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Abstract

The emergence of Deep Convolutional Neural Networks (DCNNs) has been a pervasive tool
for accomplishing widespread applications in computer vision. Despite its potential capa-
bility to capture intricate patterns inside the data, the underlying embedding space remains
Euclidean and primarily pursues contractive convolution. Several instances can serve as a
precedent for the exacerbating performance of DCNNs. The recent advancement of neural
networks in the hyperbolic spaces gained traction, incentivizing the development of convo-
lutional deep neural networks in the hyperbolic space. In this work, we propose Hyperbolic
DCNN based on the Poincaré Ball. The work predominantly revolves around analyzing the
nature of expansive convolution in the context of the non-Euclidean domain. We further
offer extensive theoretical insights about the universal consistency of the expansive convolu-
tion in the hyperbolic space. Several simulations were performed not only on the synthetic
datasets but also on some real-world datasets. The experimental results reveal that the
hyperbolic convolutional architecture outperforms the Euclidean ones by a commendable
margin.

1 Introduction
The ubiquitous utility of Deep Convolutional Neural Networks (DCNNs) LeCun et al. (1998) dominated the
arena of Computer Vision Yang & Li (2017); Fu et al. (2019); Sonata et al. (2021) over the past decade.
This profound success can be attributed to the effectiveness of the CNNs in approximating the broader class
of continuous functions Lin et al. (2022b). The prevalent convolutional neural architectures He et al. (2016);
Simonyan (2014) predominantly operate in the Euclidean feature space. The choice of Euclidean space is
mostly for implementable closed-form vector space and inner product structures, and their availability in
tabular forms. We are focused on DCNN architectures which evolve around 1− dimensional convolution
based on one input channel and ReLU (Rectified Linear Unit, r(x) := max(0, x) for x ∈ R) activation
function given to the computational units (Neurons). For two functions f, g : Rn → R, we define their
convolution as

f ⊗ g(z) :=
∫
Rn

f(x)g(z − x)dx,

where z ∈ Rn. In the discrete version, given a filter w := {wi}∞
i=−∞, where only finitely many wj ̸= 0.

We call w to be a filter of length s if wj ̸= 0 only for 0 ≤ j ≤ s. For a one dimensional input vector
v := {v1, v2, ..., vn} ∈ Rn, we can define two types of convolution operations, namely Expansive Convolution
(w ∗ v) and Contractive Convolution(w ⋆ v), given by the following forms of equations

(w ∗ v)k :=
n∑

i=1
wk−ivi, k = 1, 2, ..., n + s (1)

and

(w ⋆ v)k :=
k∑

i=k−s

wk−ivi, k = s + 1, s + 2, ..., n (2)
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respectively. Now for a set of L filters {wi}L
i=1, where L is the depth of our network with L many bias

vectors {bi}L
i=1, we recursively define the output of an intermediate layer given in terms of the output of the

previous layer as Zhou (2020a)

hi(x) = r (wi ◦ hi−1(x) + bi) , for i = 1, 2, ..., L,

starting with the input as h0(x) = x and ◦ can be either ∗ or ⋆ as defined by equations 1 or 2 respectively. The
final one-dimensional output of this network is defined as the scalar product between the output produced
by the Lth layer with a trainable vector aL of compatible length

ho(x) := al · hL(x).

Although this form of Euclidean convolution has been proven to be enormously successful in several tasks
in computer vision, several precedents Lin et al. (2022a); Djeddal et al. (2021); Long & van Noord (2023)
can be put forth where Euclidean feature space seems unproductive, like datasets containing hierarchical
structures. Learning embeddings of hierarchical data in Euclidean spaces often falls short in capturing
meaningful structural information. To address this limitation, researchers have explored neural network
architectures in non-Euclidean spaces, particularly hyperbolic geometry Ganea et al. (2018); Nickel & Kiela
(2017b); Bdeir et al. (2023). Hyperbolic Neural Networks (HNNs) Ganea et al. (2018) have emerged as
a promising framework, leveraging negatively curved spaces to better represent complex relationships and
hierarchical structures. Building on this, Hyperbolic Deep Convolutional Neural Networks (HDCNNs) have
shown success in various image-related tasks. However, despite these empirical advances, a rigorous theoret-
ical understanding of hyperbolic convolution remains largely undeveloped.

Motivated by this gap, our work provides a comprehensive statistical analysis of hyperbolic convolution,
focusing on the consistency of expansive convolutional operations in hyperbolic space. This topic has received
little attention compared to its Euclidean counterpart. Prior studies, such as Lin et al. (2022b), have
established consistent results for Euclidean convolutional networks using bounds on packing numbers and
error analysis. Yet, similar theoretical foundations for hyperbolic networks are lacking.

To this end, we introduce a theoretical framework for 1-D expansive Hyperbolic Deep Convolutional Neural
Networks (eHDCNNs), extending the conventional Euclidean DCNNs to the hyperbolic domain via the
Poincaré Ball model. This foundation enables the formulation of key statistical properties and paves the
way for theoretical consistency analysis. Empirical results on both synthetic and real-world datasets confirm
the superiority of hyperbolic representations, with significantly faster convergence and lower error rates
compared to Euclidean models, thus validating our theoretical contributions.

Contribution

Our main contributions could be summarized in the following way:

• We provide theoretical insights, including the consistency analysis of the expansive 1-D convolution
in hyperbolic space. To the best of our knowledge, this is the first work to present a complete proof
in the context of a fully hyperbolic set-up. In doing so, we have also introduced the concept of
a fully hyperbolic convolution operation on the Poincaré Ball, which is the generalization of the
conventional Euclidean convolution operation on hyperbolic spaces. Additionally, we have extended
several well-known statistical terminologies like population risk, empirical risk minimizer, and re-
gression estimator in the ambit of the hyperbolic framework to derive universal consistency. All
necessary proofs and derivations are provided in Section A.

• Our experimental simulations demonstrate that eHDCNN training converges more rapidly than
the training of the Euclidean DCNN, which we have already established theoretically. The faster
reduction of error rate reaffirms the requirements of the lower number of training iterations for hy-
perbolic convolutional networks compared to their conventional Euclidean counterparts, establishing
the effectiveness of eHDCNN. Details of the experiments and simulations are provided in Section 7.

2



Under review as submission to TMLR

Figure 1: Test Root Mean Squared error for f(x) and g(x) plotted using (a) eDCNN architecture curvature
0 (i.e., Euclidean space) and (b) eHDCNN architecture with curvature 1.

2 A Motivating Example

We will demonstrate the efficacy of our proposed hyperbolic expansive convolution over conventional Eu-
clidean expansive convolution through the following simulation.

Experimental Setup

Consider the following functions,

f(x) = sin(∥x∥2)
∥x∥2

, g(x) =
√

∥x∥2

1 +
√

∥x∥2
,

where f(x) and g(x) both are modeled as regression task like y := h(x) + ϵ. Here, h can be replaced with
either f or g. The training instances are generated by sampling ϵ ∼ N (0, 0.01) and x ∼ unif([−1, 1]5). A
total of 1000 instances will be generated for both cases, where 800 samples will be used for training and
200 samples will be used for testing. Importantly, the test samples are considered without the Gaussian
noise. The filter length is fixed at 8 with the number of layers being 4. Both models are trained for 100
epochs over the training set. The test Root Mean Squared Loss (RMSE) is recorded after the completion of
training and presented in Figure 1. Experiments are conducted for two different curvatures, c = 0 (Euclidean
space) and c = 1. We considered unit radius Poincaré Ball as the hyperbolic space. Assuming the point
set is in a discrete metric space, we employed Gromov Hyperbolicity (GH) Väisälä (2005) to measure the
hyperbolicity (δ) of the corresponding data points. The metric offers hyperbolicity of f and g are respectively
δf = 0.45 and δg = 0.017, indicating that g is more hyperbolic comparing to f , which is also supported by
our experimental observation, since the Test RMSE curve for g(x) being lower compared to f(x) in curvature
1.0 at higher epochs.

The choices of the functions f and g are not arbitrary. Rather, they are motivated by the observation that
the datasets they generate exhibit low Gromov Hyperbolicity (GH) indices, with one of the values close to 0
and less than 1 in both cases. This suggests that the underlying geometry of the data is highly hierarchical or
tree-like. Such structures are known to benefit from hyperbolic representations, where models like eHDCNN
can more naturally and efficiently capture these relationships Sala et al. (2018b); Yim & Gilbert (2023).
Lower GH indices correspond to greater hyperbolicity, reinforcing the need for hyperbolic architectures. Our
empirical observation further supports this, that the dataset generated by g achieves lower test RMSE at
higher negative curvature values after sufficient training, aligning with the theoretical suitability of hyperbolic
models for highly hyperbolic data.
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3 Related Works

Hyperbolic Image Embedding and NLP Tasks

Developing a Hyperbolic Neural network for computer vision tasks has been mainly focused on combining
Euclidean Encoders and Hyperbolic Embedding. These architectures were demonstrated to be effective in
performing various vision tasks, for example, recognition Khrulkov et al. (2020),Guo et al. (2022a), generation
Nagano et al. (2019), and image segmentation Atigh et al. (2022). While Hyperbolic Embedding has also
been tremendously successful in performing various tasks related to Natural Language Processing Nickel &
Kiela (2017a),Nickel & Kiela (2018). These ideas were mainly motivated by the expressive power of the
hyperbolic spaces to represent graph or tree-like hierarchies in shallow dimensions with very low distortions.
However, deploying Riemannian Optimization algorithms to train this architecture is difficult due to the
inability to extend them for visual data since NLP tasks lack the availability of discrete data Sala et al.
(2018a),Sarkar (2011).

Fully Connected Hyperbolic Neural Network

In 2018 Ganea et al. (2018), and in 2020 Shimizu et al. (2020) independently developed the structure of
Hyperbolic Neural Networks on Poincaré Ball by utilizing the gyrovector space structure. They defined the
generalized notions of different layers like fully connected, convolutional, or attention layers. Fan et al. (2022),
Qu & Zou (2022) tried to develop variations of HNN models like fully Hyperbolic GAN on Lorentz Model
space, van Spengler et al. (2023) proposed a fully hyperbolic CNN architecture on Poincaré Ball model. Very
recently, Bdeir et al. (2023) presented a fully convolutional neural network on the Lorentz Model to perform
complex computer vision tasks, where they generalized fundamental components of CNNs and proposed
novel formulations of convolutional layer, batch normalization, and Multinomial Logistic Regression (MLR)
classifier. Moreover, hyperbolic graph neural networks can also accomplish recommendation tasks. There
are numerous recommender systems such as graph neural collaborative filtering Sun et al. (2021), Yang et al.
(2022), social network enhanced network system Wang et al. (2021), knowledge graph enhanced recommender
system Chen et al. (2022), and session-based recommender system Guo et al. (2022a), Li et al. (2021).

Batch Normalization in Hyperbolic Neural Networks

Batch Normalization Ioffe (2015) restricts the internal departure of neuron outputs by normalizing the
outputs produced by the activations at each layer. This adds stability to the training procedure and speeds
up the training phase. Several attempts have been made to transcend the normalization of conventional
neural networks in the hyperbolic setup. The general framework of Riemannian Batch Normalization Lou
et al. (2020), however, suffers from slower computation and iterative update of the Frechét centroid, which
does not arise from Gyrovector Group properties. Additionally, Bdeir et al. (2023) proposed an efficient batch
normalization algorithm based on the Lorentz model, utilizing the Lorentz centroid and a mathematical re-
scaling operation.

Numerical Stability of Hyperbolic Neural Networks

Training of Hyperbolic Neural Networks developed on the Lorentz Model can lead to instability and floating
point error due to rounding since the volume of the Lorentz model grows exponentially with respect to radius.
Sometimes, people work with these floating-point representations in 64-bit precision with a higher memory
cost. Mishne et al. (2023),Guo et al. (2022b),Mathieu et al. (2019) proposed some versions of feature clipping
and Euclidean reparameterization to mitigate these issues. However, they largely overlooked some critical
aspects, such as defining a fully hyperbolic convolutional layer or classifiers like MLR, which are essential
for various computer vision tasks. In this paper, we fully address this gap by developing a novel architecture
from the ground up, along with the theory of its universal consistency.

4 Preliminaries

This section discusses the preliminaries of Riemannian Manifolds and Hyperbolic Geometry, which are ben-
eficial for understanding our proposed framework.
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Figure 2: (a) The geodesics in Poincaré ball and (b) Riemannian manifolds with Tangent space are presented.
The functionalities of the logarithmic map and exponential map are also illustrated.

4.1 Riemannian Manifold, Tangent Space, and Geodesics

An n-dimensional manifold M is a geometric space that, in small neighborhoods, behaves like the familiar
Euclidean space Rn Tu (2017). At each point x ∈ M, we can define a corresponding tangent space Tx(M),
which captures the possible directions in which one can move from x—similar to a flat plane touching a
curved surface.

If each of these tangent spaces is equipped with an inner product (i.e., a way to measure angles and lengths),
then M becomes a Riemannian manifold do Carmo (1992). This inner product is given by a family of
functions g = {gx : Tx(M) × Tx(M) → R}, one for each point x ∈ M. Using this, we can define the length
of a curve γ : [a, b] → M as:

L(γ) :=
∫ b

a

√
gγ(t)(γ′(t), γ′(t)) dt,

which in turn gives a way to define distances between points on the manifold. The shortest such curve
between two points is called a geodesic, and the distance along this curve is the geodesic distance.

Moreover, Riemannian manifolds allow us to define curvature. For two linearly independent directions u and
v at a point x, the sectional curvature is defined as:

kx(u, v) := gx(R(u, v)v, u)
gx(u, u)gx(v, v) − gx(u, v)2 ,

where R is the Riemann curvature tensor and ∇ is the Riemannian connection—used to describe how vectors
change along curves.

4.2 Poincaré Ball Model

A hyperbolic space is a Riemannian manifold where the sectional curvature is negative and constant through-
out the space. Among various representations of hyperbolic space, we use the Poincaré Ball Model due
to its elegant geometry and convenience Lee (2006). For a given curvature k < 0 (denoted as −c), the
n-dimensional Poincaré Ball Dn is defined as the open ball of radius 1/

√
c centered at the origin in Rn.

In this model, geodesics are represented by arcs of circles that intersect the boundary of the ball at right
angles. The geodesic distance between two points p, q ∈ Dn is given by:

d(p, q) := 2 sinh−1

(√
2∥p − q∥2

c(1 − c∥p∥2)(1 − c∥q∥2)

)
.

Refer to Figure 2(a) to visualize the geodesics in the Poincareé ball.
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Thanks to the Killing-Hopf theorem Lang (1995), all hyperbolic space models with the same curvature and
dimension are isometrically equivalent, indicating the distance between any pair of points is preserved after
the transformation from one space to another. Thus, we can safely develop our methods on the Poincaré
Ball without loss of generality.

4.3 Gyrovector Space

The traditional algebraic operations in Euclidean space are not directly applicable in the hyperbolic space.
To perform algebraic operations like vector addition and scalar multiplication in hyperbolic space, we use
the framework of gyrovector spaces, developed by Abraham A. Ungar Ungar (2022). These generalize vector
spaces to hyperbolic settings and rely on non-associative operations (gyrogroups) instead of traditional vector
addition.

The two primary operations we use are:

1. Möbius Addition: For u, v ∈ Dn, the addition is defined as:

u ⊕c v := (1 + 2c⟨u, v⟩ + c∥v∥2)u + (1 − c∥u∥2)v
1 + 2c⟨u, v⟩ + c2∥u∥2∥v∥2 ,

where c = −k is the curvature parameter. For subtraction, just substitute v with −v.

2. Möbius Scalar Multiplication: For r ∈ R and u ∈ Dn, we define:

r ⊗c u := 1√
c

tanh
(
r tanh−1(

√
c∥u∥)

) u

∥u∥
.

Refer to Figure 2(b) to comprehend both the functions pictorially. These operations form the backbone of
many hyperbolic neural network formulations and allow us to compute metrics like the Davies-Bouldin Index
or Calinski-Harabasz Score in a geometry-aware manner.

4.4 Exponential and Logarithmic Maps

These are two key functions for enabling transition between the hyperbolic manifold and its tangent (Eu-
clidean) space. These functions are essential for optimization, embedding, and distance-based tasks.

Let x ∈ Dn and v ∈ Tx(Dn) be a tangent vector. Then:

The Exponential Map projects v to a point on the manifold along a geodesic starting from x:

expc
x(v) := x ⊕c

(
tanh

(√
c
λc

x∥v∥
2

)
v√

c∥v∥

)
,

The Logarithmic Map performs the reverse operation—mapping a point y on the manifold back to the
tangent space at x:

logc
x(y) := 2√

cλc
x

tanh−1 (√c∥−x ⊕c y∥
) −x ⊕c y

∥−x ⊕c y∥
,

where the conformal factor is defined as λc
x := 2

1−c∥x∥2 .

5 Proposed Method
In this section, we will unravel the design strategy of expansive Hyperbolic Deep Convolutional Neural
Networks (eHDCNN). Let us first define the hyperbolic convolution operation on Poincaré Ball. Assume
two functions f and g from Rn → R, we define the convolution between f and g as:

f ⋆ g(x) :=
∫
Rn

f(z)g(x − z)dz.

Analogously, we define hyperbolic convolution using logarithmic and exponential maps.
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Figure 3: The complete workflow of expansive hyperbolic 1-d convolutional layer on Poincarê Ball is pre-
sented. (best view in digital format)

Definition 1 (Hyperbolic Convolution (Continuous Version)). For x ∈ Dn
c , we define the convolutions of

two real-valued functions f, g on Rn as a map from : Dn
c → D1

c as

f ⋆ g(x) := expc
0

[∫
Dn

c

f(logc
0(z))g(logc

0(−z ⊕c x))λ(z)
]

, (3)

where λ(z) := dz
1−c∥z∥2 .

Remark 1. Note that for two real-valued functions f, g, their hyperbolic convolution is a map h : Dn
c → D1

c.
We want to keep the range of the output function of the convolution in D1

c, since in the deep convolutional
setup we will again convolute the output with some other filters.
Definition 2 (Hyperbolic Expansive and Contractive Convolution (discrete Version) ). Let w := {wj}∞

j=−∞
be an infinite dimensional vector whose elements are in R with finitely many non-zero entries in w. Ex-
plicitly we assume wj ̸= 0 for 0 ≤ i ≤ s. Among two widely used types of 1-D convolutions in Rn, we
talk about only the expansive and contractive type convolutions. Let v = {v1, ..., vn} ∈ Dn

c . We define the
Hyperbolic Expansive Convolution (∗h) and the Hyperbolic Contractive Convolution (⋆h) in the following way:

Let v′ := logc
0(v) = (v′

1, v′
2, ..., v′

n) ∈ Tc
0(Dn

c ) ⊆ Tc
0(Rn), i.e. v′ is an element of the tangent bundle at 0 of

Dn
c .

1. Hyperbolic Expansive Convolution:(w ∗ v′) =
∑n

l=1 wj−lv
′
l for j = 1, 2, ..., n + s. Therefore

(w ∗ v′) ∈ Rn+s. We apply the exp map to put it back in Dn+s
c . Finally, we define

w ∗h v := expc
0(w ∗ logc

0(v)). (4)

2. Hyperbolic Contractive Convolution: The usual contractive convolution for w and v′ is defined
as, w ⋆ v′ =

∑j
l=j−s wj−lvl, j = s + 1, ..., n. We define ⋆h between w and v as

w ⋆h v := expc
0(w ⋆ logc

0(v)), (5)

which lies in Dn−s
c .

Remark 2. Note that for c = 0, we will retrieve the usual sparse Toeplitz operators of dimensions n×(n+s)
and n × (n − s) from both contractive and expansive cases. Also, for c = 0, we retrieve the conventional 1-d
Euclidean expansive and contractive convolutions; subsequently, our proposed architecture is reduced to its
Euclidean variant by setting the c = 0.
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Having reviewed all the necessary terminology, we are now ready to define the complete architecture of the
Hyperbolic Deep Convolutional Neural Network (HDCNN).
Definition 3 (Hyperbolic Deep Convolutional Neural Network (HDCNN)). Let L ∈ N be the number
of hidden layers in the network. For a given set of filters {wk}L

k=1 and set of compatible bias vectors
{bk}L

k=1 and a vector aL = {a1, a2, ..., anL
} [Note that these vectors all lie in Euclidean Spaces of Appropriate

Dimensions]. Let σ(t) := max{0, t} be the ReLU, acting component-wise for the multidimensional operation.
We also assume the dimension of the output layer is nL and hL(x) := {h1(x), h2(x), ..., hnL(x)} ∈ DnL

c . The
HDCNN is defined as:

hk(x) = σ(wk ◦ hk−1(x) ⊕c expc
0(bk)), (6)

where hk(x) is the output from the k−th hidden layer for k ∈ {1, 2, ..., L − 1} and hk(x) ∈ Dn+ks
c , where ◦

can be either ∗h or ⋆h as defined in Definition 2, h0(x) = x and the final output is given as:

hL(x) = expc
0 [aL · logc

0(hL(x))] . (7)

The transformation of a vector, lying as a geodesic on Poincaré Ball, is shown in Figure 3 through hyperbolic
convolution performed in an intermediate layer. This transformation projects the vector as another geodesic
in a higher dimensional Poincaré Ball to the subsequent layer.
Remark 3. If we restrict our focus only to the Expansive case (eHDCNN), note that the dimension of the
input to each hidden layer is getting bigger by s units every time. More explicitly, if we have started with
x ∈ Dn

c , and w1 is the first filter of length s, then h1(x) ∈ Dn+s
c , which is the input dimension of the second

hidden layer. Iteratively, the input dimension of the k−th hidden layer is as same as the dimension of hk−1,
which lies in Dn+(k−1)s

c . Finally, when we reach the output layer, the output dimension will be n + Ls, i.e.,
nL = n + Ls. To make the Mö bius addition and the Möbius multiplications compatible, we need to have
aL ∈ Rn+Ls. Also note that for c = 0, this architecture is reduced to the eDCNN architecture described in
Lin et al. (2022b).

Table 1: Comparison of theoretical guarantees and expressivity properties between Euclidean DCNNs and
hyperbolic DCNNs.

Theoretical Property Euclidean eDCNN eHDCNN Euclidean cDCNN cHDCNN
Universal Approximation

✓(proved) ✓(proved) ✗(still open) ✗(still open)
Universal Consistency

✓(under mild assump-
tions)

✓(under mild assump-
tions)

✗(not guaranteed) ✗(not guaranteed)

Sample Complexity
(Risk) ✓Õ(m−1/2) ✓Õ(m−1/2) ✗unknown ✗unknown
Geometry-Awareness

✗Euclidean only ✓explicitly curvature-
aware

✗Euclidean only ✓explicitly curvature-
aware

Expressivity for Hierar-
chies ✗Limited ✓Superior (due to hyper-

bolic embeddings)
✗Limited ✓Superior (due to hyper-

bolic embeddings)
Robustness to Distortion

✗No geometric control ✓Controlled via logc
0 and

expc
0 maps

✗No geometric control ✓Controlled via logc
0 and

expc
0 maps

Remark 4. Although we have mathematically formalized the notion of hyperbolic contraction convolution,
our theoretical analysis focuses exclusively on the expansive case. This choice is primarily motivated by
the universal approximation theorem for deep ReLU networks Hanin (2019), which guarantees universal
approximation only when the network contains at least one hidden layer of width no less than d + 1, where d
is the input dimension. While it is possible to overcome this limitation by appending a fully connected ReLU
network before the cDNN, identifying the appropriate depth and width of such a network introduces additional
complexity, restricting the cDNNs from holding the universal approximation properties. In contrast, the
universal approximation property naturally holds for eDCNNs Zhou (2020a), provided that none of the hidden
layers has a width smaller than d. Furthermore, Table 1 presents a concise theoretical comparison between
1-d Euclidean DCNNs and hyperbolic DCNNs.
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6 Theoretical Analyses

We will now provide the proof for universal consistency following the framework established in Lin et al.
(2022b). While we will appropriately generalize the results to the hyperbolic setting, it is first necessary to
define some statistical terminologies to comprehend the mechanism of eHDCNN.

We consider a dataset D = {zi}m
i=1 = {xi, yi}m

i=1, where the samples are assumed to be independent and
identically distributed according to a Borel probability measure ρ on the space Z = X ×Y. Here, xi ∈ X ⊆ Dn

c

and yi ∈ Y ⊆ D1
c . We assume X is a compact set for this discussion. The goal is to learn a function

fD : X → R1 that minimizes the following Hyperbolic L2 Population Risk (HPR):

E(f) :=
∫

Z
(f(x) − logc

0(y))2dρ. (8)

Remark 5. The reason behind taking the log of y ∈ Y is that, the logarithm function will project back y ∈ Y
to T0(D1

c) ⊆ R1. Hence, taking the difference between two real numbers will make sense. Also, if c → 0, we
will return the usual L2 error on the Euclidean Spaces.

Lemmas 1 and 2 can be viewed as natural extensions of classical results to the hyperbolic setting. Never-
theless, for the sake of completeness, we state them here and provide detailed proofs in the Appendix.
Lemma 1. The Hyperbolic Regression Function (HRF) fρ(x) :=

∫
Y logc

0(y)dρ(y|x), defined by the means of
conditional distribution ρ(·|x) of ρ at x ∈ X minimizes the HGE.

The next lemma will deduce what we aim to minimize.
Lemma 2. For any f : Dn

c → R1, we have

E(f) − E(fρ) = ∥f − fρ∥L2
ρX

,

where ρX (x) :=
∫

Y ρ(x, y)dY(y), for each x ∈ X , the marginal distribution of ρ on X .

The estimator that minimizes the hyperbolic population risk is the estimator that minimizes the empirical
error over the class of all functions expressed by our eHDCNN architecture. Hence, the corresponding
estimator or the Empirical Risk Minimizer (ERM) is defined as:

fD,L,s := arg min
f∈HL,s

ED(f), (9)

where

ED(f) := 1
m

m∑
i=1

(f(xi) − logc
0(yi))2

denotes the empirical risk (HERM) associated with the function f and for the filters wk for k ∈ {1, 2, ..., L}
of length sk = d + ks and

HL,s := {hL(x), wk, bk ∈ Rd+ks, k = 1, 2, ..., L}

is the set of all hyperbolic outputs produced by the eHDCNN defined by 7.

To establish consistency, we must demonstrate that as the sample size m → ∞, the sequence of estima-
tors converges to the true value. Formally, a sequence of estimators is *strongly universally consistent*
if it converges almost surely to the underlying parameter. In regression, this implies that empirical error
estimators—derived via empirical risk minimization—converge to the generalization error over the space of
square-integrable functions (a Hilbert space) with respect to the conditional output distribution. In the
hyperbolic setting, we formalize this notion as follows:

9
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Definition 4. A sequence of Hyperbolic Regression Estimators (HRE) ({fm}∞
m=1) built through ERM is said

to be strongly universally consistent if it satisfies the condition:

lim
m→∞

E(fm) − E(fρ) = 0

almost surely, for every Borel probability distribution λ such that logc
0(Y) ∈ L2(λ(Y|x)).

The main result we will be going to prove here will be the following Theorem, which will prove the strong
universal consistency of eHDCNN when the Hyperbolic Empirical Risk is minimized. The following Theorem
considers a sequence of eHDCNNs as the universal approximators of continuous functions, where the depth
of the network has been taken as a sequence depending upon the sample size of our dataset.
Theorem 1. Suppose the following conditions hold as m → ∞:

1. L = Lm → ∞,

2. M = Mm → 1√
c
,

3. m−θM2
m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0,

4.

A log(B)
m1−2θ

→ 0, (10)

where

A :=
(

1√
c

tanh−1(Mm

√
c)
)4

L2
m(Lm + d) log(Lm)

B :=
(

1√
c

tanh−1(Mm

√
c)
)

m.

hold for θ ∈ (0, 1/2) and input filter length as 2 ≤ s ≤ d. Then πMmfD,Lm,s is strongly universally consistent,
where πM (l) := min{M, |l|} · sign(l) is the well-known truncation operator.
Remark 6. Justification of the constraints in Theorem 1: At first glance, the conditions stated in
Theorem 1 may appear somewhat arbitrary; however, each can be rigorously justified as necessary. The first
condition, Lm → ∞ as m → ∞, pertains to the network depth and is crucial for ensuring the universal
approximation capability of the eHDCNN, the Euclidean analogue has been discussed in Lin et al. (2022b).
The second condition allows the input data points to increasingly approach the boundary of the Poincaré Ball
Dd

c (with radius 1/
√

c) as their number grows, which is achieved by relaxing the truncation parameter Mm.
The third condition ensures that the squared distance of the data points from the center of Dd

c grows slower
than the number of data points Györfi et al. (2002). Finally, the fourth condition states that the growth
in the number of data points dominates the combined effect of the pseudo-dimension (A) and the metric
entropy (log(B)). This condition is essential to preserve stable training dynamics and is rooted in principles
of concentration inequalities.

Remark 7. If we put lim c → 0 in Theorem 1, we get back Theorem 1 in Lin et al. (2022b). Therefore,
Theorem 1 is a more generalized version, which is reduced to its Euclidean version for curvature 0.
Remark 8. When we intend to perform the convergence analysis of a series in mathematical analysis,
we first consider the partial sum of the series up to a certain term (let’s say up to the k−th term) and
then try to observe the behavior of the series by letting k → ∞. This idea generates the involvement of
the truncation operator in Theorem 1. Note that instead of taking Mm → ∞ [which is used in Lin et al.
(2022b)], we have made Mm → 1√

c
(letting our samples lie close to the boundary of the Poincaré Ball,

whose radius is 1√
c
). As Mm → 1√

c
, tanh−1(Mm

√
c) → ∞, so does Mm

(
1

Mm
√

c
tanh−1(Mm

√
c)
)

. It
will ease our work for giving an upper bound on the covering number of HL,s in terms of the truncation

10
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limit. Our adoption of the truncation operator is motivated by the widespread application of this opera-
tor in proving the universal consistency of various learning algorithms Györfi et al. (2002), Lin et al. (2022b).

Apart from the truncation operator in Theorem 1, several constraints are involved which are crucial to
guarantee universal consistency. The constraint on depth Lm → ∞ appears naturally as it is necessary
for the universal approximation used in Lemma 7. The growth of the truncation limit concerning sample
size m is given by m−θM2

m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 instead of M2
mm−θ → 0 [given in Lin et al.

(2022b)] to incorporate the growth restriction of sample error in term of two increasing univariate functions
h1(Mm)h2(m−1), where h1(x) = x2

[
1 + 1

x
√

c
tanh−1(x

√
c)
]2

and h2(x) = xθ, θ > 0. Finally, the constraint
in equation 10 will ensure the absolute difference between the generalization error and empirical error goes to
0, by enforcing the condition that the combined growth effect of the pseudo-dimension and the metric entropy
of the class HL,s is outpaced by the number of input samples, which will be used to prove Lemma 6.
Remark 9. Theorem 1 only demonstrates the universal consistency of the eHDCNN architecture for one-
dimensional convolution. The primary restriction comes from the infeasibility of the convolutional factoriza-
tion that appeared in Zhou (2020a) [also described in Lin et al. (2022b)]. Since the analysis in the hyperbolic
set-up also relies on the universal approximation for the conventional eDCNN, the question of universal
consistency remains open for two or higher-dimensional eHDCNN structures.

We now dive into proving Theorem 1. Our main ingredient will be a version of Concentration Inequality
[Theorem 11.4,Györfi et al. (2002)] after suitably adjusting the upper bound of the metric entropy concerning
pseudo-dimension [Lemma 4, Lin et al. (2022b)]. Although our approach is similar to Lin et al. (2022b) to
some extent, we have been able to derive a stronger version of Lemma 6 in Lin et al. (2022b) as presented in
the proof of Lemma 6 in this paper, showing that the truncated empirical error converges to the truncated
generalization error much faster in the case of hyperbolic convolution compared to the traditional Euclidean
one. This will be established once we present our experimental results in terms of different curvatures
(curvature 0 denotes the experiment has been done using eDCNN).

To prove Theorem 1 we divide our works into three parts as demarcated in Lin et al. (2022b) and will develop
the appropriate hyperbolic versions of the corresponding results. We begin with expanding the bounds on
the covering number for the class of functions defined in 7. We first need several terminologies.

Let ν be a probability measure on X ∈ Dn
c . For a function f : X → R, we set

∥f∥Lp(ν) :=
(∫

X
|f(x)|pν(x)dX (x)

)1/p

.

Denote by Lp(ν) the set of all functions with ∥f∥Lp(ν) < ∞. For A ⊆ Lp(ν), we denote N (ϵ, A, ∥ · ∥Lp(ν))
the covering number of A in Lp(ν), which is the least number of balls of radius ϵ needed to cover up A with
respect to the ∥ · ∥Lp(ν) metric. In particular we denote Np(ϵ, A, xm

1 ) := Np(ϵ, A, ∥ · ∥Lp(νm)), where νm is
the emperical measure for the dataset xm

1 := {x1, x2, ..., xm} ∈ X m. Further we defineM(ϵ, A, ∥ · ∥Lp(ν)) to
be the ϵ−packing number of A with respect to the ∥ · ∥Lp(ν) norm, which is the largest integer N such that
given any subset {g1, g2, ..., gN } of A satisfies ∥gi − gj∥ ≥ ϵ for all 1 ≤ i < j ≤ N .

Next, we will mention lemma 9.2 from Györfi et al. (2002), which expresses a relation involving inequalities
among the covering and packing numbers.
Lemma 3. Let G be a class of functions from X → R and ν be a probability measure on X . For p ≥ 0 and
ϵ > 0, we have

M(2ϵ, G, ∥ · ∥Lp(ν)) ≤ N (ϵ, G, ∥ · ∥Lp(ν)) ≤ M(ϵ, G, ∥ · ∥Lp(ν)).

In particular,

Mp(2ϵ, G, xm
1 ) ≤ Np(ϵ, G, xm

1 ) ≤ Mp(ϵ, G, xm
1 ).

Next, we have to derive an estimate of the upper bound of the Packing number for the pseudo dimension.

11
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Since the Lemma 2, 3, and 4 from Capacity Estimates in Appendix A of Lin et al. (2022b) are taken from
results proved on general metric spaces, we will just state Lemma 4 from Lin et al. (2022b) without proof in
the context of hyperbolic space, which we will use later.
Lemma 4. For 0 < ϵ ≤ M and c∗ being an absolute constant, we have

log2 sup
x1

m∈X m

N1 (ϵ, πM HL,s, xm
1 ) ≤ c∗L2(Ls + d) log(L(s + d)) log M

ϵ
.

We define the hyperbolic version of the generalization error (HGE) as

EπM
(f) :=

∫
Z

(f(x) − logc
0(yM ))2

dρ, (11)

and the Hyperbolic Empirical Error (HEE) (truncated) as

EπM ,D(f) := 1
m

m∑
i=1

(f(xi) − logc
0(yi,M ))2

, (12)

where lM := min{M, |l|} · sign(l), the well known truncation operator.

We now provide a convergence criterion for the HEE estimates to the HGE estimate. We will use a hyperbolic
version of the concentration inequality as given in Lemma 5, Lin et al. (2022b).

A more generalized version of Theorem 11.4 Györfi et al. (2002) can be presented as follows:
Lemma 5. We assume |y| ≤ B and B ≥ 1√

c
. For a set of functions F from f : X → R satisfying |f(x)| ≤ B

and for all m ≥ 1, we have

P[∃f ∈ F : E(f) − E(fρ) − (ED(f) − ED(fρ)) ≥ ϵ(α + β + E(f) − E(fρ))]

≤ 14 sup
xm

1 ∈X m

N1

(
βϵ

20B
, F , xm

1

)
exp

(
− ϵ2(1 − ϵ)αm

214(1 + ϵ)B4

)
,

where α, β > 0 and ϵ ∈ (0, 1/2).

Based on Lemma 5, the following Lemma will lay out the convergence criterion of the Truncated HEE
estimates.

Lemma 6. When m−θM2
m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 and equation 10 holds for θ ∈ (0, 1/2), then
we have

lim
m→∞

EπMm
(πMm

fD,L,s) − EπMm ,D(πMm
fD,L,s) = 0

holds almost surely.

Lemma 6 indicates that the truncated version of the hyperbolic L2 risk approaches towards the truncated
version of the hyperbolic empirical risk as m → ∞ under the mentioned regularity constraints. We will
further need this Lemma to complete the proof of Theorem 1.

We are finally in a position to prove Theorem 1; we will give our final lemma, which will complete the proof
for universal consistency.
Lemma 7. Let Ω ⊆ Dd

c be compact and 2 ≤ s ≤ d. Then for any f ∈ C(Ω), there exist a sequence of filters
w and bias vectors b of appropriate dimensions and fw,b

L ∈ HL,s such that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = 0.

12
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Lemma 8. Sample Complexity. The rate of convergence of the empirical error to the minimum error is
O(m−1/2), i.e.,

E(fm) − E(fρ) ≤ c O(m−1/2), (13)

for some constant c > 0.

Remark 10. We notice from the proof of Lemma 6 that the truncated HEE estimates converge much faster
to the corresponding HGE than their Euclidean equivalents. This property gives the eHDCNN architecture
an edge over the eDCNN for faster training, with many fewer training iterations needed. Roughly speaking,
since each layer is taking input from a Poincaré Ball, which in turn expresses the complex representation of
the data to the next layer, even before the information gets carried out to the next layer directly from the
previous layer, the architecture is very quick to learn the internal representation of the data. This will be
evident from our simulation results, showing the ascendancy of our architecture over its Euclidean version
to achieve lower error rates much faster for certain regression problems.
Remark 11. While our analysis broadly builds on the techniques developed by Lin et al. (2022b), the
results presented here constitute a substantial generalization of their work. Our work is based on the prior
assumption that the dataset lies in Dn

c , for some n ∈ N. While the statistical terminologies are adapted
from Euclidean learning theory, their realization in hyperbolic spaces is nontrivial due to manifold-specific
tools operations, such as Möbius addition, Möbius scalar multiplication, and expc

0, logc
0 maps. In particular,

Theorem 1 in our work recovers Theorem 1 of Lin et al. (2022b) as a special case in the limiting scenario
where c → 0. Furthermore, Lemma 6 establishes a curvature-dependent rate of convergence of the empirical
error to the population error (up to a truncation) in the hyperbolic setting, as compared to the Euclidean case.
This represents a notable improvement over the prior results of Lin et al. (2022b), suggesting the potential
for better generalization performance in spaces with higher negative curvature. Moving a step further, we
explicitly provide an expression for the sample complexity of the class HL,s, which was absent in earlier
works.

6.1 Computational Complexity of eHDCNN

In this subsection, we derive the computational complexity of the function class HL,s. The output of the k-th
layer in an eHDCNN network resides in the hyperbolic space Dd+ks

c . Applying the logarithmic map logc
0 to

this layer involves O(d + ks) operations. The subsequent expansive convolution with a filter of length d + ks

requires O((d + ks)(d + (k + 1)s)) operations. Mapping the result back to the hyperbolic space Dd+(k+1)s
c

via the exponential map expc
0 adds another O(d + (k + 1)s) operations. Therefore, the total computational

cost of the k-th hyperbolic convolution layer amounts to:

O(d + ks + (d + ks)(d + (k + 1)s) + d + (k + 1)s).

Summing this expression over all layers k = 0 to L − 1 yields a total cost of:

O(sL3 + dsL2 + d2L).

Additionally, the final layer of the class HL,s incurs an extra O(d + Ls + d + Ls + d + Ls) = O(d + Ls)
operations. Hence, for m input samples in a d-dimensional space, the overall computational complexity of
the class HL,s is: O(m(sL3 + dsL2 + d2L)).

Although eDCNNs do not involve the hyperbolic maps expc
0 and logc

0, the expansive convolution still incurs
a computational complexity of O(m(sL3 + dsL2 + d2L)). This is because, unlike the linear cost of the expc

0
and logc

0 operations with respect to the input dimension, the expansive convolution itself exhibits a quadratic
dependence in its conventional form. Consequently, while the linear-time costs introduced by the hyperbolic
maps accumulate additively, the dominant quadratic nature of the expansive convolution ensures that the
overall computational complexity remains effectively unchanged when transitioning from the Euclidean to
the hyperbolic setting over the long term.

13
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7 Experiments & Results

We will demonstrate the efficacy of eHDCNN with varying curvatures (c = 0 represents the conventional
1-dimensional CNN) by conducting experiments on synthetic and real-world datasets. Our Python-based
implementation is available at https://anonymous.4open.science/r/eHDCNN-C4E6/README.md.

7.1 Synthetic Datasets

We will construct two regression tasks based on the following functions,

f(x) = sin(∥x∥2)
∥x∥2

, g(x) =
√

∥x∥2

1 +
√

∥x∥2
.

We used the regression model y = h(x) + ϵ (where h can be either f or g) to generate the training samples,
where ϵ ∼ N (0, 0.01) and x ∼ unif([−1, 1]10). A fixed set of 800/200 samples for the train/test split is used
for the experiment, except that the test data are taken without the Gaussian noise. We have used a filter
size of length 8 and the number of layers 4. We have trained our model over 100 iterations for 800 training
samples and recorded the mean RMSE. We repeat the experiments for six different sets of curvatures. Refer
to Figures 4(a) and 4(b) for the detailed illustration.

(a) (b) (c)

Figure 4: The performance analysis of eHDCNN with varying space curvatures (a) for f(x) and (b) for g(x),
and (c) House price prediction is demonstrated. The Root Mean Square Error (RMSE) decreases faster with
increasing curvature, justifying the utility of applying hyperbolic convolution. (best view in digital format)

The curves are evidence of the faster convergence of test RMSE loss during the entire training process, which
validates the Remark 10. The loss curves are much steeper when the curvatures are more significant than
zero compared to the same as the Euclidean counterpart. One point should be noted that the performance
of eHDCNN started to deteriorate with the higher value of curvature. The phenomenon can be attributed
to the contraction of Poincaré Ball with a very high curvature. Thus, the loss curves seem to be overlapping.
Yet, the performance is commendable when eHDCNN is trained in the hyperbolic space of low curvature.

Table 2: The details of four real-world datasets are presented.
Dataset Superconductivity Wave Energy Converters House Price Prediction WISDM

No of samples 288000 21263 545 1073120
No. of features 81 81 12 3
No. of classes - - - 6
Target task Regression Regression Regression Classification

7.2 Real-world Datasets

We considered four real-world datasets to showcase the effectiveness of eHDCNN. The details of the datasets
and the hyperparameters are provided respectively in Table 2 and 3.
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Table 3: The complete details of hyperparameters for four real-world datasets are presented to reproduce
the results.

Hyperparameters Superconductivity Wave Energy Converters House Price Prediction WISDM

No of layers 4 4 4 4
length of input filter 8 8 8 9
Noise No No No No
Learning Rate 0.01 0.01 0.01 0.01
Weight decay 0.0005 0.0005 0.0005 0.0005
Train/test split 0.80 0.80 0.80 0.70
No of samples 288000 21263 545 1073120
Input dimension 81 81 12 240
Batch Size 128 128 Full 128
Optimizer Adam Adam Adam Adam

(a) (b) (c)

Figure 5: The performance analysis of eHDCNN with varying space curvatures (a) for Superconductivity,
(b) for Wave Energy, and (c) test accuracy for WISDM is demonstrated. The Root Mean Square Error
(RMSE) decreases faster for both (a) and (b) with increasing curvature compared to RNN, LSTM, MLP,
Euclidean eDCNN (c = 0). Concurrently, test accuracy increases in (c), justifying the utility of employing
hyperbolic convolution. For the RNNs and LSTMs, the number of layers remains fixed at 4. (best view in
digital format)

.

7.2.1 Regression Task

We include 3 real-world regression datasets to demonstrate the performance of eHDCNN over the prevailing
DCNN. We deploy the same eHDCNN architecture with 4 layers, and the length of the input filter is 8 for all
three regression tasks. We split the entire dataset into 80% samples for training and the rest 20% samples
for testing. We record the standardized test RMSE over the number of iterations during the training phase.

House Price Prediction

We consider the widely available house price prediction dataset Wang & Zhao (2022) to solve the regression
task. This dataset consists of 545 samples with 12 input features such as area, number of bedrooms, furnishing
status, air conditioning, etc. At first, we standardize the entire data after numerically encoding its categorical
column. We have trained our model using 4 layers and with an input filter length of 8. The test RMSE has
been plotted against training iterations for six different curvatures in 4(c), where the curvature 0 means that
the test RMSE has been plotted based on the eDCNN model.

Superconductivity

As described in Hamidieh (2018), this dataset contains 21263 samples, each with 81 features like mean
atomic mass, entropy atomic mass, mean atomic radius, entropy valence etc, along with the output feature
as the critical temperature in the 82nd column. We split the dataset into 80 : 20 for our training and testing
purposes. We will train our model with a mini-batch of size 128 in each training iteration. The test RMSE

15
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(a) (b) (c)

Figure 6: Prediction accuracy on three types of tasks by eHDCNNs at varying curvatures and MLP on the
WordNet Dataset: (a) synset label classification task, (b) semantic relationship classification task, and (c)
lexical category classification task

has been plotted against the number of training iterations for six different curvatures in 5 (a), where the
curvature 0 indicates that the test RMSE has been taken based on the eDCNN model.

Wave-Energy Converters

As described in Mehdipour et al. (2024), this dataset contains 288000 samples, each with 81 features. This
data set consists of positions and absorbed power outputs of wave energy converters (WECs) in four real
wave scenarios from the southern coast of Australia (Sydney, Adelaide, Perth, and Tasmania). We split the
dataset into 80 : 20 for our training and testing purposes. Similar to the Superconductivity dataset, we will
train our model with a mini-batch of size 128 each time. For the test RMSE plot against the number of
training epochs, we refer to 5 (b).

7.2.2 Classification Task

WISDM

We have applied eHDCNN on the WISDM, a well-adopted Human Activity Recognition (HAR) dataset
Kwapisz et al. (2011). As it is described in Lin et al. (2022c), this dataset has six types of human activities
such as cycling, jogging, sitting, standing, going upstairs and downstairs, with the corresponding accelerations
along x, y, and z axes at different timestamps and several user id ranging from 1 to 36. We have used the
user IDs from 1 to 28 for training and the rest for testing. We have put 80 consecutive timestamps for each
of the six classes together to make our input dimension 80 × 3 = 240. After this conversion, our training
dataset has 10172 samples, and the test dataset has 3242 samples. Our experiment is carried out on a
network with 4 layers with input filter length as 9. We have trained our model with a mini-batch of size 128
in each epoch. Although there is no inherent hierarchical structure in the WISDM dataset, it still exhibits
a Gromov Hyperbolicity Index of only 0.1 when embedded as points on the Poincaré Ball of curvature 1,
indicating a strong presence of latent hierarchies.

WordNet

We have applied eHDCNN on the WordNet dataset for three different classification tasks: (i) synset classi-
fication (node-level task), (ii) semantic relationship classification (edge level task), and (iii) part-of-speech
(POS) tagging (word/text level task). The WordNet lexical database Miller (1995) organizes English words
into sets of cognitive synonyms (synsets), each expressing a distinct concept. For all three tasks, we have
utilized pre-trained GloVe embeddings of 100 dimensions to represent the input synsets or word pairs.

Synset classification task (6 (a)), Each input corresponds to the GloVe embedding of a synset’s repre-
sentative lemma in 100 dimensions, and the output is the corresponding lexical category (e.g., noun.animal,
noun.food, verb.motion). The dataset consists of 59500 training samples and 14875 test samples, where the
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synsets are drawn from various branches of the WordNet hierarchy. We perform stratified sampling to ensure
balanced class distributions during training and evaluation.

Semantic relationship classification task (6 (b)), we consider synset pairs with annotated semantic
relations such as hypernym, hyponym, meronym, and antonym. Each input is formed by concatenating the
GloVe embeddings of the source and target synsets, yielding a 100-dimensional feature vector. The model is
trained to predict the type of semantic relation between the pair. The training and test sets contain 67974
and 16994 examples, respectively, derived from well-curated edges of the WordNet graph.

Lexical category classification/ part-of-speech (POS) tagging task (6 (b)), the input consists of
GloVe embeddings of surface word forms in 100 dimension, and the output is the corresponding coarse
POS category, such as noun, verb, adjective, or adverb. We used a cleaned subset of WordNet where POS
information is unambiguously tagged. The dataset is split into 39033 training and 9759 test samples, ensuring
minimal lexical overlap between the splits to test generalization.

In all three tasks, we reshape the input embeddings into pseudo-spatial dimensions compatible with eHD-
CNN, followed by a 4-layer convolutional hierarchy with input filter length 8. We train the models using
mini-batches of size 128 for multiple epochs, optimizing MSE loss using the Adam optimizer. We have also
included runtime comparisons for each task, presenting the execution time of the respective models on their
corresponding datasets. In all cases, it is evident that the eHDCNN architecture yields improved accuracy
at moderate curvature values. However, the decline in performance observed at higher curvature levels can
be attributed to two primary factors: instability in training due to the use of Riemannian Stochastic Gra-
dient Descent Mishne et al. (2023) or the Riemannian version of Adam Bécigneul & Ganea (2018), and the
geometric property of the Poincaré ball, which tends to collapse towards a single point as c → ∞, thereby
reducing the model capabilities of representation learning.

Results & Discussion

We run experiments on the House Price Prediction, Superconductivity, Wave-Energy Converters, WISDM,
and WordNet datasets where plots can be seen respectively in Figures 4(c), 5(a), 5(b), 5(c), and 6. Test
RMSE loss is the metric for the first three datasets, and test accuracy is the metric for the last one. The
plots elucidate that the corresponding metric performs better when the curvature increases to a certain ex-
tent than the Euclidean variant. The better performance underscores the efficacy of hyperbolic architecture
dominates over its Euclidean counterpart. Notably, our framework performs better than well-adopted recur-
rent architectures like RNN and LSTM applied to those 1-d tasks. One common point is that performance
further degrades when the value of the curvature lies in a very high range. It occurs due to the shrinkage of
the Poincaré Ball with a very high value of the curvature.

Early-stage Saturation Problem In Figures 4 and 5, the test RMSE loss almost saturates at the early
stage of the training for the high value of space curvatures (c ≥ 100.0). During the training process,
if the embeddings are moved towards the boundary of the Poincaré ball, the vanishing gradient problem
arises. Furthermore, for a Poincar/’e ball with higher curvature, the space is already contracted around its
center. The training further pushes the embeddings to the boundary of the ball, resulting in lower gradients.
Additionally, if the initialization parameter of the hyperbolic neural layers pushes the points to the boundary
also experience gradient decay. Moreover, the problem is not observed when the space curvature is low.

7.3 Comparative Study of Complexity Analysis

We performed a comparative study on the time complexity of eHDCNN with various curvature settings
and MLP. We measured the total training time for Euclidean DCNN (that is c = 0) with five distinct
curvatures across 9 datasets. Refer to Figure 7 for the vivid illustration. The results suggest that our
proposed eHDCNN might consume more time, which is compensated by the improved model performance.
These results underscore the utility of 1-d expansive convolutions in the hyperbolic domain.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: The comparative time complexity analysis among various curvatures of eHDCNN and MLP for
the datasets (a) f(x), (b) g(x), (c) house price prediction, (d) Superconductivity, (e) Wave energy, (f)
WISDM, (g) synset label classification task, (h) semantic relationship classification task, and (i) lexical
category classification task are presented. Our approach requires some extra time compared to its Euclidean
counterparts and MLP, but offers performance advantages.

8 Limitations

Not applicable beyond 2 dimensions: Our theoretical analysis is primarily restricted to 1- dimensional
expansive hyperbolic convolutions. Although 2 and higher-dimensional convolutional architectures are com-
monly used in practice, convolutional factorization of the associated Toeplitz-type weight matrices becomes
infeasible in higher dimensions Zhou (2020a). Consequently, the universal approximation properties of con-
volutional networks beyond one dimension remain an open problem to date Zhou (2020b). As a result, the
theoretical results developed in this work cannot be directly extended to two- or higher-dimensional convo-
lutional settings.
Contractive CNNs are not universal approximators : As noted in Remark 4, cDNNs are not uni-
versal approximators Hanin (2019), which restricts the applicability of universal consistency analysis using
standard arguments. While universal approximation does hold for eDCNNs Zhou (2020a), it remains an
open and intriguing research direction to investigate whether cDNNs can also approximate any continuous
function on a compact domain.

9 Ablation Studies

We conduct an ablation study to study the effect of the filter length and number of hidden layers of the
eHDCNN. The experiment is performed on Superconductivity. The filter length and number of layers are
chosen respectively from the sets s = {6, 7, 8, 9} and L = {3, 4, 5, 6}. We run experiments for each pair
of (s, L), and vary curvatures of the Poincaré Ball. The test RMSE curves are plotted and all results are
presented in Figure 8. It can be observed that the test RMSE slowly decreases during the initial epochs of
training of the eHDCNN. If we increase the number of layers or the length of the input filter, the respective
error rates seem to be more stable and converge faster for the eHDCNN. This emphasizes the stability of
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s = 6, L = 2 s = 6, L = 3 s = 6, L = 4 s = 6, L = 5

s = 7, L = 2 s = 7, L = 3 s = 7, L = 4 s = 7, L = 5

s = 8, L = 2 s = 8, L = 3 s = 8, L = 4 s = 8, L = 5

s = 9, L = 2 s = 9, L = 3 s = 9, L = 4 s = 9, L = 5

Figure 8: Various experiments were performed on the Superconductivity dataset by varying filter length and
number of convolutional layers of the eHDCNN architecture.

our proposed architecture during training and is a clear indication of the fact that it requires a much lesser
number of training iterations compared to the conventional eDCNN architecture for convergence.

10 Conclusion & Future Works

In this paper, we have identified the limitations of Euclidean spaces in providing meaningful information for
training conventional DCNNs. We demonstrated the superiority of hyperbolic convolutions by treating the
output of each layer as elements of the Poincaré Ball, projecting them onto the Tangent Space for expan-
sive convolution, and then mapping them back to a higher-dimensional Poincaré Ball to capture complex
hierarchical structures to the next layer. Our primary contribution is the proof of universal consistency by
defining regression and error estimators in the hyperbolic space, drawing an analogy to Euclidean space.
This is the first known result to explore the statistical consistency of architectures developed beyond the
Euclidean domain. Furthermore, our simulation results validate our theoretical justification, showing why
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eHDCNN is more adept at capturing complex representations, as noted in Remark 10. We anticipate that
our findings will significantly accelerate the growth of deep learning spanning across the hyperbolic regime.
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A Appendix: Proofs

We provide the detailed proofs and derivations of the Lemmas and Theorem presented in Section 6.

Lemma 1

The Hyperbolic Regression Function (HRF) fρ(x) :=
∫

Y logc
0(y)dρ(y|x), defined by the means of conditional

distribution ρ(·|x) of ρ at x ∈ X minimizes the Hyperbolic Generalization Error (HGE).

Proof. The HGE can be written in terms of conditional expectation in the following way:

E(f) =
∫

Z
(f(x) − logc

0(y))2dρ

= EX ,Y [f(X ) − logc
0(Y)]2

Now for any function g : X → R1, we write

E(g) =EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ] + E[logc
0(Y)|X ] − logc

0(Y))2 |X
]]

=EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ])2 |X
]]

+ EX

[
EY|X

[
(E[logc

0(Y)|X ] − logc
0(Y)|X )2 |X

]]
+ 2EX

[
EY|X [(g(X ) − E[logc

0(Y)|X ]) (E[logc
0(Y)|X ] − logc

0(Y)) |X ]
]

.

The cross term in the last expression is 0, since

EX
[
EY|X [(E[logc

0(Y)|X ] − logc
0(Y))]

]
= 0.

Therefore, the expression for HGE is reduced to

E(g) =EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ])2 |X
]]

+ EX

[
EY|X

[
(E[logc

0(Y)|X ] − logc
0(Y)|X )2 |X

]]
,

which attains minimum when g(x) = E [logc
0(Y)|x] for each x ∈ X . Alternately, we write for each x ∈ X

g(x) =
∫

Y
logc

0(y)dρ(y|x).

Lemma 2

For any f : Dn
c → R1, we have

E(f) − E(fρ) = ∥f − fρ∥L2
ρX

,

where ρX (x) :=
∫

Y ρ(x, y)dY(y), for each x ∈ X , the marginal distribution of ρ on X .
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Proof. Following the proof of Lemma 1, we can write

E(f) − E(fρ) = EX

[
EY|X

[
(f(x) − E[logc

0(Y)|X ])2 |X
]]

= EX ,Y [
[
(f(x) − E[logc

0(Y)|X ])2 |X
]

=
∫

X

∫
Y

(f(x) − fρ(x))ρ(x, y)dX (x)dY(y)

=
∫

X
(f(x) − fρ(x))2

∫
Y

ρ(x, y)dY(y)dX (x)

=
∫

X
(f(x) − fρ(x))2ρX (x)dX (x)

= ∥f − fρ∥L2
ρX

.

Lemma 3

Let G be a class of functions from X → R and ν be a probability measure on X . For p ≥ 0 and ϵ > 0, we
have

M(2ϵ, G, ∥ · ∥Lp(ν)) ≤ N (ϵ, G, ∥ · ∥Lp(ν)) ≤ M(ϵ, G, ∥ · ∥Lp(ν)).

In particular,

Mp(2ϵ, G, xm
1 ) ≤ Np(ϵ, G, xm

1 ) ≤ Mp(ϵ, G, xm
1 ).

Proof. The same proof mentioned in Lemma 9.2 Györfi et al. (2002), can be applied to any general metric
space M instead of Rd. In particular M can be X . This shows the lemma is unaltered in the case of a
compact subset in a hyperbolic space.

Lemma 5

We assume |y| ≤ B and B ≥ 1√
c
. For a set of functions F from f : X → R satisfying |f(x)| ≤ B and for all

m ≥ 1, we have

P[∃f ∈ F : E(f) − E(fρ) − (ED(f) − ED(fρ)) ≥ ϵ(α + β + E(f) − E(fρ))]

≤ 14 sup
xm

1 ∈X m

N1

(
βϵ

20B
, F , xm

1

)
exp

(
− ϵ2(1 − ϵ)αm

214(1 + ϵ)B4

)
,

where α, β > 0 and ϵ ∈ (0, 1/2).

Proof. The theorem 11.4 in Györfi et al. (2002) holds true for any set of functions g : Rd → R. While in our
constructions, the functions f : X ⊆ Dd

c → R. But we can still use the result of Theorem 11.4 by noting that
f ◦ logc

0 : Rd → R, i.e., consider by considering the class of functions g = f ◦ logc
0 in Theorem 11.4 Györfi

et al. (2002) instead of f for all f ∈ F .

Lemma 6

When m−θM2
m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 and 10 holds for θ ∈ (0, 1/2), then we have

lim
m→∞

EπMm
(πMm

fD,L,s) − EπMm ,D(πMmfD,L,s) = 0

holds almost surely.
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Proof. We have |πMm
fD,L,s| ≤ Mm. And

| logc
0(yMm)| =

∣∣∣∣ 1√
c

tanh−1(
√

c∥yMm∥) yMm

∥yMm
∥

∣∣∣∣
≤ 1√

c
tanh−1(

√
cMm),

where the last inequality follows from the fact that tanh−1 is increasing on (−1, 1) and ∥yMm
∥ ≤ Mm, by

truncation. Similarly, we have

| logc
0(yi,Mm)| ≤ 1√

c
tanh−1(

√
cMm).

Now from Equation 11, we write

EπMm
(πMm

fD,L,s) =
∫

Z

(
f(x)Mm

− logc
0(yMm

)2) dρ

≤
∫

Z

(
Mm + 1√

c
tanh−1(

√
cMm)

)2
dρ

= M2
m

[
1 + 1

Mm
√

c
tanh−1(

√
cMm)

]2
. (14)

Similarly, for the empirical version (Equation 12), we get

EπMm ,D (πMm
fD,L,s) ≤ M2

m

[
1 + 1

Mm
√

c
tanh−1(

√
cMm)

]2
. (15)

Combining inequalities 14 and 15 gives us

∣∣EπMm
(πMm

fD,L,s) − EπMm ,D (πMm
fD,L,s)

∣∣ ≤ 2M2
m

[
1 + 1

Mm
√

c
tanh−1(

√
cMm)

]2
. (16)

Now putting α = β = 1, in Lemma 5 and ϵ = m−θ we get that

EπMm
(πMmfD,L,s) − EπMm

(fρ) −
(
EπMm,D

(πMmfD,L,s) − EπMm,D
(fρ)

)
≤ ϵ

[
α + β + EπMm

(πMmfD,L,s) − EπMm
(fρ)

]
≤ m−θ

[
2 + 2M2

m

(
1 + 1

Mm
√

c
tanh−1(

√
cMm)

)]2
(17)

= 2m−θ

[
1 + M2

m

(
1 + 1

Mm
√

c
tanh−1(

√
cMm)

)]2
.

holds with probability at least

1 − 14 sup
xm

1 ∈X m

N1

(
1

20 1√
c

tanh−1(M
√

c)mθ
, F , xm

1

)
exp

− m1−2θ

428(1 + ϵ)
(

1√
c

tanh−1(M
√

c)
)4


Here 17 follows from inequality 14. We assume F = HL,s. Now we focus on providing a lower bound on

sup
xm

1 ∈X m

N1

(
1

20 1√
c

tanh−1(Mm
√

c)mθ
, F , xm

1

)
exp

− m1−2θ

428(1 + ϵ)
(

1√
c

tanh−1(Mm
√

c)
)4

 .
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To do that, we will utilize Lemma 4 and the constraint 4 of Theorem 1. By putting B = 1√
c

tanh−1(
√

cMm)
in Lemma 4, and using ϵ = m−θ ≤ 1, we write

sup
xm

1 ∈X m

N1

(
1

20 1√
c

tanh−1(
√

cMm)mθ
, F , xm

1

)
exp

− m1−2θ

428
(

1√
c

tanh−1(
√

cMm)
)4


≤ exp

(
c2 log

(
20
(

1√
c

tanh−1(
√

cMm)
)

mθ

)
L2

m(d + sLm) log(Lm(s + d)) − c′
)

, (18)

where c′ = m1−2θ

428
(

1√
c

tanh−1(
√

cMm)
)4 . Next, we focus on the argument of the exponential in 18. By writing

e = log
(

20
(

1√
c

tanh−1(
√

cMm)
)

mθ
)

L2
m(d + sLm) log(Lm(s + d)) and f = 428

(
1√
c

tanh−1(
√

cMm)
)4

, the
argument inside the exponential in 18 becomes

c2e − m1−2θ

f
= −

(
m1−2θ/f

)(
1 − c2ef

m1−2θ

)
= −

(
m1−2θ/f

)(
1 − c3A log(B)

m1−2θ

)
, (19)

for some constant c3, and A and B are as in Theorem 1. But the constraint 10 of Theorem 1 implies
A log(B)
m1−2θ → 0 as m → ∞. Hence, c2e − m1−2θ

f → −∞ as m → ∞, assuring inequality 17 holds almost surely
[as the probability goes to 1 as m → ∞].

Next, we invoke the Borel-Cantelli Lemma to show that EπMm
(πMm

fD,Lm,s) a.s.−−→ EπMm ,D (πMm
fD,Lm,s). To

this end, we compute

lim
r→∞

r∑
m=1

P

[
EπMm

(πMm
fD,Lm,s) − EπMm ,D (πMm

fD,Lm,s) ≥ 2m−θ

[
1 + Mm

(
1 + 1√

cMm
tanh−1(

√
cMm)

)]2
]

≤ lim
r→∞

r∑
m=1

exp
(

c2e − m1−2θ

f

)

≤ lim
r→∞

r∑
m=1

c4m exp
(
−m1−2θ

)
[by Equation 19]

≤c4

∫ ∞

1
xe−x1−2θ

dx

=c4Γ
(

2
1 − 2θ

)
< ∞,

for some constant c4 > 0. Now, by the constraint (3) of Theorem 1,

2m−θ

[
1 + Mm

(
1 + 1√

cMm
tanh−1(

√
cMm)

)]2
→ 0

as m → ∞. Therefore, the convergence EπMm
(πMm

fD,Lm,s) → EπMm ,D (πMm
fD,Lm,s) holds almost surely as

m → ∞, completing the proof of Lemma 6.

Lemma 7

Let Ω ⊆ Dd
c be compact and 2 ≤ s ≤ d. Then for any f ∈ C(Ω), there exist a sequence of filters w and bias

vectors b of appropriate dimensions and fw,b
L ∈ HL,s such that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = 0.
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Proof. Define g(y) := f(expc
0(y)) for y ∈ logc

0(Ω). Then, by Theorem 1 Zhou (2020a), we know that there
exists gw,b

L [where gw,b
L lies in the free parameter space of the DCNN], such that

lim
L→∞

∥g − gw,b
L ∥C(logc

0(Ω)) = 0.

We now define fw,b
L (x) := gw,b

L (logc
0(x)) for x ∈ Dd

c . Now it is easy to verify that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = lim

L→∞
∥g ◦ logc

0 −gw,b
L ◦ logc

0 ∥C(logc
0(Ω)) = 0,

since the logc
0 [hence its inverse expc

0] is global diffemorphism from Dd
c → Rd [from Rd → Dd

c ].

Theorem 1

Suppose L = Lm → ∞, M = Mm → 1√
c
, m−θM2

m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 [constrained truncation
on the power of sample size] and(

1√
c

tanh−1(Mm
√

c)
)4

L2
m(Lm + d) log(Lm)

m1−2θ
× log

((
1√
c

tanh−1(Mm

√
c)
)

m

)
→ 0,

(10) hold for θ ∈ (0, 1/2) and input filter length as 2 ≤ s ≤ d. Then πMm
fD,Lm,s is strongly universally

consistent, where πM (l) := min{M, |l|} · sign(l) is the well-known truncation operator.

Proof. Since Mm → 1√
c
, we have Mm ×

(
1

Mm
√

c
tanh−1(Mm

√
c)
)

→ ∞ as m → ∞. We also have
E[(logc

0(y))2] < ∞, i.e. fρ ∈ L2(ρX ). By Lemma 7, we say that there exists a big enough Lϵ so that
fw,b

Lϵ
∈ HLϵ,s with

∥fρ − fw,b
Lϵ

∥2
L2(ρxx) ≤

[
lim sup

x∈X
∥fρ(x) − fw,b

Lϵ
(x)∥

]2
=
[
∥fρ − fw,b

Lϵ
∥C(X )

]2
≤ ϵ,

where the second inequality follows from the fact that ρX being a Borel Probability measure on X .

By the triangle inequality, we write

E(πMm
(fD,L,s)) − E(fρ) ≤ (ϵE(πMm

(fD,L,s)) − (1 + ϵ)E(πMm
(fD,L,s)))

+ (1 + ϵ)
(
EπMm

(πMm
(fD,L,s))

)
− EπMm ,D(πMm

(fD,L,s))
+ (1 + ϵ)

(
EπMm ,D(πMm

(fD,L,s)) − EπMm ,D(fD,L,s)
)

+ (1 + ϵ)(EπMm ,D(fD,L,s)) − (1 + ϵ)2(ED(fD,L,s))

+ (1 + ϵ)2
(

ED(fD,L,s) − ED(fw,b
Lϵ

)
)

+ (1 + ϵ)2
(

ED(fw,b
Lϵ

) − E(fw,b
Lϵ

)
)

+ (1 + ϵ)2
(

E(fw,b
Lϵ

) − E(fρ)
)

+
(
(1 + ϵ)2 − 1

)
E(fρ)

=
8∑

i=1
Bi.

We will use an inequality, which we will require throughout the rest of the steps:

(s + t)2 ≤ (1 + ϵ)s2 + (1 + 1/ϵ)t2 (20)

for s, t, ϵ > 0.

We will bound each of the Bi to prove the universal consistency as done in Part 3 of Appendix A in Lin
et al. (2022b).
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We will start with B1 as,

B1 = ϵE(πMm
(fD,L,s)) − (1 + ϵ)E(πMm

(fD,L,s))

=
∫

Z
|πMm

(fD,L,s(x)) − (logc
0(yMm

)) + (logc
0(yMm

)) − (logc
0(y))|2dρ

− (1 + ϵ)
∫

Z
|πMm

(fD,L,s) − (logc
0(yMm

))|2dρ

≤ (1 + (1/ϵ))
∫

Z
| logc

0(y) − logc
0(yMm)|2dρ.

But we have M = Mm → 1√
c

as m → ∞. Since ϵ > 0 is arbitrary, we get B1 → 0 as m → ∞.

By Lemma 6 and the constraints in the statement of Theorem 1 we get

B2 → 0 as m → ∞.

By the definition of the truncation operator, we get,

B3 = 1
m

m∑
i=1

|πMm
(fD,L,s(xi)) − (logc

0(yi,Mm
))|2 − 1

m

m∑
i=1

|fD,L,s(xi) − (logc
0(yi,Mm

))|2 ≤ 0.

By the Strong Law of Large Numbers and inequality 20 we have,

B4 ≤ (1 + ϵ)(1 + 1/ϵ) 1
m

m∑
i=1

| logc
0(yi) − logc

0(yi,Mm)|2

→ (1 + ϵ)(1 + 1/ϵ)
∫

‡
| logc

0(y) − logc
0(yMm)|2dρ

as m → ∞ almost surely. By the fact that Mm → 1√
c

as m → ∞, we get

B4 → 0.

Since fD,L is the estimator of Empirical Risk Minimizer, we obtain

B5 = (1 + ϵ)2

(
1
m

m∑
i=1

|fD,L(xi) − logc
0(yi)|2 − 1

m

m∑
i=1

|fw,b
Lϵ

(xi) − logc
0(yi)|2

)
≤ 0.

Again by the Strong Law of Large Numbers, we have

B6 → 0

almost surely.

For B7 we have

B7 = (1 + ϵ)2∥fLϵ − fρ∥2
L2

ρX
.

By Lemma 7, we get

B7 ≤ (1 + ϵ)2ϵ.

Also, we have

B8 ≤ ((1 + ϵ)2 − 1)
∫

Z
|fρ(x) − logc

0(y)|2dρ = ϵ(ϵ + 2)
∫

Z
|fρ(x) − logc

0(y)|2dρ.
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Summing up all the terms from B1 to B8, we get

lim sup
m→∞

E(πMm(fD,L,s)) − E(fρ) ≤ (1 + ϵ)2ϵ + ϵ(2 + ϵ)
∫

Z
|fρ(x) − logc

0(y)|2dρ (21)

holds almost surely. As ϵ > 0 is arbitrary, we can write

lim sup
m→∞

E(πM (fD,L,s)) − E(fρ) = 0.

This completes the proof of the universal consistency of eHDCNN.

Lemma 8 Sample Complexity: The rate of convergence of the empirical error to the minimum error is
O(m−1/2), i.e.,

E(fm) − E(fρ) ≤ c O(m−1/2), (22)

for some constant c > 0.

Proof. Note that, in the proof of Lemma 6, we substituted ϵ = m−θ, θ ∈ (0, 1/2) into Lemma 4. Consequently,
the convergence rate established in Lemma 6 was instrumental in proving Theorem 1, and in particular,
Equation 21. Since the right-hand side of Equation 21 is linear in ϵ, and the minimal approximation error∫

Z |fρ(x) − logc
0(y)|2, dρ is finite, we obtain:

E(fm) − E(fρ) = O(m−1/2), (23)

thereby completing our claim regarding the sample complexity of the hypothesis class HL,s.
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