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Abstract

Once language models (LMs) are deployed, they
can interact with users long-term, ideally evolv-
ing continuously based on their feedback. Asking
direct feedback from users can be costly and dis-
ruptive, thus we study harvesting implicit user
feedback from user interaction logs. We study
implicit user feedback in two user-LM interac-
tion datasets (WildChat and LMSYS). First, we
analyze user feedback in the human-LLM conver-
sation trajectory, providing insights on when and
why such feedback occurs. Second, we study
harvesting learning signals from such implicit
user feedback. We find that the contents of user
feedback (e.g., user wanted clarification), not just
the polarity (e.g., users were unhappy with the
previous model response), can improve model
performance in short human-designed questions
(MTBench) but not on longer and more complex
questions (WildBench). We also find that the
usefulness of user feedback is largely tied to the
quality of the user’s initial prompt. Together, we
provide an in-depth study in implicit user feed-
back, showing its potential and limitations.

1. Introduction
Real world user queries are often ambiguous and underspec-
ified, making it challenging for LLMs to generate a satis-
fying response at once. Users often engage in multi-turn
interactions with language assistants, providing multiple
feedbacks for previous model responses like “Good job!”
or additional requests like “Could you label y-axis in this
plot?”, hinting their initial response does not fully satisfy
their inquiry. Such implicit feedback is natural and very
common in human-LLM interactions (Zheng et al., 2023a;
Zhao et al., 2024).
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Our work aims to explore how human feedback can help
improve model responses. We build upon recent work (Don-
Yehiya et al., 2024) which prompts LLMs to identify such
implicit user feedback in LMSys dataset (Zheng et al.,
2023a) and use it as a learning signal to better align LLMs.
They identify and use two types of user feedback (promot-
ing response that elicited positive feedback and suppressing
responses that elicited negative feedback) to improve model
performances. While intuitive, our study reveals such sim-
plification can be harmful and one needs to be careful in
using implicit user feedback for learning signals.

We provide a comprehensive study (Section 3 and Sec-
tion 4) on implicit feedback found in two real-world datasets:
LMSYS and WildChat (Zhao et al., 2024). First we pro-
vide new dense annotations on full conversations, labeling
each user turn after the intial prompt. This allows us to study
feedback dynamics across turns, and we find feedback is
very frequent in longer multi-turn conversations, consisting
more than half of user utterances at later turns. We further
study what are the characteristics of user prompt that elicits
positive or negative feedback. We find that prompts that
elicit positive feedback can be lower quality and even more
toxic than randomly sampled prompts.1

In the later sections (Section 6 and Section 7), we study
leveraging implicit user feedback to improve LLM. Hav-
ing identified negative prompt quality is correlated with the
prompts that elicit positive feedback, we focus on leveraging
implicit negative feedback. Can it help us identify where
model is failing, allowing us to provide targeted updates?
Figure 1 visualizes this approach. We study a distillation
setting, where we assume a stronger LLM, distinct from
LLM used in user interaction logs. Our key hypothesis
is that leveraging not only the feedback polarity but the
contents of feedback (what aspects of the initial model re-
sponse was unsatisfactory) should be helpful for improving
model responses. We report mixed results, painting the
complexity of learning from noisy real-world user data. We
discuss various considerations when incorporating implicit
user feedback into learning. We will release our datasets

1Figure 5 presents an example of positive user feedback upon
model’s jailbreaking responses.
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Figure 1: Approaches to improve model responses that elicited user negative feedback. New model response generated
incorporating such feedback content (msem

i , bottom right) can align better with the user’s intended output than the new
model response generated with the initial user input alone (mscr

i , top right).

and code upon publication.2

2. Background
We build upon a recent work (Don-Yehiya et al., 2024)
which studies users’ interactions with LLMs, focusing on
users’ implicit feedback to model responses. They classify
implicit feedback into two categories: (1) a positive feed-
back which praises the model’s response (i.e., “Great job!”)
and (2) negative feedback which signals the model’s previ-
ous response was not satisfactory. They further divide the
negative feedback into the following four categories:

• Rephrasing where the user rephrased their prior request
to try and elicit a better LLM response.

• Make Aware without Correction where the user’s re-
sponse simply indicates that the model’s prior response
was wrong.

• Make Aware with Correction where the user’s response
additionally provides instruction on how to correct the
model’s prior response.

• Asks for Clarification where the user asks the LLM to
provide additional information that was missing from its
prior response.

We use their ontology of feedback types in this work, and
aim to frame a classification task as below. Despite studying
such interaction through the lens of user feedback, there are
other works using different ontologies such as grounding
acts (Shaikh et al., 2025) and human-AI collaboration (Lee
et al., 2022; Chang et al., 2025).

2.1. Formulation

We assume a multi-turn conversation between users and
LLMs, c = {u1,m1, · · · ,un,mn}, where ui and mi are
the i-th user and model responses, respectively. Each i-th

2https://github.com/lyh6560new/implicit-user-feedback

user turn after their initial request may contain feedback for
the prior model response, mi−1. We assign each user turn
ui for 2 ≤ i ≤ n with one label from a label set L.

We define three label sets L, differing in the granularity of
the labels. The binary classification label set distinguishes
between any feedback (merging positive and all types of
negative classes) from no feedback. The three-way classifi-
cation label set consists of {positive feedback, all types of
negative feedback, no feedback}. Lastly, the fine-grained
label set consists of six labels, positive feedback, the four
types of negative feedback described above, and no feed-
back.

A classification model f takes the conversation c and pro-
duces a n− 1 dimensional vector y.

f(c) → y

where y ∈ Ln−1 and yi−1 represent the label assigned to
the i-th user turn.

3. Identifying Implicit User Feedback
3.1. Datasets

In this study, we examine two sources of user-LLM interac-
tions, the LMSYS-chat-1M and WildChat datasets. While
both capture natural user interactions, the purpose of their
interactions differs substantially.

LMSYS-chat-1M (Zheng et al., 2023a) is collected from
Chatbot Arena,3 where users interact with LLMs to evaluate
them. Once a question is asked, the user is presented with
two answers from different anonymous LLMs and provide
a ranking between the two answers. We will refer to this
dataset as LMSYS.

3https://lmarena.ai/
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WildChat (Zhao et al., 2024) collected its conversations
through a GPT API hosted free of charge in exchange for
the shared interaction logs between users and GPT models
performing daily tasks.

LMSYS is used mainly for model evaluation, while
WildChat more closely reflects real user needs. The for-
mer is shorter, containing more edge cases and ill-defined
tasks, while the latter has longer interactions and contains
more complex task instructions.

3.2. Manually Annotated Feedback Dataset

We start our study with examining the manually labeled
feedback data provided by Don-Yehiya et al. (2024) on LM.
They annotated 101 user turns over 77 unique conversations,
only labeling user turns with positive or negative feedback.
We refer to this set as Sparse, and it consists of three turn
{ui,mi,ui+1} partial conversations, where the label for
ui+1 is either positive or one of the four negative feedback
types. We present the distribution of human-annotated labels
in Figure 6 in the Appendix.

These existing annotations are not comprehensive (i.e., not
every turn in the conversation is labeled). To explore the dy-
namics of feedback throughout the entire conversation, we
select a total of 109 conversations (75 sampled from LMSYS
and 34 from WildChat)5 and annotate them comprehen-
sively. We refer to these annotated sets as Dense. Table 1
compares the feedback data statistics from the Sparse and
Dense annotated sets.

The authors of this paper provided this annotation after read-
ing the guidelines from Don-Yehiya et al. (2024). Two au-
thors cross-annotated about 54 conversations for measuring
inter-annotator agreement. We report substantial agreement
measured by Cohen’s kappa: 0.70 for binary classification,
0.74 for three-way classification and 0.60 for fine-grained
classification.

3.3. Automatic Feedback Identification

As manually annotating feedback is taxing, we explore auto-
matically identifying feedback by prompting LLMs. LLMs
have shown promising performances in various classifica-
tion tasks (Brown et al., 2020), and prior work (Don-Yehiya
et al., 2024; Shaikh et al., 2025) has also explored prompting
LLMs (specifically GPT-4o-mini) to classify user feedback
in multi-turn user-LLM interactions.

4Upon examining our labels for 75 conversations from LMSYS,
we find one conversation has incorrect annotation (e.g. feedback
labeled in the first user turn) and removed this conversation.

5For LMSYS, we use the same set of conversations as their
released annotations; For WildChat, we randomly sample 34
conversations so that we have roughly 200 feedback instances for
both datasets.
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Figure 2: Turn-level distribution over feedback categories
from our new densly annotated dataset. We find feedback is
commonly found in later turns.

We do not fine-tune LLMs, and simply prompt it with our
new prompt template which contains in-context examples.
The exact prompt can be found in the appendix B.2. The
prompt takes the entire conversation and provides labels for
detected feedback turns.

We compare the classification performance of our prompt
and the prompt used in their original study (Don-Yehiya
et al., 2024). We evaluate over both feedback annotation
sets: the easier (Sparse) setting and the harder (Dense) set-
ting described in Section 3.2. For the sparse setting, the in-
put conversation is truncated, only consisting of three turns
(ui,mi,ui+1), and the last user turn (ui+1) is always a pos-
itive or negative feedback. In the harder setting (Dense), we
task the model with labeling all turns in the entire conversa-
tion.

Table 2 reports the feedback identification results. Over-
all, we find that our new prompt, with in-context examples,
shows significantly better detection accuracy than the previ-
ous prompt. We especially see gains in the dense annotation
setting.

4. Analysis of Implicit Human Feedback
With our automatic feedback detection method, we now
launch a larger-scale analysis of implicit feedback patterns
in both datasets. We first characterize when feedback typi-
cally happens. We then set out to rule out possible causes
of negative feedback other than unsatisfying model output:
the imperfection of user prompts and model refusals.

Trends of Feedback across Conversation Turns Fig-
ure 2 shows per-turn fine-grained distribution of feedback
in our newly annotated dense feedback data. We use our
manual annotation for this analysis instead of automatic de-
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Annotation Source # annotated # annotated N (# turns with fb / # turns annotated)
convs turns 2 3 4 ≥5

Sparse (Don-Yehiya et al., 2024) LMSYS 75 107 44 / 44 20 / 20 10 / 10 21 / 21
Dense (Ours) LMSYS 744 227 43 / 74 26 / 32 13 / 17 24 / 25
Dense (Ours) WildChat 34 206 30 / 34 24 / 30 26 / 29 85 / 86

Table 1: Statistics of annotated feedback data. N= i represents the number of feedback at ith turn of conversations. # conv
is the total number of conversations annotated, and # turns means the total number of user messages in the conversation
from this data split. Overall, WildChat has denser feedback ratios along all conversations turns.

Eval
Setting Prompt

Accuracy %
P % R %

Bin. Three. Fine.

Sparse Prior 41.4 45.3 43.2 84.2 44.9
Ours 81.1 60.2 47.4 100.0 69.2

Dense Prior 31.5 30.07 22.3 76.0 27.0
Ours 41.6 55.4 49.0 61.1 35.9

Table 2: Automatic feedback identification results with
prompting GPT-4o-mini. Prior refers to the prompt from
prior work (Don-Yehiya et al., 2024). In the last two
columns, we report Precison (P) and Recall (R) for binary
classification.

tection, as the detection accuracy varies per feedback labels.
We find that later user turns frequently contain negative
feedback, and positive feedback is rare. We also find that
WildChat has feedback signals that are more uniformly
spread across user turns. Human feedback is distributed
differently across different datasets. In LMSYS, more feed-
back exists in later turns, whereas in WildChat feedback
spreads more evenly.
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Figure 3: Comparison of toxicity level between random user
prompts and prompts that trigger positive/negative feedback.
In both datasets, the toxicity is slightly higher for responses
that elicit positive feedback.

User’s Toxic Prompts We study the influence of toxic
user messages on the presence and distribution of user feed-
back. To do this, we use the Perspective API 6 to compute
the toxicity scores over three different sets of sampled user
utterances: user utterance that elicited negative feedback,

6https://perspectiveapi.com/

randomly sampled user utterances, and user utterance that
elicited positive feedback. We sample 1K utterances us-
ing each of these three methods for both the LMSYS and
WildChat datasets dataset, totaling to 6k user utterances.

Figure 3 shows trends of the toxicity score. In both datasets,
we find that utterances that elicit positive feedback tend to be
slightly higher than the other two sets. Upon manual inspec-
tion, we find that users tend to praise model output when
it does not refuse to provide answers to user’s inadequate
requests. In LMSYS user prompts in interactions rendering
negative feedback are slightly more toxic. In WildChat
dataset, we do not see significant difference between user
uttrerances that invokes negative feedback vs. randomly
sampled utterances.

Impact of Model Refusals One potential reason for neg-
ative feedback is the model’s refusal to fulfill the user’s
request. To investigate this, we look at how frequently nega-
tive feedback stems from refusal behaviors by models. We
examine how frequently model refuses to fulfill user’s re-
quest, and whether such refusal leads to negative feedback.
We sample 1K conversation turns from six groups (nega-
tive, random, postive) and (LMSYS, WildChat). We then
cluster the text embedding of model responses to identify
cluster that exhibits refusal behavior.

We find that model refusals are not common across all set-
tings, always consisting less than 3% of responses. In
LMSYS, around 2.5% responses are refusals, while in
WildChat there are less than 1%. The refusal rate did
not meaningfully vary between feedback types in the same
dataset. Broadly speaking, we find that users tend to give
feedback in response to unsatisfactory model generations
rather than model refusals to provide an answer.

Analysis on Prompt Quality Li et al. (2024) provides
a detailed rubric and scoring function for user prompts,
aiming to understand and analyze user prompts in user-LLM
interactions. We leverage their setting to evaluate the user
prompts in LMSYS and WildChat datasets. We report
the prompt quality in Figure 4. In general, WildChat has
a higher user prompt quality than LMSYS. In LMSYS, the
negative conversations receive lower quality scores than the
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Figure 4: Comparison of the quality of randomly sampled
user prompts and the quality of prompts that incurred posi-
tive/negative feedback (N=1000). In LMSYS, prompts that
incur negative or positive feedback are slightly worse than
randomly sampled prompts.

randomly selected ones, while in WildChat we do not
observe such trend.

User prompts from WildChat that elicited positive re-
sponses show the highest average quality, potentially re-
flecting users praising model’s good response to concrete,
challenging initial prompt. However, such prompts from
LMSYS shows from the lowest quality. Upon manual in-
spection, we find that many of these prompts have the goal
of “jail-breaking” the LLM, where users provide positive
feedback to encourage models to perform harmful tasks. We
provide a further breakdown of prompt quality scores across
seven fine-grained aspects of prompt quality in Table 12 in
the Appendix.

5. Using User Feedback to Improve Model
Responses

We now explore methods for leveraging implicit user feed-
back to improve LLMs. Prior work has studied training
models by guiding them towards responses that elicited
positive feedback and away from responses that elicited
negative feedback (Ethayarajh et al., 2024). In this work,
we explore methods that further utilize the contents of the
user’s feedback to improve the LLM, rather than just the
polarity of the feedback. For prompts that have elicited
negative feedback, we use the content of the negative feed-
back messages to generate improved model responses that
directly address the negative feedback. For example, if user
asks for a more detailed response after observing model’s
initial response, we aim to train model to generate a more
detailed response for user’s prior turn.

Definitions For a conversation {u1,m1, · · · }, we define
a sub-conversation si as a partial conversation sequence
{ui,mi,ui+1,mi+1} involving two user utterances and
two model responses starting from i-th user turn. We exam-
ine the second user turn in the sequence ui+1 to see whether
it contains negative feedback for the model’s response mj

to the prior user message uj.

Data
Split

Response A Response B Eval Setting

Model Method Model Method w/ fb w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 81% 86%

Better mi
sem Weak mi 89% 61%

Better mi
sem Weak mi+1 81% 81%

Better mi
sem Better mi

scra 48% 19%
Weak mi+1 Weak mi 58% 25%

Table 3: Winrate scored by RM between the answers from
Response A versus Response B, evaluated both with and
without feedback (fb) on LMSys dataset. We compare re-
sponses from Better in two settings (generation from scratch
mscra

i , and generation with user feedback msem
i ). For

Weak LLMs, where originial conversation derived, we com-
pare the initial model response mi and the model response
after user feedback mi+1. See Table 13 in the Appendix for
similar results on the WildChat dataset.

We define a set Dneg = {si : f(c)i = NEG}. For control,
we also collect a set Drand, a randomly sampled set of sub-
conversations without such restriction. We collect a total of
four such datasets, two Dneg and two Drand, each consist-
ing of 1K sub-conversations from 1K unique conversations
for both LMSYS and WildChat.

5.1. Response Regeneration Methods

Our proposed method, Regeneration w/ Semantics, uti-
lizes negative feedback in a user-LLM conversation to gen-
erate improved model responses that can be used for SFT
training. For each minimal feedback instance si ∈ Dneg,
we use an LLM ϕ to generate mi

sem, an improved ver-
sion of mi that incorperates the user’s feedback: mi

sem =
ϕ(ui,mi,ui+1).

In our experiments below, we regenerate responses using
LLMs ϕ that are stronger than the original LLMs used in
the conversations in LMSYS and WildChat. Therefore,
we expect regenerated responses to improve both from in-
corperating the user’s feedback and from the stronger LLM.
To account for this, we introduce the following baseline,
described below.

Baseline: Regenerating from Scratch We compare our
above method for generating improved model responses
with regenerating responses from scratch, without condition-
ing on the model’s original response or the user’s feedback:
mi

scra = ϕ(ui).

Because regenerating responses from scratch does not make
use of conversation history, we compare against regenerat-
ing responses that elicited negative feedback from Dneg as
well as random model responses from Drand.

5
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6. Experiments: Comparing Regenerated
Responses

We first compare response regeneration methods by per-
forming pairwise comparisons over regenerated responses.

Pairwise Evaluations To compare two response regen-
eration methods, we use a reward model RM 7 to generate
a score s for each method’s responses. We then use these
scores to track the pairwise win rate for each method. We
experiment with two settings for generating scores from the
reward model: (1) Eval w/ fb incorporates the user’s feed-
back into the prompt s = RM({ui,ui+1,a}) and (2) Eval
w/o fb scores responses based only on the initial request
s = RM({ui,a}). a is the regenerated answer. Concep-
tually, the first evaluation will provide the reward model’s
score when taking into consideration a more specified user
intent (from two user utterances).

Regenerating Responses with Different LLMs To ex-
plore the influence of the LLM’s strength on our response
regeneration methods, we experiment with using a stronger
model, ϕ = Better, and a weaker model, ϕ = Weak, for
regenerating responses. For Better, we use GPT-4o-mini to
regenerate model responses. For Weak, we directly take the
interaction logs from the LMSYS and WildChat datasets:
for each example fi, we simply take the original model
responses, mi

scra = mi and mi
sem = mi+1. For LMSYS,

the assistant turns are mostly (54% of conversations) gen-
erated with Vicuna-13B model (Chiang et al., 2023); For
WildChat, assistant turns are generated with the 2023
version of GPT.

6.1. Results

In Table 3, we report the results from comparing regenerated
responses on Dneg and Drand on LMSYS dataset. The results
on WildChat dataset exhibit similar trends and can be
found in Table 13 in the Appendix.

Best LLMs can help weak models improve their response
to a sub-optimal answer, but adding feedback semantics
doesn’t help. We consistently observe a high win rate of
Better answers over Weak model’s generations. Compar-
ing two answers generated from Better LLM (second to
the last row), we find that answers generated with the feed-
back content mi

sem does not win over the answer generated
from scratch mi

scra, even in Eval w/ fb setting (48%), and
substantially lower in Eval w/o fb setting (19%). However,
mi

sem shows slightly higher win rate (89%) against the
original response compared to mi

scra (81%). We hypothe-
size that a better LLM could have generated output incor-

7We use sfairXC/FsfairX-LLaMA3RM-v0.1 (Dong et al., 2023;
Xiong et al., 2024).

porating the user’s feedback already, even without targeted
prompting.

When we look at rows involving mi
sem generated from

better LLM (3rd-5th), we find RM({ui,mi
sem}) ≤

RM({ui,ui+1,mi
sem}). This suggests that the regener-

ated answer with feedback incorporated information from
the feedback to draft the new answer.

Weak LLMs could fail to address human feedback. In
the last row, we compare the weak model’s refined response
mi+1 with its initial response mi. The win rate is 58%,
showing that self-refinement is challenging. The number is
higher for WildChat at 74%, as it used GPT models.

7. Training LLMs with Regenerated
Responses

To train LLMs on responses from different regeneration
methods, we use standard SFT training with next token
prediction loss.

7.1. Compared Settings

Similar to our experiments from Section 6 above, we exper-
iment with training LLMs on the revised responses from
both our regenerating from scratch and regenerating with
semantics methods, over on both Dneg and Drand. For
both methods, we exclusively use ϕ = Better (Gpt-4o-mini)
for generating revised responses.For each setting, we gen-
erated 20K datapoints. To train models with KTO, we
also derived a set Dpos with positive feedback instances,
Dpos = {si : f(c)i = POS}.

7.2. Evaluation

Base Models For each data generation method, we exper-
iment with training two different LLMs: vicuna-7b (Zheng
et al., 2023b) and mistral-7b (Jiang et al., 2023). We addi-
tionally compare against KTO (Ethayarajh et al., 2024) as
a baseline, following the implementation of (Don-Yehiya
et al., 2024). We use A100 GPUs for fine-tuning, where
each run takes about 2 hours on one GPU.

Datasets We evaluate our distilled models on MT-
Bench (Zheng et al., 2023b) and WildBench (Lin et al.,
2024), two benchmark datasets for evaluating LLM per-
formances. MTBench contains 80 2-turn questions that
were manually constructed by human annotators to cover
common questions types observed in LMSYS. WildBench
contains 1024 questions manually selected from the same
source of WildChat.8 Both benchmarks use LLMs to rate

8These are from the same sources, but there are no overlapping
instances between WildChat and WildBench.
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the scores of model responses.9 For each setting, we re-
port the average and variance performance over 5 randomly
initialized training runs.

We briefly compare these two benchmarks in Table 14 in the
Appendix, reporting a data statistics like question amount,
average number of turns in each question, average question
length (tokens) and complexity score (Wang et al., 2024)).
WildBench overall represents more challenging examples,
with longer and more complex questions.

Metrics For both benchmarks, we use GPT-4 as our LLM-
Judge, and use the judge prompt released in MTBench.
We discuss the differences of using MTBench Judge and
WildBench Judge in Appendix F. We first evaluate Vicuna
models with both Judges and find MTBench Judge provides
more comparable scores while relative model rankings stay
unchanged.

7.3. Results

We present the results from each setting in Table 4 and dis-
cuss the results below. Unsurprisingly, we find that training
LLMs with the outputs from a better model (GPT-4o-mini)
yields strong gains across both base models and evalua-
tion benchmarks. On the other hand, we find that training
with our KTO baseline (Dneg,Dpos w/ KTO), which simply
encourages responses that yielded positive feedback and
discourages ones that yielded negative feedback, showed
mixed results.

Distilling GPT by SFT training on conversations that were
regenerated from responses that received negative feedback
(Dneg) can provide targeted supervision for model failures.
In contrast, distilling GPT on randomly sampled responses
(Drand) does not provide such targeted supervision. We,
therefore, expect that SFT training on mi

scra may perform
better with Dneg than with Drand. Our results, however,
demonstrate that this is only true for our MTBench evalua-
tions, and that SFT training on mi

scra with Drand outper-
forms training with Dneg on our WildBench evaluations.

One hypothesis explaining these unintuitive results is that
distilling on the more targeted data from Dneg improves per-
formance the easier tasks in MT-Bench, but not on the much
harder tasks in WildBench. Another potential hypothesis
is that WildBench contains more well-specified user re-
quests and with clear, unamiguous instructions, and training
mdoels to incorporate negative user feedback can discourage
such close prompt adherence. We, however, are unable to
verify either hypothesis due to the limitations of the availi-
ble evaluations sets and experimental settings, and leave
such explorations to future work. On WildBench, we also

9Due to the high cost of LLM-as-a-Judge, we report results on a
random subset of 500 randomly sampled questions for WildBench.

find that directly distilling from stronger models (random)
demonstrates consistent gains in performance. This echoes
our findings in the previous section (Section 6), where we
found that msem

i is not consistently better than mscra
i ac-

cording in pairwise comparisons with a reward model.

8. Related Work
Evaluating Multi-turn Human-LLM Collaboration
Rather than single-pass instruction following, prior works
(Lee et al., 2022; Chang et al., 2025; Laban et al., 2025)
has demonstrated the ”interactiveness” of how general users
collaborate with language assistants, where ambiguous user
queries are usually given at first followed by a series of clari-
fying actions. (Chang et al., 2025; Laban et al., 2025) shows
that LLM performance on multi-turn tasks is worse than
single-turn tasks. This is due to the final outcome of a multi-
turn interaction can be upper bounded by both human and
AI participants (Chang et al., 2025). Similarly, (Wang et al.)
proposes a benchmark to evaluate LLM’s performance with
GPT-simulated human feedback, claiming that most LLMs
benefit from such signal. In this paper, we look into a large
collection of human-LLM interactions from the real world
and explore how human feedback can be applied to model
training at scale.

Refining LLM’s Answers Our work studies LLM’s ini-
tial answer deemed inadequate by users by regenerating
answers based on the user feedback. Bai et al. (2022) ex-
plores fine-tuning models on LLM revising its own answers.
Madaan et al. (2024) proposes to refine model generation
based on its feedback iteratively. Similarly, Qu et al. (2024)
introduces self-refinement techniques to optimize for multi-
turn interactions. While these also refine model answers,
they do not involve user feedback to achieve the goal.

Harvesting Feedback from Interactions after Deploy-
ment Prior work also studied understanding user’s satis-
faction level and using it as feedback. Hancock et al. (2019)
uses feedback responses associated with the conversation
partner’s attitude in chatbot applications. Pang et al. (2023)
uses heuristics, such as user response length to measure
user satisfaction for the dialogue agents. Chen et al. (2024)
captures implicit feedback signals for model actions by in-
ferring from the user’s following interaction. Gao et al.
(2024) derives feedback from user edits on the model out-
puts. Most of these approaches are limited in their task
application domain.

Borges et al. (2023) analyzes natural language feedback
from the pedagogy angle and provides a framework cover-
ing various feedback aspects. The concepts from learning
sciences can be limited to fully explain user feedback from
the real-world LLM-human setting, as only half of the par-
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Train Data Split Method
MT-BENCH SCORE ↑ WILDBENCH SCORE ↑
Vicuna-7b Mistral-7B Vicuna-7b Mistral-7B

Base checkpoint 6.09 3.09 26.0 -19.01

LMSYS

Dneg,Dpos KTO 6.09 3.88 21.33 -18.81
Drand SFT on mi

scra 6.37±0.06 6.02±0.03 28.90±3.38 49.02±3.39

Dneg SFT on mi
scra 6.53±0.09 5.87±0.07 28.65±1.9 48.97±1.70

Dneg SFT on mi
sem 6.68±0.03 5.86±0.02 24.47±1.25 41.47±1.31

WildChat

Dneg,Dpos KTO 6.15 5.08 24.29 11.72
Drand SFT on mi

scra 6.19±0.02 5.96±0.44 28.74±1.16 56.16±1.26

Dneg SFT on mi
scra 6.38±0.07 5.77±0.04 27.97±1.36 51.66±1.30

Dneg SFT on mi
sem 6.86±0.02 6.32±0.03 23.38±1.94 31.80±0.62

Table 4: Results from training on response regenerations from Better LLM. We observe different result trends on two
datasets (MT-Bench and WildBench).

ticipants (humans) can be characterized. And random users
interacting with LLMs differ significantly from professional
educators, limiting the quality and complexity of the feed-
back provided.

Most closely relevant to our work, Don-Yehiya et al. (2024)
also studied naturally occurring, implicit feedback in large-
scale human-LLM interactions datasets. Another concurrent
work (Shaikh et al., 2025) frames this interaction as a natu-
ral language grounding task, where both human and LLM
initiate grounding acts in a multi-turn nature. Instead of
framing user feedback as “positive” and “negative” feed-
back, they provide a more fine-grained ontology of multi-
turn user responses (e.g., “acknowledgement”). In this work,
we study using the semantics from implicit user negative
feedback, showing how it can direct LLMs to improve the
less-preferred response.

9. Conclusion
In this paper, we systematically study the existence of user
feedback in conversations. We first propose strong feedback
detection methods to detect multiple feedback instances
given long conversations. We then study when negative
feedback occurs, and potential causes. We show that most
negative feedback results from model’s unsatisfying answer.
Motivated by this, we then explore how to leverage this as
useful training signals.

Limitations
In this work, we neglect the personal biases in user-provided
feedback. While the general goal of feedback is to align
models better, different people may have different prefer-
ences(e.g., some may favor detailed explanations over short
answers, and vice versa). We leave it to future work to
discuss whose preferences we shall align with and how to
avoid amplifying personal biases. We also simplify our

assumption that feedback in all positions of conversation
are of equally importance. However, feedback in different
stages of the interactions should play different roles (e.g.,
revising answers, confirming the final goal is reached) and
thus should be emphasized differently. Finally, we assume
the feedback to be for the most recent model responses,
while there could be other cases when the user wants to
revise earlier model answers.

Impact Statement
Our work explores how naturally occurring feedback signals
can help improve LLMs. While this could help models
better capture human preference, there are some concerns
on the training data side, such as privacy leakage of training
on human dialogues and bias amplification. We request that
our proposed method be used for research purposes only.
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A. A User Case with Positive Feedback Encouraging toxic model behavior
In Figure 5, we showcase how positive user feedback helps amplify harmful model behavior.

Figure 5: A real user case from existing interaction logs, where the user provides positive feedback upon model’s jailbreaking
responses.

B. Feedback Detection
B.1. Feedback Distribution
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Figure 6: Distribution of dense human annotated labels.

We present the distribution of our annotated feedback categories in Fig 6.
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B.2. Prompts

# Context
You will be given a multi-turn conversation between a User and an Assistant. You should act as a human annotator to
identify User feedback for the Assistant. Please read the conversation and complete the task below.
# Task
Your task is to identify all feedback instances for Assistant in the User responses that satisfy the following feedback
patterns:
## Repeat or Rephrase (NEG 1)
Does the user repeat or rephrase their concern?
Examples for “yes”:
• By house, I mean apartments, not condo
• Actually, I wanted
Examples for “no”:
• Thank you
...
# Format
You should output annotations per User turn except for the first query. You should both output the content of the User
turn where feedback exists as well as the feedback pattern category using a json format:

{
“User Response Pattern”: [Insert User Response Pattern],
“User Response Text”: [Insert User Response Text]
}
If there’s no feedback, please output: {
“User Response Pattern”: “NEU”,
“User Response Text”: [Insert User Response Text]
}

Here are four examples of an input and your expected output.
...
Now you try:
Input:

Table 5: Prompt for feedback detection.

B.3. Feedback Detection Performance
We present the detailed scores of feedback detection performance across Sparse and Dense Eval sets in Table 6,7,8,9,10, 11.

Metric Theirs (%) Ours (%)

False positives 7.76 0.00
False negatives 50.86 18.86
True positives 41.38 42.29
True negatives 0.00 38.86

Accuracy 41.38 81.14
Recall 44.86 69.16
Precision 84.21 100.00

Table 6: Binary Detection performance on Sparse eval set.
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Metric Theirs Ours

# predicted feedback
/ conversation 1.1 2.11

False positives (%) 7.17 15.32
False negatives (%) 61.36 43.07
True positives (%) 22.71 24.09
True negatives (%) 8.77 17.52

Accuracy (%) 31.47 41.61
Recall (%) 27.01 35.87
Precision (%) 76.00 61.11

Table 7: Binary Detection performance on Dense eval set.

Class P (%) R (%) F1 (%)

POS 66.67 50.00 57.14
NEG 80.43 37.37 51.03
NEU 24.71 70.00 36.52

Accuracy 45.26 45.26 45.26
Macro avg 57.27 52.46 48.23
Weighted avg 67.43 45.26 48.21

Table 8: Three-way classification (theirs) on Sparse eval. “P”, “R”, and “F1” stand for precision, recall and F1-score
respectively.

Class Precision (%) Recall (%) F1-Score (%)

NEG 68.82 55.65 61.54
NEU 52.73 66.67 58.88
POS 62.50 55.56 58.82

Accuracy 60.19 60.19 60.19
Macro avg 61.35 59.29 59.75
Weighted avg 61.91 60.19 60.33

Table 9: Three-way classification (ours) on Sparse eval.

Class Precision (%) Recall (%) F1-Score (%)

NEG 18.70 70.49 29.55
NEU 69.64 17.11 27.46
POS 70.00 100.00 82.35

Accuracy 30.07 30.07 30.07
Macro avg 52.78 62.53 46.46
Weighted avg 59.15 30.07 29.19

Table 10: Three-way classification (theirs) on Dense eval.

C. Analysis of Prompts Quality from Different Interaction Logs
We report the prompt measured by BenchBuilder in (Li et al., 2024) in Table 12.
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Class Precision (%) Recall (%) F1-Score (%)

NEG 29.92 58.22 39.53
NEU 79.55 54.65 64.79
POS 25.81 32.00 28.57

Accuracy 55.35 55.35 55.35
Macro avg 45.09 48.29 44.30
Weighted avg 66.97 55.35 58.32

Table 11: Three-way classification (ours) on Dense eval.

Data Subset Specificity Domain
Knowledge Complexity Problem

Solving Creativity Technical
Accuracy

Real
World Mean

random 0.312 0.346 0.052 0.178 0.210 0.190 0.888 0.311
LMSYS follow-neg 0.222 0.236 0.036 0.130 0.166 0.122 0.708 0.231

follow-pos 0.124 0.178 0.010 0.078 0.210 0.056 0.610 0.181

random 0.242 0.388 0.076 0.190 0.236 0.220 0.844 0.314
WildChat follow-neg 0.240 0.376 0.056 0.206 0.254 0.216 0.870 0.317

follow-pos 0.168 0.284 0.142 0.168 0.546 0.128 0.880 0.331

LIMA - 0.173 0.368 0.035 0.165 0.397 0.148 0.929 0.316

Table 12: Average prompt quality in real human-LLM interactions (LMSYS and WildChat) and prompt quality in
instruction-tuning dataset (LIMA). For LMSYS and WildChat, we report prompt quality in three subsets: prompts that
elicited positive feedback in the next turn (follow-pos), prompts that elicinted negative feedback in the next turn (follow-neg),
and randomly sampled prompts. We find that in LMSYS, negative and positive feedback can be seen as a response to less
specific prompt.

D. Winrate of LLM-Regenerated Response on WildChat
We present the winrate of different answer regeneration methods for WildChat dataset in Table 13.

E. Comparison between MTBench and WildBench Prompts
For MTBench and WildBench, we compare the difference of prompt length, complexity and more in Table 14.To measure
complexity score, we follow (Wang et al., 2024) to prompt GPT-4o-mini with questions and rubrics to get a score between 1
and 5 , where high scores mean harder prompts.

F. Comparison between MTBench Judge and WildBench Judge
We compare the scores from Judges released in MTBench and WildBench in Table 15.
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Data Split
Setting A Setting B WildChat

Model Method Model Method Eval w/ fb Eval w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 89% 90%

Better mi
sem Weak mi 84% 46%

Better mi
sem Weak mi+1 70% 71%

Better mi
sem Better mi

scra 44% 9%
Weak mi+1 Weak mi 74% 29%

Table 13: Winrate scored by RM between the answers, comparing answer from Setting A to Setting B. We compare
responses from Better in two settings (generation from scratch mscra

i , and generation with feedback from user (msem
i ). For

Weak LLMs, where originial conversation derived, we compare the initial model response mi and the model response after
user feedback mi+1. We empirically show: 1. Weak models could fail to address user feedback. 2. User-written instructions
are imperfect. 3. Human feedback may not always help improve model’s response and the quality can vary across subests
and datasets.

Data # prompts Avg # tokens complx.

MTBench 80 91.55 3.85
WildBench 1024 499.25 4.31

Table 14: Wildbench contains longer and more complex questions compared to MTBench.

Train Data Split Method MT-JUDGE SCORE ↑ WILD-JUDGE SCORE ↑

WildChat
Drand SFT on mscra

i 30.51± 2.43 4.62± 0.95
Dneg SFT on mscra

i 31.08± 2.37 4.80± 1.69
Dneg SFT on msem

i 27.08± 1.29 0.1± 1.17

Table 15: Comparison of Vicuna evaluation results by MT-Judge (LLM Judge from MT-Bench) and Wild-Judge (LLM
Judge from WildBench).
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