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Abstract

This paper investigates structure-preserving embedding for multi-layer networks1

with community structure. We propose a novel generative tensor-based latent space2

model (TLSM) that allows heterogeneity among vertices. It embeds vertices into3

a low-dimensional latent space so that vertices within the same community are4

close to each other in the ambient space, and captures layer heterogeneity through5

a layer-effect factor matrix. With a general and flexible tensor decomposition6

on the expected network adjacency tensor, TLSM is dedicated to preserving the7

original vertex relations and layer-specific effects in the network embedding. An8

efficient alternative updating scheme is developed to estimate the model parameters9

and conduct community detection simultaneously. Theoretically, we establish the10

asymptotic consistencies of TLSM in terms of both multi-layer network estimation11

and community detection. The theoretical results are supported by extensive12

numerical experiments on both synthetic and real-life multi-layer networks.13

1 Introduction14

Network has arisen as one of the most common structures to represent the relations among entities.15

In many complex systems, entities can be multi-relational in that they may interact with each other16

under various circumstances. A multi-layer network, which consists of a common vertex set across all17

network layers representing the entities and an edge set at each layer to characterize a particular type18

of relation among entities, is faithful to represent these relations. Examples of multi-layer networks19

include social networks of multiple interaction channels [42, 15], biological networks of different20

collaboration schemes [49, 31, 29] and world trading networks [1, 37] of various goods.21

In this paper, we propose a structure-preserving embedding framework for multi-layer networks22

via a tensor-based latent space model. Specifically, TLSM utilizes the factorization of network23

adjacency tensor as a building block, embeds the vertices into a low dimensional latent space, and24

captures the heterogeneity among different layers through a layer-effect factor matrix. Consequently,25

the community structure of the multi-layer network can be detected from a network embedding26

perspective, such that vertices within the same community are closer to one another in the ambient27

space than those in different communities. In addition, one key feature of TLSM is that it introduces28

a sparsity factor into the vanilla logit transformation of the network adjacency tensor, which allows29

TLSM to model sparse multi-layer networks in a more explicit fashion and accommodate relatively30

sparser multi-layer networks as the ones considered in literature [22]. More importantly, this sparsity31

factor can be estimated from the network adjacency tensor directly.32

The main contribution of this paper is three-fold. First, the proposed TLSM is flexible and general33

in that it includes many popular network models as special cases. It also relaxes the layer-wise34

positive semi-definite condition that has been frequently employed in literature [6, 35]. Second, a35

joint modeling framework is constructed for TLSM, consisting of the multi-layer network likelihood36
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and a clustering type penalty, to estimate the multi-layer network and conduct community detection37

simultaneously. Its advantages are supported by extensive numerical experiments on both synthetic38

and real-life multi-layer networks. Third, the asymptotic consistencies of TLSM are established in39

terms of both multi-layer network estimation and community detection. Notably, the established40

theoretical results imply that the proposed methods can accommodate the sparsest multi-layer41

networks considered in literature.42

The rest of the paper is organized as follows. The remaining of Section 1 discusses related works and43

introduces necessary notations. Section 2 presents the proposed TLSM and its estimation scheme with44

an efficient algorithm. In Section 3, we establish the asymptotic consistencies of TLSM. Extensive45

numerical performance of TLSM on synthetic and real-life multi-layer networks as well as ablation46

studies on two novel components of the proposed method are carried out in Section 4. Section 547

concludes the paper. The supplementary materials contains technique proofs and necessary lemmas,48

additional simulation studies, detailed parameter tuning process, among others.49

1.1 Related work50

While there is a growing number of literature focusing on community detection in single-layer51

network [48, 28, 13], community detection in multi-layer network is still in its infancy. One classical52

approach is to detect community structure in each layer separately [4, 5], which fails to leverage53

the homogeneity across different layers. Another approach is to aggregate multi-layer networks54

into a single-layer one [41, 12, 35], which heavily relies on the assumption of homogeneous linking55

pattern across multiple layers. Recently, [26] proposed to aggregate the biased-adjusted version of56

the squared adjacency matrix in each layer to alleviate the information loss in aggregation. yet it57

requires the average node degree to grow at a sub-optimal order.58

In terms of multi-layer network generative models, [34] extended the seminal stochastic block59

model (SBM; 19) to the multi-layer stochastic block model (MLSBM; 34), where the probability for60

any two vertices to form an edge in a given layer depends only on their community memberships.61

Clearly, MLSBM heavily relies on the assumption of homogeneous vertices within communities.62

The framework of MLSBM has also been incorporated in degree-corrected network estimation [36],63

spectral clustering [6, 35, 26], least square estimation [27] and likelihood-based approaches [45]. In64

addition, network response regression model [46] and tensor factorization methods [8, 22] have also65

been proposed to detect community structures in multi-layer networks.66

To allow heterogeneous vertices, the latent space model [18] and random dot product graph model67

[3] have been extended to multi-layer networks[47, 32, 2]. In addition, graph neural network and68

graph convolutional networks has been extended to multi-layer network for learning the multi-layer69

network embedding [14, 23, 17, 39].70

1.2 Notations71

Throughout the paper, we use boldface calligraphic Euler scripts (A) to denote tensors, boldface72

capital letters (A) or Greece letters (α,β) to denote matrices, boldface lowercase letters (a) to73

denote vectors, and regular letters (a) to denote scalars. For an order three tensor A ∈ RI1×I2×I3 ,74

Ai,.,. ∈ RI2×I3 ,A.,j,. ∈ RI1×I3 , and A.,.,m ∈ RI1×I2 are the i-th horizontal slide, j-th lateral slide75

and m-th frontal slide of A, respectively. Similarly, for a matrix A, Ai,. denotes its i-th row and A.,j76

denotes its j-th column. For a vector a, diag(a) stands for the diagonal matrix whose diagonal is a.77

We use || · ||, || · ||∞, and || · ||F to denote the l2-norm, l∞-norm of a vector, and the Frobenius norm78

of matrix or tensor, respectively. For any integer n, denote [n] = {1, 2, ..., n}.79

The mode-1 product between a tensor A ∈ RI1×I2×I3 and a matrix U ∈ RJ1×I1 is a tensor A×1U ∈80

RJ1×I2×I3 such that its (j1, i2, i3)-th entry is defined as (A×1 U)j1,i2,i3 =
∑I1
i1=1 Ai1,i2,i3Uj1,i1 .81

The mode-2 or mode-3 product between A and any matrix of appropriate dimension are defined82

similarly. The CANDECOMP/PARAFAC (CP) decomposition of A has the form83

A =

R∑
r=1

a(r) ◦ b(r) ◦ c(r), (1)

where a(r) ∈ RI1 , b(r) ∈ RI2 , and c(r) ∈ RI3 for r ∈ [R], and ◦ stands for the vector outer product.84

The CP-rank [24] of the tensor a(r) ◦ b(r) ◦ c(r) is defined to be 1, for r ∈ [R]. The minimal number85
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of rank-1 tensors in the CP decomposition of A is called the CP-rank of A. Let I ∈ {0, 1}R×R×R86

be the identity tensor such that Ii1,i2,i3 = 1 if i1 = i2 = i3 and 0 otherwise, and let A ∈ RI1×R,87

B ∈ RI2×R, and C ∈ RI3×R such that A.,r = a(r), B.,r = b(r), and C.,r = c(r). Equation (1)88

then can be equivalently written as A = I ×1 A×2 B ×3 C.89

2 Structure-preserving embedding90

In this paper, we consider multi-layer networks that can be represented as an undirected and un-91

weighted M -layer graph G = (V, E), where V = [n] consists of the common n vertices across92

different layers, and E = {E(m)}Mm=1 with E(m) ⊂ V × V representing the m-th relation network93

among vertices. A order three adjacency tensor A = (ai,j,m) ∈ {0, 1}n×n×M is then defined to94

represent G with entries ai,j,m = 1 if (i, j) ∈ E(m) and 0 otherwise.95

2.1 Tensor-based latent space model96

To fully characterize the multi-layer network structure, we propose the following generative tensor-97

based latent space model (TLSM). For any i ≤ j ∈ [n], and m ∈ [M ],98

ai,j,m = aj,i,m
ind.∼ Bernoulli(pi,j,m), with (2)

θi,j,m = log
( pi,j,m
sn − pi,j,m

)
, and (3)

Θ = I ×1 α×2 α×3 β, α ∈ Ωα,β ∈ Ωβ, (4)

where I is the order three R-dimensional identity tensor. Basically, (2) follows the standard routine99

in the multi-layer network literature [34, 35, 27, 22] to model that ai,j,m = aj,i,m are independently100

generated from a Bernoulli distribution, for i ≤ j ∈ [n] and m ∈ [M ]. Denote P = (pi,j,m) ∈101

Rn×n×M as the network underlying probability tensor, and then Θ = (θi,j,m) ∈ Rn×n×M is102

the entry-wise transformation of P by (3). We call the transformation (3) as the modified logit103

transformation in that the constant 1 in the standard logit transformation is replaced by a sparsity104

factor sn, which may vanish with n andM . We further assume all entries of P are of the order sn; that105

is, there exists a constant 1
2 ≤ ξ < 1 such that (1− ξ)sn ≤ pi,j,m ≤ ξsn, for i, j ∈ [n] and m ∈ [M ].106

Thus, sn essentially controls the overall network sparsity and the entries of Θ are ensured to locate in107

the interval [− log ξ
1−ξ , log

ξ
1−ξ ]. More importantly, (4) models the CP decomposition of Θ by the108

factor matrices α ∈ Rn×R and β ∈ RM×R with CP-rank R , which can greatly reduce the number of109

free parameters from n(n+ 1)M/2 to (n+M)R. Throughout the paper, the CP-rank R is allowed110

to diverge with n. In the CP decomposition of Θ, α is the vertex latent position matrix with each row111

αi,. serving as the embedding of vertex i, and β captures heterogeneity across different layers. Herein,112

we define the constraint sets for α and β as Ωα = {α ∈ Rn×R : ||αi,.|| ≤
√
log ξ

1−ξ , for i ∈ [n]}113

and Ωβ = {β ∈ RM×R : ||β.,r|| = 1, r ∈ [R]}. Note that the constraint on β is necessary for114

model identification, and detailed discussion will be presented shortly. The constraint set Ωα × Ωβ115

is sufficient to maintain the bounded condition of Θ since a general Hölder inequality yields that116

|θi,j,m| = |I ×1 αTi,. ×2 αTj,. ×3 βTm,.| ≤ ||αi,.||||αj,.||||βm,.||∞ ≤ log ξ
1−ξ . To conclude this117

paragraph, we remake that the parameter ξ is introduced for theoretical purpose and it is not treated as118

a tuning parameter. One can choose ξ sufficiently close to 1 in empirical studies so that the restriction119

on α will be alleviated.120

We make several essential observations of the proposed TLSM. First and foremost, TLSM is flexible121

and general. It includes the celebrated MLSBM [34, 43, 35, 27, 26, 36, 22] as special case. Specif-122

ically, suppose the vertices comes form K disjoint communities, the standard MLSBM assumes123

that the underlying network probability tensor P = B ×1 Z ×2 Z, where B ∈ RK×K×M is a124

semi-symmetric core probability tensor with Bk1,k2,m = Bk2,k1,m for k1, k2 ∈ [K] and m ∈ [M ],125

and Z ∈ {0, 1}n×K is the community membership matrix with Zi,k = 1 if vertex i comes from the126

k-th community and 0 otherwise. That is, the probability of any vertex pair to form an edge in a127

particular layer depends only on their community memberships. Equivalently, under the modified128

logit transformation (3), we have Θ = B̃ ×1 Z ×2 Z, where B̃ is the entry-wise transformation129

of B under (3). Taking R to be the CP-rank of B̃, the CP-decomposition of B̃ then has the form130
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B̃ = I ×1 C ×2 C ×3 β for some matrix C ∈ RK×R and β ∈ RM×R due to semi-symmetry.131

This leads to the CP decomposition of Θ has the form (4) with α = ZC. It is clear that MLSBM132

requires vertices within the same community are homogeneous and exchangeable, while TLSM133

allows vertices to have different embeddings even when they are in the same community.134

Second, TLSM is identifiable when both α and β have full column ranks. When both α and β135

have full column ranks, the Kruskal’s k-ranks [25] of α and β satisfy kα = kβ = R, then Θ has136

CP-rank R. Hence, kα + kα + kβ ≥ 2R + 2 as long as R ≥ 2. By Theorem 1 of [40], the fixed137

column l2-norm constraint of β implies that the tensor factorization in (4) is unique up to column138

permutations of α and β and column sign flip of α. It is important to remark that the community139

structure encoded in α remains unchanged under any column permutation or sign flip.140

Third, introducing a sparsity factor sn via a modified logit transformation into the TLSM is non-141

trivial. We take a single-layer network as an example to illustrate the limitation of the standard142

logit transformation in handling sparse network. Suppose a vanilla logit link is used to connect143

the network underlying probability matrix P and its transformation Θ, and the latent space model144

usually assumes that Θ = ααT . A sparse network requires the entries of Θ diverge to negative145

infinite due to the small magnitude of edge probability, which leads to unstable estimation of α in146

numerical experiments. Moreover, this may conflict with the assumption that vertices within the same147

community tend to be close in the embedding space and their inner product is likely to be positive.148

These difficulties can be naturally circumvented when an appropriate sn is chosen in (3).149

2.2 Regularized likelihood150

Given a network adjacency tensor A and number of communities K, our goal is to estimate the
multi-layer network embedding (α,β) and conduct community detection on the vertices. Throughout
this paper, we assume the number of potential communitiesK is given and may diverge with n. Under
the TLSM framework, with slight abuse of notation, we denote the average negative log-likelihood
function of the multi-layer network G is L(α,β;A) = L(Θ;A) with

L(Θ;A) =
1

φ(n,M)

M∑
m=1

∑
i≤j

L(θi,j,m; ai,j,m),

whereφ(n,M) = 1
2n(n+1)M is the number of potential edges, andL(θ; a) = log

(
1+ sn

1−sn+e−θ

)
−151

a log
(

sn
1−sn+e−θ

)
is a negative log-density of a Bernoulli random variable a. We now introduce a152

novel regularization term to detect the potential communities in G,153

J(α) = min
Z∈Γ,C∈RK×R

1

n
∥α−ZC∥2F , (5)

where C encodes the vertex embedding centers and Γ ⊂ {0, 1}n×K is the set of all possible154

community membership matrices; that is, for any Z ∈ Γ, each row of Z consists of only one 1155

indicating the community membership and all others entries being 0. This leads to the proposed156

regularized cost function,157

Lλ(α,β;A) = L(α,β;A) + λnJ(α), (6)

where λn is a positive tuning parameter that strikes the balance between network estimation and158

community detection in the cost function. It is clear that the embeddings of vertices with similar159

linking pattern will be pushed towards the same center, and thus close to each other in the ambient160

space, leading to the desired community structure in G.161

2.3 Projected gradient descent algorithm162

We develop a scalable projected gradient descent (PGD) algorithm to optimize the penalized cost163

function (6), which is highly non-convex and can be solved only locally. PGD, which alternatively164

conducts gradient step and projection step, is one of the most popular and computationally fast165

algorithm in tackling non-convex optimization problem [7, 33, 47, 9].166

To compute the gradients of α and β, we introduce the following notations. Define T ∈ Rn×n×M167

with entries T i,j,m =
exp(−θi,j,m)

1−sn+exp(−θi,j,m) (pi,j,m − ai,j,m), and Xα,β
T (2,3) ∈ Rn×R whose i-th row168

4



consists of the diagonal elements of the slice (T ×2 αT ×3 βT )i,.,.. That is, Xα,β
T (2,3)(i, r) =169

(T ×2 α
T ×3 β

T )i,r,r. Similarly, we define Xα,α
T (1,2) ∈ RR×M , Xβ

T (3) ∈ Rn×R, and XT (1,2) ∈170

Rn×M , such that Xα,α
T (1,2)(r,m) = (T ×1 α

T ×2 α
T )r,r,m, Xβ

T (3)(i, r) = (T ×3 β
T )i,i,r, and171

XT (1,2)(i,m) = T i,i,m. Consequently, when the vertex membership matrix Z and the community172

center matrix C are fixed, we can derive the gradients of Lλ(α,β;A) with respect to α and β, as173

1

φ(n,M)

(
Xα,β

T (2,3)+Xβ
T (3) ∗α

)
+2λn(α−ZC) and

1

2φ(n,M)

(
(Xα,α

T (1,2))
T +XT

T (1,2)(α∗α)
)
,

respectively. Herein, * denotes the Hadamard product (entry-wise product) between two matrices.174

Let (α̃, β̃) denote the solution given by one-step gradient descent, we then project (α̃, β̃) onto175

Ωα × Ωβ in the following steps.176

Step 1. Multiply the r-th column of α̃.,r by ||β̃.,r||1/2 for r ∈ [R]. Denote the resultant matrix as α̃′.177

Step 2. Regularize each row of α as αi,. = α̃′
i,.min{

√
log ξ

1−ξ , ||α̃
′
i,.||}/||α̃′

i,.||, for i ∈ [n].178

Step 3. Normalize the columns of β as β.,r = β̃.,r/||β̃.,r||, for r ∈ [R].179

Next, when (α,β) are given, we apply a (1 + δ)-approximation K-means algorithm on α̃ to update180

the vertex community membership matrix Z and community center matrix C.181

The above steps will be alternatively conducted until convergence or reaching the maximum number182

of iterations. We further summarized the developed alternative updated scheme in Algorithm 1 in183

Appendix A of the supplementary materials184

Several remarks on the algorithm are in order. First, Algorithm 1 can only be guaranteed to converge185

to a stationary point but not any local minimizer. We hence employ a transformed higher order186

orthogonal iteration (HOOI) algorithm for warm initialization in all the numerical experiments in187

Section 4 and 5. Specifically, given a user-specific value τ , we define Θ̃ to mimic the magnitude188

of Θ such that Θ̃i,j,m = −τ if ai,j,m = 0 and Θ̃i,j,m = τ otherwise. A standard HOOI algorithm189

[11] is applied to Θ̃ to obtain α(0) and β(0). We set τ = 100 in all the numerical experiments.190

Second, the sparsity factor sn is an intrinsic quantity of the multi-layer network data, and it should be191

estimated from the network directly. Note that the minimal and maximal probabilities for any vertex192

pair to form an edge in any layer are pmin = (1− ξ)sn and pmax = ξsn, respectively. Interestingly,193

pmin + pmax = sn, which does not depend on ξ any more. Therefore, we propose to estimate sn as194

ŝn = min
i∈[n]

1

nM

M∑
m=1

n∑
j=1

ai,j,m +max
i∈[n]

1

nM

M∑
m=1

n∑
j=1

ai,j,m, (7)

which is the sum of the minimal and maximal frequencies of a vertex to form edges with all other195

vertices in all layers. Third, to optimally choose λn, we extend the network cross-validation by196

edge sampling scheme in [30] to multi-layer networks. The detailed tuning procedure is relegated to197

Appendix B in the supplementary materials.198

3 Asymptotic theory199

3.1 Consistency in estimating Θ∗200

Let Ω = {Θ = I ×1 α×2 α×3 β : α ∈ Ωα,β ∈ Ωβ} be the parameter space of the problem and201

Θ∗ = I ×1 α
∗ ×2 α

∗ ×3 β
∗ be the true underlying transformed network probability tensor. Denote202

KL(Θ∗||Θ) = φ−1(n,M)
∑M
m=1

∑
i≤j E

(
L(θi,j,m; ai,j,m)− L(θ∗i,j,m; ai,j,m)

)
be the averaged203

Kullback–Leibler divergence of the network generation distributions parametrized by Θ∗ and Θ, for204

any Θ ∈ Ω. The following large deviation inequality is derived to quantify the behavior of Lλ(Θ;A)205

for any Θ in the neighborhood of Θ∗ defined by KL(Θ∗||Θ).206

Proposition 1. Suppose λnJ(α∗) ≤ ϵn, and (n+M)Rφ−1(n,M)ϵ−1
n log(ϵ

−1/2
n ) ≤ c1 for some207

constant c1. Then with probability at lease 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
, we have208

Lλ(Θ∗;A) ≤ inf
{Θ∈Ω|KL(Θ∗||Θ)≥4ϵn}

Lλ(Θ;A)− ϵn.
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Proposition 1 basically states that any estimators with sufficiently small objective value should209

be close enough to Θ∗ in terms of KL(Θ∗||Θ). We next study the asymptotic behavior of these210

estimators more precisely. Let (α̂, β̂) ∈ Ωα × Ωβ be any estimator of (α∗,β∗) such that211

Lλ(α̂, β̂;A) ≤ Lλ(α∗,β∗;A) + ϵn, (8)

and denote Θ̂ = I ×1 α̂×2 α̂×3 β̂. we have the following theorem.212

Theorem 1. Under the condition of Proposition 1, if (α̂, β̂) satisfies (8), then with probability at

least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
, we have

1

n
√
M

∥Θ̂−Θ∗∥F ≤
4
√
2
√
ϵn

(1− ξ)
√
ξsn

.

The condition that λnJ(Θ∗) ≤ ϵn in Proposition 1 is mild. It implies that the true em-213

beddings of vertices within the same community are close to one another. We remark that214

λnJ(Θ
∗) exactly equals to zero under the MLSBM discussed in Section 2.2. The condition that215

(n+M)Rφ−1(n,M)ϵ−1
n log(ϵ

−1/2
n ) vanishes with n is also mild. WhenR = O(1), we can take any216

ϵn such that ϵn ≫ logn
nmin{n,M} . Consequently, to ensure Θ̂ converges to Θ∗, Theorem 1 implies the217

smallest sparsity factor one can take is sn ≫ ϵn ≫ logn
nmin{n,M} , which means that the average degree218

of a vertex in any particular layer can be as small as nsn. We remark that a common assumption219

M = O(n) that appears in literature, such as [27] and [22], is not necessary in our theory. If we220

further assume M = O(n), we find that the average degree of a vertex in any layer under the221

proposed TLSM set up can be smaller than that in [27] by a factor (M log n)−1/2 and in [22] by a222

factor (log n)−3, showing that our theoretical result accommodates sparser multi-layer networks.223

3.2 Consistency in community detection224

We now turn to establish the consistency of community detection in multi-layer network225

G. Let ψ∗ : [n] −→ [K] be the true community assignment function such that ψ∗ =226

argminψminC1,...,CK

∑n
i=1 ∥α∗

i − Cψi
∥2, and then the community detection error of any esti-227

mated community assignment function ψ̂ can be evaluated by the minimum scaled Hamming distance228

between ψ̂ and ψ∗ under permutations, which is defined as229

err(ψ∗, ψ̂) = min
π∈SK

1

n

n∑
i=1

1{ψ∗
i ̸= π(ψ̂i)}, (9)

where 1{·} is the indicator function and SK is the symmetric group of degree K. Such a scaled230

or unscaled Hamming distance has become a popular metric in quantifying the performance of231

community detection [21, 22].232

Denote N∗
k = {i : ψ∗

i = k} be the k-th true underlying community whose cardinality is nk. Let233

C∗ ∈ RK×R be the true underlying community centers of the network embedding with C∗
k. =234

1
nk

∑
ψ∗

i =k
α∗
i., and let B∗ = I×1C

∗×2C
∗×3 β

∗. The following assumptions are made to ensure235

that communities within the multi-layer networks are asymptotically identifiable.236

Assumption A. Assume the difference between any two distinct horizontal slides of B∗ satisfies that237

min
k,k′∈[K],k ̸=k′

1√
KM

∥B∗
k,.,. −B∗

k′,.,.∥F ≥ γn,

where γn > 0 may vanish with n.238

Assumption B. Assume the tuning parameter λn satisfies that
λnϵns

−2
n (log s−1

n )−1 ≥ c2,

for an absolute constant c2 that does not depend on any model parameter.239

Assumption C. Denote nmin = mink∈[K] nk as the minimal community size. Assume
γnnmin

√
K

n
≥ cξ

√
ϵn
sn
,

where cξ = 4
√
2

(1−ξ)
√
ξ
+ c3

√
(1+δ)min{M,R}

M and c3 is a constant that depends on ξ only.240
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Assumption A is the minimal community separation requirement, and similar assumption has been241

employed in [27] with a constant γn. Together with the condition λnJ(α∗) ≤ ϵn in Proposition 1,242

Assumption B gives a feasible interval for λn. Assumption C allows for unbalanced communities243

with vanishing nmin/n if the network is not too sparse. Note that cξ can be further bounded by244

4
√
2

(1−ξ)
√
ξ
+ c3

√
1 + δ, and the first term of cξ will dominate the second term if R = o(M).245

Theorem 2. Suppose all the assumptions in Theorem 1 as well as Assumptions A, B and C are
satisfied, it holds true that

err(ψ∗, ψ̂) ≤
c2ξnϵn

nminKγ2nsn
,

with probability at least 1− 1
n2 − 2 exp

(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
.246

Theorem 2 assures that the community structure in a multi-layer network can be consistently recovered247

by the proposed TLSM. As a theoretical example, we consider a sparse case with sn = (logn)1+τ1

nmin{n,M} ,248

where 0 < τ1 < 1, nmax = O(nmin), 1√
n
||α∗ − Z∗C∗||F ≤ (log n)−3/2, and both γn, R and K249

are of constant orders. With λn = (logn)2+2τ1

nmin{n,M} , Theorems 1 and 2 imply that ϵn = (logn)1+τ2

nmin{n,M} with250

0 < τ2 < τ1 and err(ψ∗, ψ̂) = op(1).251

4 Numerical experiments252

In this section, we evaluate the numerical performance of the proposed TLSM in a variety of synthetic253

as well as real-life multi-layer networks, compare it against four competitors in literature, including254

the mean adjacency spectral embeddings (MASE; 16), least square estimation (LSE; 27), Tucker255

decomposition with HOSVD initialization (HOSVD-Tucker; 22), and spectral kernel (SPECK; 35),256

and conduct some ablation studies. The implementations of LSE and SPECK are available at the257

authors’ personal websites, HOSVD-Tucker is implemented in the routine “tucker" of the Python258

package “tensorly", and TLSM and MASE are implemented in Python by ourselves.259

4.1 Synthetic networks260

The multi-layer network A = (ai,j,m) ∈ {0, 1}n×n×M is generated as follows. First, we randomly261

selectK = 4 elements uniformly from {2.5∗(b1, b2, . . . , bR) : br ∈ {−1, 1}, r ∈ [R]} as community262

centers, which are denoted as ck, k ∈ [K]. Second, the latent space embedding of vertex i is263

generated as αi = cψi
+ ei with ei ∼ N(0R, 1.5 ∗ IR), and ψi ∈ [K] are independently drawn264

from the multinomial distribution Multi(1; 1
K1K). Third, we generate β = [β1, . . . ,βM ]T with265

βm,r being independent standard normal random varibeles, for m ∈ [M ] and r ∈ [R]. We then266

rescale the column norms of β to be 1 for model identifiability. Finally, we generate A according267

to the proposed TLSM with sn = 0.1. For the sake of fair comparisons, the embedding dimension268

R is set as K in all scenarios. We aim to illustrate the community detection performance of269

all methods as the number of vertices and number of layers increase. To this end, we consider270

(n,M) ∈ {200, 400, 600, 800} × {5, 10, 15, 20}. The averaged hamming errors and their standard271

errors over 50 independent experiments of all methods are reported in Table 1.272

It is evident that TLSM consistently outperforms its competitors, and the performances of LSE273

and HOSVD-Tucker are better than those of MASE and SPECK. This is expected since TLSM,274

LSE and HOSVD-Tucker work on the multi-layer network adjacency tensor directly, while MASE275

and SPECK are matrix aggregation methods that suffer form information loss. Furthermore, as the276

number of vertices and number of layers increase, the community detection errors of all methods277

decrease rapidly. Notably, TLSM and LSE converge faster than the other methods, and attain stable278

performance even for relatively small n and M . Additional simulation studies for various network279

sparsity and unbalanced community sizes are relegated to Appendix C in the supplementary materials.280

4.2 Real-life networks281

We also apply the proposed TLSM method to analyze three real-life multi-layer networks, including282

a social network in the department of Computer Science at Aarhus University (AUCS) [38], a yeast283
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Table 1: The averaged hamming errors of various methods with their standard errors in Scenario I.
The best performer in each case is bold-faced.

n M TLSM LSE MASE HOSVD-Tucker SPECK

200

5 0.1180(0.0147) 0.1405(0.0118) 0.5086(0.0136) 0.1623(0.0126) 0.4254(0.0138)
10 0.0585(0.0046) 0.0751(0.0050) 0.4949(0.0131) 0.1148(0.0106) 0.2996(0.0141)
15 0.0551(0.0067) 0.0593(0.0045) 0.4910(0.0176) 0.1040(0.0115) 0.2505(0.0142)
20 0.0510(0.0037) 0.0588(0.0043) 0.4977(0.0161) 0.1023(0.0110) 0.1942(0.0156)

400

5 0.0653(0.0066) 0.1019(0.0087) 0.3845(0.0193) 0.1220(0.0106) 0.3766(0.0195)
10 0.0608(0.0063) 0.0636(0.0037) 0.3859(0.0160) 0.1012(0.0092) 0.2244(0.0191)
15 0.0511(0.0031) 0.0595(0.0036) 0.3844(0.0221) 0.0787(0.0051) 0.1490(0.0123)
20 0.0536(0.0047) 0.0551(0.0036) 0.3985(0.0185) 0.0795(0.0063) 0.1409(0.0131)

600

5 0.0607(0.0029) 0.0909(0.0040) 0.3665(0.0186) 0.1221(0.0108) 0.3038(0.0193)
10 0.0567(0.0029) 0.0688(0.0031) 0.3726(0.0179) 0.1003(0.0081) 0.1651(0.0127)
15 0.0558(0.0027) 0.0630(0.0030) 0.3803(0.0167) 0.0918(0.0076) 0.1231(0.0076)
20 0.0548(0.0028) 0.0586(0.0029) 0.3814(0.0185) 0.0883(0.0078) 0.1150(0.0088)

800

5 0.0556(0.0056) 0.0768(0.0055) 0.3012(0.0194) 0.1003(0.0103) 0.2733(0.0171)
10 0.0560(0.0063) 0.0583(0.0034) 0.3004(0.0177) 0.0788(0.0065) 0.1424(0.0127)
15 0.0498(0.0030) 0.0539(0.0033) 0.3179(0.0195) 0.0812(0.0068) 0.1146(0.0098)
20 0.0485(0.0031) 0.0516(0.0032) 0.3184(0.0218) 0.0803(0.0075) 0.0979(0.0078)

Saccharomyces cerevisiae gene co-expression (YSCGC) network [44], and a worldwide agriculture284

trading network (WAT) [10]. Specifically, we conduct community detection on the first two networks285

whose vertex community memberships are available, and carry out a link prediction task on the third286

network whose vertex community memberships are unavailable.287

The AUCS dataset is publicly available at http://multilayer.it.uu.se/datasets.html, and288

it is a 61 × 61 × 5 multi-layer network that records pairwise relationships of 5 types among 61289

persons in AUCS, including current working relationships, repeated leisure activities, regularly eating290

lunch together, co-authorship of a publication, and friendship on Facebook. Since 54 persons in291

the dataset come from 7 research groups and the other 7 persons do not belong to any group, the292

dataset consists of 8 communities corresponding to 7 research groups and an outlier community.293

Applying TLSM and its competitors to the dataset, the number of misclassified vertices by TLSM,294

LSE, MASE, HOSVD-Tucker and SPECK, are 8, 21, 19, 23, 18, respectively. Clearly, TLSM295

significantly outperforms its competitors by at least reducing 16.39% of community detection error.296

The YSCGC dataset is publicly available at https://www.ncbi.nlm.nih.gov/pmc/articles/297

PMC156590/, and contains 205 genes of 4 functional categories, including protein metabolism298

and modification, carbohydrate metabolism and catabolism, nucleobase, nucleoside, nucleotide299

and nucleic acide metabolism, as well as transportation. We regard these four functional category300

labels as the community memberships of the genes. Further, the gene expression responses are301

measured by 20 systematic perturbations with varying genetic and environmental conditions in302

4 replicated hybridizations. We thus constructed a gene co-expression network A = (ai,j,m) ∈303

R205×205×4 based on the similarities of their expressions, where each layer represents one replicated304

hybridization. Specifically, the similarity between genes i and j in the m-th replication is measured305

by wi,j,m = exp
(
− ∥x(m)

i − x
(m)
j ∥

)
, where x

(m)
i ∈ R20 contains the expression levels of 20306

perturbations in the m-th replicated hybridization for i ∈ [205] and m ∈ [4]. The binary value ai,j,m307

is obtained by thresholding wi,j,m with the thresholding value being the 60% quantile of all elements308

in {wi,j,m : i ≤ j ∈ [205],m ∈ [4]}. Applying TLSM and its competitors to this dataset, the number309

of misclassified vertices by TLSM, LSE, MASE, HOSVD-Tucker and SPECK, are 6, 9, 12, 48, 13,310

respectively. TLSM again outperforms its competitors in this YSCGC dataset.311

The WAT dataset is publicly available at http://www.fao.org, and includes 364 agriculture312

product trading relationships among 214 countries in 2010. To process the data, we extract 130 major313

countries whose average degrees are greater than 9 from the 32 densest connected agriculture product314

trading relations, leading to a 130× 130× 32 multi-layer network. Investigating the eigen-structure315

of the mode-1 matricization of the network adjacency tensor, we identify an elbow point [20] at the316

7th largest eigen-value, suggesting there are 6 potential communities among the countries, and thus317

we set K = 6. The corresponding eigen-value plot is attached in Appendex D of the supplementary318

materials. We then randomly selected 80% of the entries of the adjacency tensor as the training set,319

and conduct link prediction on the remaining 20% of the entries. Specifically, we employ TLSM320
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and the adaptations of its competitors to estimate the network expected tensor P and generate321

estimations for the missing entries by independent Bernoulli random variables accordingly. The322

averaged link prediction accuracy of TLSM, LSE, MASE, HOSVD-Tucker and SPECK over 50323

independent replications are 79.60%, 76.66%, 75.96%, 77.78% and 79.08%, respectively, where the324

link prediction accuracy is defined as the percentile of the correctly predicted entries. Clearly, all 5325

methods are comparative in terms of link prediction, while TLSM still deliver highest averaged link326

prediction accuracy.327

4.3 Ablation studies328

In this subsection, we carry out some ablation studies on two novel components of the proposed329

method, namely the sparsity factor sn and the community-inducing regularizer J(α). To study the330

effectiveness of sn, we generate a 300× 300× 5 multi-layer network with 3 communities and the331

true network sparsity sn = 0.3. The blue curve in the left panel of Figure 1 shows the average332

Hamming error of 50 independent replications given by the proposed method when employing333

ŝn ∈ {0.05i : i ∈ [20]} in the optimization algorithm, and the red line indicates the averaged334

Hamming error of the proposed method with ŝn estimated via the proposed data-adapted estimation335

scheme. It is clear that the Hamming error at sn = 1 is much larger than that when sn is close336

to 0.3, showing the advantages of the modified logit transformation by sn over the standard logit337

transformation when the network indeed reveals sparse pattern. Moreover, we observe that the red338

line is even lower than the minimum Hamming error in the blue curve. This further confirms the339

effectiveness of the proposed data-adapted estimation scheme for estimating sn.
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Figure 1: Ablation studies on sn (left) and community-inducing regularizer (right).
340

To study the effectiveness of the community-inducing regularizer in the proposed objective function,341

we generate an n× n× 5 multi-layer network with 2 communities, for n ∈ {50, 100, 200, 400}. In342

the right panel of Figure 1, the black pillars indicate the network estimation error 1
n
√
5
∥Θ̂−Θ∗∥F343

given by the proposed method with λn = 0 which corresponds to the absence of J(α), while the344

red ones indicate the counterparts given by the proposed method with λn is selected by network345

cross-validation. There is a clear improvement when the community-inducing regularizer is enforced346

in all scenarios, particularly for small n. This showcases the helpfulness of the community-inducing347

regularizer in detecting network community structure.348

5 Conclusions349

In this paper, we propose a novel tensor-based latent space model for community detection in350

multi-layer networks. The model embeds vertices into a low-dimensional latent space and views351

the community structure from an network embedding perspective, so that heterogeneous structures352

in different network layers can be properly integrated. The proposed model is formulated as a353

regularization framework, which conducts multi-layer network estimation and community detection354

simultaneously. The advantages of the proposed method are supported by extensive numerical355

experiments and theoretical results. Particularly, the asymptotic consistencies of the proposed method356

are established in terms of both multi-layer network estimation and community detection, even for357

relatively sparse networks.358
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