 58.4 58.46 65.3 66.38
Auto-CoT 58.8 59.07 62.7 64.08

RD-MCSA 60.1 60.32 67.0 67.22

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 56.0 56.13 61.5 62.94
Coreset 56.3 56.42 63.5 64.54

Cos-Similarity 56.6 56.72 64.5 65.91
BM25 56.6 56.74 63.9 65.09

Complex-CoT 56.4 56.58 65.7 65.29
Auto-CoT 56.5 56.64 63.2 64.49

RD-MCSA 57.5 57.70 67.7 68.11

ICL based on
ERNIE X1 turbo

+ERNIE 4.5 turbo

Random 55.8 55.13 62.7 62.34
Coreset 56.0 56.47 64.1 64.13

Cos-Similarity 56.6 56.65 64.6 65.07
BM25 56.9 56.21 64.7 64.83

Complex-CoT 56.2 56.33 65.5 65.17
Auto-CoT 56.7 56.53 66.0 66.21

RD-MCSA 57.8 56.88 66.5 67.47

When the parameter ν → ∞, the Matérn ker-864

nel converges to the Radial Basis Function (RBF)865

kernel (Porcu et al., 2024):866

lim
ν→∞

kMatérn(xi, xj) = exp

(
−‖xi − xj‖

2

2`2

)
.867

When the parameter ν = 1
2 , the Matérn kernel868

becomes equivalent to the Laplace kernel [54]:869

kMatérn(xi, xj) = exp

(
−‖xi − xj‖

`

)
,when ν =

1

2
.870

B Similarity Evaluation Based on Kernel871

Functions of MK-GP872

According to Mercer’s theorem (Thickstun, 2019),873

there exists a Hilbert space H and a mapping φ :874

X → H such that the kernel function k(xi, xj) can875

be expressed as the inner product in the Hilbert876

space:877

k(xi, xj) = 〈φ(xi), φ(xj)〉H, ∀xi, xj ∈ X .878

Here, φ(x) is an implicitly defined mapping,879

and H is the corresponding Hilbert space. In H,880

the Euclidean distance between any two samples881

xi, xj ∈ X is defined as: 882

‖φ(xi)− φ(xj)‖2 = 〈φ(xi), φ(xi)〉H− 883

2〈φ(xi), φ(xj)〉H + 〈φ(xj), φ(xj)〉H. 884

By utilizing the definition of the kernel function, 885

k(xi, xj) = 〈φ(xi), φ(xj)〉H, the expression can be 886

rewritten as: 887

‖φ(xi)−φ(xj)‖2 = k(xi, xi)−2k(xi, xj)+k(xj , xj). 888

This represents the distance in the Hilbert space 889

induced by a positive definite kernel function. After 890

normalizing the samples, for the kernel function 891

adopted in this study, the first and third terms in the 892

above equation become constants. Thus, the larger 893

the value of the middle term k(xi, xj), the smaller 894

the distance between φ(xi) and φ(xj), indicating 895

that the two samples are more similar. 896

C Experimental Results on Other Two 897

Datasets 898

Table 4 presents the experimental results of base- 899

line models and ICL comparison models on the 900

remaining two datasets. 901
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D Ablation Study on Other Datasets902

Figure 6 presents the experimental results of abla-903

tion study on the remaining two datasets.904
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(c) ERNIE-based

Figure 6: Experimental results of ablation studies on two
datasets. The removal of any component from the RD-
MCSA algorithm resulted in a performance degradation.

E Time Cost Analysis Based on Variance905

Analysis906

Let a = 7, b = 3, and c = 5 respectively denote907

the number of levels for the three factors: Algo-908

rithm (i = 1, . . . , a), Model (j = 1, . . . , b), and909

Dataset (k = 1, . . . , c). For each combination of910

these factors, the inference time Yijk is recorded,911

and the variability is analyzed using a main-effects912

ANOVA model(Connelly, 2021), which assumes913

Table 5: Per-sample average inference time (in seconds)
of various ICL methods on two datasets.

Backbone Method PR_Baby PR_Software

ICL based on
GPT-4o

+GPT-4o-mini

Random 9.01 9.79
Coreset 9.22 9.13
Cos-Similarity 7.95 9.71
BM25 9.31 7.72
Complex-CoT 8.83 9.18
Auto-CoT 7.76 10.12
RD-MCSA 8.97 9.54

ICL based on
DeepSeek-R1

+DeepSeek-V3

Random 11.36 12.19
Coreset 12.31 12.88
Cos-Similarity 13.31 14.12
BM25 13.48 13.79
Complex-CoT 11.21 13.11
Auto-CoT 11.17 12.99
RD-MCSA 12.21 12.92

ICL based on
ERNIE X1 Turbo

+ERNIE 4.5 Turbo

Random 10.59 11.98
Coreset 11.32 12.17
Cos-Similarity 10.27 11.82
BM25 12.21 12.55
Complex-CoT 11.64 12.88
Auto-CoT 11.71 11.76
RD-MCSA 12.55 11.72

additive and independent factor effects without in- 914

teractions: 915

Yijk = µ+ αi + βj + γk + εijk, 916

where the error terms are assumed to be indepen- 917

dent and normally distributed with constant vari- 918

ance: εijk
i.i.d.∼ N (0, σ2). 919

To assess whether the choice of algorithm sig- 920

nificantly affects inference time, the following hy- 921

pothesis test is conducted for the Algorithm factor: 922

H0 : α1 = · · · = α7 vs H1 : ∃αi 6= αi′ , 923

The Sum of Squares for Factor A (SSA) is com- 924

puted based on the deviation of each algorithm’s 925

marginal mean from the overall grand mean. Since 926

each algorithm is evaluated across b = 3 models 927

and c = 5 datasets, the number of replications is 928

bc = 15: 929

SSA =

a∑
i=1

bc (Ȳi.. − Ȳ...)2 = 0.171, 930

The Sum of Squares for Error (SSE) is obtained 931

by aggregating the squared deviations of each ob- 932

servation from its corresponding algorithm-level 933

mean: 934

SSE =
a∑
i=1

b∑
j=1

c∑
k=1

(Yijk − Ȳi..)2 = 2.793, 935
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The degrees of freedom for factor A and the936

residual error term are:937

dfA = a− 1 = 6,938

dfE = abc− a− b− c+ 2 = 92,939

The corresponding mean squares are computed940

as:941

MSA =
SSA
dfA

=
0.171

6
= 0.0285,942

MSE =
SSE
dfE

=
2.793

92
= 0.0303,943

The F-statistic for testing the algorithm factor is944

then given by:945

Fobs =
MSA
MSE

=
0.0285

0.0303
= 0.94.946

From the F -distribution table, the critical value947

at the 5% significance level is F0.95(6, 92) ≈ 2.19.948

Since Fobs = 0.94 < 2.19 (p = 0.471 > 0.05),949

the null hypothesis cannot be rejected. This indi-950

cates that, at the 0.05 significance level, the seven951

demonstration-selection algorithms do not exhibit952

statistically significant differences in per-sample953

inference time after accounting for the effects of954

model and dataset.955
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