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Abstract

This paper addresses the important yet under-
explored task of multi-class sentiment anal-
ysis (MCSA), which remains challenging due
to subtle semantic differences between ad-
jacent sentiment categories and the scarcity
of high-quality annotated data. To tackle
these challenges, RD-MCSA (Rationales and
Demonstrations-based Multi-Class Sentiment
Analysis) is proposed as an In-Context Learn-
ing (ICL) framework designed to improve
MCSA performance under limited supervi-
sion by integrating classification rationales and
adaptively selected demonstrations. First, se-
mantically grounded classification rationales
are generated from a representative, class-
balanced subset of annotated samples selected
using a tailored balanced coreset algorithm.
These rationales are then paired with demon-
strations selected via a similarity-based mecha-
nism powered by a multi-kernel Gaussian pro-
cess (MK-GP), enabling large language mod-
els (LLMs) to better capture fine-grained senti-
ment distinctions. Experiments on five bench-
mark sentiment datasets show that RD-MCSA
consistently outperforms both supervised base-
lines and standard ICL methods across various
evaluation metrics.

1 Introduction

Multi-Class Sentiment Analysis (MCSA) extends
beyond basic sentiment polarity classification (e.g.,
positive or negative) by distinguishing varying lev-
els of emotional intensity (e.g., differentiating be-
tween “very positive” and ‘“generally positive”).
By capturing finer sentiment distinctions, MCSA
enables deeper insights into sentiment expression,
making it essential for applications requiring fine-
grained sentiment analysis (Wang et al., 2023). For
instance, in opinion dynamics research, an essential
step involves categorizing users’ natural language
expressions into five or more sentiment or opinion
categories (Chuang et al., 2024).

Despite its importance, MCSA remains challeng-
ing due to subtle semantic differences between
adjacent sentiment levels, which are often diffi-
cult to distinguish accurately (Mamta and Ekbal,
2023). Additionally, sentiment categorization cri-
teria can vary considerably across domains and
applications (Rosenthal et al., 2019), further com-
plicating the modeling process. Addressing a new
MCSA task typically requires a substantial amount
of high-quality, task-specific annotated data (Kro-
suri and Aravapalli, 2023), which are frequently
limited in low-resource settings.

Large Language Models (LLMs) have demon-
strated strong performance in sentiment analysis,
making them a promising tool for MCSA. However,
while LLMs perform well in basic sentiment clas-
sification, they often struggle with nuanced distinc-
tions between adjacent sentiment categories (Zhang
et al., 2024). In-Context Learning (ICL), which
enhances LLM capabilities through task demon-
strations, has achieved state-of-the-art performance
across various NLP tasks. Nevertheless, its applica-
tion to classification scenarios involving multiple
sentiment categories remains underexplored (Randl
et al., 2024). Our experimental results further in-
dicate that conventional ICL approaches are insuf-
ficient for effectively handling the complexity of
MCSA.

To address these limitations, this paper proposes
RD-MCSA, a novel framework aimed at improv-
ing ICL performance for MCSA. RD-MCSA re-
fines the two core components of ICL—prompt
design and demonstration selection—Dby incorpo-
rating classification rationales and an adaptive ex-
ample selection mechanism. This design enables
LLMs to better capture fine-grained sentiment dis-
tinctions and improve classification accuracy.

The main contributions of this paper are summa-
rized as follows:

1. Rationale-Augmented ICL: An ICL frame-



work that integrates classification rationales
and demonstration examples is proposed, en-
abling LLMs to more effectively capture fine-
grained sentiment distinctions in MCSA.

2. Classification Rationale Generation via Tai-
lored Balanced Coreset: A rationale genera-
tion strategy is designed that guides LLMs to
produce linguistically and semantically rich
classification rationales, based on represen-
tative and class-balanced samples selected
through a tailored balanced Coreset algorithm.

3. Adaptive Demonstration Selection via MK-
GP: A novel demonstration selection method
based on a multi-kernel Gaussian process
(MK-GP) is proposed, enabling adaptive sim-
ilarity modeling beyond fixed metrics such
as cosine similarity, marking the first use of
kernel-based selection in the ICL setting.

A series of comprehensive experiments con-
ducted on five diverse and representative datasets
validate the effectiveness of RD-MCSA, highlight-
ing its advantages and identifying key challenges
in MCSA tasks.

2 Related Work

2.1 Multi-class Sentiment Analysis

Multi-class sentiment analysis (MCSA), also re-
ferred to as fine-grained or graded sentiment analy-
sis (Sharma et al., 2024), extends traditional senti-
ment classification by categorizing sentiments into
multiple distinct classes. It refines sentiment in-
tensity beyond basic polarity classification (e.g.,
“positive”/“negative”) by introducing subcategories
such as “very positive” and “slightly positive,” or
by adopting rating scales (e.g., 1-5) (AlQahtani,
2021). This provides a more nuanced understand-
ing of sentiment in text.

Traditional MCSA models rely on supervised
machine learning (Wang et al., 2023) and are com-
monly applied to texts such as tweets, movie re-
views, and product reviews. In many cases, senti-
ment analysis focuses on specific targets or aspects.
Widely used MCSA datasets include SemEval-
2017 Task 4 (Rosenthal et al., 2019), SST-5 (Socher
et al., 2013), and Amazon Reviews (AlQahtani,
2021).

Another research direction treats sentiment inten-
sity assessment as a regression problem, where sen-
timent is predicted on a continuous scale. Notable

tasks and datasets include SemEval-2017 Task
5 (Cortis et al., 2017), FiQA 2018 (de Franca Costa
and da Silva, 2018), and recent dimABSA tasks at
SIGHAN-2024 (Lee et al., 2024).

Despite ongoing advances, MCSA still faces
key challenges, such as limited classification ac-
curacy and the high cost of large-scale anno-
tation—especially as sentiment granularity in-
creases (Krosuri and Aravapalli, 2023). Fine-
grained sentiment analysis for specific entities of-
ten requires distinct annotated datasets, making
large-scale deployment impractical.

To address these challenges, this study aims to
enhance MCSA performance under limited labeled
data conditions, while maintaining broad applica-
bility across diverse MCSA scenarios.

2.2 Text Analysis Using LL.Ms

Large-scale language models outperform smaller
models across many NLP tasks, especially when an-
notation resources are limited (Zhang et al., 2024),
making them a promising solution for MCSA.

Recent research on LLM-based text analysis has
focused on in-context learning, where carefully se-
lected demonstration examples guide the model’s
predictions. Common strategies for selecting exam-
ples include similarity-based selection (Liu et al.,
2022), diversity-based selection (Levy et al., 2023),
LLM feedback (Shi et al., 2022), information-
theoretic criteria (Wu et al., 2023), task-level se-
lection (Li and Qiu, 2023), active learning (Zhang
et al., 2022a), and contrastive learning (Chen et al.,
2024). For MCSA, a recent study (Chuang et al.,
2024) applies similarity-based demonstration selec-
tion within ICL to analyze opinion dynamics.

Despite their potential, LL.Ms still face chal-
lenges in many NLP tasks. While effective for
simpler tasks, they struggle with nuanced senti-
ment analysis (Zhang et al., 2024). Additionally,
few-shot ICL requires further research on optimal
prompt design (Liu et al., 2022). To our knowledge,
no prior work has explored few-shot prompting
for multi-class prediction with a large number of
classes (Randl et al., 2024). Long prompts may
overload LLMs (Liu et al., 2024), and context win-
dow limitations may restrict the effective represen-
tation of all classes.

This study focuses on two key components of
ICL—prompt construction and demonstration se-
lection, addressing how to effectively provide clas-
sification information to LLMs and how to adapt
both components to better serve MCSA tasks.
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Figure 1: The framework of RD-MCSA: The lower half of the figure (below the long dashed line) corresponds
to Section 3.1, while the upper half (above the long dashed line) corresponds to Section 3.2. The training of the
MK-GP (described in Subsection 3.2.2) is omitted in the figure.

3 The Methodology of RD-MCSA

The RD-MCSA framework, illustrated in Fig. 1,
consists of the following key components. Given
an annotated MCSA dataset D: 1) a balanced Core-
set 3 is constructed to generate classification ratio-
nales R (Section 3.1); 2) a multi-kernel Gaussian
process G is trained (Subsection 3.2.2) to model
adaptive similarity; 3) for MCSA on a new input,
ICL is performed using a prompt that incorporates
both R and a set of demonstrations selected from
D via G (Subsection 3.2.3).

3.1 Classification Rationale Generation via
Balanced Coreset Selection

The classification rationales R are generated by
an LLM through reasoning over the semantic and
linguistic features of a representative subset of D.
To ensure that this subset (denoted as B3) preserves
the semantic diversity and key distinguishing char-
acteristics of each sentiment class—while also mit-
igating class imbalance—a balanced Coreset se-
lection algorithm is proposed.

3.1.1 The Balanced Coreset Algorithm

The proposed algorithm extends the classical Core-
set formulation (Sener and Savarese, 2017) by in-
corporating importance-weighted sampling and
class-aware stratification, ensuring that the se-

lected subset B maintains both intra-class diversity
and inter-class balance, thereby facilitating higher-
quality rationale generation.

To enforce class balance, the number of selected
AB

samples per class is capped by \j; = {7—‘ , where

u denotes the number of unique sentiment classes
in D, and Ap is a hyperparameter specifying the
total Coreset size.

1) Importance-Weighted Sampling Probability.
To prioritize semantically informative and poten-
tially ambiguous instances, each sample is assigned
a score based on its distance from the centroid of
its respective class (Cohen-Addad et al., 2021).

For a given text sample (¢;,v;) € D, let x(t;) €
R% denote the embedding of ¢;, where y; = cis
its class label. The centroid g, of class c is com-
puted as pu, = \Dilcl Zj:yj:ca:(tj), where D, C D
denotes the set of samples belonging to class c.
The importance weight is defined as the squared
Euclidean distance w(t;, y;) = || (t;) — p.||3.

Within each class, importance weights are nor-
malized to form a probability distribution. The
sampling probability of ¢;, denoted as P.(t;), is
defined as:

Felti) = Zjiyj=cw(tj’yj).

ey




2) Stratified Weighted Random Sampling.
Sample selection is performed independently for
each class 1 < ¢ < u, based on the corresponding
sampling probabilities:

o If |D.| < Ny, all instances from class ¢ are
included in B.

* If |D.| > \j, asubset of \j; samples is drawn
from D, via weighted sampling with P.(¢;),
forming the subset B,:

B. C D,

|B.| =\, B~ P..

The final balanced Coreset B is obtained by ag-
gregating all class-specific subsets B..

3.1.2 Classification Rationale Generation via
LLM Reasoning

To extract class-discriminative knowledge from
the Coreset B, classification rationales R are gen-
erated using an LLM guided by a carefully de-
signed prompt. The use of LLMs for rationale
generation leverages their advanced reasoning abil-
ities (Wang, 2025), offering a scalable and seman-
tically informed alternative to manual annotation.

In addition, since LLLMs are later employed for
ICL in downstream MCSA tasks, generating clas-
sification rationales with the same model family
enhances alignment between rationale formulation
and model interpretation.

Based on the representative examples provided
below, generate detailed descriptions for each
sentiment label.

Examples: {Balanced Coreset 3}
Sentiment Labels: {str(label_list)}

For each sentiment label, provide a compre-
hensive description covering:

¢ Lexical Patterns

* Semantic-Pragmatic Features

* Domain-Attribute Associations

Figure 2: Prompt template for generating classification
rationales using the balanced coreset 5.

The prompt instructs the LLM to identify key
linguistic and semantic features that distinguish
sentiment classes (as shown in Figure 2), fo-
cusing on: 1) Lexical Patterns: Characteristic

sentiment-bearing words, phrases, and affective ex-
pressions; 2) Semantic-Pragmatic Features: Con-
textual meaning shifts and pragmatic implications
across classes; 3) Domain-Attribute Associations:
Domain-specific entities and properties linked to
sentiment expression.

The LLM is further guided to ground its analy-
sis in representative examples from B3, referencing
specific lexical or syntactic patterns. This ensures
the resulting rationales are both interpretable and
empirically supported.

3.2 Demonstration Selection via Multi-Kernel
Gaussian Process Similarity Evaluation

RD-MCSA leverages a multi-kernel Gaussian
process for text similarity evaluation to select
ICL demonstrations. This method benefits from
Multiple Kernel Learning’s ability to model and
adapt to complex data distributions (Ghasempour
and Martinez-Ramon, 2023).

3.2.1 Gaussian Process

Gaussian Process (GP) (Liu et al., 2021) can be
applied to model categorical data with u categories
by introducing a set of latent functions { fo(z)}*_,,
one for each class. Each latent function is modeled
as an independent Gaussian Process (Wang, 2023):

fc(m) ~ QP(eC(w),kc(a:,az')), ()

where e.(x) denotes the mean function, and
k.(x, ") represents the covariance function (also
referred to as the kernel) for the c-th class.

Following prior work such as (Bonilla et al.,
2007), this study adopts a shared kernel k(x;, ;)
and a shared mean function across all categories.
This design choice not only reduces computa-
tional complexity but also capitalizes on structural
similarities commonly observed among different
classes within the same dataset. In this framework,
the mean function is modeled as a learnable con-
stant, and the kernel is defined as a multi-kernel
function, as described in Section 3.2.2.

3.2.2 Multi-Kernel Gaussian Process

Multi-Kernel Gaussian Process (MK-GP) extends
the standard Gaussian Process by integrating Mul-
tiple Kernel Learning. A weighted combination of
the Matérn kernel (Borovitskiy et al., 2021) and
the polynomial kernel (Song et al., 2021) is em-
ployed, enabling the model to effectively charac-
terize both stationary and non-stationary behav-
iors in the data (Lawler, 2018). The combined



kernel function is defined as follows:

N
k(wi, $j) = Z O4nkMatém,n(miv wj)""
" 3)

M
Z BmkPoly,m(wia SL‘J'),

m=1

where AMatern,n (T4, xj) denotes the n-th Matérn
kernel, and Epoly,m (24, ;) denotes the m-th poly-
nomial kernel. The coefficients «,, and j3,, are
learnable weights constrained to be non-negative
(an, B > 0). Additional details are provided in
Appendix A.

Let X = {x;} X, denote the training data and
y represent the corresponding labels. Let f(x) =
[fi(x),..., fu(x)]" denote the vector of latent
function values at input z, and let f = { f(x;)} X,
denote the collection of latent outputs over the train-
ing set. An MK-GP model G is trained by mini-
mizing the loss function, which is the negative
log-marginal likelihood (Artemev et al., 2021):

L= —log/p<y (| X)df. @)

3.2.3 Similarity-Based Demonstration
Selection via the Kernel Function

Similarity-based demonstration selection, which
selects examples most similar to the test sample,
has proven effective for ICL (Margatina et al.,
2023). In this work, we adopt a similarity-based ap-
proach leveraging the kernel function of the trained
MK-GP model G to guide demonstration selection.
Given a test sample ¢y, its similarity to a candidate
example ¢; € D is computed as:

Sim(to,ti) = k(w(to),w(ti)), (5)

where x(ty) and x(t;) (or, for brevity, xy and ;)
are the embeddings of ¢ and ¢;, respectively. As
shown in Figure 3, the embeddings are mapped
into a Hilbert space via a kernel function. With
a well-chosen kernel, the transformed representa-
tions exhibit improved class separability relative to
the original embedding space (Elen et al., 2022).
This enhanced structure enables more discrimi-
native similarity computation for ICL. A higher
kernel value (as learned in Section 3.2.2) reflects
greater similarity between examples in the feature
space (Thickstun, 2019). Additional implementa-
tion details are provided in Appendix B.

( 0)! ( l)! EERR] ( ) O
@ @
_“Ce ¢
Embedding OG O Kernel @
=] g Mapping () O
O 00
Original Texts Embedding Space Hilbert Space

Figure 3: Kernel mapping enhances class separability.
Circles in two different colors represent samples from
distinct classes.

The S examples most similar to ty are se-
lected as demonstration examples. These exam-
ples, along with their corresponding labels, de-
noted as {(t1,y1),.-., (ts,ys)}, are then concate-
nated with the classification rationale R to form a
‘prompt’ (as shown in Figure 4) for the LLM. This
process is defined as follows:

Yo =LLM(to ® R ® (t1,y1) ® - & (ts,ys)),

where jg is the predicted label for ¢y, and & repre-
sents the concatenation operation.

Analyze the sentiment expressed in the given
Query Text toward the specified target {tar-
get}. The sentiment label must be selected
from the following set: {str(label_list)}. Refer
to the provided label descriptions and example
demonstrations to guide your classification.

Label Descriptions: {Rationales R}
Demonstrations: {(t1,v1),- .., (ts,ys)}

Query Text: {query_text}

Figure 4: Prompt template of ICL for MCSA.

4 Experimental Setup

4.1 Experimental Datasets

To evaluate RD-MCSA, experiments were con-
ducted on five diverse datasets across various do-
mains and sentiment classification granularities as
shown in Table 1:

Dataset Size Classes Granularity & Text type
SST5! 11,855 5 Sentence-level Movie Reviews
SemEval172 20,632 5 Topic-based Tweets
ABSIA3 4,650 7 Restaurant-related Reviews
PR_Baby* 183,531 5 Baby-product Reviews
PR_Software® 12,804 5 Software Product Reviews

Table 1: Summary of experimental datasets.



These datasets cover a range of sentiment classi-
fication tasks, from sentence-level analysis to fine-
grained aspect-based sentiment analysis, enabling
a comprehensive evaluation of RD-MCSA.

4.2 Experimental Implementation Details

In the experiments, 1,000 instances were randomly
sampled from each dataset to construct the an-
notated dataset D, ensuring a fair evaluation of
RD-MCSA across datasets. This also provided in-
sights into the amount of labeled data required for
MCSA tasks, aiding in determining the annotation
needed to outperform traditional classifiers trained
on large-scale datasets. The balanced Coreset size
for generating the classification rationale was set to
Ap = 100. Taking into account both efficiency and
effectiveness, the number of demonstrations was
setto .S = 10.

Experiments were conducted using three groups
of LLMs: GPT®, DeepSeek7, and ERNIE®. For
each group, the more capable (and expensive)
model (GPT-40, DeepSeek-R1, and ERNIE X1
Turbo) was employed for classification rationale
generation, whereas the more cost-efficient vari-
ant (GPT-40-mini, DeepSeek-V3, and ERNIE 4.5
Turbo) was utilized for ICL in MCSA tasks.

The following settings were applied uniformly
across all datasets: N =9 and M = 9 were used
in the MK-GP model (Equation (3)). The Adam
optimizer was adopted with a learning rate of 0.01
over 500 training epochs, and all other optimizer
parameters were set to their default values. Optimal
hyperparameters were selected via grid search and
cross-validation.

Most experiments were conducted on an
NVIDIA GeForce RTX 3080 GPU. On average,
a single unit of this GPU required 170.86 seconds
to complete 500 epochs of Gaussian process train-
ing across various datasets. For API-based models,
remote inference was employed instead.

4.3 Comparison Models

Baseline models were selected from two categories:
(1) classic machine learning and (2) language mod-
els for sentiment classification. The selected mod-

"https://huggingface.co/datasets/SetFit/sst5
Zhttps://huggingface.co/datasets/midas/semeval2017
3https://www.iitp.ac.in/i-nlp-ml/resources. htmI#ABSIA
*https://snap.stanford.edu/data/web-Amazon-links.html
>https://cseweb.ucsd.edu/jmcauley/datasets/amazon_v2
Shttps://openai.com/api/

"https://www.deepseek.com/

8https://yiyan.baidu.com/

els were: 1) Naive Bayes (Rennie, 2001): Multi-
nomial Naive Bayes with TF-IDF features, using
class weighting to address class imbalance. 2)
SVM (Li et al., 2011): Support Vector Classifier
with a linear kernel, balanced class weights, and TF-
IDF features. 3) BERT (Sun et al., 2019): BERT-
base model fine-tuned with Focal Loss to mitigate
class imbalance. 4) BERTweet (Nguyen et al.,
2020): Pretrained model for English tweets, also
optimized with Focal Loss to address imbalance.

All baseline models were trained and evaluated
on the datasets using an 80%/20% train-test split.

Given the recent success of ICL approaches
in text classification, several ICL-based selection
strategies were included as comparison methods:
1) Random: Selected in-context examples ran-
domly from the candidate set. 2) Coreset (In-
dyk et al., 2014): Selected representative sam-
ples that reflect overall dataset diversity. 3) Cos-
Similarity (de Vos et al., 2022): Selected the
top-S examples based on cosine similarity. 4)
BM25 (Robertson et al., 2009): Selected the top-
S examples using BM25 scoring. 5) Complex-
CoT (Fu et al., 2022): Selected examples based on
complexity, measured via the number of newline
characters. 6) Auto-CoT (Zhang et al., 2022b):
Clustered candidate examples and selected those
closest to each cluster center.

To ensure a fair comparison, all ICL-based meth-
ods were applied to the same annotated dataset
of 1,000 labeled samples as RD-MCSA, with 100
demonstrations (S = 100). In addition, all prompts
incorporated classification rationales generated by
the same method.

4.4 Evaluation Metric

Due to the multi-class nature of MCSA and the
class imbalance in the experimental data, Accuracy
and weighted-average F1 score were used to evalu-
ate performance (Sokolova and Lapalme, 2009).

S Experimental Results and Analysis

5.1 Main Results

Table 2 summarizes the performance of various
methods on three datasets. The results for the re-
maining two datasets are presented in Appendix C.
The following observations can be made:

1) Effectiveness of ICL. ICL achieved the high-
est Accuracy and weighted F1 scores across
all datasets, outperforming both traditional ma-
chine learning models and language model clas-



Table 2: Experimental results of baseline methods and ICL approaches across three datasets, using three groups of
LLMs. The best-performing method within each category is highlighted in bold.

SSTS SemEvall7 ABSIA
Method

Acc (%) Fl1 (%) Acc(%) Fl(%) Acc(%) Fl (%)

Naive Bayes 37.2 37.0 449 44.0 34.8 31.0

Baseline SVM 37.1 37.0 56.7 58.0 49.9 50.0

Models BERT 49.9 50.0 59.2 61.0 51.2 52.0

BERTweet 48.7 47.0 63.4 65.0 524 52.0

Random 55.0 54.90 57.7 60.22 51.6 52.87

Coreset 55.7 55.44 59.4 62.07 532 55.39

ICL based on Cos-Similarity 55.6 55.08 60.1 61.92 52.8 53.58
GPT-40 BM25 56.5 56.02 61.6 63.53 53.0 54.66
+GPT-40-mini Complex-CoT 56.5 54.30 62.5 63.12 529 55.26
Auto-CoT 56.6 54.18 62.2 63.09 534 55.62

RD-MCSA 57.6 56.03 63.9 64.69 54.3 56.01

Random 56.1 55.18 67.2 67.71 51.2 53.26

Coreset 56.2 55.09 67.6 68.4 52.7 53.98

ICL based on Cos-Similarity 56.3 55.21 68.4 68.62 532 55.41
DeepSeek-R1 BM25 56.6 55.75 67.3 67.99 53.1 54.72
+DeepSeek-V3 Complex-CoT 56.1 53.84 67.5 67.31 52.2 53.36
Auto-CoT 56.3 54.64 67.7 68.11 52.7 54.99

RD-MCSA 579 57.00 68.6 68.55 54.6 56.50

Random 513 48.80 67.2 66.91 50.5 50.59

Coreset 53.3 52.21 67.4 66.97 51.2 52.23

ICL based on Cos-Similarity 55.1 53.26 67.5 67.00 529 52.21
ERNIE X1 Turbo BM25 54.7 53.18 67.7 67.14 52.8 52.47
+ERNIE 4.5 Turbo ~ Complex-CoT 56.1 53.74 67.9 67.27 52.1 52.36
Auto-CoT 522 51.47 67.6 67.21 52.7 52.51

RD-MCSA 57.1 55.99 69.1 68.31 534 53.46

sifiers. Remarkably, ICL used only 1,000 la-
beled examples—substantially fewer than the
tens of thousands required by the baseline meth-
ods—demonstrating both superior efficiency and
effectiveness.

2) Effectiveness of RD-MCSA: RD-MCSA con-
sistently outperformed other methods on most
datasets, with the exception of SemEvall7, where
the cosine similarity-based ICL method achieved a
slightly higher F1 score. These results underscore
the robustness and effectiveness of RD-MCSA, fur-
ther corroborated by additional ablation studies.

3) Comparison of Demonstration Selection
Methods: Structured demonstration selection
strategies, such as Coreset, Auto-CoT, and
similarity-based approaches including BM25, Co-
sine, and RD-MCSA, consistently outperformed
random sampling. Among these methods, RD-
MCS demonstrated the highest effectiveness in
identifying informative examples for ICL.

5.2 Ablation Analysis

For further analysis, ablation studies were con-
ducted with the following model variants: 1) LLM-

only: Relied solely on the LLM’s inherent rea-
soning for classification, without classification ra-
tionales or demonstration examples. 2) CR-only:
Used only classification rationales in the prompt,
excluding demonstration examples. 3) DE-only:
Used only demonstration examples, excluding clas-
sification rationales. 4) UnBa-CR: Omitted cate-
gory balancing when generating classification ra-
tionales. 5) SK-only: Employed only stationary
kernel functions in the MK-GP algorithm. 6) NSK-
only: Employed only non-stationary kernel func-
tions in the MK-GP algorithm.

Figure 5 presents the results of the ablation study
conducted on three datasets (results for the remain-
ing two datasets are provided in Appendix D). The
following conclusions can be drawn:

1) Effectiveness of Rationales: Incorporating
classification rationales led to improved perfor-
mance compared to direct classification. Rationales
enhanced the LLM’s ability to interpret label mean-
ings, thereby improving classification accuracy.

2) Effectiveness of Demonstrations: Including
demonstration examples significantly boosted per-
formance compared to direct classification. These
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Figure 5: Experimental results from ablation studies across all datasets demonstrate that the removal of any
component from the RD-MCSA algorithm leads to a measurable decline in performance.

demonstrations served as concrete references that
guided the LLM’s decision-making process.

3) Impact of Label Imbalance in Rationale
Generation: Generating classification rationales
from imbalanced training samples resulted in no-
ticeable performance degradation. The scarcity
of examples from minority classes impaired the
LLM’s ability to generalize and reduced the quality
of the generated rationales.

4) Effectiveness of Combined Stationary and
Non-Stationary Kernels: Combining stationary
and non-stationary kernels resulted in better per-
formance than using either type alone. This com-
bination more effectively captured structural com-
plexity and enabled the selection of more similar
examples in ICL, thereby improving classification
accuracy.

5.3 Time Cost Analysis

The computational overhead of RD-MCSA com-
prises two main components: (1) the offline stage,
which involves Coreset pool construction, ratio-
nale generation, and MK-GP training; and (2) the
ICL inference stage. Statistical analysis based on
Table 3, which reports the per-sample average in-
ference time of various ICL methods across three
datasets (with results for additional datasets pro-
vided in Table 5, Appendix E), indicates that there
is no statistically significant difference in inference-
time cost among the evaluated algorithms. Detailed
results are presented in Appendix E. Therefore, the
additional computational overhead introduced by
RD-MCSA is limited to the offline preprocessing
stage.

6 Conclusions

This paper presents a novel framework for multi-
class sentiment analysis (MCSA) that leverages

Table 3: Per-sample average inference time (in seconds)
of various ICL methods on three datasets.

Backbone Method SST5 SemEvall7 ABSIA
Random 8.72 9.05 7.58
Coreset 8.83 8.93 7.62
ICL based on Cos-Similarity ~ 8.86 9.15 7.72
GPT-40 BM25 9.02 9.22 7.81
+GPT-40-mini Complex-CoT  8.74 9.13 7.25
Auto-CoT 8.81 9.21 7.43
RD-MCSA 8.91 9.17 7.73
Random 12.90 12.61 7.78
Coreset 13.14 13.34 8.42
ICL based on Cos-Similarity  13.50 13.20 8.23
DeepSeek-R1 BM25 13.21 13.64 8.61
+DeepSeek-V3 Complex-CoT  12.97 12.81 8.25
Auto-CoT 13.12 12.78 8.11
RD-MCSA 13.17 13.82 8.57
Random 10.98 11.01 7.66
Coreset 11.07 11.21 7.79
ICL based on Cos-Similarity  11.82 11.17 8.21
ERNIE X1 Turbo  BM25 11.23 11.61 8.33
+ERNIE 4.5 Turbo  Complex-CoT ~ 11.19 11.32 8.91
Auto-CoT 11.11 11.49 7.98
RD-MCSA 11.36 11.44 8.11

in-context learning (ICL) by integrating classifica-
tion rationale generation based on balanced Core-
set sampling and demonstration selection using
multi-kernel Gaussian processes (MK-GP). The
proposed approach effectively addresses key chal-
lenges such as class imbalance and the high cost of
large-scale annotation, while also capturing subtle
and nuanced sentiment expressions.

Extensive experiments across five diverse
datasets demonstrate the superior performance, ro-
bustness, and generalizability of the method.

Future research directions include extending the
framework to other sentiment analysis tasks, incor-
porating multimodal data (e.g., audio and visual
inputs), improving computational efficiency, and
designing strategies to mitigate the effects of sub-
jectivity in annotation. These advancements are
expected to further contribute to the development
of more accurate, efficient, and scalable sentiment
analysis systems.



Limitations

This paper has the following limitations:

1. Although the proposed method has been vali-
dated on five diverse datasets, its applicability
remains somewhat limited. In particular, it has
not yet been evaluated on multimodal datasets,
which are increasingly important in real-world
scenarios.

2. The overall performance of the proposed
method, while promising, is still not suffi-
ciently high. Even traditional supervised mod-
els trained on tens of thousands of samples
often struggle to surpass 80% accuracy. A ma-
jor challenge in MCSA tasks stems from the
inherent subjectivity of annotations—different
annotators may assign different labels to the
same sample, thus limiting classification per-
formance. Additionally, the quality of bench-
mark datasets may vary, and a thorough anal-
ysis of this factor has not been conducted.

3. Although the MK-GP approach demonstrates
strong results, it is computationally more in-
tensive than some similarity evaluation meth-
ods, especially in the offline stage. Enhancing
its computational efficiency represents an im-
portant avenue for future research that remains
unexplored in the current work.

Ethics Statement

Our study uses publicly available datasets, and no
personally identifiable information is included. We
acknowledge potential biases in sentiment classifi-
cation tasks and have taken steps to mitigate them,
such as dataset balancing and bias analysis. No
human subjects were involved in the study, and no
additional ethical approval was required. While our
method could be used for sentiment analysis appli-
cations, we do not foresee direct misuse. We will
release the code and models responsibly, ensuring
compliance with ethical guidelines.

LLMs (mainly GPT) are applied in our writing
to help correct grammatical and word usage errors,
but they do not generate any ideas, data, images, or
tables for us.
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A Properties of Kernel Functions

The polynomial kernel is expressed as:
kPoly,m(miv wj) = ('7m<wia mj) + Cm)dm )

where 7, is a scaling factor, ¢, is an offset (both
learnable parameters), and d,, is the degree of the
polynomial, treated as a hyper-parameter. Here,
(x3, ) denotes the dot product of x; and x;.

The Matérn kernel is defined as follows, where
v and / are the kernel parameters:

kMatém (-r’ia .%'j) =

il(;; <@Hwizwﬂ\>”By <@sz;%’\\) ’

where I'(v) represents the Gamma function, de-

fined as:
o
/ et dt,
0

Here, B, (z) denotes the modified Bessel function
of the second kind, defined as:

mly(2) — L(2)
2 sin(vm)

L'(v)

B,(z) =

where I,,(z) is the modified Bessel function of the
first kind, given by:

(g)wfzk

L(z)=) —2———
(2) kzok!F(VJrkle)’

The following analysis reveals the limiting be-
havior of the Matérn kernel, which approaches two
commonly used stationary kernels—namely, the
RBF kernel and the Laplace kernel—under differ-
ent conditions. This serves as the motivation for
employing the Matérn kernel in this paper to char-
acterize stationarity.
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Table 4: Experimental results of baseline methods and ICL approaches using three groups of LLMs on two datasets,
with the best-performing method in each category shown in bold.

Method PR_Baby PR_Software

Acc (%) F1(%) Acc(%) Fl (%)

Naive Bayes 47.86 47.0 44.8 45.0

Baseline SVM 50.96 51.0 58.1 59.0

Models BERT 58.18 58.0 60.3 61.0

BERTweet 57.74 56.0 59.9 58.0

Random 57.9 57.88 62.3 63.57

Coreset 58.1 58.06 62.6 63.68

ICL based on Cos-Similarity 58.9 59.03 64.7 65.86
GPT-40 BM25 59.2 59.36 63.1 64.25
+GPT-40-mini Complex-CoT 58.4 58.46 65.3 66.38
Auto-CoT 58.8 59.07 62.7 64.08

RD-MCSA 60.1 60.32 67.0 67.22

Random 56.0 56.13 61.5 62.94

Coreset 56.3 56.42 63.5 64.54

ICL based on Cos-Similarity 56.6 56.72 64.5 65.91
DeepSeek-R1 BM25 56.6 56.74 63.9 65.09
+DeepSeek-V3 Complex-CoT 56.4 56.58 65.7 65.29
Auto-CoT 56.5 56.64 63.2 64.49

RD-MCSA 57.5 57.70 67.7 68.11

Random 55.8 55.13 62.7 62.34

Coreset 56.0 56.47 64.1 64.13

ICL based on Cos-Similarity 56.6 56.65 64.6 65.07
ERNIE X1 turbo BM25 56.9 56.21 64.7 64.83
+ERNIE 4.5 turbo ~ Complex-CoT 56.2 56.33 65.5 65.17
Auto-CoT 56.7 56.53 66.0 66.21

RD-MCSA 57.8 56.88 66.5 67.47

When the parameter v — oo, the Matérn ker-
nel converges to the Radial Basis Function (RBF)
kernel (Porcu et al., 2024):

2
. Tr— x
Vli)ngo kMatém($i7xj) = exp <_H1252]||> ’

When the parameter v = %, the Matérn kernel
becomes equivalent to the Laplace kernel [54]:

Ti— T
kMatérn(xia$j) = €exp <_w

B Similarity Evaluation Based on Kernel
Functions of MK-GP

According to Mercer’s theorem (Thickstun, 2019),
there exists a Hilbert space H and a mapping ¢ :
X — H such that the kernel function k(x;, X;) can
be expressed as the inner product in the Hilbert
space:

k(xivxj) = <¢(XZ)’¢(X])>H7 VXi,Xj e X.

Here, ¢(x) is an implicitly defined mapping,
and H is the corresponding Hilbert space. In H,
the Euclidean distance between any two samples

1
),wheny:

X;,X; € X is defined as:

lo(x:) = S(x))[I” = (D(xs), D(x3)) 2~
2(p(xi), d(x;))n + (D(x;), 9(X)) 2
By utilizing the definition of the kernel function,

k(x;,x5) = (¢(x;), ¢(X;))2, the expression can be
rewritten as:

[p(xi)—d(x))[|* = k(i Xi) =2k (Xi, X;)+K(X;, X;).

This represents the distance in the Hilbert space
induced by a positive definite kernel function. After
normalizing the samples, for the kernel function
adopted in this study, the first and third terms in the
above equation become constants. Thus, the larger
the value of the middle term k(x;, X;), the smaller
the distance between ¢(x;) and ¢(x;), indicating
that the two samples are more similar.

C Experimental Results on Other Two
Datasets

Table 4 presents the experimental results of base-
line models and ICL comparison models on the
remaining two datasets.
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D Ablation Study on Other Datasets

Figure 6 presents the experimental results of abla-
tion study on the remaining two datasets.
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Figure 6: Experimental results of ablation studies on two
datasets. The removal of any component from the RD-
MCSA algorithm resulted in a performance degradation.

E Time Cost Analysis Based on Variance
Analysis

Leta = 7,b = 3, and ¢ = 5 respectively denote
the number of levels for the three factors: Algo-
rithm (1 = 1,...,a), Model (j = 1,...,b), and
Dataset (k = 1,...,c). For each combination of
these factors, the inference time Y, is recorded,
and the variability is analyzed using a main-effects
ANOVA model(Connelly, 2021), which assumes
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Table 5: Per-sample average inference time (in seconds)
of various ICL methods on two datasets.

Backbone Method PR_Baby PR_Software
Random 9.01 9.79
Coreset 9.22 9.13
ICL based on Cos-Similarity 7.95 9.71
GPT-40 BM25 9.31 7.72
+GPT-40-mini Complex-CoT 8.83 9.18
Auto-CoT 7.76 10.12
RD-MCSA 8.97 9.54
Random 11.36 12.19
Coreset 12.31 12.88
ICL based on Cos-Similarity 13.31 14.12
DeepSeek-R1 BM25 13.48 13.79
+DeepSeek-V3 Complex-CoT 11.21 13.11
Auto-CoT 11.17 12.99
RD-MCSA 12.21 12.92
Random 10.59 11.98
Coreset 11.32 12.17
ICL based on Cos-Similarity 10.27 11.82
ERNIE X1 Turbo  BM25 12.21 12.55
+ERNIE 4.5 Turbo  Complex-CoT 11.64 12.88
Auto-CoT 11.71 11.76
RD-MCSA 12.55 11.72

additive and independent factor effects without in-
teractions:

Yijk = p+ i+ B+ + €ijk,
where the error terms are assumed to be indepen-
dent and normally distributed with constant vari-
ance: €;jp, A N(0,0?).
To assess whether the choice of algorithm sig-
nificantly affects inference time, the following hy-
pothesis test is conducted for the Algorithm factor:

Hy:ay=---=a7 vs Hp:3a; # oy,
The Sum of Squares for Factor A (SSA) is com-
puted based on the deviation of each algorithm’s
marginal mean from the overall grand mean. Since
each algorithm is evaluated across b = 3 models
and ¢ = 5 datasets, the number of replications is

bc = 15:

a
SSA=> be(Yi. - Y. )?=0.171,
i=1
The Sum of Squares for Error (SSE) is obtained
by aggregating the squared deviations of each ob-
servation from its corresponding algorithm-level
mean:

a b

SSEzzz

i=1 j=1 k=1

C

(Yiji — Y3.)? = 2.793,



The degrees of freedom for factor A and the
residual error term are:

dfa=a—1=6,

dfg =abc—a—b—c+2 =92,

The corresponding mean squares are computed
as:

SSA  0.171

MSA = — = —— = 0.0285
df 4 6 ’
SSE  2.793

MSE = — = —— = 0.0303
dfg 92 ’

The F-statistic for testing the algorithm factor is
then given by:
~ MSA  0.0285

=20 Y .04,
o = MSE ~ 0.0303 0

From the F'-distribution table, the critical value
at the 5% significance level is Fp 95(6,92) ~ 2.19.
Since Fyps = 0.94 < 2.19 (p = 0.471 > 0.05),
the null hypothesis cannot be rejected. This indi-
cates that, at the 0.05 significance level, the seven
demonstration-selection algorithms do not exhibit
statistically significant differences in per-sample
inference time after accounting for the effects of
model and dataset.

14



	Introduction
	Related Work
	Multi-class Sentiment Analysis
	Text Analysis Using LLMs

	The Methodology of RD-MCSA
	Classification Rationale Generation via Balanced Coreset Selection
	The Balanced Coreset Algorithm
	Classification Rationale Generation via LLM Reasoning

	Demonstration Selection via Multi-Kernel Gaussian Process Similarity Evaluation
	Gaussian Process
	Multi-Kernel Gaussian Process
	Similarity-Based Demonstration Selection via the Kernel Function


	Experimental Setup
	Experimental Datasets
	Experimental Implementation Details
	Comparison Models
	Evaluation Metric

	Experimental Results and Analysis
	Main Results
	Ablation Analysis
	Time Cost Analysis

	Conclusions
	Properties of Kernel Functions
	Similarity Evaluation Based on Kernel Functions of MK-GP
	Experimental Results on Other Two Datasets
	Ablation Study on Other Datasets
	Time Cost Analysis Based on Variance Analysis

