
Quantum Algorithms for Finite-horizon Markov Decision Processes

Bin Luo 1 Yuwen Huang 1 Jonathan Allcock 2 Xiaojun Lin 1 Shengyu Zhang 2 John C.S. Lui 1

Abstract
In this work, we design quantum algorithms that
are more efficient than classical algorithms to
solve time-dependent and finite-horizon Markov
Decision Processes (MDPs) in two distinct set-
tings: (1) In the exact dynamics setting, where
the agent has full knowledge of the environment’s
dynamics (i.e., transition probabilities), we prove
that our Quantum Value Iteration (QVI) algo-
rithm QVI-1 achieves a quadratic speedup in the
size of the action space (A) compared with the
classical value iteration algorithm for computing
the optimal policy (π∗) and the optimal V-value
function (V ∗

0). Furthermore, our algorithm QVI-
2 provides an additional speedup in the size of
the state space (S) when obtaining near-optimal
policies and V-value functions. Both QVI-1 and
QVI-2 achieve quantum query complexities that
provably improve upon classical lower bounds,
particularly in their dependences on S and A. (2)
In the generative model setting, where samples
from the environment are accessible in quantum
superposition, we prove that our algorithms QVI-
3 and QVI-4 achieve improvements in sample
complexity over the state-of-the-art (SOTA) clas-
sical algorithm in terms of A, estimation error
(ϵ), and time horizon (H). More importantly, we
prove quantum lower bounds to show that QVI-3
and QVI-4 are asymptotically optimal, up to loga-
rithmic factors, assuming a constant time horizon.

1. Introduction
Markov Decision Processes (MDPs) provide a mathemat-
ical framework for modeling decision-making problems
in uncertain environments. They are an important frame-
work to model discrete-time stochastic control and reinforce-
ment learning (RL) (Puterman, 2014; Agarwal et al., 2019).

1The Chinese University of Hong Kong, Hong Kong, China
2Tencent Quantum Laboratory, Hong Kong, China. Correspon-
dence to: Yuwen Huang <yuwen.huang@link.cuhk.edu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

MDPs have been applied in fields such as networks, robotics,
and operations research (Alsheikh et al., 2015; Matignon
et al., 2012). Despite their wide applicability, MDPs often
face significant computational challenges in practice. A key
issue arises when the number of possible states or actions
in the system becomes very large. In particular, this ”curse
of dimensionality” makes solving MDPs computationally
infeasible in many practical scenarios (Powell, 2007).

Quantum computing is a new computing paradigm that har-
nesses the laws of quantum mechanics. For certain classes
of problems, such as unstructured search (Grover, 1996),
prime number factoring (Shor, 1994), optimization (Sidford
& Zhang, 2023; Jordan, 2005; Liu et al., 2024) and online
learning (He et al., 2024; 2022; Wan et al., 2023), quantum
computing demonstrates significant speedups over classi-
cal computing. Recent advancements in quantum hardware
(Arute et al., 2019; AI et al., 2024) indicate that practical
quantum computers can be a reality in the near future.

Given the importance of MDPs and the advancement in
quantum computing, researchers have explored various
quantum algorithms to reduce the time complexity of solv-
ing MDPs. In the stochastic control domain, (Naguleswaran
& White, 2005) suggested two quantum techniques that
can potentially be used to accelerate classical algorithms
for finite-horizon MDPs (Puterman, 2014). However, this
work only focused on problem formulation and did not pro-
vide a concrete quantum algorithm for finite-horizon MDPs
with performance guarantee. (Naguleswaran et al., 2006)
applied quantum walk (Magniez et al., 2007) to efficiently
solve a specific class of MDPs, namely deterministic short-
est path problems. However, the quantum algorithm and
analysis there cannot be applied to general finite-horizon
MDPs. For RL, researchers proposed to replace subrou-
tines of existing RL frameworks by quantum algorithms.
For example, (Wiedemann et al., 2022) proposed to use a
quantum Monte Carlo (MC) (Montanaro, 2015) to replace
the classical MC method on policy evaluation. However,
their algorithm is inefficient as its quantum sample complex-
ity is exponential with respect to S in both time-dependent
and time-independent settings for obtaining near-optimal
policies. Improved sample-complexity results that do not
increase exponentially in S have been obtained for infinite-
horizon MDPs. For example, (Cherrat et al., 2023) utilized
a quantum linear system solver (Chakraborty et al., 2019) to

1

Quantum Algorithms for Finite-horizon Markov Decision Processes

approximate Q-values during the policy evaluation. (Wang
et al., 2021) proposed nearly minimax optimal quantum al-
gorithms for infinite-horizon MDPs by leveraging quantum
mean estimation (Montanaro, 2015) and quantum maxi-
mum searching (Durr & Hoyer, 1999). Besides, (Cornelis-
sen, 2018) applied quantum gradient estimation (Gilyén
et al., 2019) in policy improvement. However, these algo-
rithms are only tailored to infinite-horizon problems with
a time-invariant value function, thus preventing their use
in finite-horizon and time-dependent scenarios where the
value functions depend on time.

Thus, one open question is, can one design quantum al-
gorithms that are more efficient than classical algorithms
in obtaining the optimal or ϵ-optimal policy, V-value and
Q-value functions for “finite-horizon” and “time-dependent”
MDPs? We address this open question in both the exact
dynamics setting and the generative model setting. Our
contributions are as follows:

• In the exact dynamics setting (Section 3), we propose
a Quantum Value Iteration (QVI) algorithm QVI-1,
that computes the optimal policy and V-value function
with a quadratic speedup in A compared with the clas-
sical value iteration algorithm. Additionally, QVI-2
achieves a further speedup in S for obtaining near-
optimal policies and V-value functions, enabled by our
novel quantum subroutine, quantum mean estimation
with binary oracles (QMEBO), for mean estimation of
arbitrary bounded functions. Besides, we also derive
new classical lower bounds for computing near-optimal
policies and V-value functions. A summary of these
results is provided in Table 1.

• In the generative model setting (Section 4), we pro-
pose two quantum algorithms, QVI-3 and QVI-4, to
efficiently compute ϵ-optimal policies and value func-
tions. Compared with SOTA classical algorithms for
time-dependent and finite-horizon MDPs, both QVI-3
and QVI-4 achieves speedups in H , and ϵ, with QVI-3
additionally achieving a quadratic speedups in A.

• Assuming access to a quantum generative oracle for
time-dependent and finite-horizon MDPs, we establish
quantum lower bounds for obtaining near-optimal poli-
cies, V-value functions, and Q-value functions. Our
results demonstrate that QVI-3 and QVI-4 are asymp-
totically optimal, up to log factors, provided that H
is a constant. Further, our results also lead to a new
lower bound for obtaining Q-values in the classical
setting. A summary of the upper and lower bounds in
the generative model setting is provided in Table 2.

2. Preliminaries
Define notations: For an arbitrary positive integer n, we
define [n] as the set {0, ..., n − 1}. For any finite set X

and any vector f ∈ Y X , we denote the element of f at
entry x by f(x). For any f ∈ RX , the operations

√
f , |f |,

and f2 are applied component-wise. Given two vectors
f1, f2 ∈ RX , we define max{f1, f2} as their element-wise
maximum, and write f1 ≤ f2 to indicate component-wise
inequality. The bold symbols 0 and 1 represent vectors
of all zeros and ones, respectively, and a scalar x in an
equation with vectors should be interpreted as x · 1. We
usually identify a function f : X → Y as a vector f ∈ Y X .

MDP Preliminaries: We study time-dependent and finite-
horizon MDPs in two settings: (a) the exact dynamics set-
ting (Section 3) and (b) the generative model setting (Sec-
tion 4). In both settings, the MDP has a finite and dis-
crete state space S and action space A. In each time step
h ∈ [H], an agent need to decide which action a ∈ A
to take for each state s ∈ S. After taking the action
a at the state s in the time step h ∈ [H], the agent ob-
tains a reward rh(s, a) ∈ [0, 1] and transitions to the
next state s′ ∈ S with probability Ph(s

′|s, a). We de-
fine a finite-horizon and time-dependent MDP as a 5-tuple
M = (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H). We define S := |S|

and A := |A|, which are the cardinalities of S and A re-
spectively. A policy π is a mapping from S × [H] to A,
where π(s, h) specifies the action that the agent should take
in the state s at the time step h. The policy space is de-
fined as Π := AS×[H]. In MDPs, the objective of the agent
is to find a policy π that maximizes the expected cumula-
tive reward over H time horizon. This can be written as
maximizing the V-value function, V π

h : S → R, at each
time step h. Specifically, the V-value function at time h for
an initial state s under a policy π is defined as V π

h (s) :=

E
[∑H−1

t=h rt(st, at)|π, sh = s
]
, where at = π(st, t). Simi-

larly, the Q-value function Qπ
h : S × A → R is defined as

Qπ
h(s, a) := E

[∑H−1
t=h rt(st, at)

∣∣π, sh = s, ah = a
]
.

For a policy π, we define Pπ
h ∈ RSA×SA as the matrix with

entries Pπ
h ((s, a), (s′, a′)) = Ph(s

′|s, a) if a′ = π(s′) and
0 otherwise. For any Q ∈ RS×A, we define Pπ

hQ ∈ RS×A

as (Pπ
hQ)(s, a) =

∑
s′∈S Ph(s

′|s, a)Q
(
s′, π(s′)

)
. With a

slight abuse of notation, we define Ph ∈ RSA×S as the ma-
trix satisfying Ph ((s, a), s

′) = Ph(s
′|s, a) for any h ∈ [H].

For any fixed s ∈ S, a ∈ A and h ∈ [H], we define Ph|s,a ∈
RS as the vector satisfying Ph|s,a(s

′) = Ph(s
′|s, a). There-

fore, we can express E[f(s′)|s′ ∼ Ph|s,a] = PT
h|s,af for

any f ∈ RS .

For any vector v ∈ RS , we define σ2
h(v) ∈ RS×A as a vec-

tor satisfying [σ2
h(v)](s, a) := Var[v(s′)|s′ ∼ Ph(·|s, a)]

for any h ∈ [H]. In the vector notation, it can be written as
σ2
h(v) = Phv

2− (Phv)
2. We also define σh(v) =

√
σ2
h(v).

We define V (Q) ∈ RS as [V (Q)]s = maxa∈A{Q(s, a)}
and π(Q) ∈ AS as [π(Q)]s = argmaxa∈A{Q(s, a)} for
any vector Q ∈ RS×A.

2

Quantum Algorithms for Finite-horizon Markov Decision Processes

Goal:
Classical query complexity Quantum query complexity

Upper bound Lower bound Upper bound

Optimal π∗, V ∗0 S2AH S2A [Theorem 3.2] S2
√
AH [Theorem 3.6]

ϵ-accurate estimate
of π∗ and {V ∗h }H−1

h=0

S2AH S2A [Theorem 3.2] S1.5
√
AH3

ϵ [Theorem 3.9]

Table 1. Classical and quantum query complexities for solving time-dependent and finite-horizon MDPs in the exact dynamics setting.
All quantum upper bounds are Õ(·), assuming a constant failure probability δ. The range of error term ϵ is (0, H]. The classical upper
bounds are O(·), derived from the value iteration algorithm in (Puterman, 2014). The classical lower bounds are Ω(·), which holds for
ϵ ∈ O(H).

Goal: obtain
an ϵ-accurate
estimate of

Classical sample complexity Quantum sample complexity

Upper bound Lower bound Upper bound Lower bound

{Q∗
h}

H−1
h=0

SAH4

ϵ2
SAH3

ϵ2 [Theorem 4.7] SAH2.5

ϵ [Theorem 4.6] SAH1.5

ϵ [Theorem 4.7]

π∗, {V ∗
h }

H−1
h=0

SAH4

ϵ2
SAH3

ϵ2 [Theorem 4.7]

SAH2.5

ϵ [Theorem 4.6]
S
√
AH1.5

ϵ [Theorem 4.7]
S
√
AH3

ϵ [Theorem 4.4]

Table 2. Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative model setting.
All bounds assume a constant maximum failure probability δ. All upper bounds are Õ(·), which requires ϵ ∈ O(1/

√
H) for [Theorem

4.6] and ϵ ∈ (0, H] for [Theorem 4.4]. All lower bounds are Ω̃(·), which holds for ϵ ∈ (0, 1/2). The classical upper bounds for all goals
were shown in (Li et al., 2020). The classical lower bound for π∗ and {V ∗h }H−1

h=0 was shown in (Sidford et al., 2018).

Below, we provide formal definitions for some important
concepts in the finite-horizon MDPM.

Definition 2.1 (Value operator associated with a policy).
For any policy π ∈ Π, let T h

π (·) be the value operator
associated with π such that, for all u ∈ RS , h ∈ [H] and
s ∈ S, [T h

π (u)]s := r
(
s, π(s, h)

)
+ PT

h|s,π(s,h)u. We let
{V π

h }
H−1
h=0 denote the V-value functions of policy π, which

satisfies T h
π (V π

h+1) = V π
h for all h ∈ [H].

Definition 2.2 (Optimal value and policy). Define the opti-
mal value of an initial state s ∈ S at each time step h ∈ [H]
of the finite-horizon MDPM as V ∗

h (s) := maxπ∈Π V
π
h (s).

A policy π is said to be an optimal policy π∗ if V π
0 = V ∗

0 .
Similarly, we can also define the optimal value of an ini-
tial pair of (s, a) ∈ S × A at each time step h ∈ [H] as
Q∗

h(s, a) := maxπ∈ΠQ
π
h(s, a).

Definition 2.3 (ϵ-optimal value function and policy). We
say that V-value functions {Vh}H−1

h=0 are ϵ-optimal if
∥V ∗

h − Vh∥∞ ≤ ϵ for all h ∈ [H] and a policy π ∈ Π
is ϵ-optimal if ∥V ∗

h − V π
h ∥∞ ≤ ϵ for all h ∈ [H], which

implies the V-value functions of π are ϵ-optimal. Similarly,
we say that Q-value functions {Qh}H−1

h=0 are ϵ-optimal if
∥Q∗

h −Qh∥∞ ≤ ϵ for all h ∈ [H].

Quantum Preliminaries: Before introducing our quantum
algorithms, a brief overview of Dirac notation (Nielsen &
Chuang, 2010) is given to ensure clarity. In Dirac notation,
vectors v in a complex vector space Cn are represented

as |v⟩. The symbol |i⟩, where i ∈ [n], denotes the i +
1-th standard basis vector, with |0⟩ typically reserved for
the first standard basis vector. In this paper, real numbers
are encoded in the computational basis using a fixed-point
binary representation with precision 2−p. Specifically, a
real number k is encoded as |Bi[k]⟩ = |k1 . . . kq⟩ ∈ C2q

,
where k1 . . . kq = k1 . . . kq−p.kq−p+1 . . . kq is the binary
string of k. We assume that q and p are sufficiently large so
that there is no overflow in storing real numbers.

We now define a quantum oracle for arbitrary functions and
vectors, which is often referred to as binary oracle.

Definition 2.4 (Quantum oracle for functions and vectors).
Let Ω be a finite set of size N and f ∈ RΩ. A quantum
oracle encoding f is a unitary operator Bf : CN ⊗ C2q →
CN ⊗ C2q such that Bf : |i⟩ |0⟩ 7→ |i⟩ |Bi[f(i)]⟩ for all
i ∈ [N], where Bi[f(i)] is the binary representation of f(i)
with precision 2−p.

3. Exact Dynamics Setting
In this setting, it is assumed that the environment’s dynamics
are fully known, i.e., the transition probability matrix Ph at
each time step h is explicitly provided for the entire state-
action space. To formalize this assumption, we introduce the
classical oracle for finite-horizon MDPs OM in Definition
3.1. Given this classical oracle, the classical value iteration
algorithm (Algorithm 6) can obtain an optimal policy π∗

3

Quantum Algorithms for Finite-horizon Markov Decision Processes

and optimal value V ∗
0 (s) for any initial state s ∈ S with

O(S2AH) queries to the oracle OM (Bellman, 1958).

Definition 3.1 (Classical oracle of an MDP). We define a
classical oracle OM : S × A × [H] × S → [0, 1] × [0, 1]
for a time-dependent and finite-horizon MDPM satisfying
OM : (s, a, h, s′) 7→

(
rh(s, a), Ph|s,a(s

′)
)
.

To understand the limits of classical algorithms under this
setting, we establish a lower bound on query complexity
for computing near-optimal policies and V-value functions.
This result adapts the techniques developed for infinite-
horizon MDPs in (Chen & Wang, 2017) to the finite-horizon
case. The rigorous proof of Theorem 3.2 is presented in
Appendix A.2.

Theorem 3.2 (Classical lower bounds). Let S and A be
finite sets of states and actions. Let H ≥ 2 be a positive in-
teger and ϵ ∈ (0, H−1

4) be an error parameter. We consider
the following time-dependent and finite-horizon MDPM =
(S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H), where rh ∈ [0, 1]S×A for

all h ∈ [H]. Given access to the classical oracle OM, any
algorithm K, which takes M as an input and outputs ϵ-
approximations of {V ∗

h }
H−1
h=0 or π∗ with probability at least

0.9, must require at least Ω(S2A) queries to OM on the
worst case of inputM.

3.1. Speedup on A

Having established the classical baseline, we now turn to in-
vestigating whether quantum algorithms can offer improve-
ments, particularly in the dependence on the action space
size A. To have a fair comparison on the time complexity
between a classical algorithm and a quantum algorithm, we
first define the quantum analog of the classical oracle OM.

Definition 3.3 (Quantum oracle of an MDP). A quantum
oracle of an MDPM is a unitary operator OQM : CS ⊗
CA ⊗CH ⊗CS ⊗C2q ⊗C2q → CS ⊗CA ⊗CH ⊗CS ⊗
C2q ⊗ C2q such that

OQM : |s⟩ |a⟩ |h⟩ |s′⟩ |0⟩ |0⟩
7→ |s⟩ |a⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s

′)]⟩ ,
(1)

for all (s, a, h, s′) ∈ S×A×[H]×S , where Bi[rh(s, a)] and
Bi[Ph|s,a(s

′)] denote the binary representation of rh(s, a)
and Ph|s,a(s

′) with precision 2−p.

We define the number of queries made to the quantum oracle
OQM or classical oracle OM as the quantum or classical
query complexity, respectively. Comparing quantum and
classical time complexities can be achieved by examining
their respective query complexities, because implementing
OQM has comparable overhead as OM. Specifically, given
a Boolean circuit of OM with N logic gates, it can be con-
verted into a quantum circuit of OQM with O(N) quantum
gates. This conversion can be efficiently achieved by simple
conversion rules at the logic gate level (Nielsen & Chuang,
2010). Therefore, OQM and OM have comparable costs at
the elementary gate level. Then, if the classical oracle OM

Algorithm 1 Quantum Value Iteration QVI-1(M, δ)

1: Require: MDPM, quantum oracle OQM, maximum
failure probability δ ∈ (0, 1).

2: Initialize: ζ ← δ/(SH), V̂H ← 0.
3: for h := H − 1, . . . , 0 do
4: create a quantum oracleBV̂h+1

for vector V̂h+1 ∈ RS

5: ∀s ∈ S: create a quantum oracle BQ̂h,s
encoding

vector Q̂h,s ∈ RA with OQM and BV̂h+1
satisfying

Q̂h,s(a)← rh(s, a) + PT
h|s,aV̂h+1

6: ∀s ∈ S: π̂(s, h)← QMSζ{Q̂h,s(a) : a ∈ A}
7: ∀s ∈ S: V̂h(s)← Q̂h,s

(
π̂(s, h)

)
8: end for
9: Return: π̂, V̂0

can be called in constant time, the quantum oracle OQM
can be called in constant time as well. Under this assump-
tion, query complexity directly reflects the time complexity
for both the classical and quantum algorithms.

With the quantum oracle OQM, our objective is to design
quantum algorithms that can compute π∗ and V ∗

0 (s) for all
s ∈ S with probability at least 1− δ, while minimizing the
total number of queries to OQM.

We first introduce an existing quantum subroutine, quantum
maximum searching algorithm (Durr & Hoyer, 1999), which
can efficiently find the maximum of a list of unsorted N ∈
Z+ numbers using only O(

√
N) queries to that list. In

contrast, the best-possible classical algorithm must examine
all N elements in the worst case to find the maximum.

Theorem 3.4 (Quantum maximum searching (Durr &
Hoyer, 1999)). Let Bf be a quantum oracle encoding a
vector f ∈ RN , N ∈ Z+. There exists a quantum maxi-
mum searching algorithm, QMS, which, for any δ > 0, can
identify an index i such that f(i) is the maximum value in f ,
with a success probability of at least 1− δ. The algorithm
requires at most c̃

√
N log(1/δ) queries to Bf , where c̃ > 0

is a constant.

We use QMSδ{f(i) : i ∈ [N]} to denote the process of
finding the index of the maximum value of a vector f us-
ing QMS, with a success probability at least 1 − δ. Note
that the classical value iteration algorithm needs to take the
maximum over the whole action space in the Bellman recur-
sion to obtain the estimates of optimal V-value function V ∗

h

and optimal action π∗(s, h) for state s at time stage h. We
incorporate QMS in this step to reduce the query complex-
ity from O(A) to O(

√
A). Now, we propose our quantum

value iteration algorithm QVI-1 in Algorithm 1. In order to
use QMS correctly, one needs to suitably encode the vector
V̂h+1 and Q̂h,s with the binary oracles. In summary, QVI-1
returns an optimal policy and optimal values (Theorem 3.5)
but only requires Õ(S2

√
AH) queries to the quantum ora-

cle OQM (Theorem 3.6). The proof of Theorems 3.5 and

4

Quantum Algorithms for Finite-horizon Markov Decision Processes

3.6 can be found in Appendix A.3, where we also analyze
the cost of the qubit resources of QVI-1.

Theorem 3.5 (Correctness of QVI-1). The outputs π̂ and V̂0
satisfy that π̂ = π∗ and V̂0 = V ∗

0 with a success probability
at least 1− δ.

Theorem 3.6 (Complexity of QVI-1). The quantum query
complexity of QVI-1 in terms of the quantum oracle OQM
is O

(
S2
√
AH log(SH/δ)

)
.

3.2. Speedup on S

Since QVI-1 achieves a speedup in the action space size A,
it is advantageous for problems with a large action space,
such as natural language processing, where each text in
a large dictionary corresponds to a distinct action (Feng
et al., 2024). However, in problems modeled by numerous
variables, such as Chess or Go, where each position in a vast
board is represented as a state, the state space can be much
larger than the action space and time horizon (Bellman,
1962). In such scenarios, QVI-1 may not be suitable due
to its complexity of O(S2). This complexity arises for two
reasons: (1) one needs to update O(S) Q-value functions
at each time step; (2) computing the “precise mean” of
the V-value function from the last time step needs O(S)
queries to the oracle OQM when updating each Q-value
function. Note that for obtaining an “ϵ-estimation of the
mean” of n Boolean variables, quantum algorithms only
need Θ(min{ϵ−1, n}) queries to a binary oracle (Nayak &
Wu, 1999; Beals et al., 2001). This suggests that a quantum
speedup in S may be achievable if one is satisfied with a
near-optimal policy. Therefore, next we investigate whether
there exists a quantum algorithm that can obtain ϵ-optimal
policies and V-value functions for an MDP M but only
requires Õ

(
Scpoly(

√
A,H, ϵ−1)

)
queries to OQM, where

0 < c < 2.

To achieve this optimization goal, we propose QVI-2 in
Algorithm 2, where the quantum subroutine QMEBO, as
used in the fifth step, is defined in Algorithm 3. The main
difference between QVI-1 and QVI-2 is that we compute
an estimate of the expectation of PT

h|s,aV̂h+1 rather than its
precise value in each time step h in QVI-2. Since the oracle
OQM that encodes the probability distribution Ph|s,a is a
binary oracle, we cannot directly apply the existing quan-
tum mean estimation algorithms (Montanaro, 2015), which
require an oracle that encodes the probability distribution in
the amplitude (See Theorem 4.2). Hence, we design a new
quantum subroutine in Algorithm 3, denoted as quantum
mean estimation with binary oracles (QMEBO).

Theorem 3.7 (Quantum mean estimation with binary ora-
cles). Let Ω be a finite set with cardinality N , p = (px)x∈Ω

a discrete probability distribution over Ω, and f : Ω→ R
a function. Suppose we have access to a binary oracle Bp

encoding the probability distribution p and a binary ora-
cle Bf encoding the function f . If the function f satisfies

Algorithm 2 Quantum Value Iteration QVI-2(M, ϵ, δ)

1: Require: MDPM, quantum oracle OQM, maximum
error ϵ ∈ (0, H], failure probability δ ∈ (0, 1).

2: Initialize: ζ ← δ/
(
4c̃SA1.5H log(1/δ)

)
, V̂H ← 0.

3: for h := H − 1, . . . , 0 do
4: create a quantum oracle BṼh+1

encoding Ṽh+1 ∈
[0, 1]S defined by Ṽh+1 ← V̂h+1/H

5: ∀s ∈ S: create a quantum oracle Bzh,s
encoding

zh,s ∈ RA defined by
zh,s(a)← H ·QMEBOζ(P

T
h|s,aṼh+1, OQM, B

Ṽh+1
, ϵ
2H2)− ϵ

2H

6: ∀s ∈ S: create quantum oracle BQ̂h,s
encoding

Q̂h,s ∈ RA with OQM and Bzh,s
satisfying

Q̂h,s(a)← max{rh(s, a) + zh,s(a), 0}
7: ∀s ∈ S: π̂(s, h)← QMSδ{Q̂h,s(a) : a ∈ A}
8: ∀s ∈ S: V̂h(s)← Q̂h,s

(
π̂(s, h)

)
9: end for

10: Return: π̂, {V̂h}H−1
h=0

f(x) ∈ [0, 1] for all x ∈ Ω, then the algorithm QMEBO
requires O

(
(
√
N
ϵ +

√
N
ϵ) log(1/δ)

)
queries to Bp and Bf

to output an estimate µ̂ of µ := E[f(x)|x ∼ p] = pTf such
that Pr(|µ̃− µ| < ϵ) > 1− δ for any δ > 0.

We denote QMEBOδ(p
Tf,Bp, Bf , ϵ) as an estimate of

pTf , to an error less than ϵ with probability at least 1 − δ
obtained by QMEBO. The key step of QMEBO lies in line
4, where a binary oracle Bp is transformed into a unitary
oracle Ûp. Unlike Bp, Ûp encodes the information of the
probability distribution p in amplitude rather than in quan-
tum state. Using Ûp, we prepare the state |ψ(0)⟩ defined as

1√
N

N∑
i=1

√
pi |i⟩ |0⟩+

√
N − 1

N

N∑
i=1

√
1− pi
N − 1

|i⟩ |1⟩ . (2)

The transformation and the required query complexity are
presented in Theorem A.3. After encoding the function f in
the amplitudes (lines 5-6), the amplitude estimation (Theo-
rem A.5) is applied to compute an estimate µk of pTf/N
with an error of ϵ/N in the loop k. Finally, guaranteed
by the Powering lemma (Lemma A.4), the output µ̂ is an
ϵ-estimate of pTf with probability at least 1− δ. The com-
plete version and full analysis of QMEBO is presented in
Appendix A.4.

With QMEBO, it only requires O(
√
S/ϵ) queries to the

oracle OQM to obtain an ϵ-estimate of PT
h|s,aV for any

V ∈ [0, 1]S . Compared with computing the precise value of
PT
h|s,aV with O(S) queries to OQM, QMEBO reduces the

query complexity from O(S) to O(
√
S). Finally, QVI-2

only requires Õ
(
S1.5poly(

√
A,H, 1/ϵ)

)
queries to OQM

(Theorem 3.9). By suitably controlling the error induced by
QMEBO, one can ensure that QVI-2 can obtain ϵ-optimal
policies and V-value functions (Theorem 3.8). Note that we
subtract the H times error induced by QMEBO in line 5

5

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 3 Quantum Mean Estimation with Binary Ora-
cles QMEBOδ(p

Tf,Bp, Bf , ϵ)

1: Require: Bp encoding a probability distribution p =
(pi)i∈Ω on a finite set Ω with cardinality N , Bf encod-
ing a function f = (fi)i∈Ω where fi ∈ [0, 1], maximum
error ϵ, maximum failure probability δ ∈ (0, 1).

2: Initialize: K = O(log 1/δ), T = O(
√
N
ϵ +

√
N
ϵ)

3: for k ∈ [K] do
4: Prepare state |ψ(0)⟩ = Ûp |0⟩ |0⟩ using Bp

5: Attach |0⟩⊗(q+1) qubits on |ψ(0)⟩ and apply Bf

|ψ(1)⟩ = 1√
N

∑N
i=1

√
pi |i⟩ |0⟩ |Bi[fi]⟩ |0⟩+ |Φ(1)⟩

6: Perform controlled rotation Rf based on |Bi[fi]⟩ and
revert Bf

|ψ(2)⟩ = 1√
N

∑N
i=1

√
pifi |i⟩ |000⟩+ |Φ(2)⟩

7: Apply T iterations of amplitude estimation with state
|ψ⟩ = |ψ(2)⟩, operator U = 2 |ψ⟩ ⟨ψ| − I , and pro-
jector P = I ⊗ |000⟩ ⟨000| to obtain µk

8: end for
9: Return: µ̂ = N ·Median({µk}k∈[K])

of QVI-2 which allows the estimates zh,s(a) to have an
one-sided error. This is a variant of the monotonicity tech-
nique which was originally proposed for solving the infinite-
horizon MDPs more efficiently (Sidford et al., 2018). This
technique ensures that the value function V̂h is bounded by
the value function of the policy V π̂

h at the same time step.

Theorem 3.8 (Correctness of QVI-2). The outputs π̂ and
{V̂h}H−1

h=0 satisfy that V ∗
h − ϵ ≤ V̂h ≤ V π̂

h ≤ V ∗
h for all

h ∈ [H] with a success probability at least 1− δ.

Theorem 3.9 (Complexity of QVI-2). The quantum query
complexity of QVI-2 in terms of the quantum oracle of
MDPs OQM is

O
(S1.5

√
AH3 log(SA1.5H/δ)

ϵ

)
. (3)

4. Generative Model Setting
Even though the exact dynamic model allows precise calcu-
lation of optimal policies and values, such a model is not
always readily available in a complex environment. In this
section, we focus on the generative model setting as studied
in (Li et al., 2020). Specifically, we assume that the agent
lacks full access to the transition probabilities but can query
a generative model to sample transitions for specific state-
action pairs. Note that similar models have often been used
in the classical setting, where one is assumed to have access
to a generative modelG, which can generateN independent
samples for each (s, a, h) ∈ S ×A× [H] satisfying

sih(s, a)
i.i.d.∼ Ph|s,a, i = 1, . . . , N. (4)

Correspondingly, we define a quantum generative model G
for an MDPM in Definition 4.1. It is important to point

out that the quantum state output by G is similar to a sample
drawn from the probability distribution Ph|s,a in Eq. (4).
Definition 4.1 (Quantum generative model of an MDP).
The quantum generative model of a time-dependent and
finite-horizon MDPM is a unitary matrix G : CS ⊗ CA ⊗
CH ⊗CS ⊗CJ → CS ⊗CA ⊗CH ⊗CS ⊗CJ satisfying

G : |s⟩ |a⟩ |h⟩ |0⟩ |0⟩

7→ |s⟩ |a⟩ |h⟩

(∑
s′

√
Ph|s,a(s′) |s′⟩ |js′⟩

)
,

(5)

where J ≥ 0 is an arbitrary integer and |js′⟩ ∈ CJ are
arbitrary auxiliary states.

We define the number of calls that an algorithm makes to the
quantum generative model G or classical generative model
G as its quantum or classical sample complexity. Note that
in Section 3.1, we have argued that comparing the time
complexities of using a quantum oracle and using a classi-
cal oracle can be reduced to comparing the quantum and
classical query complexities. In this section, although the
quantum generative model G that we use is different from
the quantum oracle OQM, the same reduction from time
complexity to sample complexity still holds. The reason
is that G and G have similar costs at the elementary gate
level, assuming access to the classical circuit implementing
G. In addition, it only incurs logarithmic overhead for G to
encode the transition probabilities into quantum amplitudes,
provided that quantum random access memory (QRAM)
(Giovannetti et al., 2008) is available. Finally, the quantum
time complexities match the quantum sample complexities
up to log factors, provided that these assumptions hold and
G can be called in constant time.

We formally state the optimization goals in this setting.
For a given time-dependent and finite-horizon MDP M,
ϵ ∈ (0, H] and δ ∈ (0, 1), we want to obtain ϵ-optimal
policies, V-value functions and Q-value functions with prob-
ability at least 1 − δ. With these objectives, we aim to
design algorithms that require as few queries to the quantum
generative model G as possible.

Before delving into our algorithms, we first introduce an-
other important quantum subroutine, quantum mean estima-
tion, in Theorem 4.2. Quantum mean estimation consists
of two similar quantum algorithms, which are QME1 and
QME2. Both of them are referred to as QME.
Theorem 4.2 (Quantum mean estimation (Montanaro,
2015)). There are two quantum algorithms, denoted as
QME1 and QME2, with the following properties. Let Ω be
a finite set, p = (px)x∈Ω a discrete probability distribution
over Ω, and f : Ω → R a function. Assume access to a
quantum oracle Up for the probability distribution p sat-
isfying Up : |0⟩ |0⟩ 7→

∑
x∈Ω

√
px |x⟩ |jx⟩ where |jx⟩ are

arbitrary auxiliary states, as well as an oracle Bf for the
function f . Then,

6

Quantum Algorithms for Finite-horizon Markov Decision Processes

1. Taking u, ϵ > 0 as additional inputs, along with the
assumption that 0 ≤ f(x) ≤ u for all x ∈ Ω, QME1
requires O

(
u
ϵ +

√
u
ϵ

)
queries to Up and Bf ,

2. Taking σ > 0 and ϵ ∈ (0, 4σ) as additional inputs,
along with the assumption that Var[f(x) | x ∼ p] ≤
σ2, QME2 needsO

(
σ
ϵ log

2(σϵ)
)

queries to Up andBf ,

to output an estimate µ̃ of µ = E[f(x) | x ∼ p] = pT f sat-
isfying Pr(|µ̃− µ| > ϵ) < 1/3. Furthermore, by repeating
either QME1 or QME2 a total of O(log(1/δ)) times and
taking the median of the outputs, one can obtain another
estimate µ̂ of µ such that Pr(|µ̂− µ| < ϵ) > 1− δ.

We denote QME{i}δ(pT f, ϵ) as an estimate of pTf to an
error at most ϵ with probability at least 1− δ, obtained via
QME{i} for i ∈ {1, 2}. Roughly speaking, QME1 is a
quantum version of Hoeffding’s inequality, while QME2
corresponds to the Chebyshev’s (or Bernstein’s) inequality.
For example, for a random variable X ∈ [0, u], Hoeffding’s
inequality implies that O(u2/ϵ2) samples are required to
obtain an ϵ-estimation of E[X]. In comparison, QME1 only
requires O(u/ϵ) quantum samples when ϵ ∈ (0, u].

Next, we will discuss how to apply the quantum subroutines,
QME and QMS, into the model-free algorithms for finite-
horizon MDPs by (Sidford et al., 2023) and (Sidford et al.,
2018), and propose two quantum algorithms QVI-3 and
QVI-4 which have significantly less sample complexity
than the SOTA classical algorithms (Li et al., 2020).

4.1. Technical Overview of QVI-3

We first briefly review the main idea of the classical al-
gorithm RandomizedFiniteHorizonVI proposed in
(Sidford et al., 2023). In the standard value iteration al-
gorithm (See Algorithm 6), we initialize VH ∈ RS with
all zero entries and repeatedly apply the Bellman recursion
Vh = T h(Vh+1) starting from the last time step and mov-
ing backward to the first, where the Bellman value operator
T h : RS → RS is defined as

[T h(Vh+1)]s := max
a∈A
{rh(s, a) + PT

h|s,aVh+1}, (6)

for all s ∈ S. Instead of computing the exact value,
they obtain an approximation of [T h(Vh+1)]s by estimat-
ing PT

h|s,aVh+1 via sampling from the classical generative
model G and taking maximum over the action space A.
In order to obtain ϵ-optimal policies and V-value func-
tions, they control the error of estimating PT

h|s,aVh+1 to
be ϵ/H . If it also holds that ∥Vh+1∥∞ ≤ H , then it re-
quires O

(
SAH2/(ϵ2/H2)

)
= O(SAH4/ϵ2) queries to G

at each time step h to obtain the estimates of PT
h|s,aVh+1 for

all state-action pairs, according to the Hoeffding’s inequality.
Finally, the classical sample complexity of obtaining near
optimal policy and values would be O(SAH5/ϵ2). The

Algorithm 4 Quantum Value Iteration QVI-3(M, ϵ, δ)

1: Require: MDPM, quantum generative model G, max-
imum error ϵ ∈ (0, H], maximum failure probability
δ ∈ (0, 1).

2: Initialize: ζ ← δ/
(
4c̃SA1.5H log(1/δ)

)
, V̂H ← 0.

3: for h := H − 1, . . . , 0 do
4: create a quantum oracle BV̂h+1

encoding V̂h+1 ∈ RS

5: ∀s ∈ S : create a quantum oracle Bzh,s
encoding

zh,s ∈ RA with G and BV̂h+1
satisfying

zh,s(a)← QME1ζ

(
(PT

h|s,aV̂h+1),
ϵ

2H

)
− ϵ

2H

6: create a quantum oracle Brh encoding rh ∈ RS×A

7: ∀s ∈ S : create a quantum oracle BQ̂h,s
encoding

Q̂h,s ∈ RA with Brh and Bzh,s
satisfying

Q̂h,s(a)← max{rh(s, a) + zh,s(a), 0}
8: ∀s ∈ S : π̂(s, h)← QMSδ{Q̂h,s(a) : a ∈ A}
9: ∀s ∈ S : V̂h(s)← Q̂h,s

(
π̂(s, h)

)
10: end for
11: Return: π̂, {V̂h}H−1

h=0

sample complexity derived from above informal analysis
matches the sample complexity of the algorithm in (Sidford
et al., 2023) (up to log-factors).

Now, we show how to achieve speedup in A,H and ϵ
by using the quantum subroutines QME and QMS. By
using quantum mean estimation QME1, it only requires
O
(
SA
√
H2/(ϵ2/H2)

)
= O(SAH2/ϵ) queries to the

quantum generative oracle G to obtain ϵ-approximations
of PT

h|s,aVh+1 for all pairs (s, a) ∈ S ×A at each time step.
Hence, the total quantum query complexity in H iterations
becomes O(SAH3/ϵ). Furthermore, we apply the quan-
tum maximum searching QMS in the Bellman recursion
to maximize the value on the RHS of Eq. (6). Then, the
query complexity further reduces to O(S

√
AH3/ϵ). These

are the fundamental ideas of Algorithm 4, denoted as QVI-
3. In order to correctly apply QME, we also apply the
monotonicity technique in QVI-3 by subtracting the error
induced by QME1 so that the V values V̂h at each time step
are bounded in [0, H]. Finally, QVI-3 can obtain not only
an ϵ-optimal policy π̂ but also ϵ-optimal V-value functions
{V̂h}H−1

h=0 (Theorem 4.3) with probability at least 1 − δ,
which requires only Õ(S

√
AH3/ϵ) queries to the oracle G

(Theorem 4.4). The rigorous proof of the correctness and
complexity of QVI-3 are provided in Appendix B.1.

Theorem 4.3 (Correctness of QVI-3). The outputs π̂ and
{V̂h}H−1

h=0 satisfy that V ∗
h − ϵ ≤ V̂h ≤ V π̂

h ≤ V ∗
h for all

h ∈ [H] with a success probability at least 1− δ.

Theorem 4.4 (Complexity of QVI-3). The quantum query
complexity of QVI-3 in terms of the quantum generative
oracle G is

O
(S√AH3 log(SA1.5H/δ)

ϵ

)
. (7)

7

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 5 Quantum Value Iteration QVI-4(M, ϵ, δ)

1: Require: MDPM, quantum generative model G, maximum error ϵ ∈ (0,
√
H], maximum failure probability δ ∈ (0, 1).

2: Initialize: K ← ⌈log2(H/ϵ)⌉+ 1, ζ ← δ/4KHSA, c = 0.001, b = 1

3: Initialize: ∀h ∈ [H] : V
(0)
0,h ← 0; ∀s ∈ S, h ∈ [H] : π

(0)
0 (s, h)← arbitrary action a ∈ A.

4: for k = 0, . . . ,K − 1 do
5: ϵk ← H/2k, Vk,H ← 0, V

(0)
k,H ← 0

6: ∀(s, a, h) ∈ S ×A× [H] : yk,h(s, a)← max
{

QME1ζ

(
PT
h|s,a(V

(0)
k,h+1)

2, b
)
−
(
QME1ζ(P

T
h|s,aV

(0)
k,h+1, b/H)

)2
, 0
}

7: ∀(s, a, h) ∈ S ×A× [H] : xk,h(s, a)← QME2ζ

(
PT
h|s,aV

(0)
k,h+1,

cϵ
H1.5

√
yk,h(s, a) + 4b

)
− cϵ

H1.5

√
yk,h(s, a) + 4b

8: for h := H − 1, . . . , 0 do
9: ∀(s, a) ∈ S ×A : gk,h(s, a)← QME1ζ

(
PT
h|s,a(Vk,h+1 − V (0)

k,h+1), cH
−1ϵk

)
− cH−1ϵk

10: ∀(s, a) ∈ S ×A : Qk,h(s, a)← max{rh(s, a) + xk,h(s, a) + gk,h(s, a), 0}
11: ∀s ∈ S : Ṽk,h(s)← Vk,h(s)← [V (Qk,h)]s, π̃k(s, h)← πk(s, h)← [π(Qk,h)]s

12: ∀s ∈ S : if Ṽk,h(s) ≤ V (0)
k,h (s), then Vk,h(s)← V

(0)
k,h (s) and πk(s, h)← π

(0)
k (s, h)

13: end for
14: ∀h ∈ [H] : V

(0)
k+1,h ← Vk,h and π(0)

k+1(·, h)← πk(·, h)
15: end for
16: Return: π̂ := πK−1, {V̂h}H−1

h=0 := {VK−1,h}H−1
h=0 , {Q̂h}H−1

h=0 := {QK−1,h}H−1
h=0

4.2. Technical Overview of QVI-4

Note that QVI-3 can only obtain ϵ-optimal policy and V-
value functions. Below, we will introduce another algorithm,
QVI-4 in Algorithm 5, which can obtain not only ϵ-optimal
policies and V-value functions, but also Q-value functions.
In this setting, although we can no longer attain a speed-up
in A, we attain a speed-up in H by utilizing two additional
techniques in (Sidford et al., 2018): “variance reduction”
and “total variance”.

We now introduce the essential ideas of the two new tech-
niques and show how to integrate these techniques with
the quantum mean estimation QME to reduce the sample
complexity. First, the main idea of variance reduction tech-
nique is that, instead of using the standard value iteration
algorithm (Algorithm 6) directly for a target approxima-
tion error ϵ, one repeats the value iteration algorithm for
K = O(log(H/ϵ)) epochs with decreasing ϵk satisfying
ϵk = ϵk−1/2 and ϵK = ϵ. In each epoch k, we obtain ϵk-
optimal V-value functions {Vk,h}H−1

h=0 , Q-value functions
{Qk,h}H−1

h=0 and policy πk. Note that, at the time step h
in epoch k, the second term on the RHS of Eq. (6) can be
rewritten as follows

PT
h|s,aVk,h+1 = PT

h|s,a(Vk,h+1 − V (0)
k,h+1) + PT

h|s,aV
(0)
k,h+1,

(8)
where V (0)

k,h+1 ∈ RS is defined as an initial V-value function
for the time step h+1 from the previous epoch k− 1. Note
that there are a total SA of these equations, each of which is
corresponding to a pair (s, a) ∈ S ×A. Rather than directly
obtaining ϵk/H-estimation of PT

h|s,aVk,h+1, we instead ob-

tain ϵk/(2H) estimations of both PT
h|s,a(Vk,h+1 − V (0)

k,h+1)

and PT
h|s,aV

(0)
k,h+1. For the first estimation, if we have

0 ≤ Vk,h+1 − V
(0)
k,h+1 ≤ c̃ϵk for some constant c̃ > 0,

it can be done up to error ϵk/(2H) using only O(H2) clas-
sical samples or O(H) quantum samples by the Hoeffd-
ing’s bound or QME1, respectively. Similarly, for the
second estimation, if it holds that 0 ≤ V

(0)
k,h+1 ≤ H , it

requires O(H4/ϵ2k) classical samples or O(H2/ϵk) quan-
tum samples. The overall classical sample complexity is
O
(
KHSA(H4/ϵ2k + H2)

)
= Õ(SAH5/ϵ2k), while the

quantum sample complexity isO
(
KHSA(H2/ϵk+H)

)
=

Õ(SAH3/ϵk). Note that unlike Section 4.1, we do not ex-
pect a speedup from A to

√
A here, since we need to es-

timate the Q-values for all actions (instead of finding the
action with the highest Q-value). Although the variance
reduction technique alone does not achieve a speedup in
H compared with QVI-3, we will see the advantage when
combined with the subsequent total variance technique.

The total variance technique stems from the observation
that the actual error propagation across time steps is much
smaller than previously assumed. Previously, the error in
estimating µs,a

k,h := PT
h|s,aV

(0)
k,h+1 at each time step was set

to ϵk/(2H), ensuring that the total error accumulated over
H iterations remains bounded by ϵk/2. In fact, the per-
step error can be further relaxed to ϵkσ

s,a
k,h/(2H

1.5), where

σs,a
k,h := [σh(V

(0)
k,h+1)](s, a). This error value can reach

up to ϵk/(2
√
H). As the cumulative standard deviation∑H−1

h=0 σ
s,a
k,h is associated with an expression that can be non-

trivially upper-bounded by H1.5 (Lemma B.2), the total er-
ror remains ϵk/2. With classical algorithms, µs,a

k,h can be es-
timated with an error ϵσs,a

k,h without explicitly knowing σs,a
k,h.

This requires overall O
(
SA(ϵ/H1.5)−2

)
= O(SAH3/ϵ2)

classical samples per time step at each epoch, as guaranteed

8

Quantum Algorithms for Finite-horizon Markov Decision Processes

by Chebyshev’s (or Bernstein’s) inequality. When combined
with the variance reduction technique in estimating the first
term on the RHS of Eq. (8), this approach achieves an over-
all classical sample complexity of Õ(SAH4/ϵ2), matching
the complexity of the algorithm in (Sidford et al., 2018)1.

Inspired by (Wang et al., 2021), we can adapt the total vari-
ance technique in the quantum setting. The main challenge
is that we cannot directly apply the quantum mean esti-
mation QME2 like its classical counterpart. First, QME2
cannot estimate µs,a

k,h to an error of ϵσs,a
k,h/(2H

1.5) with-
out prior knowledge of σs,a

k,h. To address this, we can use
QME1 to obtain an estimate (σ̂s,a

k,h)
2 of (σs,a

k,h)
2 with an

error 4b > 0, then use QME2 to estimate µs,a
k,h with an er-

ror ϵσs,a
k,h/(2H

1.5), where σs,a
k,h :=

√
(σ̂s,a

k,h)
2 − 4b ≤ σs,a

k,h,
to maintain the correctness. Second, QME2 also requires
upper bounds C ∈ R on σs,a

k,h. Observing that its sam-
ple complexity O(C/ϵ) can be inefficient for large C, an

ideal way is to use σs,a
k,h :=

√
(σ̂s,a

k,h)
2 + 4b as C. How-

ever, this may lead to an unbounded complexity ratio(
(σ̂s,a

k,h)
2 + 4b

)
/
(
(σ̂s,a

k,h)
2 − 4b

)
. To resolve this, we es-

timate µs,a
k,h with an error proportional to σs,a

k,h, ensuring
C/σs,a

k,h = 1. Although the correctness may not hold due
to σs,a

k,h > σs,a
k,h, we can bound σs,a

k,h ≤ σs,a
k,h +

√
7b and

suppress the extra error by setting b and the parameter c
in QVI-4 as small constants. Ultimately, QVI-4 can ob-
tain ϵ-optimal policies, V-value functions and Q-value func-
tions (Theorem 4.5) with Õ(SAH2.5/ϵ) queries to the quan-
tum generative oracle G (Theorem 4.6), which holds for
ϵ = O(1/

√
H). The proof of the correctness and complex-

ity of QVI-4 is presented in Appendix B.2.

Theorem 4.5 (Correctness of QVI-4). The outputs π̂,
{V̂h}Hh=0 and {Q̂h}Hh=0 satisfy that

V ∗
h − ϵ ≤ V̂h ≤ V π̂

h ≤ V ∗
h , (9)

Q∗
h − ϵ ≤ Q̂h ≤ Qπ̂

h ≤ Q∗
h, (10)

for all h ∈ [H] with a success probability at least 1− δ.

Theorem 4.6 (Complexity of QVI-4). The quantum query
complexity of QVI-4 in terms of the quantum generative
oracle G is

O
(
SA(

H2.5

ϵ
+H3) log2(

H1.5

ϵ
) log(log(

H

ϵ
)HSA/δ)

)
.

(11)

4.3. Quantum Lower Bound for Finite-horizon MDPs

We now state the quantum lower bound of the sample com-
plexity for obtaining the ϵ-optimal policy, V-value func-

1The result in (Sidford et al., 2018) was originally presented for
the time-independent case. We adapt it here for the time-dependent
case with an additional factor of H .

tions and Q-value functions for a finite-horizon and time-
dependent MDPM. Our proof idea is to reduce an infinite-
horizon MDP problem to a finite-horizon MDP problem.
Specifically, we show that, if there is an algorithm that can
obtain an ϵ-optimal V-value function for the finite-horizon
MDP, it also can give an 2ϵ-optimal V-value function to the
infinite-horizon MDP. Therefore, the lower bound of solv-
ing finite-horizon MDP with a quantum generative oracle
inherits from that of the infinite-horizon MDP. The full anal-
ysis is presented in Appendix B.3. Note that our achievable
quantum sample complexities of QVI-3 and QVI-4 differ
from the quantum lower bounds only by a factor of H or
H1.5, up to logarithmic factors.

Theorem 4.7 (Lower bounds for finite-horizon MDPs). Let
S and A be finite sets of states and actions. Let H > 0 be a
positive integer and ϵ ∈ (0, 1/2) be an error parameter. We
consider the following time-dependent and finite-horizon
MDP M = (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H), where rh ∈

[0, 1]S×A for all h ∈ [H].

• Given access to a classical generative oracle G, any
algorithm K, which takes M as an input and out-
puts ϵ-approximations of {Q∗

h}
H−1
h=0 {V ∗

h }
H−1
h=0 or π∗

with probability at least 0.9, must call G at least
Ω
(

SAH3

ϵ2 log3(ϵ−1)

)
times on the worst case of input M.

• Given access to a quantum generative oracle G, any
algorithmK, which takesM as an input and outputs ϵ-
approximations of {Q∗

h}
H−1
h=0 with probability at least

0.9, must call G at least Ω
(

SAH1.5

ϵ log1.5(ϵ−1)

)
times on the

worst case of inputM. Besides, any algorithm K that
outputs ϵ-approximations of {V ∗

h }
H−1
h=0 or π∗ with prob-

ability at least 0.9 must call G at least Ω
(

S
√
AH1.5

ϵ log1.5(ϵ−1)

)
times on the worst case of inputM.

5. Conclusion
To the best of our knowledge, this is the first work to
rigorously study quantum algorithms for solving “time-
dependent” and “finite-horizon” MDPs. In the exact dynam-
ics setting, our quantum value iteration algorithm QVI-1
achieves a quadratic speedup in the size of the action space
(A) for computing the optimal policy and V-value function,
while QVI-2 achieves an additional speedup in the size of
the state space (S) for computing near-optimal policy and
V-value functions. Besides, our classical lower bounds show
that no classical algorithm can attain comparable query com-
plexities of QVI-1 and QVI-2 in terms of the dependences
on S and A. In the generative model setting, our algorithms
QVI-3 and QVI-4 achieve speedups in A, time horizon
(H), and approximation error (ϵ) over the SOTA classical
algorithm and are asymptotically optimal, up to log terms,
for computing near-optimal policies, V-value functions, and
Q-value functions, provided a constant time horizon.

9

Quantum Algorithms for Finite-horizon Markov Decision Processes

Acknowledgements
We especially thank Zongqi Wan for providing insightful
guidance on quantum subroutines, including quantum maxi-
mum searching (Durr & Hoyer, 1999) and quantum mean
estimation algorithms (Montanaro, 2015), and for suggest-
ing helpful references, including (Cornelissen, 2018). The
work of John C.S. Lui was supported in part by the RGC
SRFS2122-4S02.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and AI via quantum computing. There
are many potential societal consequences of our work, none
of which we feel must be specifically highlighted here.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, United States, Tech. Rep, 32:96,
2019.

AI, G. Q. et al. Quantum error correction below the surface
code threshold. Nature, 2024.

Alsheikh, M. A., Hoang, D. T., Niyato, D., Tan, H.-P., and
Lin, S. Markov decision processes with applications in
wireless sensor networks: A survey. IEEE Communica-
tions Surveys and Tutorials, 17(3):1239–1267, 2015.

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C.,
Barends, R., Biswas, R., Boixo, S., Brandao, F. G., Buell,
D. A., et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510,
2019.

Beals, R., Buhrman, H., Cleve, R., Mosca, M., and de Wolf,
R. Quantum lower bounds by polynomials. Journal of
the ACM, 48(4):778—-797, 2001.

Bellman, R. Dynamic programming and stochastic control
processes. Information and control, 1(3):228–239, 1958.

Bellman, R. Dynamic programming treatment of the travel-
ling salesman problem. Journal of the ACM, 9(1):61–63,
1962.

Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. Quantum
amplitude amplification and estimation. Contemporary
Mathematics, 305:53–74, 2002.

Chakraborty, S., Gilyén, A., and Jeffery, S. The power of
block-encoded matrix powers: Improved regression tech-
niques via faster Hamiltonian simulation. In Proceedings

of the 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019), pp. 33:1–33:14,
Patras, Greece, 2019.

Chen, Y. and Wang, M. Lower bound on the com-
putational complexity of discounted markov decision
problems, 2017. URL https://arxiv.org/abs/
1705.07312.

Cherrat, E. A., Kerenidis, I., and Prakash, A. Quantum
reinforcement learning via policy iteration. Quantum
Machine Intelligence, 5(2):30, 2023.

Cornelissen, A. Quantum gradient estimation and its ap-
plication to quantum reinforcement learning. Master’s
thesis, Technische Universiteit Delft, 2018.

Draper, T. G. Addition on a quantum computer. arXiv
preprint arXiv:quant-ph/0008033, 2000.

Durr, C. and Hoyer, P. A quantum algorithm for finding
the minimum. arXiv preprint arXiv:quant-ph/9607014,
1999.

Feng, X., Wan, Z., Fu, H., Liu, B., Yang, M., Koushik,
G. A., Hu, Z., Wen, Y., and Wang, J. Natural language
reinforcement learning. arXiv preprint arXiv:2411.14251,
2024.

Gilyén, A., Arunachalam, S., and Wiebe, N. Optimizing
quantum optimization algorithms via faster quantum gra-
dient computation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2019), pp. 1425–1444, San Diego, CA, United States,
2019.

Giovannetti, V., Lloyd, S., and Maccone, L. Quantum ran-
dom access memory. Physical Review Letters, 100(16):
160501, 2008.

Grover, L. K. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth An-
nual ACM Symposium on Theory of Computing (STOC
1996), pp. 212–219, Philadelphia, PA, United States,
1996.

He, J., Yang, F., Zhang, J., and Li, L. Quantum algorithm
for online convex optimization. Quantum Science and
Technology, 7(2):025022, 2022.

He, J., Liu, C., Liu, X., Li, L., and Lui, J. C. Quantum
algorithm for online exp-concave optimization. In Inter-
national Conference on Machine Learning, pp. 17946–
17971. PMLR, 2024.

Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. Random
generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science, 43:169–188,
1986.

10

https://arxiv.org/abs/1705.07312
https://arxiv.org/abs/1705.07312

Quantum Algorithms for Finite-horizon Markov Decision Processes

Jordan, S. P. Fast quantum algorithm for numerical gradient
estimation. Physical review letters, 95(5):050501, 2005.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Breaking
the sample size barrier in model-based reinforcement
learning with a generative model. In Proceedings of
the Advances in Neural Information Processing Systems
(NIPS 2020), pp. 12861–12872, Vancouver, BC, Canada,
2020.

Liu, C., Guan, C., He, J., and Lui, J. Quantum algorithms for
non-smooth non-convex optimization. Advances in Neu-
ral Information Processing Systems, 37:35288–35312,
2024.

Magniez, F., Nayak, A., Roland, J., and Santha, M. Search
via quantum walk. In Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing (STOC
2007), pp. 575–584, San Diego, CA, United States, 2007.

Matignon, L., Jeanpierre, L., and Mouaddib, A.-I. Coordi-
nated multi-robot exploration under communication con-
straints using decentralized Markov decision processes.
In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence (AAAI 2012), pp. 2017–2023,
Toronto, ON, Canada, 2012.

Montanaro, A. Quantum speedup of Monte Carlo meth-
ods. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 471(2181):20150301,
2015.

Naguleswaran, S. and White, L. B. Quantum search in
stochastic planning. In Noise and Information in Nano-
electronics, Sensors, and Standards III, pp. 34–45, Austin,
TX, United States, 2005.

Naguleswaran, S., White, L., and Fuss, I. Automated plan-
ning using quantum computation. In Proceedings of the
Sixteenth International Conference on International Con-
ference on Automated Planning and Scheduling, pp. 418–
421, Cumbria, UK, 2006.

Nayak, A. and Wu, F. The quantum query complexity
of approximating the median and related statistics. In
Proceedings of the Thirty-First Annual ACM Symposium
on Theory of Computing (STOC 1999), pp. 384–393,
Atlanta, GA, United States, 1999.

Nielsen, M. A. and Chuang, I. L. Quantum Computation
and Quantum information. Cambridge University, 2010.

Oliveira, D. S. and Ramos, R. V. Quantum bit string com-
parator: Circuits and applications. Quantum Computers
and Computing, 7(1):17–26, 2007.

Powell, W. B. Approximate Dynamic Programming: Solving
the Curses of Dimensionality. John Wiley and Sons, 2007.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
2014.

Ruiz-Perez, L. and Garcia-Escartin, J. C. Quantum arith-
metic with the quantum Fourier transform. Quantum
Information Processing, 16(6):152, 2017.

Shor, P. W. Algorithms for quantum computation: Fiscrete
logarithms and factoring. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science
(FOCS 1994), pp. 124–134, Santa Fe, NM, United States,
1994.

Sidford, A. and Zhang, C. Quantum speedups for stochastic
optimization. Advances in Neural Information Processing
Systems, 36:35300–35330, 2023.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving Markov
decision processes with a generative model. In Proceed-
ings of the 32nd International Conference on Neural In-
formation Processing Systems (NIPS 2018), pp. 5192–
5202, Montréal, QC, Canada, 2018.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving Markov
decision processes. Naval Res. Logist., 70(5):423–442,
2023.

Vedral, V., Barenco, A., and Ekert, A. Quantum networks
for elementary arithmetic operations. Physical Review A,
54(1):147–153, 1996.

Wan, Z., Zhang, Z., Li, T., Zhang, J., and Sun, X. Quantum
multi-armed bandits and stochastic linear bandits enjoy
logarithmic regrets. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 10087–
10094, 2023.

Wang, D., Sundaram, A., Kothari, R., Kapoor, A., and
Roetteler, M. Quantum algorithms for reinforcement
learning with a generative model. In Proceedings of
the 38th International Conference on Machine Learning
(ICML 2021), pp. 10916–10926, 2021.

Wang, S., Li, X., Lee, W. J. B., Deb, S., Lim, E., and
Chattopadhyay, A. A comprehensive study of quantum
arithmetic circuits. arXiv preprint arXiv:2406.03867,
2024.

Wiedemann, S., Hein, D., Udluft, S., and Mendl, C. Quan-
tum policy iteration via amplitude estimation and Grover
search–towards quantum advantage for reinforcement
learning. arXiv preprint arXiv:2206.04741, 2022.

11

Quantum Algorithms for Finite-horizon Markov Decision Processes

A. Exact Dynamics Setting
A.1. Classical Algorithm for Finite-horizon MDPs

For the completeness, we restate the classical value iteration (or backward induction) algorithm in (Puterman, 2014).

Algorithm 6 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs
1: Require: MDPM.
2: Initialize: VH ← 0
3: for h := H − 1, . . . , 0 do
4: for each s ∈ S do
5: for each a ∈ A do
6: Qh(s, a) = rh(s, a) +

∑
s′∈S

Ph|s,a(s
′)Vh+1(s

′)

7: end for
8: π(s, h) = argmax

a∈A
Qh(s, a)

9: Vh(s) = Qh

(
s, π(s, h)

)
10: end for
11: end for
12: Return: π, V0

A.2. Classical Lower Bounds

Proof. We define two sets of hard instances of finite-horizon MDP M1 and M2 which are the same as those in Section 4.1 in
(Chen & Wang, 2017). Specifically, suppose that the state space S can be divided into four parts S = SU ∪SG∪SB ∪{sN},
where the cardinalities of the sets SU ,SG and SB satisfy SU = SG = SB = S−1

3 , and sN is a single action. Let the action
space be A = AU ∪ {aN}, where the cardinality of the set AU satisfies AU = A− 1 and aN is a single action. We now
construct two sets of MDP instances M1 and M2 that are hard to distinguish.

• Let M1 be the set of instances satisfying the following conditions.

– Ph = P ∈ [0, 1]S×A×S for all h ∈ [H] and rh = r ∈ [0, 1]S×A, where H ≥ 2;
– For any (s, a) satisfies s ∈ SG ∪ SB ∪ {sN} and a ∈ A, the transition probabilities satisfy P (s′|s, a) = 1 if
s′ = s and P (s′|s, a) = 0 if s′ ̸= s, i.e., the states in SG ∪ SB ∪ {sN} are absorbing states. Besides, the reward
functions satisfy

r(s, a) =


1, if s ∈ SG, a ∈ A
0, if s ∈ SB , a ∈ A
1
2 , if s = sN , a ∈ A

. (12)

– For any a ∈ AU and s ∈ SU , the transition probability satisfies P (s′|s, a) = 1 if s′ ∈ SB and P (s′|s, a) = 0
otherwise, while the reward satisfies r(s, a) = 0.

– For any a = aN and s ∈ SU , the transition probability satisfies P (s′|s, a) = 1 if s′ = sN and P (s′|s, a) = 0
otherwise, while the reward satisfies r(s, a) = 0.

• Let M2 be the set of instances that are different from those in M1 at one state-action pair, which we denote by
(s, a) ∈ SU ×AU .

– When (s, a) = (s, a), the transition probability satisfies P (s′|s, a) = 1 for some s′ ∈ SG and P (s′|s, a) = 0
otherwise, while the reward satisfies r(s, a) = 0.

From the above definitions, we can know that the cardinalities ofM1 andM2 are |SB ||SU×AU | and |SU×AU |×|SB ||SU×AU |,
respectively. We now compute the optimal V-value function V ∗

0,M1
for any finite-horizon MDPM1 ∈M1.

• For s ∈ SG, V ∗
H−1,M1

(s) = maxa∈A{r(s, a) + PT
H|s,aV

∗
H,M1

} = 1, because V ∗
H,M1

= 0. Further, since s is an
absorbing state, V ∗

h,M1
(s) = 1 + V ∗

h+1,M1
(s) = H − h. Hence, we can compute V ∗

0,M1
(s) = H .

12

Quantum Algorithms for Finite-horizon Markov Decision Processes

• For s ∈ SB , since r(s, a) = 0 for all a ∈ A and s is an absorbing state, we can compute V ∗
h,M1

(s) = 0 for all h ∈ [H].

• When s = sN , since r(s, a) = 1
2 for all a ∈ A and s is also an absorbing state, we can compute V ∗

h,M1
(s) =

1
2 + V ∗

h+1,M1
(s) = H−h

2 and V ∗
0,M1

(s) = H
2 .

• For s ∈ SU , we can compute V ∗
H−1,M1

(s) = maxa∈A{r(s, a)} = 0. Further, by the Bellman optimality equation
(Bellman, 1958), we can compute

V ∗
H−2,M1

(s) = max
a∈A
{r(s, a) +

∑
s′∈S

P (s′|s, a)V ∗
H−1,M1

(s′)}

= max{V ∗
H−1,M1

(s)1{s ∈ SB}, V ∗
H−1,M1

(sN)}

= max{0, 1
2
}.

(13)

The second line comes from the fact that r(s, a) = 0 for any a ∈ A and state s will transition to sN if a = aN
or transition to some state s ∈ SB if a ∈ AU . By induction, we know that V ∗

h,M1
(s) = max{V ∗

h+1,M1
(s)1{s ∈

SB}, V ∗
h+1,M1

(sN)} = max{0, H−h+1
2 } and V ∗

0,M1
(s) = H−1

2 .

Similarly, we can compute the optimal V-value function V ∗
0,M2

for any finite-horizon MDPM2 ∈ M2. SinceM2 only
differs fromM1 on the state-action pair (s, a) ∈ SU × AU and the states s ∈ SG × SB × {sN} are absorbing states,
V ∗
h,M2

(s) only differs from V ∗
h,M1

(s) on state s. Specifically, V ∗
H−1,M2

(s) = maxa∈A{r(s, a)} = 0 and

V ∗
h,M2

(s) = max
a∈A
{r(s, a) +

∑
s′∈S

P (s′|s, a)V ∗
h+1,M2

(s′)}

= max{V ∗
h+1,M2

(s)1{s ∈ SB}, V ∗
h+1,M2

(s)1{s ∈ SG}, V ∗
h+1,M2

(sN)}

= max{0, H − h+ 1,
H − h+ 1

2
}

= H − h+ 1.

(14)

The first line comes from the Bellman optimality equation (Bellman, 1958). The second line comes from the fact that
r(s, a) = 0 for all a ∈ A and the state s will transition to some state s′ ∈ SB , s′ ∈ SG or s′ = sN under the action
a ∈ AU \ {a}, a = a or a = aN . Hence, it implies that V ∗

0,M2
(s) = H − 1. However, V ∗

0,M1
(s) = H−1

2 . Therefore, we
can see that

∥∥V ∗
0,M1

− V ∗
0,M2

∥∥
∞ = H−1

2 . Using the same proof in Section 5.2 in (Chen & Wang, 2017), we can know that,
to achieve H−1

4 -optimal V0 with high probability, any algorithm must distinguishM1 fromM2, requiring to search for two
discrepancies in an array of size |SU ×AU × SB | = Ω(S2A) by quering the classical oracle OM. Therefore, given the
classical oracle OM, the classical lower bound of query complexity for computing an ϵ-optimal V0 for the time-independent
and finite-horizon MDP is Ω(S2A) for ϵ ∈ (0, H−1

4). This implies the classical lower bound of query complexity for
obtaining an ϵ-optimal policy or ϵ-optimal V-value functions for the time-dependent and finite-horizon MDP is Ω(S2A).

A.3. Correctness, Complexity and Qubit Cost of QVI-1 (Algorithm 1)

A.3.1. CORRECTNESS OF QVI-1 (PROOF OF THEOREM 3.5)
Proof. First, we consider the failure probability of the algorithm to achieve above goal. Every QMS is performed with
maximum failure probability ζ = δ/(SH) and QMS is called SH times when running Algorithm 1 one time. By the union
bound, the probability that there exists an incorrect output is at most δ.

Now, we assume the ideal scenario when QMS is always successful to find the action a∗ = argmaxa∈A Q̂h,s(a), i.e.,
π̂(s, h) = argmaxa∈A Q̂h,s(a). Note that we assume V̂H(s) = 0 for all s ∈ S. Then, we have Q̂H−1,s(a) = rH−1(s, a)

for any policy π, indicating that Q̂H−1,s(a) = Q∗
H−1(s, a) = Qπ̂

H−1(s, a).

Assume that with our policy π̂(s, h) = argmaxa∈A Q̂h,s(a) for all s ∈ S, h ∈ [H], we have Q̂h,s(a) = Q∗
h(s, a) =

Qπ̂
h(s, a) for all s ∈ S, a ∈ A, h ∈ [H]. Besides, we define π̂h(a|s) as the probability that the agent choose action a in

the state s at time h. Note that π̂h(a|s) = 1 if a = π̂(s, h) and π̂h(a|s) = 0 otherwise. By Bellman equations, we have

13

Quantum Algorithms for Finite-horizon Markov Decision Processes

V π̂
h (s) =

∑
a∈AQ

π̂
h(s, a)π̂h(a|s) and Qπ̂

h(s, a) = rh(s, a) + PT
h|s,aV

π̂
h+1. Then, we can know that, for all s ∈ S and

h ∈ [H],

V ∗
h (s) = max

π̂h

max
π̂h+1···π̂H−1

∑
a∈A

Qπ̂
h(s, a)π̂h(a|s)

= max
π̂h

∑
a∈A

Q∗
h(s, a)π̂h(a|s)

= Q∗
h

(
s, π̂(s, h)

)
= Q̂h,s

(
π̂(s, h)

)
= V̂h(s).

(15)

Besides, since Q∗
h(s, π̂(s, h)) = Qπ̂

h(s, π̂(s, h)) by the assumption, then V ∗
h (s) = V π̂

h (s) for all s ∈ S and h ∈ [H].
Similarly, assume that with our policy π̂(s, h) = argmaxa∈A Q̂h,s(a) for all s ∈ S, h ∈ [H], we have V̂h(s) = V ∗

h (s) =
V π̂
h (s) for all s ∈ S, h ∈ [H]. Then, we have

Q∗
h(s, a) = rh(s, a) + max

π

∑
s′∈S

Ph|s,a(s
′)V π

h+1(s
′)

= rh(s, a) +
∑
s′∈S

Ph|s,a(s
′)V ∗

h+1(s
′)

= rh(s, a) +
∑
s′∈S

Ph|s,a(s
′)V̂h+1(s

′)

= Q̂h,s(a).

(16)

Note that we also have V̂h = V π̂
h for all h ∈ [H]. Then, it also holds that Q∗

h = rh +PT
h|s,aV̂h+1 = rh +PT

h|s,aV
π̂
h+1 = Qπ̂

h

Since Q̂H−1,s(a) = Q∗
H−1(s, a) = Qπ̂

H−1(s, a) for all s ∈ S, a ∈ A, then we can know that V̂H−1(s) = V ∗
H−1(s) =

V π̂
H−1(s) for all s ∈ S. Furthermore, since V̂H−1(s) = V ∗

H−1(s) = V π̂
H−1(s) holds for all s ∈ S, then we can

deduce that Q̂H−2,s(a) = Q∗
H−2(s, a) = Qπ̂

H−2(s, a) for all s ∈ S and a ∈ A. In the end, we can conclude that
V̂0(s) = V ∗

0 (s) = V π̂
0 (s) for all s ∈ S which implies π̂ is an optimal policy.

A.3.2. COMPLEXITY OF QVI-1 (PROOF OF THEOREM 3.6)

Proof. We first assume that all QMS are successful to find the optimal actions, up to the specified error, because the
probability that this does not hold is at most δ. Let C be the complexity of QVI-1(M, δ) as if all QMS are carried out with
maximum failure probabilities set to constant. Then, since the actual maximum failure probabilities are set to ζ = δ/(SH),
the actual complexity of QVI-1(M, δ) is

O
(
C log(SH/δ)

)
. (17)

Now, we check each line of QVI-1(M, δ) to bound C.

In line 4, we encode the vector V̂h+1 to an oracle BV̂h+1
. This process does not need to query OQM and only needs to

access the classical vector V̂h+1. Therefore, the query complexity of BV̂h+1
in terms of OQM is O(1).

In line 5, we need to construct the quantum oracle BQ̂h,s
with OQM. Since we need to obtain |Ph|s,a(s

′)⟩ for all s′ ∈ S
and calculate the weighted sum |

∑
s′∈S Ph|s,a(s

′)V̂h+1(s
′)⟩, it requires O(S) query cost of the oracle OQM. Note that

the quantum addition and quantum multiplication can be performed by various quantum circuits, such as quantum Fourier
transform techniques (Ruiz-Perez & Garcia-Escartin, 2017; Draper, 2000). Therefore, the query complexity of BQ̂h,s

in
terms of OQM is O(S).

In line 6, we can use quantum maximum searching algorithm QMS in Theorem 3.4, resulting in a query cost of order
O
(√
A
)

to the oracle BQ̂h,s
for all s ∈ S in each loop h ∈ [H].

Therefore, it induces an overall query cost of C = O
(
S2
√
AH

)
to the oracle OQM. Combining with (17), the overall

14

Quantum Algorithms for Finite-horizon Markov Decision Processes

quantum query complexity of QVI-1(M, δ) in terms of OQM is

O
(
S2
√
AH log(SH/δ)

)
. (18)

A.3.3. ANALYSIS ON THE COST OF QUBIT RESOURCES

Considering that qubits are still scarce resources in a quantum computer, it is necessary to minimize the qubits resources
required in a quantum algorithm. Note that the line 5 of Algorithm 1 is the main source of consuming qubits in the
whole algorithm. Constructing the oracle BQ̂h,s

for all s ∈ S and h ∈ [H] requires a large number of auxiliary qubits.

This is because the process involves storing information about the vector V̂h+1 ∈ RS and the transition probabilities
Ph|s,a(s

′) for all s′ ∈ S, which are obtained by querying the quantum oracles BV̂h+1
and OQM. After encoding the

classical information into qubits, we need to compute the weighted sum
∑

s′∈S Ph|s,a(s
′)V̂h+1(s

′). This process requires
(non-modular) quantum adder(Ruiz-Perez & Garcia-Escartin, 2017; Draper, 2000; Vedral et al., 1996) and (non-modular)
quantum multiplier (Ruiz-Perez & Garcia-Escartin, 2017; Vedral et al., 1996) to compute the additions and multiplications
with additional auxiliary qubits. Specifically, with the fixed-point representation, (Ruiz-Perez & Garcia-Escartin, 2017)
constructs quantum circuits of a non-modular quantum adder UqAdd : |Bi[a]⟩q |Bi[b]⟩q+1 7→ |Bi[a]⟩q |Bi[a] + Bi[b]⟩q+1 and
a non-modular quantum multiplier UqMul : |Bi[a]⟩q |Bi[b]⟩q |0⟩2q 7→ |Bi[a]⟩q |Bi[b]⟩q |Bi[a]Bi[b]⟩2q , which can compute the
non-modular sum and multiplication of two non-negative real numbers a and b. We refer readers to (Wang et al., 2024) for a
comprehensive overview of the existing work on quantum arithmetic circuits.

Inspired by the quantum circuit for computing the controlled weighted sum proposed in Section 8 in (Ruiz-Perez & Garcia-
Escartin, 2017), we design a QFT-based circuit to reduce the qubits consumption in constructing the oracle BQ̂h,s

. We first
prepare the following qubits

|a⟩ |s⟩ |h⟩ |0⟩⊗4q+qs+1
, (19)

where qs = ⌈log2(S)⌉. Then we apply the rotation matrix Us′ to transform the |0⟩ to the target state |s′⟩. Since we encode
the state space into orthonormal bases, then Us′ is unitary. Hence, it returns the output state

|a⟩ |s⟩ |h⟩ |s′⟩ |0⟩⊗4q+1
. (20)

By applying the unitary oracle OQM and BV̂h+1
, we can obtain the following state

|a⟩ |s⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ |Bi[V̂h+1(s

′)]⟩ |0⟩⊗q+1
. (21)

Then we compute the quantum Fourier transform of |0⟩⊗q+1 where

QFT |0⟩⊗q+1
=

1√
2q+1

2q+1−1∑
k=0

ei
2π0k

2q+1 |k⟩ = |ϕ(0)⟩ , (22)

we obtain the output state

|a⟩ |s⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ |Bi[V̂h+1(s

′)]⟩ |ϕ(0)⟩ . (23)

Then we apply the multiplication block U2−pPh|s,a(s′)V̂h+1(s′)
defined in the Fig. 4 in (Ruiz-Perez & Garcia-Escartin, 2017)

and obtain the output state

|a⟩ |s⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ |Bi[V̂h+1(s

′)]⟩ |ϕ(0 + Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)])⟩ . (24)

By applying the unitary matrix B†
V̂h+1

, O†
QM and U†

s′ in sequence, we can undo the operations on auxiliary qubits and
obtain the following state

|a⟩ |s⟩ |h⟩ |0⟩⊗3q+qs |ϕ(0 + Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)])⟩ . (25)

We can repeat the above operations for all s′ ∈ S and obtain

|a⟩ |s⟩ |h⟩ |0⟩⊗3q+qs |ϕ(0 +
∑
s′∈S

Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)])⟩ . (26)

15

Quantum Algorithms for Finite-horizon Markov Decision Processes

By applying the inverse quantum Fourier transform on the state |ϕ(0 +
∑

s′∈S Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)])⟩, we can obtain

|a⟩ |s⟩ |h⟩ |0⟩⊗3q+qs |
∑
s′∈S

Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)]⟩ . (27)

Since
∑

s′∈S Ph|s,a(s
′) = 1 and Ph|s,a(s

′) ∈ [0, 1] for all s′ ∈ S, there is no overflow when computing the weighted sum.
Hence, the weighted sum is non-modular. Further, we apply the rotation matrix Us′ and the oracle OQM in sequence to
obtain the state

|a⟩ |s⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ |0⟩⊗q |

∑
s′∈S

Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)]⟩ . (28)

Then we apply the quantum adder UqAdd to obtain the state

|a⟩ |s⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ |0⟩⊗q |Bi[rh(s, a)] +

∑
s′∈S

Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)]⟩ . (29)

Since there are q + 1 qubits in the last register in (28), then the sum of Bi[rh(s, a)] and
∑

s′∈S Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)]

has no overflow and the result is non-modular. Therefore, by applying O†
QM and U†

s′ in sequence, we can obtain the state

|a⟩ |s⟩ |h⟩ |0⟩⊗3q+qs |Bi[rh(s, a)] +
∑
s′∈S

Bi[Ph|s,a(s
′)]Bi[V̂h+1(s

′)]⟩ . (30)

Remark: Since the above operations are unitary, then the oracle BQ̂h,s
constructed in this way is unitary. Instead of

preparing |Bi[Ph|s,a(1)]⟩ |Bi[V̂h+1(1)]⟩ · · · |Bi[Ph|s,a(S)]⟩ |Bi[V̂h+1(S)]⟩ |0⟩⊗q+1 and computing the weighted sum on the
last register, which requires q(2S + 1) + 1 qubits as shown in Section 8 in (Ruiz-Perez & Garcia-Escartin, 2017), our
method significantly reduces the number of required qubits, needing only 3q + 1 qubits to compute the weighted sum.
The main idea is to reuse the 2q auxiliary qubits |Bi[Ph|s,a(s

′)]⟩ |Bi[V̂h+1(s
′)]⟩ by leveraging the invertible property of the

unitary matrices OQM and BV̂h+1
for all h ∈ [H]. However, this comes at the cost of an additional S queries to O†

QM. We
summarize the above results in creating the oracle BQ̂h,s

in the following Theorem A.1.

Theorem A.1 (Number of Qubits Required for the Construction of Oracle BQ̂h,s
). The total number of qubits required

for creating a quantum oracle BQ̂h,s
for each h ∈ [H] and s ∈ S in Algorithm 1 is 4q + 2qs + qh + qa + 1, among which

3q + 2qs + qh are auxiliary qubits, not counting the auxiliary qubits necessary to implement the oracle OQM and BV̂h+1

for all h ∈ [H], where qs = ⌈log2 S⌉, qa = ⌈log2A⌉ and qh = ⌈log2H⌉.
Theorem A.2 (Number of Qubits Required for QVI-1 (Algorithm 1)). The total number of qubits required for Algorithm 1
is 11q + 4qs + 2qh + 4qa + 2, not counting the auxiliary qubits necessary to implement the oracle OQM and BV̂h+1

for all
h ∈ [H], where qs = ⌈log2 S⌉, qa = ⌈log2A⌉ and qh = ⌈log2H⌉.

Proof. In line 6 of Algorithm 1, we apply QMS algorithm to achieve a quadratic speedup in searching the optimal action
which achieves maximum value of the vector Q̂h,s for all s ∈ S and h ∈ [H]. In this QMS algorithm, it requires an oracle
OQMS to mark the indexes a of the vector Q̂h,s which satisfy Q̂h,s(a) > Q̂h,s(a

′), where a′ is a threshold index, by flipping
the phase of the |a⟩. Therefore, the oracle OQMS is defined as

OQMS : |a⟩ |a′⟩ |−⟩ 7→ (−1)fa′ (a) |a⟩ |a′⟩ |−⟩ , (31)

where fa′(a) = 1 if Q̂h,s(a) > Q̂h,s(a
′) and fa′(a) = 0 otherwise, and |−⟩ = 1√

2
(|0⟩ − |1⟩). Figure 8 in (Oliveira

& Ramos, 2007) showed a way to construct the corresponding unitary quantum circuit of the oracle OQMS based on the
quantum bit string comparator (QBSC) UQBSC. Given two real number a and b, UQBSC works as

UQBSC : |Bi[a]⟩ |Bi[b]⟩ |0⟩⊗3(q−1) |0⟩ |0⟩ 7→ |Bi[a]⟩ |Bi[b]⟩ |ψ⟩ |x⟩ |y⟩ , (32)

where |ψ⟩ is a 3(q − 1)-qubit garbage state and the last two qubits store the comparison result. Specifically, we define that if
a = b then x = y = 0, if a > b then x = 1 and y = 0, and if a < b then x = 0 and y = 1. We restate the construction
process under the background of our algorithm here. The first step to construct OQMS is to prepare the following qubits

|a⟩ |0⟩⊗q |a′⟩ |0⟩⊗q |0⟩⊗3(q−1) |0⟩ |0⟩ |−⟩ . (33)

16

Quantum Algorithms for Finite-horizon Markov Decision Processes

Then we apply BQ̂h,s
created in line 5 to the first and third register and obtain the following state

|a⟩ |Bi[Q̂h,s(a)]⟩ |a′⟩ |Bi[Q̂h,s(a
′)]⟩ |0⟩⊗3(q−1) |0⟩ |0⟩ |−⟩ . (34)

Then we apply UQBSC to compare Q̂h,s(a) and Q̂h,s(a
′)

|a⟩ |Bi[Q̂h,s(a)]⟩ |a′⟩ |Bi[Q̂h,s(a
′)]⟩ |ψ⟩ |x⟩ |y⟩ |−⟩ . (35)

Further, we apply the controlled unitary matrix Uc = (I ⊗ σ1 ⊗ I)T (I ⊗ σ1 ⊗ I) to the last three qubits and obtain the
following state

(−1)x(1−y) |a⟩ |Bi[Q̂h,s(a)]⟩ |a′⟩ |Bi[Q̂h,s(a
′)]⟩ |ψ⟩ |x⟩ |y⟩ |−⟩ , (36)

where σ1 is the Pauli-X gate and T is the Tofolli gate. By applying U†
QBSC and B†

Q̂h,s
, we can undo the operations on

|Bi[Q̂h,s(a)]⟩ and |Bi[Q̂h,s(a
′)]⟩ and obtain the following state

(−1)x(1−y) |a⟩ |0⟩⊗q |a′⟩ |0⟩⊗q |0⟩⊗3(q−1) |0⟩ |0⟩ |−⟩ . (37)

From the above steps, we can see that the construction of the OQMS requires one query to BQ̂h,s
and one query to B†

Q̂h,s
as

shown in (34) and (37). By Theorem A.1, we know that it requires 4q + 2qs + qh + qa + 1 qubits to construct the oracle
BQ̂h,s

. Then it requires 2(4q+ 2qs + qh + qa + 1) + 2qa + 3(q− 1) + 3 = 11q+ 4qs + 2qh + 4qa + 2 qubits to construct
the oracle OQMS, among which 2(4q + 2qs + qh + qa + 1) + 3(q − 1) + 2 = 11q + 4qs + 2qh + 2qa + 1 are auxiliary
qubits.

A.4. Correctness and Complexity of QVI-2 (Algorithm 2)

A.4.1. PROOF OF THEOREM A.3

Theorem A.3. Let Ω be a finite set with cardinality N , p = (px)x∈Ω a discrete probability distribution over Ω. Suppose
we have access to a binary oracle Bp : |i⟩ |0⟩ 7→ |i⟩ |Bi[pi]⟩. By using O(1) invocations of the oracle Bp and B†

p, we can
implement a unitary oracle Ûp : CN ⊗ C2 → CN ⊗ C2 satisfying

Ûp : |i⟩ |0⟩ 7→ 1√
N

N∑
i=1

√
pi |i⟩ |0⟩+

√
N − 1

N

N∑
i=1

√
1− pi
N − 1

|i⟩ |1⟩ . (38)

Proof. First, we need to create the uniform superposition by applying Hadamard gates and query oracle Bp

|i⟩ |0⟩ H
⊗n

→ 1√
N

N∑
i=1

|i⟩ |0⟩ Bp→ 1√
N

N∑
i=1

|i⟩ |Bi[pi]⟩ . (39)

Second, we add a single auxiliary qubit and perform a controlled rotation Rp based on the value stored in |Bi[pi]⟩ defined as
Rp : |Bi[pi]⟩ |0⟩ 7→ |Bi[pi]⟩ (

√
pi |0⟩+

√
1− pi |1⟩):

I⊗Rp→ 1√
N

N∑
i=1

|i⟩ |Bi[pi]⟩
(√
pi |0⟩+

√
1− pi |1⟩

)
. (40)

Third, we undo the oracle Bp and drop the auxilliary qubit |0⟩ in Eq. (a) to obtain the desired result.

B†
p→ 1√

N

N∑
i=1

|i⟩ |0⟩ (√pi |0⟩+
√
1− pi |1⟩)

(a)
=

1√
N

N∑
i=1

√
pi |i⟩ |0⟩+

1√
N

N∑
i=1

√
1− pi |i⟩ |1⟩

=
1√
N

N∑
i=1

√
pi |i⟩ |0⟩+

√
N − 1

N

N∑
i=1

√
1− pi
N − 1

|i⟩ |1⟩ .

(41)

17

Quantum Algorithms for Finite-horizon Markov Decision Processes

Lemma A.4 (Powering lemma (Jerrum et al., 1986)). Let K be a classical or quantum algorithm designed to estimate a
quantity µ, where its output µ̃ satisfies |µ− µ̃| ≤ ϵ with probability at least 1− γ, for some fixed γ < 1/2. Then, for any
δ > 0, by repeating K O(log(1/δ)) times and taking the median of the outputs, one can obtain an estimate µ̂ such that
|µ̂− µ| < ϵ with probability at least 1− δ.

Theorem A.5 (Amplitude estimation (Brassard et al., 2002)). The amplitude estimation algorithm is designed to estimate
the amplitude a = ⟨ψ|P |ψ⟩ ∈ [0, 1] of a quantum state |ψ⟩. It takes the following inputs, a quantum state |ψ⟩, two unitary
operators: U = 2 |ψ⟩ ⟨ψ| − I and V = I − 2P , where P is some suitable projector, and an integer T , which determines the
number of repetitions. The algorithm outputs an estimate ã ∈ [0, 1] for the amplitude a. The estimate satisfies the error
bound:

|ã− a| ≤ 2π

√
a(1− a)
T

+
π2

T 2
, (42)

with a success probability of at least 8/π2. To achieve this, the unitary operators U and V are applied T times each.

A.4.2. COMPLETE VERSION OF QUANTUM MEAN ESTIMATION WITH BINARY ORACLE QMEBO

In Section 3, we provide a simplified version of QMEBO by hiding the details of some auxiliary states and operators. For
clarity, we provide a complete version in Algorithm 7. Based the Algorithm 7, the auxiliary state in line 5 of QMEBO in
Algorithm 3 should be

|Φ(1)⟩ = 1√
N

N∑
i=1

√
1− pi |i⟩ |1⟩ |Bi[fi]⟩ |0⟩ , (43)

and the auxiliary state in line 6 satisfies

|Φ(2)⟩ = 1√
N

N∑
i=1

√
pi(1− fi) |i⟩ |001⟩+

1√
N

N∑
i=1

√
1− pi |i⟩ |1⟩ |0⟩

(√
fi |0⟩+

√
1− fi |1⟩

)
(44)

A.4.3. PROOF OF THEOREM 3.7

Proof. We first show the correctness of Algorithm 3. Note that we obtain

|ψ(2)⟩ = 1√
N

N∑
i=1

√
pi |i⟩ |0⟩ |0⟩

(√
fi |0⟩+

√
1− fi |1⟩

)
+

√
N − 1

N
|Φ⟩ , (45)

where |Φ⟩ =
∑N

i=1

√
1−pi

N−1 |i⟩ |1⟩ |0⟩ (
√
fi |0⟩+

√
1− fi |1⟩). Besides, we have

⟨ψ(2)|P |ψ(2)⟩ = 1

N

N∑
i=1

pifi =
1

N
E[f(x)|x ∼ p] = 1

N
µ, (46)

where P = I ⊗ |000⟩ ⟨000|. Hence, by Theorem A.5, we know that we can obtain µk in each loop k ∈ [K] such that

∣∣∣∣∣µk −
1

N

N∑
i=1

pifi

∣∣∣∣∣ ≤ 2π

√
µ
N

(
1− µ

N

)
T

+
π2

T 2
, (47)

with probability at least 8/π2. Let µ̂ = N · µ̃, where µ̃ = Median(µ0, . . . , µK−1). By Lemma A.4, we know that µ̃ = µ̂/N
satisfies ∣∣∣∣∣ µ̂N − 1

N

N∑
i=1

pifi

∣∣∣∣∣ ≤ 2π

√
µ
N

(
1− µ

N

)
T

+
π2

T 2
, (48)

18

Quantum Algorithms for Finite-horizon Markov Decision Processes

Algorithm 7 Quantum Mean Estimation with Binary Oracles QMEBOδ(p
Tf,Bp, Bf , ϵ)

1: Require: Bp encoding a probability distribution p = (pi)i∈Ω on a finite set Ω with cardinality N , Bf encoding a
function f = (fi)i∈Ω where fi ∈ [0, 1], maximum error ϵ, maximum failure probability δ ∈ (0, 1).

2: Output: µ̂ satisfying |µ̂− pTf | ≤ ϵ
3: Initialize: K = O

(
log(1/δ)

)
, T = O

(√
N
ϵ +

√
N
ϵ

)
4: for k ∈ [K] do
5: create a quantum oracle Ûp with Bp and obtain the following state |ψ(0)⟩ = Ûp |0⟩ |0⟩:

|ψ(0)⟩ = Ûp |0⟩ |0⟩ = 1√
N

∑N
i=1

√
pi |i⟩ |0⟩+

√
N−1
N

∑N
i=1

√
1−pi

N−1 |i⟩ |1⟩.

6: Attach |0⟩⊗(q+1) qubits on |ψ(0)⟩ and apply Bf on |0⟩⊗q to obtain |ψ(1)⟩ = Bf |ψ(0)⟩ |0⟩⊗(q+1):

|ψ(1)⟩ = Bf |ψ(0)⟩ |0⟩⊗q+1

=
1√
N

N∑
i=1

√
pi |i⟩ |0⟩ |Bi[fi]⟩ |0⟩+

1√
N

N∑
i=1

√
1− pi |i⟩ |1⟩ |Bi[fi]⟩ |0⟩︸ ︷︷ ︸

=|Φ(1)⟩

.

7: Apply the controlled rotation Rf defined by Rf : |Bi[fi]⟩ |0⟩ 7→ |Bi[fi]⟩ (
√
fi |0⟩+

√
1− fi |1⟩) and undo the oracle

Bf :
|ψ(2)⟩ = (B†

f ⊗ I)(I ⊗Rf) |ψ(1)⟩

=
1√
N

N∑
i=1

√
pi |i⟩ |0⟩ |0⟩

(√
fi |0⟩+

√
1− fi |1⟩

)
+

1√
N

N∑
i=1

√
1− pi |i⟩ |1⟩ |0⟩

(√
fi |0⟩+

√
1− fi |1⟩

)
=

1√
N

N∑
i=1

√
pifi |i⟩ |000⟩+

1√
N

N∑
i=1

(
√
pi(1− fi) |i⟩ |001⟩+

√
1− pi |i⟩ |10⟩ (

√
fi |0⟩+

√
1− fi |1⟩))︸ ︷︷ ︸

=|Φ(2)⟩

.

8: Apply T iterations of amplitude estimation by setting |ψ⟩ = |ψ(2)⟩ , U = 2 |ψ⟩ ⟨ψ| − I and P = I ⊗ |000⟩ ⟨000| to
obtain µk

9: end for
10: Return: µ̂ = N ·Median({µk}k∈[K])

19

Quantum Algorithms for Finite-horizon Markov Decision Processes

with probability at least 1−δ for any δ > 0. We proceed to focus on the complexity cost of Algorithm 3. Note that µ ∈ [0, 1]
because fi ∈ [0, 1] for all i = 1, . . . , N . Hence, we further have that

2π

√
µ
N

(
1− µ

N

)
T

+
π2

T 2
< π2

(
1√
NT

+
1

T 2

)
, (49)

In order to let µ̂/N be an ϵ/N approximation of 1
N

∑N
i=1 pifi, it suffices to let

π2

(
1√
NT

+
1

T 2

)
≤ ϵ

N
, (50)

which is equivalent to ϵT 2−π2
√
NT−π2N ≥ 0. Then it suffices to let T = O

(√
N
ϵ +

√
N
ϵ

)
such that

∣∣ µ̂
N−

1
N

∑N
i=1 pifi

∣∣ ≤
ϵ/N . This implies that

∣∣µ̂−∑N
i=1 pifi

∣∣ ≤ ϵ.
By Theorem A.3, we know that the query complexity of Ûp in terms of Bp is O(1). Therefore, Algorithm 3 calls Bp and

Bf O

((√
N
ϵ +

√
N
ϵ

)
log(1/δ)

)
times each.

A.4.4. PROOF OF LEMMA A.6

Lemma A.6. QVI-2(M, ϵ, δ) holds that T h
π̂ (V̂h+1)− ϵ

H ≤ V̂h ≤ T
h
π̂ (V̂h+1) for all h ∈ [H] with a success probability at

least 1− δ.

Proof. The analysis on success probability is the same as Theorem 3.8 and hence we omit it here. For all s ∈ S, a ∈ A and
h ∈ [H] we have that ∣∣∣∣∣zh,s(a)H

+
ϵ

2H2
− PT

h|s,aṼh+1

∣∣∣∣∣≤ ϵ

2H2
. (51)

This implies that ∣∣∣zh,s(a) + ϵ

2H
− PT

h|s,aV̂h+1

∣∣∣ ≤ ϵ

2H
, (52)

and
PT
h|s,aV̂h+1 −

ϵ

H
≤ zh,s(a) ≤ PT

h|s,aV̂h+1. (53)

Now, for all s ∈ S, a ∈ A and h ∈ [H], we let

Q̃h(s, a) := rh(s, a) + PT
h|s,aV̂h+1. (54)

Note that T h
π̂ (V̂h+1) = Q̃h

(
s, π̂(s, h)

)
= rh(s, π̂(s, h)) + PT

h|s,π̂(s,h)V̂h+1. Therefore, for all s ∈ S, a ∈ A and h ∈ [H]
we have

Q̂h,s(a)− Q̃h(s, a) = max{rh(s, a) + zh,s(a), 0} −
(
rh(s, a) + PT

h|s,aV̂h+1

)
. (55)

On one hand, since zh,s(a) ≤ PT
h|s,aV̂h+1 and V̂h+1 ≥ 0, then we have

Q̂h,s(a)− Q̃h(s, a) ≤ max
{
rh(s, a) + PT

h|s,aV̂h+1, 0
}
−
(
rh(s, a) + PT

h|s,aV̂h+1

)
= rh(s, a) + PT

h|s,aV̂h+1 −
(
rh(s, a) + PT

h|s,aV̂h+1

)
= 0.

(56)

On the other hand, we also have

Q̂h,s(a)− Q̃h(s, a) = max{rh(s, a) + zh,s(a), 0} −
(
rh(s, a) + PT

h|s,aV̂h+1

)
≥ rh(s, a) + zh,s(a)−

(
rh(s, a) + PT

h|s,aV̂h+1

)
= zh,s(a)− PT

h|s,aV̂h+1

≥ − ϵ

H
.

(57)

20

Quantum Algorithms for Finite-horizon Markov Decision Processes

The last line comes from Eq. (53). In summary, for all s ∈ S, a ∈ A and h ∈ [H], we have

− ϵ

H
≤ Q̂h,s(a)− Q̃h(s, a) ≤ 0. (58)

Hence, by letting a = π̂(s, h), we will have

− ϵ

H
≤ V̂h − T h

π̂ (V̂h+1) = Q̂h,s

(
π̂(s, h)

)
− Q̃h

(
s, π̂(s, h)

)
≤ 0, (59)

T h
π̂ (V̂h+1)−

ϵ

H
≤ V̂h ≤ T h

π̂ (V̂h+1). (60)

A.4.5. MONOTONICITY PROPERTY OF THE VALUE OPERATOR ASSOCIATED WITH A POLICY T h
π (·) IN DEFINITION 2.1

Suppose two vectors u and v satisfy u ≤ v ∈ RS , then it implies that u(s) ≤ v(s) for all s ∈ S. Consequently, we must
have, for any fixed policy π and for all s ∈ S and h ∈ [H],∑

s′∈S
Ph|s,π(s,h)(s

′)u(s′) ≤
∑
s′∈S

Ph|s,π(s,h)(s
′)v(s′). (61)

Further, we can know that

r
(
s, π(s, h)

)
+
∑
s′∈S

Ph|s,π(s,h)(s
′)u(s′) ≤ r

(
s, π(s, h)

)
+
∑
s′∈S

Ph|s,π(s,h)(s
′)v(s′). (62)

By the definitions of T h
π (u) and T h

π (v), this implies that [T h
π (u)]s ≤ [T h

π (v)]s for all s ∈ S and h ∈ [H]. In other
words, T h

π (u) ≤ T h
π (v). This implies that the operator T h

π is monotonically increasing for any π and h ∈ [H] in the
coordinate-wise order.

A.4.6. CORRECTNESS OF QVI-2 (PROOF OF THEOREM 3.8)

Proof. We start by examining the failure probability. The approach is similar to the analysis in Theorem 3.5, except that we
must now account for quantum oracles that can fail. To address this, we use fundamental properties of unitary matrices,
particularly a quantum analog of the union bound, which states that the failure probabilities of quantum operators (unitary
matrices) combine linearly.

In line 5, since Bzh,s
is constructed using QMEBO with a failure probability ζ, it is within 2Aζ of its ”ideal version.”

Specifically, this means that there exists an ideal quantum oracle Bideal
zh,s

encoding H ˜PT
h|s,aṼh+1 − ϵ/2H , where ˜PT

h|s,aṼh+1

satisfies
∥∥∥∥ ˜PT

h|s,aṼh+1 − PT
h|s,aṼh+1

∥∥∥∥
∞
≤ ϵ/(2H2), such that

∥∥∥Bideal
zh,s
−Bzh,s

∥∥∥
op
≤ 2Aζ . Since BQ̂h,s

is formed using one

call each to Bzh,s
and B†

zh,s
, it is within 4Aζ of its ideal counterpart Bideal

Q̂h,s
. By applying the quantum union bound and

substituting the definition of ζ , this shows that the quantum operation executed by QMS is (c̃
√
A log(1/δ) · 4Aζ = δ/SH)-

close to its ideal version. Consequently, the output of QMS is incorrect with a probability of at most δ/SH . Given that
QMS is invoked a total of SH times, the overall failure probability is bounded by δ, as ensured by the standard union bound.

In line 5, we apply QMEBO to obtain an approximate value zh,s(a)/H of the inner product PT
h|s,aṼh+1. Theorem 3.7

guarantees the output in the line 5 satisfying |zh,s(a)/H + ϵ/2H2 − PT
h|s,aṼh+1| ≤ ϵ/2H2 for all s ∈ S, a ∈ A and

h ∈ [H]. This implies that |zh,s(a)− PT
h|s,aV̂h+1| ≤ ϵ/H . Hence, it holds for all s ∈ S and a ∈ A in every loop h ∈ [H]

that
|Q̂h,s(a)−Q∗

h(s, a)| =
∣∣rh(s, a) + zh,s(a)−

(
rh(s, a) + PT

h|s,aV
∗
h+1

)∣∣
≤
∣∣zh,s(a)− PT

h|s,a(V
∗
h+1 − V̂h+1)− PT

h|s,aV̂h+1

∣∣
≤
∣∣zh,s(a)− PT

h|s,aV̂h+1

∣∣+ ∣∣PT
h|s,a(V

∗
h+1 − V̂h+1)

∣∣
≤ ϵ

H
+max

s∈S

∣∣V̂h+1(s)− V ∗
h+1(s)

∣∣
=

ϵ

H
+
∥∥∥V̂h+1 − V ∗

h+1

∥∥∥
∞
.

(63)

21

Quantum Algorithms for Finite-horizon Markov Decision Processes

Furthermore, we have ∥∥∥V̂h − V ∗
h

∥∥∥
∞

=

∥∥∥∥Q̂h,s

(
π̂(s, h)

)
−max

a∈A
Q∗

h(s, a)

∥∥∥∥
∞

=

∥∥∥∥max
a∈A

Q̂h,s(a)−max
a∈A

Q∗
h(s, a)

∥∥∥∥
∞

≤
∥∥∥∥max
a∈A
|Q̂h,s(a)−Q∗

h(s, a)|
∥∥∥∥
∞

≤ max
s∈S

max
a∈A

∣∣Q̂h,s(a)−Q∗
h(s, a)

∣∣
≤ ϵ

H
+
∥∥∥V̂h+1 − V ∗

h+1

∥∥∥
∞
.

(64)

Since it holds that V̂H(s) = V ∗
H(s) = 0 for all s ∈ S, we can induce that

∥∥∥V̂h − V ∗
h

∥∥∥
∞
≤ (H − h)ϵ

H
+
∥∥∥V̂H − V ∗

H

∥∥∥
∞

=
(H − h)ϵ

H
. (65)

Then, we know that
∥∥∥V̂h − V ∗

h

∥∥∥
∞
≤ ϵ for all h ∈ [H]. In particular, it implies that V ∗

h (s)− ϵ ≤ V̂h(s) for all s ∈ S and

h ∈ [H].

Now, we proceed to prove the V̂h(s) ≤ V π̂
h (s) for all s ∈ S and h ∈ [H]. By Lemma A.6, we know that V̂h ≤ T h

π̂ (V̂h+1)

for all h ∈ [H]. Therefore, V̂H−1(s) ≤ [T H−1
π̂ (V̂H)]s = [T H−1

π̂ (0)]s = rH−1(s, π̂(s,H − 1)) = V π̂
H−1(s). By the

monotonicity of the operators T h
π̂ , where h ∈ [H], we have V̂h ≤ T h

π̂ (V̂h+1) ≤ T h
π̂ (T h+1

π̂ (V̂h+2)) ≤ · · · ≤ V π̂
h for all

h ∈ [H]. Due to the definition of V ∗
h (s), we must have V ∗

h (s) = maxπ∈Π V
π
h (s) ≥ V π̂

h (s) for all s ∈ S and h ∈ [H].

A.4.7. COMPLEXITY OF QVI-2 (PROOF OF THEOREM 3.9)

Proof. We first assume that all QMS and QMEBO are correct, up to the specified error, because the probability that this
does not hold is at most δ. Let C be the complexity of QVI-2(M, ϵ, δ) as if all QMS and QMEBO are carried out with
maximum failure probabilities set to constant. Then, since the failure probabilities are set to ζ = δ/(4cHSA1.5 log(1/δ)),
the actual complexity of QVI-2(M, ϵ, δ) is

O
(
C log

(
SA1.5H log(1/δ)/δ

))
= O

(
C log(SA1.5H/δ)

)
. (66)

Now, we check each line of QVI-2(M, ϵ, δ) to bound C.

In line 4, we encode the vector Ṽh+1 = V̂h+1/H to an oracle BṼh+1
. This process does not need to query OQM and only

needs to access the classical vector V̂h+1.

In line 5, we implement QMEBO to compute an estimate of PT
h|s,aṼh+1 with error ϵ/2H2. Besides, the correctness analysis

shows that V̂h+1(s) ≤ V ∗
h+1(s) ≤ H for all s ∈ S and the definition of Q̂h,s(a) of QVI2 implies that 0 ≤ V̂h(s) for all

s ∈ S, so it also holds that 0 ≤ Ṽh+1(s) = V̂h+1(s)/H ≤ 1 for all s ∈ S and h ∈ [H]. By Theorem 3.7, we know that
QMEBO needs O

(√
S(H2/ϵ +

√
H2/ϵ)

)
= O(

√
SH2/ϵ) queries to OQM for each s ∈ S at each time step h ∈ [H],

provided 0 < ϵ ≤ H2. Since we have assumed that ϵ ≤ H on the input ϵ, so this holds.

In line 6, BQ̂h,s
needs to call Bzh,s

and B†
zh,s

once. Then the query complexity of BQ̂h,s
in terms of Bzh,s

is O(1).

In line 7, we use QMS in accelerating the searching for the optimal action π̂(s, h) for all s ∈ S. By Theorem 3.4, QMS
requires O(

√
A) queries to the oracle BQ̂h,s

for all s ∈ S and h ∈ [H]. Therefore, after summing up H iterations, it induces
an overall query cost of

C = O

(
S ·
√
A ·H ·

√
SH2

ϵ

)
= O

(
S

3
2

√
AH3

ϵ

)
. (67)

22

Quantum Algorithms for Finite-horizon Markov Decision Processes

Combining the above equation with Eq. (66), the overall quantum query complexity of QVI-2(M, ϵ, δ) is

O

(
S

3
2

√
AH3 log(SA1.5H/δ)

ϵ

)
. (68)

B. Generative Model Setting
B.1. Correctness and Complexity of QVI-3 (Algorithm 4)

B.1.1. PROOF OF LEMMA B.1

Lemma B.1. QVI-3(M, ϵ, δ) holds that T h
π̂ (V̂h+1)− ϵ

H ≤ V̂h ≤ T
h
π̂ (V̂h+1) for all h ∈ [H] with a success probability at

least 1− δ.

Proof. The analysis of success probability is the same as Theorem 4.3 and hence is omitted here. We proceed to show the
correctness of the claim. For all s ∈ S, a ∈ A and h ∈ [H] we have that∣∣∣zh,s(a) + ϵ

2H
− PT

h|s,aV̂h+1

∣∣∣ ≤ ϵ

2H
. (69)

This implies, for all s ∈ S, a ∈ A and h ∈ [H],

PT
h|s,aV̂h+1 −

ϵ

H
≤ zh,s(a) ≤ PT

h|s,aV̂h+1. (70)

Now, for all s ∈ S, a ∈ A and h ∈ [H], we let

Q̃h(s, a) := rh(s, a) + PT
h|s,aV̂h+1 and Ṽh(s) := max

a∈A
Q̃h(s, a). (71)

Note that T h
π̂ (V̂h+1) = Q̃h

(
s, π̂(s, h)

)
= rh(s, π̂(s, h)) + PT

h|s,π̂(s,h)V̂h+1. Therefore, for all s ∈ S, a ∈ A and h ∈ [H],
we have

Q̂h,s(a)− Q̃h(s, a) = max{rh(s, a) + zh,s(a), 0} −
(
rh(s, a) + PT

h|s,aV̂h+1

)
. (72)

On one hand, since zh,s(a) ≤ PT
h|s,aV̂h+1 and V̂h+1 ≥ 0, then we have

Q̂h,s(a)− Q̃h(s, a) ≤ max
{
rh(s, a) + PT

h|s,aV̂h+1, 0
}
−
(
rh(s, a) + PT

h|s,aV̂h+1

)
= rh(s, a) + PT

h|s,aV̂h+1 −
(
rh(s, a) + PT

h|s,aV̂h+1

)
= 0.

(73)

On the other hand, we also have

Q̂h,s(a)− Q̃h(s, a) = max{rh(s, a) + zh,s(a), 0} −
(
rh(s, a) + PT

h|s,aV̂h+1

)
,

≥ rh(s, a) + zh,s(a)−
(
rh(s, a) + PT

h|s,aV̂h+1

)
,

= zh,s(a)− PT
h|s,aV̂h+1,

≥ − ϵ

H
.

(74)

The last line comes from Eq. (70). In summary, for all s ∈ S, a ∈ A and h ∈ [H], we have

− ϵ

H
≤ Q̂h,s(a)− Q̃h(s, a) ≤ 0, (75)

Hence, by letting a = π̂(s, h), we will have

− ϵ

H
≤ V̂h − T h

π̂ (V̂h+1) = Q̂h,s

(
π̂(s, h)

)
− Q̃h

(
s, π̂(s, h)

)
≤ 0, (76)

23

Quantum Algorithms for Finite-horizon Markov Decision Processes

T h
π̂ (V̂h+1)−

ϵ

H
≤ V̂h ≤ T h

π̂ (V̂h+1). (77)

B.1.2. CORRECTNESS OF QVI-3 (PROOF OF THEOREM 4.3)

Proof. We start by examining the failure probability. The analysis is similar to Theorem 3.8 where we need to consider
quantum oracles that can fail. Again, we use the quantum union bound for quantum operators here.

In line 5, since Bzh,s
is constructed using QME1 with a failure probability ζ, it is within 2Aζ of its ”ideal version.”

Specifically, this means that there exists an ideal quantum oracle Bideal
zh,s

encoding ˜PT
h|s,aV̂h+1 − ϵ/2H , where ˜PT

h|s,aV̂h+1

satisfies
∥∥∥∥ ˜PT

h|s,aV̂h+1 − PT
h|s,aV̂h+1

∥∥∥∥
∞
≤ ϵ/(2H), such that

∥∥∥Bideal
zh,s
−Bzh,s

∥∥∥
op
≤ 2Aζ. Since BQ̂h,s

is formed using one

call each to Bzh,s
and B†

zh,s
, it is within 4Aζ of its ideal counterpart Bideal

Q̂h,s
. By applying the quantum union bound and

substituting the definition of ζ , this shows that the quantum operation executed by QMS is (c̃
√
A log(1/δ) · 4Aζ = δ/SH)-

close to its ideal version. Consequently, the output of QMS is incorrect with a probability of at most δ/SH . Given that
QMS is invoked a total of SH times, the overall failure probability is bounded by δ, as ensured by the standard union bound.

In line 5, we apply QME1 to obtain an approximate value zh,s(a) of the inner product PT
h|s,aV̂h+1. Theorem 4.2 guarantees

the output in the line 5 satisfying |zh,s(a)− PT
h|s,aV̂h+1| ≤ ϵ/H for all s ∈ S, a ∈ A and h ∈ [H]. Hence, it holds for all

s ∈ S and a ∈ A in every loop h ∈ [H] that∣∣Q̂h,s(a)−Q∗
h(s, a)

∣∣ = ∣∣∣rh(s, a) + zh,s(a)−
(
rh(s, a) + PT

h|s,aV
∗
h+1

)∣∣∣
≤
∣∣zh,s(a)− PT

h|s,a(V
∗
h+1 − V̂h+1)− PT

h|s,aV̂h+1

∣∣
≤
∣∣zh,s(a)− PT

h|s,aV̂h+1

∣∣+ ∣∣PT
h|s,a(V

∗
h+1 − V̂h+1)

∣∣
≤ ϵ

H
+max

s∈S

∣∣V̂h+1(s)− V ∗
h+1(s)

∣∣
=

ϵ

H
+
∥∥∥V̂h+1 − V ∗

h+1

∥∥∥
∞
.

(78)

Further, we have ∥∥∥V̂h − V ∗
h

∥∥∥
∞

=

∥∥∥∥Q̂h,s

(
π̂(s, h)

)
−max

a∈A
Q∗

h(s, a)

∥∥∥∥
∞

=

∥∥∥∥max
a∈A

Q̂h,s(a)−max
a∈A

Q∗
h(s, a)

∥∥∥∥
∞

≤
∥∥∥∥max
a∈A

∣∣Q̂h,s(a)−Q∗
h(s, a)

∣∣∥∥∥∥
∞

≤ max
s∈S

max
a∈A

∣∣Q̂h,s(a)−Q∗
h(s, a)

∣∣
≤ ϵ

H
+
∥∥∥V̂h+1 − V ∗

h+1

∥∥∥
∞
.

(79)

Since it holds that V̂h(s) = V ∗
h (s) = 0 for all s ∈ S, we can induce that∥∥∥V̂h − V ∗

h

∥∥∥
∞
≤ (H − h)ϵ

H
+
∥∥∥V̂H − V ∗

H

∥∥∥
∞

=
(H − h)ϵ

H
. (80)

Then, we know that
∥∥∥V̂h − V ∗

h

∥∥∥
∞
≤ ϵ for all h ∈ [H]. In particular, it implies that V ∗

h (s)− ϵ ≤ V̂h(s) for all s ∈ S and

h ∈ [H]. Now, we proceed to prove the V̂h(s) ≤ V π̂
h (s) for all s ∈ S and h ∈ [H]. By Lemma B.1, we know that V̂h ≤

T h
π̂ (V̂h+1) for all h ∈ [H]. Therefore, V̂H−1(s) ≤ [T H−1

π̂ (V̂H)]s = [T H−1
π̂ (0)]s = rH−1

(
s, π̂(s,H − 1)

)
= V π̂

H−1(s).
By the monotonicity of the operators T h

π̂ , where h ∈ [H], we have V̂h ≤ T h
π̂ (V̂h+1) ≤ T h

π̂ (T h+1
π̂ (V̂h+2)) ≤ · · · ≤ V π̂

h for

24

Quantum Algorithms for Finite-horizon Markov Decision Processes

all h ∈ [H]. Due to the definition of V ∗
h (s), we must have V ∗

h (s) = maxπ∈Π V
π
h (s) ≥ V π̂

h (s) for all s ∈ S and h ∈ [H].

B.1.3. COMPLEXITY OF QVI-3 (PROOF OF THEOREM 4.4)

Proof. We first assume that all QMS and QME1 are correct, up to the specified error, because the probability that this does
not hold is at most δ. Let C be the complexity of QVI-3(M, ϵ, δ) as if all QMS and QME1 are carried out with maximum
failure probabilities set to constant. Then, since the actual failure probabilities are set to ζ = δ/(4cSA1.5H log(1/δ)), the
actual complexity of QVI-3(M, ϵ, δ) is

O
(
C log

(
SA1.5H log(1/δ)/δ

))
= O

(
C log(SA1.5H/δ)

)
. (81)

Now, we check each line of QVI-3(M, ϵ, δ) to bound C.

In line 4, we encode the vector V̂h+1 to an oracle BV̂h+1
. This process does not need to query G and only needs to access the

classical vector V̂h+1.

In line 5, we implement QME1 to compute the approximate inner product of PT
h|s,aV̂h+1 with error ϵ/H . Besides, the

correctness analysis shows that it holds that V̂h+1(s) ≤ V ∗
h+1(s) ≤ H for all s ∈ S and h ∈ [H] by Theorem 4.3 and

V̂h+1(s) ≥ 0 for all s ∈ S by the definition of itself, Q̂h+1,s(a) and zh+1,s(a) in QVI-3. By Theorem 4.2, we know that
QME1 needs O

(
H2/ϵ+

√
H2/ϵ

)
= O(H2/ϵ) queries to G for each s ∈ S , provided 0 < ϵ ≤ H2. Since we have assumed

that ϵ ≤ H on the input ϵ, so this holds.

In line 7, BQ̂h,s
needs to call Bzh,s

and B†
zh,s

once. Then the query complexity of BQ̂h,s
in terms of Bzh,s

is O(1).

In line 8, we use QMS in accelerating the searching for the optimal action π̂(s, h) for all s ∈ S. By Theorem 3.4, QMS
requires O(

√
A) queries to the oracle BQ̂h,s

for all s ∈ S and h ∈ [H]. Therefore, it induces an overall query cost of

C = O

(
S ·
√
A ·H · H

2

ϵ

)
= O

(
S
√
AH3

ϵ

)
, (82)

inH iterations. Combining the above equation with Equation (81), the overall quantum query complexity of QVI-3(M, ϵ, δ)
is

O

(
S
√
AH3 log(SA1.5H/δ)

ϵ

)
. (83)

B.2. Correctness and Complexity of QVI-4

Lemma B.2 (Upper Bound on Variance (Sidford et al., 2018)). For any policy π : S × [H]→ A, it must hold that∥∥∥∥∥∥
H−1∑
h′=h

(
h′∏

i=h+1

Pπ
i

)
σh′(V π

h′+1)

∥∥∥∥∥∥
∞

≤ H3/2, (84)

where σh′(V π
h′+1) =

√
Ph′(V π

h′+1)
2 − (Ph′V π

h′+1)
2.

B.2.1. PROOF OF LEMMA B.3

Lemma B.3. For all k ∈ [K] and h ∈ [H], Algorithm 5 holds that

Vk,h ≤ V πk

h ≤ V ∗
h , (85)

Qk,h ≤ Qπk

h ≤ Q
∗
h, (86)

with probability at least 1− δ.

25

Quantum Algorithms for Finite-horizon Markov Decision Processes

Proof. We first consider the success probability. Note that all the quantum subroutines QME1 and QME2 are implemented
with maximum failure probability ζ = δ/4KHSA. In total, QME1 and QME2 are implemented 4KHSA times in line 6,
7 and 9. By the union bound, the probability that there exists an incorrect estimate is at most δ.

Now, we proceed to prove the inequalities
Vk,h ≤ V πk

h ≤ V ∗
h . (87)

Note that the second inequality is trivial due to the definition of V ∗
h = maxπ∈Π V

π
h . Therefore, we only need to prove the

inequality Vk,h ≤ V πk

h for all h ∈ [H] and k ∈ [K]. In fact, it suffices to show that for all k ∈ [K], we have

Vk,h ≤ T h
πk
(Vk,h+1). (88)

First, by the definition of xk,h and gk,h in line 7 and line 9 respectively, we have, for all (s, a) ∈ S ×A,

xk,h(s, a) ≤ PT
h|s,aV

(0)
k,h+1, (89)

gk,h(s, a) ≤ PT
h|s,a(Vk,h+1 − V (0)

k,h+1). (90)

We continue to prove Eq. (88) by induction on k. We first consider the base case where k = 0. For any h ∈ [H], if there
exists some s ∈ S such that πk(s, h) ̸= π

(0)
k (s, h), then we have

Vk,h(s) = Ṽk,h(s)

= Qk,h

(
s, πk(s, h)

)
= max

{
rh
(
s, πk(s, h)

)
+ xk,h

(
s, πk(s, h)

)
+ gk,h

(
s, πk(s, h)

)
, 0
}

≤ max
{
rh
(
s, πk(s, h)

)
+ PT

h|s,πk(s,h)
V

(0)
k,h+1 + PT

h|s,πk(s,h)
(Vk,h+1 − V (0)

k,h+1), 0
}

= max
{
rh
(
s, πk(s, h)

)
+ PT

h|s,πk(s,h)
Vk,h+1, 0

}
= rh

(
s, πk(s, h)

)
+ PT

h|s,πk(s,h)
Vk,h+1

=
[
T h
πk
(Vk,h+1)

]
s
.

(91)

If there exists some s ∈ S such that πk(s, h) = π
(0)
k (s, h), then we have Vk,h(s) = V

(0)
k,h (s) = V

(0)
0,h (s) = 0. Since

Vk,h+1(s) ≥ V
(0)
k,h+1(s) = V

(0)
0,h+1(s) = 0 for all s ∈ S, then we must have Vk,h(s) = 0 ≤ [T h

πk
(Vk,h+1)]s. Therefore,

when k = 0, it holds that Vk,h ≤ T h
πk
(Vk,h+1) for all h ∈ [H]. We assume that for any k′ = 0, 1, . . . , k − 1, it also holds

that Vk′,h ≤ T h
πk
(Vk′,h+1) for all h ∈ [H]. Next, we show the above statement holds for k′ = k. In fact, if there exists some

s ∈ S such that πk(s, h) ̸= π
(0)
k (s, h), then we also have Vk,h(s) ≤ [T h

π (Vk,h+1)]s by following the same analysis in the
case of k = 0. If there exists some s ∈ S such that πk(s, h) = π

(0)
k (s, h), then we have

Vk,h(s) = V
(0)
k,h (s) = Vk−1,h(s) ≤

[
T h
πk−1

(Vk−1,h+1)
]
s
=
[
T h
πk−1

(V
(0)
k,h+1)

]
s
≤
[
T h
πk−1

(Vk,h+1)
]
s
=
[
T h
πk
(Vk,h+1)

]
s
.

(92)
The first inequality comes from the induction hypothesis. The second inequality comes from the fact that V (0)

k,h+1 ≤ Vk,h+1.

The last equation comes from the fact that πk(s, h) = π
(0)
k (s, h) = πk−1(s, h). Therefore, we already showed that

Vk,h ≤ T h
πk
(Vk,h+1) for the case k′ = k and finish the induction. Since we have Vk,h ≤ T h

πk
(Vk,h+1) for all k ∈ [K] and

h ∈ [H] and Vk,H(s) = 0,∀s ∈ S, then for any fixed k ∈ [K], Vk,h ≤ T h
πk
(· · · T H−1

πk
(Vk,H)) = V πk

h for all h ∈ [H].

Furthermore, since we already proved Vk,h ≤ V πk

h for all h ∈ [H] and k ∈ [K], we also have, for all (s, a) ∈ S ×A,

Qk,h(s, a) ≤ rh(s, a) + PT
h|s,aVk,h+1 ≤ rh(s, a) + PT

h|s,aV
πk

h+1 = Qπk

h (s, a) ≤ Q∗
h(s, a). (93)

The first inequality follows from Eq. (89) and (90).

26

Quantum Algorithms for Finite-horizon Markov Decision Processes

B.2.2. PROOF OF LEMMA B.4

Lemma B.4. For all k ∈ [K] and h ∈ [H], Algorithm 5 holds that

V ∗
h − ϵk ≤ Vk,h, (94)

Q∗
h − ϵk ≤ Qk,h, (95)

with the probability at least 1− δ.

Proof. The success probability analysis is the same as Lemma B.3, so we omit it here. We continue to use induction on k to
prove Eq. (94). First, we consider the base case where k = 0 and show (94) holds for all h ∈ [H]. By the definition of xk,h
and gk,h in line 7 and line 9 of QVI-4, we know that, for all (s, a) ∈ S ×A,

xk,h(s, a) ≥ PT
h|s,aV

(0)
k,h+1 − 2cH−1.5ϵ

√
yk,h(s, a) + 4b, (96)

gk,h(s, a) ≥ PT
h|s,a(Vk,h+1 − V (0)

k,h+1)− 2cH−1ϵk. (97)

We define ξk,h(s, a) := 2cH−1ϵk + 2cH−1.5ϵ
√
yk,h(s, a) + 4b. Then, we can show that

Q∗
h −Qk,h = rh + PhV

∗
h+1 −max{rh + xk,h + gk,h, 0}

≤ PhV
∗
h+1 − xk,h − gk,h

≤ PhV
∗
h+1 − PhVk,h+1 + 2cH−1ϵk + 2cH−1.5ϵ

√
yk,h + 4b

= Ph(V
∗
h+1 − Vk,h+1) + ξk,h

= PhV (Q∗
h+1)− PhVk,h+1 + ξk,h.

(98)

Since we have V (Qk,h+1) ≤ Vk,h+1, then it holds that

Q∗
h −Qk,h ≤ PhV (Q∗

h+1)− PhV (Qk,h+1) + ξk,h

= Pπ∗

h Q∗
h+1 − PhV (Qk,h+1) + ξk,h

≤ Pπ∗

h Q∗
h+1 − Pπ∗

h Qk,h+1 + ξk,h.

(99)

The second line comes from the fact that V ∗
h (s) = Q∗

h+1(s, π
∗(s, h)) for all s ∈ S and h ∈ [H]. The last line comes

from the fact that π∗(s, h) may not be the same as argmaxa∈AQk,h+1(s, a) for some s ∈ S. Since it must hold that
V ∗
H(s) = 0,∀s ∈ S and we require that Vk,H(s) = 0,∀s ∈ S , then we have V ∗

H(s)− Vk,H(s) = 0,∀s ∈ S . By solving the
recursion on Q∗

h −Qk,h, we can obtain

Q∗
h −Qk,h ≤

H−1∑
h′=h

(
h′∏

i=h+1

Pπ∗

i

)
ξk,h′ , (100)

where ξk,h′(s, a) = 2cH−1ϵk + 2cH−1.5ϵ
√
yk,h′(s, a) + 4b for all (s, a) ∈ S × A. Note that a product over an empty

index set evaluates to 1. Now, we try to bound
√
yk,h′(s, a) + 4b for all (s, a) ∈ S ×A. By the definition of yk,h(s, a) in

line 6 of QVI-4, we know that there exists a b′ satisfying |b′| ≤ b such that√
yk,h′(s, a) + 4b ≤ max

{(
PT
h′|s,a(V

(0)
k,h′+1)

2 + b− (PT
h′|s,aV

(0)
k,h′+1 − b

′/H)2 + 4b
)1/2

,
√
4b
}

≤
(
σ2
h′(V

(0)
k,h′+1) + 5b+ 2bH−1PT

h′|s,aV
(0)
k,h′+1

)1/2
≤
(
σ2
h′(V

(0)
k,h′+1) + 7b

)1/2
.

(101)

Since it holds that V (0)
k,h′+1(s) = 0 for all s ∈ S and h′ ∈ [H] when k = 0, then σ2

h′(V
(0)
k,h′+1) = 0. This implies that

27

Quantum Algorithms for Finite-horizon Markov Decision Processes√
yk,h′(s, a) + 4b ≤

√
7b. Then we can show that

Q∗
h −Qk,h ≤

H−1∑
h′=h

(
h′∏

i=h+1

Pπ∗

i

)(
2cH−1ϵk + 2cH−1.5ϵ

√
yk,h′ + 4b

)
≤ 2cϵk + 2cH−0.5ϵ

√
7b

≤ 2cϵk + 2cϵ
√
7b

≤
(
2c+ 4c

√
7b
)
ϵk

≤ ϵk.

(102)

The second line comes from the fact that

∥∥∥∥∥∑H−1
h′=h

(∏h′

i=h+1 P
π∗

i

)
1

∥∥∥∥∥
∞

≤ H−h ≤ H for all h ∈ [H]. The third line comes

from the fact that H ≥ 1. The fourth line comes from the fact that ϵ ≤ 2ϵk = 2ϵ0 = 2H . The last line comes from the fact
that c = 0.001 and b = 1. Therefore, we have Vk,h(s) ≥ V (Qk,h)(s) = maxa∈AQk,h(s, a) ≥ maxa∈A{Q∗

h(s, a)−ϵk} =
V ∗
h (s)− ϵk for the base case k = 0.

Now, we assume that for any k′ = 1, . . . , k − 1, it also holds that Vk,h(s) ≥ V ∗
h (s)− ϵk for all h ∈ H . Then, we proceed

to prove the claim for the case of k′ = k. In fact, the analysis for the case of k′ = k is quite similar to the base case, except
for the part of the upper bound for

√
yk,h′(s, a) + 4b. We can show that there exists a b′ satisfying |b′| ≤ b√

yk,h′(s, a) + 4b ≤ max
{(
PT
h′|s,a(V

(0)
k,h+1)

2 + b− (PT
h′|s,aV

(0)
k,h+1 − b

′/H)2 + 4b
)1/2

,
√
4b
}

≤
(
σ2
h′(V

(0)
k,h′+1) + 5b+ 2bH−1PT

h′|s,aV
(0)
k,h′+1

)1/2
≤
(
σ2
h′(V

(0)
k,h′+1) + 7b

)1/2
≤ σh′(V

(0)
k,h′+1) +

√
7b

≤ σh′(V ∗
h′+1) + σ(V

(0)
k,h′+1 − V

∗
h′+1) +

√
7b.

(103)

The third line comes from the fact that V (0)
k,h′+1(s) ≤ H for all s ∈ S. The fourth line comes from the fact that√

a+ b ≤
√
a+
√
b when a, b ≥ 0. The last line comes from the fact that, for any random variables X and Y , we must

have σ2(X + Y) = Var[X + Y] = Var[X] +Var[Y] + 2Cov[X,Y] ≤ (
√

Var[X] +
√

Var[Y])2 = (σ(X) + σ(Y))2. Note

that σ(V (0)
k,h′+1 − V ∗

h′+1) ≤
∥∥∥V (0)

k,h′+1 − V ∗
h′+1

∥∥∥
∞

=
∥∥Vk−1,h′+1 − V ∗

h′+1

∥∥
∞ ≤ ϵk−1 = 2ϵk for all h′ ∈ [H]. Therefore,

we can show that

Q∗
h −Qk,h ≤

H−1∑
h′=h

(
h′∏

i=h+1

Pπ∗

i

)(
2cH−1ϵk + 2cH−1.5ϵ

√
yk,h′ + 4b

)

≤ 2cϵk + 2cH−1.5ϵ

H−1∑
h′=h

(
h′∏

i=h+1

Pπ∗

i

)(
σ(V ∗

h′+1) + σ(V
(0)
k,h′+1 − V

∗
h′+1) +

√
7b
)

≤ 2cϵk + 2cH−1.5ϵ

H−1∑
h′=h

(
h′∏

i=h+1

Pπ∗

i

)(
σ(V ∗

h′+1) + 2ϵk +
√
7b
)

≤ 2cϵk + 2cϵ+ 2cH−0.5ϵ
(
2ϵk +

√
7b
)

≤ 2c
(
1 + 2 + 2 +

√
7
)
ϵk

≤ ϵk.

(104)

The fourth line comes from the Lemma B.2 and the fact that

∥∥∥∥∥∑H−1
h′=h

(∏h′

i=h+1 P
π∗

i

)
1

∥∥∥∥∥
∞

≤ H − h ≤ H for all h ∈ [H].

The fifth line comes from the fact that we require the input ϵ ∈ (0,
√
H]. The last line comes from the fact that c = 0.001.

28

Quantum Algorithms for Finite-horizon Markov Decision Processes

Therefore, we have Vk,h(s) ≥ V (Qk,h)(s) = maxa∈AQk,h(s, a) ≥ maxa∈A{Q∗
h(s, a)− ϵk} = V ∗

h (s)− ϵk for the case
of k′ = k.

B.2.3. CORRECTNESS OF QVI-4 (PROOF OF THEOREM 4.5)

By combining Lemma B.4 and Lemma B.3, we can obtain that, for all k ∈ [K],

V ∗
h − ϵk ≤ Vk,h ≤ V

πk

h ≤ V ∗
h , (105)

Q∗
h − ϵk ≤ Qk,h ≤ Qπk

h ≤ Q
∗
h, (106)

with probability at least 1− δ. When k = K − 1 = ⌈log2(H/ϵ)⌉ ≥ log2(H/ϵ), ϵk = H/2k ≤ ϵ. Therefore, it implies that

V ∗
h − ϵ ≤ V ∗

h − ϵK−1 ≤ VK−1,h = V̂h ≤ V πK−1

h = V π̂
h ≤ V ∗

h , (107)

Q∗
h − ϵ ≤ Q∗

h − ϵK−1 ≤ QK−1,h = Q̂h ≤ QπK−1

h = Qπ̂
h ≤ Q∗

h, (108)

with probability at least 1− δ.

B.2.4. COMPLEXITY OF QVI-4 (PROOF OF THEOREM 4.6)

Proof. The success probability analysis is analogous to Lemma B.3. Hence, we omit it here. We first assume that all
estimations are correct, up to the specified error, because the probability that this does not hold is at most δ. Let C be the
complexity of QVI-4(M, ϵ, δ) as if all estimations are carried out with maximum failure probabilities set to constant. Then,
since the actual maximum failure probabilities are set to ζ = δ/(4KHSA), the actual complexity of QVI-4(M, ϵ, δ) is

O
(
C log(KHSA/δ)

)
. (109)

Now, we check each line of QVI-4(M, ϵ, δ) to bound C.

In line 6, since we have 0 ≤ V (0)
k,h+1(s) = Vk−1,h+1(s) ≤ V ∗

h+1(s) ≤ H for all k > 0 and 0 = V
(0)
k,h+1(s) = Vk−1,h+1(s) ≤

V ∗
h+1(s) ≤ H for all s ∈ S when k = 0, therefore, we can use quantum mean estimation algorithm QME1, which induces

a total query complexity in the order

KHSA

(
H2/b+

√
H2/b+H2/b+

√
H2/b

)
= O(KSAH3). (110)

Now, we focus on line 7. By the definition of yk,h(s, a) in line 6, we know that there exists a b′ satisfying |b′| ≤ b such that

yk,h(s, a) ≥ max
{
PT
h|s,a(V

(0)
k,h+1)

2 − b−
(
PT
h|s,aV

(0)
k,h+1 + b′/H

)2
, 0
}

≥ PT
h|s,a(V

(0)
k,h+1)

2 − b−
(
PT
h|s,aV

(0)
k,h+1 + b′/H

)2
=
[
σ2(V

(0)
k,h+1)

]
(s,a)
− b− (2b′/H)PT

h|s,aV
(0)
k,h+1 − (b′)2/H2.

(111)

This implies that[
σ2(V

(0)
k,h+1)

]
(s,a)

≤ yk,h(s, a) + b+ (2b/H)PT
h|s,aV

(0)
k,h+1 + b2/H2 ≤ yk,h(s, a) + 4b. (112)

The last inequality follows from b = 1 and V (0)
k,h+1(s) = Vk−1,h+1(s) ≤ V ∗

h+1(s) ≤ H for all s ∈ S when k ≥ 1 and

V
(0)
0,h+1(s) = 0 for all s ∈ S. We also note that, since we have yk,h(s, a) ≥ 0 (by the definition in line 6), then it holds

that 0 < cH−1.5ϵ
√
yk,h(s, a) + 4b < 4

√
yk,h(s, a) + 4b. Therefore, we can use quantum mean estimation algorithm

QME2 with error cH−1.5ϵ
√
yk,h(s, a) + 4b and variance upper bound set to yk,h(s, a) + 4b, which induces a total query

complexity of order

KH
∑

(s,a)∈S×A

w(s, a) log2
(
w(s, a)

)
= O

(
KSAH2.5ϵ−1 log2(H1.5/ϵ)

)
, (113)

29

Quantum Algorithms for Finite-horizon Markov Decision Processes

where w(s, a) =
(√

yk,h(s, a) + 4b
)(
cH−1.5ϵ

√
yk,h(s, a) + 4b

)−1
= O(H1.5/ϵ).

In line 9, we can bound 0 ≤ Vk,h+1(s)− V (0)
k,h+1(s) ≤ V ∗

h+1(s)− V
(0)
k,h+1(s) = V ∗

h+1(s)− Vk−1,h+1(s) ≤ ϵk−1 = 2ϵk for

all s ∈ S and k ≥ 1. When k = 0, since V0,h+1(s) ≥ V
(0)
0,h+1(s) = 0, then we also have 0 ≤ V0,h+1(s) − V (0)

0,h+1(s) =
V0,h+1(s) ≤ V ∗

h+1(s) ≤ H = ϵ0 for all s ∈ S. Therefore, we can use quantum mean estimation algorithm QME1 which
induces a total query complexity of order

KHSA

(
2ϵk

cH−1ϵk
+

√
2ϵk

cH−1ϵk

)
= O(KSAH2). (114)

Therefore, we can show that

C = O
(
KSA(H2.5/ϵ+H3 +H2) log2(H1.5/ϵ)

)
= O

(
SA(H2.5/ϵ+H3) log2(H1.5/ϵ)

)
. (115)

Then the total query complexity is

O
(
SA(H2.5/ϵ+H3) log2(H1.5/ϵ) log

(
log(H/ϵ)HSA/δ

))
. (116)

B.3. Lower Bounds

B.3.1. INFINITE-HORIZON MDPS

Preliminaries of infinite-horizon MDPs: An infinite-horizon MDP is formally defined as a tuple M̃ := (S,A, P, r, γ),
where S is a finite set of states representing the possible configurations of the environment, and A is a finite set of actions
available to the agent at each state. The transition probability P (s′|s, a) specifies the likelihood of transitioning to state
s′ after taking action a in state s, ensuring that

∑
s′∈S P (s

′|s, a) = 1 for all s ∈ S and a ∈ A. The reward function
r(s, a), bounded within [0, 1], assigns a scalar reward for executing action a in state s. Finally, the discount factor γ ∈ [0, 1)
determines the relative importance of future rewards compared to immediate ones, with Γ := 1

1−γ . Given such an MDP, the
agent’s objective is to select actions that maximize the expected sum of discounted rewards over an infinite time horizon.
The primary goal is to compute a policy π : S → A that specifies the action a = π(s) the agent should take in each
state s ∈ S to optimize its performance with high probability. For a given policy π, the state-value function (or V-value)
V π : S → [0,Γ] and the state-action-value function (or Q-value) Qπ : S ×A → [0,Γ] are defined as follows:

V π(s) = E

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣π, s0 = s

]
, (117)

Qπ(s, a) = E

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣π, s0 = s, a0 = a

]
. (118)

A policy π is an optimal policy π∗ if V π = maxπ∈Π V
π = V π∗

where Π is the space of all policies. For simplicity, we
denote V ∗ := V π∗

and Q∗ := Qπ∗
.

Optimization goals in infinite-horizon MDPs: The primary computational objectives in infinite-horizon MDPs are as
follows: given an infinite-horizon MDP M̃, an approximation error ϵ, and a failure probability δ, the goal is to compute
ϵ-estimates π̂, V̂ , and Q̂ such that ∥V π̂ − V ∗∥∞ ≤ ϵ, ∥V̂ − V ∗∥∞ ≤ ϵ, and ∥Q̂−Q∗∥∞ ≤ ϵ with a probability of at least
1− δ.

Classical generative model for infinite-horizon MDPs: We denote the classical generative model for infinite-horizon
MDPs as G̃. Assuming access to G̃, one can collect N independent samples

sis,a
i.i.d.∼ P (·|s, a), i = 1, . . . , N,

for each state-action pair (s, a) ∈ S ×A.

30

Quantum Algorithms for Finite-horizon Markov Decision Processes

Theorem B.5 (Classical and quantum lower bounds for infinite-horizon MDP (Wang et al., 2021)). Fix any integers
S,A ≥ 2 and γ ∈ [0.9, 1). Let Γ = (1 − γ)−1 ≥ 10 and fix any ϵ ∈ (0,Γ/4). There exists an infinite-horizon MDP
M̃ = (S,A, P, r, γ) with S states, A actions, and discount parameter γ such that the following lower bound hold:

• Given access to a classical generative oracle G̃, any algorithm that computes an ϵ-approximation to Q∗, V ∗, or π∗

must make Ω(SAΓ3

ϵ2) queries.

• Given access to a quantum generative oracle G̃ defined as

G̃ : |s⟩ ⊗ |a⟩ ⊗ |0⟩ ⊗ |0⟩ 7→ |s⟩ ⊗ |a⟩ ⊗

(∑
s′∈S

√
P (s′|s, a) |s′⟩ ⊗ |vs′⟩

)
, (119)

where |vs′⟩ are arbitrary auxiliary states, any algorithm that computes an ϵ-approximation to Q∗ must take Ω(SAΓ1.5

ϵ)

queries and any algorithm that computes an ϵ-approximation to V ∗ or π∗ must take Ω(S
√
AΓ1.5

ϵ) queries.

B.3.2. FINITE-HORIZON MDPS

Lemma B.6. Let S and A be finite sets of states and actions. Let H > 0 be a positive integer and ϵ ∈ (0, 1/2)
be an error parameter. We consider the following finite-horizon MDP M := (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H) where

Ph = P ∈ RS×A×S and rh = r ∈ [0, 1]S×A for all h ∈ [H].

• Given access to a classical generative model, any algorithm K, which takesM as an input and outputs a value function
V̂0 such that

∥∥∥V̂0 − V ∗
0

∥∥∥
∞
≤ ϵ with probability at least 0.9, needs to call the classical generative oracle at least

Ω

(
SAH3

ϵ2 log3(ϵ−1)

)
(120)

times on the worst case of inputM.

• Given access to a quantum generative oracle G defined in Definition 4.1 any algorithm K, which takesM as an input
and outputs a value function V̂0 such that

∥∥∥V̂0 − V ∗
0

∥∥∥
∞
≤ ϵ with probability at least 0.9, needs to call the quantum

generative oracle at least

Ω

(
S
√
AH1.5

ϵ log1.5(ϵ−1)

)
(121)

times on the worst case of inputM.

Proof. We first introduce some definitions about infinite horizon MDPs. Let s0 ∈ S to be a state. Suppose we have an
infinite-horizon MDP M̃ = (S̃, Ã, P̃ , r̃, γ) with a quantum generative oracle, where S̃ = S \ {s0} to be a subset of S and
γ ∈ [0, 1). For a better differentiation on the notations between finite-horizon and infinite-horizon MDPs, we let Ṽ ∗ ∈ RS

represent the optimal V-value function of M̃. First, we define a Bellman operator T for the infinite-horizon MDP M̃
satisfying, for any u ∈ RS̃ and s ∈ S̃,

T (u)s = max
a∈Ã

[
r̃(s, a) + γ

∑
s′∈S̃

P̃ (s′|s, a)u(s′)

]
. (122)

Note that for any u, v ∈ RS̃ satisfying u(s) ≤ v(s) for all s ∈ S̃, we have T (u)s ≤ T (v)s for all s ∈ S̃. This is the
so-called monotonicity property of T . Besides, it also holds that T (Ṽ ∗)s = Ṽ ∗(s) for all s ∈ S̃.

Now, we proceed to prove that obtaining an 2ϵ-approximation value of Ṽ ∗ for any infinite horizon MDP M̃ can be reduced
to obtaining an ϵ-approximation value of V ∗

0 for a finite horizon MDP. We consider the following finite-horizon MDP
M = (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H) where Ph = P ∈ RS×A×S and rh = r ∈ [0, 1]S×A. Besides, the time horizon H

satisfies H = ⌈2(1− γ)−1 log(2ϵ−1)⌉ = Θ((1− γ)−1 log(ϵ−1)). Besides, under any action a ∈ A = Ã, there is a (1− γ)

31

Quantum Algorithms for Finite-horizon Markov Decision Processes

probability for each state s ∈ S̃ to transition to s0 and γ probability to follow the original transitions in M̃. However, when
the agent is in s0, it can only transition to itself with probability 1, no matter which action a ∈ A it takes. Hence, s0 is an
absorbing state inM. Overall, we have the following definitions for the transition probability kernel P inM.

∀s, s′ ∈ S̃, a ∈ A,P (s′|s, a) = γP̃ (s′|s, a), P (s0|s, a) = (1− γ), (123)
P (s′|s0, a) = 0, P (s0|s0, a) = 1. (124)

Besides, we define r(s0, a) = 0, r(s, a) = r̃(s, a) ∈ [0, 1] for all s ∈ S̃ and a ∈ A.

Now, we proceed to prove that
∥∥∥V ∗

0 |S̃ − Ṽ ∗
∥∥∥
∞
≤ ϵ, i.e., |V ∗

0 (s) − Ṽ ∗(s)| ≤ ϵ for all s ∈ S̃. First, we note that

V ∗
H−1 = maxa∈A r(s, a) ≤ Ṽ ∗. Then, by the monotonicity of the T operator, we have T (V ∗

H−1)s ≤ T (Ṽ ∗)s = Ṽ ∗(s) for
all s ∈ S̃. In fact, by the definition of P inM, we have

∀s ∈ S̃, T (V ∗
H−1)s = max

a∈A

[
r̃(s, a) + γ

∑
s′∈S̃

P̃ (s′|s, a)V ∗
H−1(s

′)

]

= max
a∈A

[
r(s, a) +

∑
s′∈S̃

P (s′|s, a)V ∗
H−1(s

′) + P (s0|s, a)V ∗
H−1(s0)

]

= max
a∈A

[
r(s, a) +

∑
s′∈S

P (s′|s, a)V ∗
H−1(s

′)

]
= V ∗

H−2(s).

(125)

The second line above comes from the fact that V ∗
H−1(s0) = maxa∈A r(s0, a) = 0. By induction, we have V ∗

h (s0) =

maxa∈A[r(s0, a) + P (s0|s0, a)V ∗
h+1(s0)] = 0 for all h ∈ [H]. Hence, we have V ∗

H−2(s) ≤ Ṽ ∗(s) for all s ∈ S̃. By
induction, we have V ∗

h (s) ≤ Ṽ ∗(s) for all h ∈ [H] and s ∈ S̃. In particular, we have V ∗
0 (s) ≤ Ṽ ∗(s) for all s ∈ S̃. Let

π̃∗ ∈ AS be an optimal policy for the infinite-horizon MDP M̃. However, π̃ ∈ AS×[H], where π̃(·, h) = π̃∗ for all h ∈ [H],
may not be an optimal policy for finite-horizon MDPM. Then we have V π̃

0 (s) ≤ V ∗
0 (s) for all s ∈ S. In fact, for any

s ∈ S̃, we have

V π̃
0 (s) = r

(
s, π̃∗(s)

)
+
∑
s′∈S

P (s′|s, π̃∗(s)
)
r
(
s, π̃∗(s)

)
+ · · ·+

∑
s′∈S

PH
(
s′|s, π̃∗(s)

)
r
(
s, π̃∗(s)

)
= r̃
(
s, π̃∗(s)

)
+ γ

∑
s′∈S̃

P̃ (s′|s, π̃∗(s))r̃
(
s, π̃∗(s)

)
+ · · ·+ γH

∑
s′∈S̃

P̃H
(
s′|s, π̃∗(s)

)
r̃
(
s, π̃∗(s)

)
= Ṽ π̃∗

H ,

(126)

where Ṽ π̃∗

H is the V-value induced by the policy π̃∗ over H iterations. Note that for any policy π̃ for the infinite horizon

MDP M̃,
∥∥∥Ṽ π

k − Ṽ π
∥∥∥
∞
≤ γk

∥∥∥Ṽ π
0 − Ṽ π

∥∥∥
∞
≤ γk

(∥∥∥Ṽ π
0

∥∥∥
∞

+
∥∥∥Ṽ π

∥∥∥
∞

)
≤ 2 exp

(
−(1 − γ)k

)
/(1 − γ). The last

inequality follows from
∥∥∥Ṽ π

0

∥∥∥
∞
≤ 1/(1− γ) and

∥∥∥Ṽ π
∥∥∥
∞
≤ 1/(1− γ). Besides, combining the fact that log(γ) ≤ γ − 1

for all γ ∈ (0, 1) and exp(x) is monotonically increasing, we can induce the inequalities k log(γ) ≤ −k(1 − γ) and
γk = exp(k log(γ)) ≤ exp(−k(1 − γ)). Then, ∀ϵ > 0, it suffices to let k ≥ log(2/((1 − γ)ϵ))/(1 − γ) so that∥∥∥Ṽ π

k − Ṽ π
∥∥∥
∞
≤ ϵ. In fact,

1

1− γ
log

(
2

(1− γ)ϵ

)
=

1

1− γ

(
log

(
1

1− γ

)
+ log

(
2

ϵ

))

=
1

1− γ

(
− log(1− γ) + log

(
2

ϵ

))
≤ 1

1− γ

(
γ + log

(
2

ϵ

))
≤ 2

1− γ
log

(
2

ϵ

)
.

(127)

32

Quantum Algorithms for Finite-horizon Markov Decision Processes

The third line comes from the fact that log(1− γ) ≤ −γ,∀γ ∈ [0, 1). The last line comes from the fact that log(2/ϵ) >
1,∀ϵ ∈ (0, 1/2). Since we have H = ⌈ 2

1−γ log
(
2
ϵ

)
⌉ and π̃∗ is an optimal policy for M̃, then we must have V π̃

0 (s) =

Ṽ π̃∗

H (s) ≥ Ṽ π̃∗
(s) − ϵ = Ṽ ∗(s) − ϵ. Therefore, we have Ṽ ∗(s) − ϵ ≤ V ∗

0 (s) ≤ Ṽ ∗(s) for all s ∈ S̃, which implies∥∥∥V̂ ∗
0 |S̃ − Ṽ ∗

∥∥∥
∞
≤ ϵ.

Therefore, an ϵ-approximation of V ∗
0 will give an 2ϵ-approximation to Ṽ ∗. Specifically, if we let V̂0 be an ϵ-approximation

of V ∗
0 , then ∥∥∥V̂0|S̃ − Ṽ ∗

∥∥∥
∞
≤
∥∥∥V̂0|S̃ − V ∗

0 |S̃
∥∥∥
∞

+
∥∥∥V ∗

0 |S̃ − Ṽ
∗
∥∥∥
∞

≤
∥∥∥V̂0 − V ∗

0

∥∥∥
∞

+
∥∥∥V ∗

0 |S̃ − Ṽ
∗
∥∥∥
∞

≤ 2ϵ.

(128)

Therefore, obtaining 2ϵ-approximation Ṽ ∗ for M̃ with a quantum generative oracle reduced to obtaining ϵ-approximation
value V̂ ∗

0 forM with a quantum generative oracle. Then, it implies that the algorithm K inherits the lower bound for
obtaining 2ϵ-approximation Ṽ ∗ for M̃ with a quantum generative oracle. Note thatM is a time-independent MDP. Then
the quantum generative oracle G is the same as G̃ defined in Theorem B.5. By Theorem B.5, we know that the lower bound
for obtaining 2ϵ-approximation Ṽ ∗ for M̃ with a quantum generative oracle is Ω(S

√
AΓ1.5/ϵ). This implies the quantum

lower bound for finite horizon MDPM to obtain an ϵ-optimal value function V̂0 is Ω(S
√
AH1.5/(ϵ log1.5(ϵ−1))).

Note that the above content also shows that obtaining 2ϵ-approximation Ṽ ∗ for M̃ with a classical generative oracle
reduced to obtaining ϵ-approximation value V̂ ∗

0 forM with a classical generative oracle. By Theorem B.5, we know that
the lower bound for obtaining 2ϵ-approximation Ṽ ∗ for M̃ with a classical generative oracle is Ω(SAΓ3/ϵ). Therefore,
the classical lower bound for finite horizon MDPM to obtain an ϵ-optimal value function V̂0 is Ω(SAH3/(ϵ2 log3(ϵ−1))).

Lemma B.7. Let S and A be finite sets of states and actions. Let H > 0 be a positive integer and ϵ ∈ (0, 1/2)
be an error parameter. We consider the following finite-horizon MDP M := (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H) where

Ph = P ∈ RS×A×S and rh = r ∈ [0, 1]S×A for all h ∈ [H].

• Given access to a classical generative oracle, any algorithmK, which takesM as an input and outputs a value function
Q̂0 such that

∥∥∥Q̂0 −Q∗
0

∥∥∥
∞
≤ ϵ with probability at least 0.9, needs to call the classical generative oracle at least

Ω

(
SAH3

ϵ2 log3(ϵ−1)

)
(129)

times on the worst case of inputM.

• Given access to a quantum generative oracle G defined in Definition 4.1 any algorithm K, which takesM as an input
and outputs a value function Q̂0 such that

∥∥∥Q̂0 −Q∗
0

∥∥∥
∞
≤ ϵ with probability at least 0.9, needs to call the quantum

generative oracle at least

Ω

(
SAH1.5

ϵ log1.5(ϵ−1)

)
(130)

times on the worst case of inputM.

Proof. Following the same idea in Lemma B.6, we consider an infinite-horizon MDP M̃ = (S̃, Ã, P̃ , r̃, γ) with a quantum
generative oracle, where S̃ = S \ {s0} to be a subset of S and γ ∈ [0, 1). With a slight abuse of the notations for
the infinite-horizon MDPs, we let Ṽ ∗ ∈ RS and Q̃∗ ∈ RS×A be the optimal V-value and Q-value functions of M̃.
Now, we proceed to prove that obtaining an 2ϵ-approximation value of Q̃∗ for any infinite horizon MDP M̃ can be
reduced to obtaining an ϵ-approximation value of Q∗

0 for a finite horizon MDP. We consider following finite-horizon MDP
M = (S,A, {Ph}H−1

h=0 , {rh}
H−1
h=0 , H) where Ph = P ∈ RS×A×S and rh = r ∈ RS×A. Besides, the time horizon H

satisfies H = ⌈2(1− γ)−1 log(ϵ−1)⌉ = Θ((1− γ)−1 log(ϵ−1)). Besides, under any action a ∈ A = Ã, there is a (1− γ)
probability for each state s ∈ S̃ to transition to s0 and γ probability to follow the original transitions in M̃. However, when

33

Quantum Algorithms for Finite-horizon Markov Decision Processes

the agent is in s0, it can only transition to itself with probability 1, no matter which action a ∈ A it takes. Hence, s0 is an
absorbing state inM. Overall, we have the following definitions for the transition probability kernel P inM.

∀s, s′ ∈ S̃, a ∈ A,P (s′|s, a) = γP̃ (s′|s, a), P (s0|s, a) = (1− γ), (131)
P (s′|s0, a) = 0, P (s0|s0, a) = 1. (132)

Besides, we define r(s0, a) = 0, r(s, a) = r̃(s, a) ∈ [0, 1] for all s ∈ S̃ and a ∈ A.

Now, we proceed to prove that
∥∥∥Q∗

0|S̃×A − Q̃∗
∥∥∥
∞
≤ ϵ, i.e., |Q∗

0(s, a)− Q̃∗(s, a)| ≤ ϵ for all s ∈ S̃ and a ∈ Ã = A. First,

we note that Q∗
H−1 = r(s, a) ≤ Q̃∗ by the definition of Q̃∗. In Lemma B.6, we see that it holds that V ∗

h (s) ≤ Ṽ ∗(s) for all
h ∈ [H] and s ∈ S̃, and V ∗

h+1(s0) = 0 for all h ∈ [H]. Therefore, we have,

Q∗
h(s, a) = r(s, a) +

∑
s′∈S

P (s′|s, a)V ∗
h+1(s

′)

= r(s, a) +
∑
s′∈S̃

P (s′|s, a)V ∗
h+1(s

′) + P (s0|s, a)V ∗
h+1(s0)

= r(s, a) +
∑
s′∈S̃

P (s′|s, a)V ∗
h+1(s

′)

= r(s, a) + γ
∑
s′∈S̃

P̃ (s′|s, a)V ∗
h+1(s

′)

≤ r(s, a) + γ
∑
s′∈S̃

P̃ (s′|s, a)Ṽ ∗(s′)

= Q̃∗(s, a),

(133)

for all h ∈ [H − 1] and (s, a) ∈ S̃ × A. In particular, Q∗
0(s, a) ≤ Q̃∗(s, a) for all s ∈ S̃ and a ∈ A. Let π̃∗ ∈ AS be an

optimal policy for the infinite-horizon MDP M̃. However, π̃ ∈ AS×[H], where π̃(·, h) = π̃∗ for all h ∈ [H], may not be an
optimal policy for finite-horizon MDPM. Then we have Qπ̃

0 (s, a) ≤ Q∗
0(s, a) for all s ∈ S and a ∈ A. In fact, for any

s ∈ S̃, we have

Qπ̃
0 (s, a) = r(s, a) +

∑
s′∈S

P (s′|s, a)r
(
s, π̃∗(s)

)
+ · · ·+

∑
s′∈S

PH
(
s′|s, π̃∗(s)

)
r
(
s, π̃∗(s)

)
= r̃(s, a) + γ

∑
s′∈S̃

P̃ (s′|s, a)r̃
(
s, π̃∗(s)

)
+ · · ·+ γH

∑
s′∈S̃

P̃H(s′|s, a)r̃
(
s, π̃∗(s)

)
= Q̃π̃∗

H ,

(134)

where Q̃π̃∗

H is the Q value of the infinite-horizon MDP M̃ induced by the policy π̃∗ over H iterations. Note that for any

policy π̃ for the infinite horizon MDP M̃,
∥∥∥Q̃π

k − Q̃π
∥∥∥
∞
≤ γk

∥∥∥Q̃π
0 − Q̃π

∥∥∥
∞
≤ 2 exp(−(1− γ)k)/(1− γ). Then, ∀ϵ, it

suffices to let k ≥ log(2/((1− γ)ϵ))/(1− γ) so that
∥∥∥Q̃π

k − Q̃π
∥∥∥
∞
≤ ϵ. In fact,

1

1− γ
log

(
2

(1− γ)ϵ

)
=

1

1− γ

(
log

(
1

1− γ

)
+ log

(
2

ϵ

))

=
1

1− γ

(
− log(1− γ) + log

(
2

ϵ

))
≤ 1

1− γ

(
γ + log

(
2

ϵ

))
≤ 2

1

1− γ
log

(
2

ϵ

)
.

(135)

The third line comes from the fact that log(1− γ) ≤ −γ,∀γ ∈ [0, 1). The last line comes from the fact that log(2/ϵ) >
1,∀ϵ ∈ (0, 1/2). Since H = ⌈2 1

1−γ log
(
2
ϵ

)
⌉ and π̃∗ is an optimal policy for M̃, then we must have Q̃π̃∗

H (s, a) ≥

34

Quantum Algorithms for Finite-horizon Markov Decision Processes

Q̃π̃∗
(s, a)− ϵ = Q̃∗(s, a)− ϵ. Therefore, we have Q̃∗(s, a)− ϵ ≤ Q∗

0(s, a) ≤ Q̃∗(s, a) for all s ∈ S̃, a ∈ A, which implies∥∥∥Q̂∗
0|S̃×A − Q̃∗

∥∥∥
∞
≤ ϵ. Therefore, an ϵ-approximation of Q∗

0 will give an 2ϵ-approximation to Q̃∗. Specifically, if we let

Q̂0 be an ϵ-approximation of Q∗
0, then∥∥∥Q̂0|S̃×A − Q̃

∗
∥∥∥
∞
≤
∥∥∥Q̂0|S̃×A −Q

∗
0|S̃×A

∥∥∥
∞

+
∥∥∥Q∗

0|S̃×A − Q̃
∗
∥∥∥
∞

≤
∥∥∥Q̂0 −Q∗

0

∥∥∥
∞

+
∥∥∥Q∗

0|S̃×A − Q̃
∗
∥∥∥
∞

≤ 2ϵ.

(136)

Therefore, obtaining 2ϵ-approximation Q̃∗ for M̃ with a quantum generative oracle reduced to obtaining ϵ-approximation
value Q̂∗

0 forM with a quantum generative oracle. Then, it implies that the algorithm K inherits the lower bound for
obtaining 2ϵ-approximation Q̃∗ for M̃ with a quantum generative oracle. Note thatM is a time-independent MDP. Then
the quantum generative oracle G is the same as G̃ defined in Theorem B.5. By Theorem B.5, we know that the lower bound
for obtaining 2ϵ-approximation Q̃∗ for M̃ with a quantum generative oracle is Ω(SAΓ1.5/ϵ). This implies the lower bound
for obtaining ϵ-optimal Q value function Q̂0 of finite horizon MDPM is Ω(SAH1.5/(ϵ log1.5(ϵ−1))).

Note that the above content also implies that obtaining 2ϵ-approximation Q̃∗ for M̃ with a classical generative oracle
reduced to obtaining ϵ-approximation value Q̂∗

0 forM with a classical generative oracle. By Theorem B.5, we know that
the lower bound for obtaining 2ϵ-approximation Q̃∗ for M̃ with a classical generative oracle is Ω(SAΓ3/ϵ). Therefore, the
classical lower bound for finite horizon MDP is Ω(SAH3/(ϵ2 log3(ϵ−1))).

B.3.3. LOWER BOUNDS FOR FINITE-HORIZON MDPS (PROOF OF THEOREM 4.7)

Proof. Since time-independent and finite-horizon MDP is a special case of time-dependent and finite-horizon MDP, we
know that the lower bound of obtaining an ϵ-approximation V̂0 of V ∗

0 for time-dependent and finite-horizon MDP M
with a classical or quantum generative oracle inherits the corresponding lower bound in Lemma B.6. Besides, obtaining
ϵ-approximations V̂0 of V ∗

0 is a sub-task of obtaining ϵ-approximations V̂h of V ∗
h for all h ∈ [H]. Therefore, the lower

bound of obtaining ϵ-approximations V̂h of V ∗
h for all h ∈ [H] for time-dependent and finite-horizon MDPM with access

to a classical or quantum generative oracle inherits the lower bound of obtaining ϵ-approximations V̂0 of V ∗
0 with a classical

or quantum generative oracle. Therefore, algorithm K has the desired classical and quantum lower bounds for obtaining
ϵ-optimal V value functions {V̂h}H−1

h=0 . With Lemma B.7, similar idea also applies to obtain the classical and quantum lower
bound of obtaining ϵ-optimal Q value functions {Q̂h}H−1

h=0 .

Suppose K can output an ϵ-optimal policy π̂ for a finite horizon and time-dependent MDPM, then the corresponding
V-values {V̂h}H−1

h=0 := {V π̂
h }

H−1
h=0 induced by π̂ are ϵ-optimal. Therefore, K has the desired classical and quantum lower

bounds for obtaining the ϵ-optimal policy π̂ by inheriting the corresponding lower bound for obtaining ϵ-optimal V-value
functions {V̂h}H−1

h=0 .

35

