
Topological Neural Networks go Persistent, Equivariant and Continuous

Yogesh Verma 1 Amauri H. Souza 1 Vikas Garg 1 2

Abstract
Topological Neural Networks (TNNs) incorporate
higher-order relational information beyond pair-
wise interactions, enabling richer representations
than Graph Neural Networks (GNNs). Concur-
rently, topological descriptors based on persistent
homology (PH) are being increasingly employed
to augment the GNNs. We investigate the benefits
of integrating these two paradigms. Specifically,
we introduce TopNets as a broad framework that
subsumes and unifies various methods in the in-
tersection of GNNs/TNNs and PH such as (gener-
alizations of) RePHINE and TOGL. TopNets can
also be readily adapted to handle (symmetries
in) geometric complexes, extending the scope
of TNNs and PH to spatial settings. Theoreti-
cally, we show that PH descriptors can provably
enhance the expressivity of simplicial message-
passing networks. Empirically, (continuous and
E(n)-equivariant extensions of) TopNets achieve
strong performance across diverse tasks, includ-
ing antibody design, and drug property prediction.

1. Introduction
Relational data in diverse settings such as social networks
(Freeman, 2004), and proteins (Jha et al., 2022) can be
effectively abstracted via graphs. GNNs have enabled con-
siderable success in representing such data (Bronstein et al.,
2021). However, their limitations such as inability to distin-
guish non-isomorphic graphs and compute graph properties
(Xu et al., 2019; Weisfeiler and Leman, 1968; Garg et al.,
2020) have spurred research efforts toward designing more
powerful models that can leverage higher-order interactions,
e.g., hierarchical part-whole relations.

Topological deep learning (TDL) (Papillon et al., 2023)
views graphs as 1-dimensional simplicial complexes, and

1Department of Computer Science, Aalto University, Fin-
land 2YaiYai Ltd. Correspondence to: Yogesh Verma <yo-
gesh.verma@aalto.fi>.

ICML 2024 AI for Science workshop. Copyright 2024 by the
author(s).

employs general abstractions to process data with higher-
order relational structures. TNNs, a broad class of topo-
logical neural architectures, have yielded state-of-the-art
performance on various machine learning tasks (Dong et al.,
2020; Chen et al., 2019; Barbarossa and Sardellitti, 2020),
showcasing high potential for numerous applications.

Simultaneously, descriptors based on PH (Horn et al., 2021;
Carrière et al., 2020; Immonen et al., 2023), a workhorse
from topological data analysis (TDA), capture important
topological information such as the number of components
and independent loops. Augmenting GNNs with persistent
features affords powerful representations. However, the mer-
its of integrating persistence in TNNs remain unexplored. In
particular, numerous real-world tasks involving topological
objects exhibit symmetries under the Euclidean group E(n),
such as translations, rotations, and reflections. Examples
range from predicting molecular properties (Ramakrishnan
et al., 2014), 3D atomic systems (Duval et al., 2023), to gen-
erative design and beyond. While various approaches use
these symmetries effectively, including Tensor Field Net-
works (Thomas et al., 2018), SE(3) Transformers (Fuchs
et al., 2020), EGNNs (Satorras et al., 2021), and EMPSNs
(Eijkelboom et al., 2023), their expressivity remains limited
as they fail to capture certain topological structures (Joshi
et al., 2023) in geometrical simplicial complexes.

We strive to bridge this gap with a general recipe to leverage
the best of both worlds. Specifically, we propose TopNets
(Topological Persistent Neural Networks) as a comprehen-
sive framework unifying TNNs and PH. Our approach al-
lows us to seamlessly accommodate additional contextual
cues; e.g., TopNets can process spatial information via geo-
metric color filtrations. We analyze TopNets from both theo-
retical and practical perspectives, illuminating their promise
across diverse tasks.

We reinforce the versatility of TopNets by designing their
continuous counterparts, defining associated Neural ODEs
over simplicial complexes and elucidating error bounds be-
tween the discrete and continuous systems. We thus build on
the remarkable success of Neural ODEs (Chen et al., 2018;
Kim et al., 2023; Marion, 2023) across various domains,
including spatiotemporal forecasting (Yildiz et al., 2019; Li
et al., 2021; Lu et al., 2021; Kochkov et al., 2021; Brand-
stetter et al., 2023; Verma et al., 2024), generative model-

1

Topological Neural Networks go Persistent, Equivariant and Continuous

Table 1: Overview of recent methods for relational data and summary of our contributions. E: Equivariant, P: Persistent,
C: Continuous, and HO: higher order.

Recent methods for relational data Main contributions of this work
Method E P C HO

TOGL (Horn et al., 2021) ✗ ✓ ✗ ✗ Section 3
PersLay (Carrière et al., 2020) ✗ ✓ ✗ ✗ Unified Framework: TopNets
RePHINE (Immonen et al., 2023) ✗ ✓ ✗ ✗ TNNs + PH ≻ TNNs Prop. 1
MPSN (Bodnar et al., 2021b) ✗ ✗ ✗ ✓ Section 4
CWN (Bodnar et al., 2021a) ✗ ✗ ✗ ✓ E(n)-Equivariant TopNets (E-TopNets)
CAN (Giusti et al., 2023) ✗ ✗ ✗ ✓ Invariant PH embedding Prop. 2
IMPSN (Eijkelboom et al., 2023) ✓ ✗ ✗ ✓ Section 5
EGNN (Satorras et al., 2021) ✓ ✗ ✗ ✗ Continuous (Equivariant) TopNets
E3NN (Geiger and Smidt, 2022) ✓ ✗ ✗ ✗ Discretization error (TOGL) Prop. 3
GATr (Brehmer et al., 2023) ✓ ✗ ✗ ✗ Discretization error (RePHINE) Prop. 4
GRAND (Chamberlain et al., 2021) ✗ ✗ ✓ ✗ Section 6
GREAD (Choi et al., 2022) ✗ ✗ ✓ ✗ Experiments: graph classification, drug

property prediction, and generative designGRAND++ (Thorpe et al., 2022) ✗ ✗ ✓ ✗

TopNets (ours) ✓ ✓ ✓ ✓

ing (Grathwohl et al., 2018; Lipman et al., 2023; Verma
et al., 2022; 2023), and graph representation learning (Poli
et al., 2019; Iakovlev et al., 2020; Chamberlain et al., 2021;
Thorpe et al., 2022; Choi et al., 2022).

We summarize our main contributions below:

1. (Methodology) we propose TopNets, a general uni-
fying framework that combines TNN with PH and
leverages persistent homology to boost the expressivity
of (equivariant) message-passing simplicial networks;

2. (Theory) we derive a set of associated Neural-ODEs
for various TNNs and PH over simplicial complexes
and compute the associated discretization error bound
between discrete and continuous systems;

3. (Empirical) TopNets achieve strong performance
across diverse real-world tasks such as graph classifica-
tion, drug property prediction, and generative design.1

We compare TopNets with several other recent methods for
modeling relational data in Table 1.

2. Background
We begin with notions from topological ML, persistent ho-
mology, equivariance, and Graph ODEs that we use.

Simplicial complexes. An abstract simplicial complex
(ASC) over a vertex set V is a set K of subsets of V (called

1Code is available here: https://github.com/
Aalto-QuML/TopNets

simplices) such that, for every σ ∈ K and every non-empty
τ ⊂ σ, we have that τ ∈ K. Let σ be a simplex, then its non-
empty subsets τ ⊂ σ are called faces, and σ is a coface of τ .
The dimension of a simplex is equal to its cardinality minus
1, and the dimension of a simplicial complex is the maximal
dimension of its simplices. We denote by K[i] the subset of
i-dim simplices of K. Here, we represent simplices using
square brackets. For instance, K = {[0], [1], [0, 1]} denotes
a 1-dim simplicial complex over V = {0, 1}, and the 0-dim
simplices [0] and [1] are the faces of the simplex [0, 1].

We also consider simplicial complexes with features. In
particular, a geometric simplicial complex is a tuple (K, x,
z) where x : K → Rdx and z : K[0] → Rdz are functions
that assign to a simplex σ an attribute (or color) x(σ) and
a geometric feature z(σ), respectively. For convenience,
hereafter, we denote the feature vectors of σ by xσ and zσ .

Graph neural networks (GNNs). Let G = (V,E) be an
undirected graph with vertex set V and edge setE ⊆ V ×V
— note that graphs are 1-dim ASCs. To obtain meaning-
ful graph representations, message-passing GNNs (Gilmer
et al., 2017; Xu et al., 2019; Velicković et al., 2017) em-
ploy a sequence of message-passing steps, where each node
v aggregates messages from its neighbors N (v) = {u :
(v, u) ∈ E} and use the resulting vector to update its own
embedding. In particular, starting from x0v = xv ∀v ∈ V ,
GNNs recursively apply the update rule

xℓ+1
v = Updℓ

(
xℓv,Aggℓ({{xℓu : u ∈ N (v)}})

)
,

where {{·}} denotes a multiset, Aggℓ is an order-invariant
function and Updℓ is an arbitrary update function.

2

https://github.com/Aalto-QuML/TopNets
https://github.com/Aalto-QuML/TopNets

Topological Neural Networks go Persistent, Equivariant and Continuous

RePHINE TOGL PersLay

Features (optional)

To
po

lo
gi

ca
l l

ay
er

R
ea

do
ut

(g
ra

ph
-l

ev
el

)

Figure 1: Comparison of representative PH-based architectures for graph learning.

Topological neural networks (TNNs, e.g., Bodnar et al.,
2021a; Hensel et al., 2021; Hofer et al., 2017) consist of
neural models for processing data with high-order relational
structure. Papillon et al. (2023) provide a unified framework
to describe message-passing TNNs — here we focus on
models for simplicial complexes. After specifying neigh-
borhood structures, which define how simplices (possibly
of different dimensions) can locally interact, TNNs recur-
sively update the simplices’ embeddings via message pass-
ing. This general message-passing procedure comprises:
i) message computation, ii) within-neighborhood aggrega-
tion, iii) between-neighborhood aggregation, and iv) update.
More specifically, let N define a neighborhood structure.
For each simplex σ ∈ Kℓ at layer ℓ, we compute the mes-
sages mℓ,N

σ′→σ = Msgℓ,N (xℓσ, x
ℓ
σ′) from all σ′ ∈ N (σ),

where Msgℓ,N is an arbitrary function. Then, the messages
to simplex σ are aggregated, that is,

mℓ,N
σ = WithinAggℓ({m

ℓ,N
σ′→σ : σ′ ∈ N (σ)}), (1)

mℓ
σ = BetweenAggℓ({mℓ,N

σ : N ∈ Nall}), (2)

where Nall is a set of neighborhoods comprising, e.g., co-
boundary, boundary, lower-, and upper- adjacencies (Bodnar
et al., 2021b). Finally, we apply a function Updateℓ to
obtain the refined feature vector at layer ℓ+ 1 as

xℓ+1
σ = Updateℓ(m

ℓ
σ, x

ℓ
σ). (3)

Notably, TNNs subsume a large class of models, including
message-passing GNNs.

Persistent homology. A filtration of a simplicial complex
K is a finite nested sequence of subcomplexes of K, i.e.,
∅ = K0 ⊂ K1 ⊂ ... ⊂ K. To obtain a valid filtration, it
suffices to ensure that all the faces of a simplex σ do not
appear later than σ in the filtration. To achieve that, a typical
choice consists of defining a filtering (or filtration) function
f on the vertices of the simplicial complex, and use it to

rank each simplex σ ∈ K as of (σ) = maxv∈σ f(v). Let
α1 < · · · < αn be an increasing sequence of vertex filtered
values, i.e., αi ∈ {f(v) : v ∈ K[0]}; then, we index the
filtration steps using real numbers and define the filtration
of K induced by f as Kαi = {σ ∈ K : of (σ) ≤ αi} for
i = 1, . . . , n. Another common strategy adopts filtering
functions on vertex features xv and redefine of (σ;x) =
maxv∈σ f(xv). Filtrations induced by functions on vertex
features (or colors) are called vertex-color filtrations.

The idea of persistent homology (PH) is to keep track of
the appearance and disappearance of topological features
(e.g., connected components, loops, voids) in a filtration. If
a topological feature first appears in Kαi and disappears in
Kαj , then we encode its persistence as a pair (αi, αj); if a
feature does not disappear, then its persistence is (αi,∞).
The collection of all pairs forms a multiset that we call
persistence diagram. We use Di to denote the persistence
diagram for i-dim topological features. We provide more
details in Appendix A.

Persistence diagrams are usually vectorized before being
combined with ML models. In this regard, Carrière et al.
(2020) proposed a general framework, called PersLay, that
computes a vector representation for a given diagram D as

Agg ({ω(p)φ(p) : p ∈ D}) ,

where Agg is a permutation invariant operation (e.g., mean,
maximum, sum), ω : R2 7→ R is an arbitrary function that
assigns a weight to each persistence pair, and φ : R2 7→ Rq
maps each pair to a higher dimensional space. Notably,
PersLay introduces choices for φ that generalize many vec-
torization methods in the literature (e.g., Zaheer et al., 2017;
Bubenik, 2015; Adams et al., 2016; Kusano et al., 2016).

Combining PH and GNNs. Recently, PH has been used
to boost the expressive power of GNNs. Horn et al. (2021)
introduce TOGL — a general approach for incorporating

3

Topological Neural Networks go Persistent, Equivariant and Continuous

topological features from PH into GNN layers. In particular,
TOGL leverages node embeddings at each layer of a GNN
to obtain vertex-color filtrations. The 0-dim individual per-
sistence tuples are vectorized using MLPs and added to the
corresponding node features at each layer. For 1-dim tuples,
TOGL applies DeepSets to get a graph-level vector that runs
through the final fully-connected layers of the GNN.

Immonen et al. (2023) use independent vertex-color and
edge-color filtering functions to obtain more expressive
persistent diagrams called RePHINE. More specifically,
RePHINE first computes persistence diagrams from a fil-
tration induced by edge colors. Each tuple of the diagram
is then augmented based on the vertex colors and the local
edge-color information around each vertex. RePHINE di-
agrams are vectorized using DeepSets and combined with
graph-level GNN embeddings in the final classifier. Figure 1
depicts the architectures of RePHINE, TOGL, and PersLay.

E(n)-Equivariant networks. Let G be a group acting on
two sets X and Y . We say a function f : X → Y is G-
equivariant if it commutes with the group actions, i.e., for all
g ∈ G and x ∈ X , we have that f(g·x) = g·f(x). Here, we
are interested in models on geometric simplicial complexes
that are equivariant to the Euclidean group E(n), which
comprises all translations, rotations, and reflections of the
n-dim Euclidean space. Eijkelboom et al. (2023) introduce
Equivariant Message-Passing Simplicial Networks (EMP-
SNs), which extends the E(n)-equivariant GNNs (Satorras
et al., 2021) to geometric simplicial complexes. For each
simplex σ ∈ Kℓ at layer ℓ, EMPSNs compute the mes-
sages mℓ,N

σ′→σ = Msgℓ,N (xℓσ, x
ℓ
σ′ , Inv(σ, σ′; zℓ)) from all

σ′ ∈ N (σ), where Inv(σ, σ′; zℓ) denotes invariant features
(e.g., volumes, angles, distances) computed using coordi-
nates from zℓ. Then, the messages to simplex σ are aggre-
gated using WithinAggℓ and BetweenAggℓ the same way
as in TNNs to obtain an aggregated message mℓ

σ. Finally,
we recursively update the features and coordinates as

xℓ+1
σ = Updateℓ(m

ℓ
σ, x

ℓ
σ) (4)

zℓ+1
σ = C

∑
σ′∈N↑(σ)

(zℓσ − zℓσ′)ϕℓz(m
ℓ,N↑
σ′→σ) ∀σ ∈ K[0] (5)

where N↑ denotes the upper-adjancency, C is a normaliza-
tion constant, and ϕℓz is an arbitrary function.

Graph ODEs. Neural Ordinary Differential Equations
(ODEs) represent a class of implicit deep learning models
characterized by an ODE, where the vector field is parame-
terized by a neural network (Weinan, 2017; Dupont et al.,
2019; Chen et al., 2018; Lu et al., 2018). Graph ODEs (Poli
et al., 2019) generalize Neural ODEs to garphs. For in-
stance, we can track the evolution of signals defined over

the vertices of a graph as a differential equation

ẋv =
dxv
dt

= f(t, xv, {xu}u∈N (v)). (6)

Here, the vector field f is parameterized by a neural net-
work. A notable feature is that, under a mild assumption on
f , employing an Euler scheme for N time-steps converges
to an N -layer Graph ResNet (Sander et al., 2022). This
convergence implies that Graph ODEs inherently inherit the
capability to incorporate relational inductive biases seen in
GNNs while maintaining the dynamic system perspective
of continuous-depth models. The versatility of Graph ODEs
has paved the way for the design of novel graph neural net-
works, such as GRAND (Chamberlain et al., 2021), GREAD
(Choi et al., 2022), and AbODE (Verma et al., 2023).

3. A unified framework: Topological persistent
neural networks (TopNets)

We now introduce a general framework that combines TNNs
and PH for expressive learning on topological objects. We
call this framework topological persistent neural networks
or TopNets, in short. Notably, we show that TopNets sub-
sume several methods at the intersection of PH and GNNs.

To motivate our framework, we show that persistent homol-
ogy features bring in additional expressive power to TNNs.
Bodnar et al. (2021b) introduce a Simplicial Weisfeiler-
Leman (SWL) test to characterize the expressivity of simpli-
cial message-passing networks (SMPNs) — a general TNN
for simplicial complexes. They show that SWL (with clique
complex lifting) is strictly more powerful than 1-WL. Our
next result (Proposition 1) implies that the combination of
SWL and PH is strictly more expressive than the SWL test.

Proposition 1 (SWL + PH ≻ SWL). There are pairs of non-
isomorphic clique complexes that SWL cannot distinguish
but persistence diagrams from color-based filtrations can.

Prior works (Horn et al., 2021; Rieck, 2023; Immonen et al.,
2023) have demonstrated that PH can be used to increase the
power of GNNs. Proposition 1 shows that this also applies
to TNNs on simplicial complexes.

Given an input simplicial complex, each layer in a TopNet
first applies a general message-passing (MP) procedure to
obtain a refined attributed complex, as in TNNs. Then, we
compute persistence diagrams followed by a vectorization
scheme that assigns each simplex a topological embedding.
Next, TopNets obtain two complex-level representations:
the first consists of a joint MP-PH vector derived from a
combination of the features of the complex and the topologi-
cal embeddings; and the second one is obtained by merging
the PH-based descriptor associated with each simplex via
an order-invariant function. Finally, we combine the repre-
sentation of the simplices at each layer and dimension, and

4

Topological Neural Networks go Persistent, Equivariant and Continuous

apply two readout layers. The first aims to combine infor-
mation from different layers (but same dimension) while
the second readout function further processes the resulting
representations across dimensions. In the following, we
formalize these steps.

Steps of a TopNet layer

1. General Message Passing (MP): Let (Kℓ, xℓ)
denote an attributed simplicial complex at layer ℓ.
TopNets refine the attributed complex using a gen-
eral TNN layer as

Kℓ, x̃ℓ = TNNLayerℓ(K
ℓ−1, xℓ−1). (7)

2. PH Vectorization: Next, we compute a persis-
tence diagram induced by a filtering function f ℓ

followed by a vectorization procedure ψ. As a re-
sult, we obtain a topological vector representation
rℓσ for each simplex σ in Kℓ:

rℓσ = ψ(PD(σ; f ℓ, x̃ℓ,Kℓ)) ∀σ ∈ Kℓ. (8)

We note that the map PD computes persistence dia-
grams for all dimensions i = 0, 1, . . . ,dim(Kℓ).

3. Topological aggregation: We combine the PH
and MP embeddings of each simplex σ ∈ Kℓ by ap-
plying a so-called topological aggregation function
TopAggdim(σ) — note that the choice of topolog-
ical aggregation depends on the dimension of the
input simplex. We also group the topological vec-
tors using a dimension-wise Aggi,ℓ operation, i.e.,

xℓσ = TopAggdim(σ)(x̃
ℓ
σ, r

ℓ
σ) ∀σ ∈ Kℓ (9)

mℓ,i = Aggi,ℓ({rℓσ}σ∈Kℓ
[i]
) (10)

4. Readout: We then merge the features xℓσ and
the topological embeddings mℓ,i across layers and,
subsequently, across dimensions using interleaved
readout functions:

hℓ,i = Pool({xℓσ}σ∈Kℓ
[i]
) (11)

hi = Readoutlayer({hℓ,i}ℓ, {mℓ,i}ℓ) (12)

h = Readoutdim({hi}i). (13)

The final representation h in Equation 13 is typically
fed through multi-layer perceptrons (MLP) to obtain a
complex-level prediction. Importantly, the formalism of
TopNets includes PH-based (graph) neural networks such as
TOGL (Horn et al., 2021), PersLay (Carrière et al., 2020),
and RePHINE (Immonen et al., 2023) as particular cases:

a) TOGL: Here, the TNNLayerℓ functions correspond

to GNN layers, while the computation of persistence
diagrams (PD) involves vertex-color filtrations, with
vectorization achieved via MLPs ψ. The topological
aggregation TopAggTOGL (defined in Appendix C) is
specifically applied to persistence tuples of dimension
i = 0, whose vector representations are added to the initial
node features. Tuples of dimension i = 1 are pooled and
then concatenated with the final GNN embedding for use
in the subsequent readout phase.

b) PersLay: The TNNLayerℓ serves as an identity trans-
formation, and the computation of the persistence diagram
(PD) involves (0-dim and 1-dim) ordinary and extended
persistence pairs. Moreover, TopAggPersLay (defined in Ap-
pendix C) simply concatenates node features with graph-
level topological vectors.

c) RePHINE: Again, GNN is the choice of TNN. However,
the computation of persistence diagrams (PD) involves ver-
tex and edge filtrations specific to RePHINE. The results
are aggregated using a DeepSet function Aggi,ℓ to yield a
topological embedding mℓ,i for each layer ℓ and dimension
i. The topological aggregation function TopAggRePHINE

(defined in Appendix C)outputs the simplex features x̃ℓσ.
Finally, in conjunction with the simplex features from the
final layer, the topological embeddings are concatenated and
pooled for subsequent use in the downstream readout phase.

More details about deductions can be found in Appendix C.

4. E(n) Equivariant TopNets
In this section, we extend TopNets to deal with topological
objects that are symmetric to rotation, reflections and transla-
tions — i.e., to actions of the Euclidean group E(n). In par-
ticular, we consider geometric SCs, and build upon EMPSNs
(Eijkelboom et al., 2023) and invariant filtering functions
to propose Equivariant TopNets (E-TopNets). Compared
to regular TopNets, E-TopNets employ modified general
message passing and PH vectorization steps (Eqs. 7 and 8)
— the other steps remain untouched.

Starting from an input geometric (attributed) SC
(K0, x0, z0); at each layer ℓ, E-TopNets recursively obtain
a refined SC via an EMPSN layer as

Kℓ, x̃ℓ, zℓ = EMPSNLayerℓ(K
ℓ−1, xℓ−1, zℓ−1).

To achieve an equivariant variant of TopNets, one could
disregard the vertex coordinates zℓ when computing
persistence diagrams. For instance, this can be obtained
from an i-simplex-color filtration (Definition 1). This
generalizes the notion of vertex-color filtrations to higher di-
mensions. Thus, 0-simplex-color filtrations are vertex-color
ones, 1-simplex-color filtrations correspond to edge-color
filtrations, and so on.
Definition 1 (i-simplex-color filtrations). Let (K,x) be an

5

Topological Neural Networks go Persistent, Equivariant and Continuous

attributed simplicial complex and f : Rdx → R+ a filtering
function. Also, let α1 < · · · < αn with αj ∈ {f(xw) :
w ∈ K[i]}. An i-simplex-color filtration induced by f is a
sequence of complexes Kαj = {σ ∈ K : of (σ;x) ≤ αj}
for j = 1, . . . , n, where

of (σ;x) =

 max
τ⊂σ:dim(τ)=i

f(xτ) , if dim(σ) ≥ i

0 , otherwise.

Obtaining persistence diagrams from i-simplex-color filtra-
tions incurs losing (possibly) relevant geometric informa-
tion. Thus, here, we are interested in filtering functions that
leverage both attributes and coordinates, as in geometric
color-based filtrations (Definition 2).

Definition 2 (Geometric i-simplex-color filtrations). Let
(K,x, z) be a geometric simplicial complex and f a filtering
function. Also, let α1 < · · · < αn with αj ∈ {f(xw, ·) :
w ∈ K[i]}. A geometric i-simplex-color filtration induced
by f is a sequence Kαj = {σ ∈ K : of (σ;x, z) ≤ αj} for
j = 1, . . . , n, where

of (σ;x, z)=


max
τ⊂σ:

dim(τ)=i

f(xτ , Inv({zv}v∈τ)) ,dim(σ) ≥ i

0 , otherwise

and Inv(·) is any E(n)- and Sn-invariant function.

For many tasks, e.g., in graph learning, colors are only given
to 0-dim simplices. In such cases, we can obtain colors
to higher-order simplices σ via a learnable permutation
invariant function on the colors of the vertices in σ. Thus,
we can rewrite the filtering functions in Definition 2 as
f(ϕ({xv}v∈τ), Inv({zv}v∈τ)). As usual, we parameterize
f using multilayer perceptrons and ϕ using DeepSets.

As a remark, persistence diagrams extracted from geometric
0-simplex-color filtrations are not more expressive than their
non-geometric counterparts — i.e., vertex-color (VC) filtra-
tions. The reason is that the only E(n)-invariant function
of a single element is a constant function, i.e., the condition
f(z) = f(g · z) for all g ∈ E(n) implies that f is a con-
stant function. Thus, we refer to their non-geometric variant
whenever we mention VC filtrations.

We also note that, to achieve a geometric extension of
RePHINE diagrams, we can simply replace its edge-color fil-
tration with a geometric 1-simplex-color filtration and then
use an independent vertex-color function as in the original
formulation. This highlights that the vertex coordinates are
only used to define filtrations, and any persistence descrip-
tor and vectorization procedure can be applied — having
no impact on the equivariance of E-TopNets. Our next re-
sult (Proposition 2) establishes the invariance of persistence
diagrams from geometric i-simplex-color filtrations.

Proposition 2 (Invariant persistence diagrams). For any i ≥
0, persistence diagrams for any dimension obtained from
geometric i-simplex-color filtrations are E(n)-invariant.

We can rewrite the PH vectorization step of E-TopNets as

rℓσ = ψ(PD(σ; f ℓinv, x̃
ℓ, zℓ,Kℓ)) ∀σ ∈ Kℓ

where f ℓinv denotes one or moreE(n)-invariant filtering func-
tions used to induce a geometric i-simplex-color filtration
for some i in {0, 1, . . . ,dim(Kℓ)}.

5. Continuous (Equivariant) TopNets
In this section, we expand the general framework of (Equiv-
ariant) TopNets to encompass continuous systems. Unlike
conventional E-TopNets, Continuous E-TopNets use a con-
tinuous message-passing scheme based on EMPSNs. For
each simplex σ ∈ Kt at time-step t, we compute the mes-
sages mt,N

σ′→σ = Msgt,N (xtσ, x
t
σ′ , Inv(σ, σ′; zt)) from all

σ′ ∈ N (σ). Then, the messages to simplex σ are aggregated
using WithinAggt and BetweenAggt the same way as in
TNNs to obtain an aggregated message mt

σ. Finally, we
apply the following functions to obtain the refined feature
vectors as

˙̃xσ = Update(mt
σ, x

t
σ) (14)

żσ = C
∑

σ′∈N↑(σ)

(ztσ − ztσ′)ϕz(m
t,N↑
σ′→σ) ∀ σ ∈ K[0] (15)

where C is a constant and ϕz is an arbitrary non-linear map-
ping. The forward solution of x and z can be accurately
approximated with numerical solvers such as RK4 (Runge,
1895) with low computational cost. The geometrical filtra-
tions and topological embeddings are computed in the same
way as described in the previous section.

Interestingly, one can define a set of associated Neural ODEs
for a given PH-based (graph) neural network such as TOGL
and RePHINE. We derive the set of neural ODEs and utilize
it to derive discretization error bounds between discrete and
continuous trajectories.

5.1. Discretization Error Bound

We compute discretization error bounds between the trajec-
tories for discrete and continuous versions of RePHINE and
TOGL. All the proofs can be found in Appendix E.

Proposition 3 (Discretization error for TOGL). The dis-
cretization error ev(ℓ) = x

ℓ/N
v − xℓv for node v at layer ℓ

between the node features of N -layer (with time-step size
h) continuous and discrete TOGL networks is bounded as

∥ev(ℓ)∥1 ≤ R1(h)
N(exp(Lm + Lβ)− 1)

Lm + Lβ
(16)

6

Topological Neural Networks go Persistent, Equivariant and Continuous

Table 2: Predictive performance on graph classification.

TNN Topological Agg Diagram Method NCI109 ↑ IMDB-B ↑ NCI1 ↑ MOLHIV ↑ PROTEINS ↑

GCN TopAggRePHINE
VC Discrete 77.92 ±1.03 64.80 ±1.30 79.08 ±1.06 73.64 ±1.29 69.46 ±1.83

Continuous 80.37 ±2.21 73.40 ±3.40 81.75 ±2.93 72.41 ±3.29 72.89±2.10

RePHINE Discrete 79.18 ±1.97 69.40 ±3.78 80.44 ±0.94 75.98 ±1.80 71.25 ±1.60
Continuous 80.63 ±1.56 76.00 ±2.10 82.15 ±1.75 74.90 ±2.78 73.79 ±1.30

GIN TopAggRePHINE
VC Discrete 78.35 ±0.68 69.80 ±0.84 79.12 ±1.23 73.37 ±4.36 69.46 ±2.48

Continuous 80.39±1.13 74.00 ±3.25 82.18 ±1.56 71.90 ±5.20 72.89 ±2.15

RePHINE Discrete 79.23 ±1.67 72.80 ±2.95 80.92 ±1.92 73.71 ±0.91 72.32 ±1.89
Continuous 81.60 ±0.95 76.00 ±1.60 84.16 ±1.89 72.10 ±4.27 73.79 ±1.45

MPSN TopAggRePHINE
VC Discrete 79.40 ±2.74 66.50 ±3.65 77.10 ±1.37 72.40 ±3.90 70.50 ±1.75

Continuous 80.10 ±3.45 73.00 ±1.80 81.10 ±4.64 72.70 ±4.65 71.20 ±3.20

RePHINE Discrete 79.43 ±1.65 67.20 ±2.85 81.22 ±1.48 71.20 ±4.78 71.70 ±2.56
Continuous 80.40 ±3.55 74.00 ±2.65 83.20 ±3.24 71.50 ±4.54 72.10 ±2.35

where Lm and Lβ are Lipshitz constants, and R1 is a re-
mainder term associated with the Taylor expansion of con-
tinuous TOGL.

Proposition 4 (Discretization error for RePHINE). Let x
ℓ/N
v

and rℓ/N be the node and topological embeddings of an N -
time-step continuous RePHINE model at time-step ℓ, respec-
tively. Similarly, let xℓv and rℓ be the node and topological
embeddings of a discreteN -layer RePHINE at layer ℓ. Then,
we can bound the discretization errors ev(ℓ) = x

ℓ/N
v − xℓv

and er(ℓ) = rℓ/N − rℓ as follows:

∥ev(ℓ)∥1 ≤ R1(h)
N(exp(Lm)− 1)

Lm
(17)

∥er(ℓ)∥1 ≤ Lℓβ∥ev(ℓ− 1)∥1 +
LℓβLm

N
∥ev(ℓ− 1)∥1

+R1(h)−R1(m
ℓ−1)

(18)

where Lm, Lℓβ are Lipshitz constants, and R1 are the re-
mainder terms associated with the Taylor expansion of con-
tinuous RePHINE.

Table 3: Comparison with TOGL. We used TopAggTOGL

for aggregating the PH embeddings.

Model Diagram Enzymes ↑ DD ↑ Proteins ↑
GCN - 65.8 ±4.6 72.8 ±4.1 76.1 ±2.4
TOGL VC 53.0 ±9.2 73.2 ±4.7 76.0 ±3.9
Cont. TopNets 69.7 ±3.2 73.1 ±1.9 78.7 ±2.7

GIN - 50.0 ±12.3 70.8 ±3.8 72.3 ±3.3
TOGL VC 43.8 ±7.9 75.2 ±4.2 73.6 ±4.8
Cont. TopNets 58.3 ±8.2 77.3 ±4.5 79.5 ±3.9

Implication. The bound indicates that the proximity to the
ODE solution cannot be assured since it is uncertain whether
R1(h)N → 0. This suggests the necessity of incorporating
additional regulatory assumptions over the network to obtain
the Neural ODE in the large depth limit. This observation
resonates closely with the analysis conducted by Sander
et al. (2022) in characterizing Neural ODEs with ResNets.

6. Experiments
Tasks We assess the performance of TopNets on diverse
tasks: (i) we evaluate our method performance on real-world
graph classification data between discrete and continuous
counterparts across various GNNs and TNNs in section 6.1,
(ii) we benchmark its efficacy in property prediction us-
ing QM9 molecular data, highlighting the effectiveness of
its equivariant method in Section 6.2, and (iii) we demon-
strate TopNets utility by co-designing antibody sequence
and structure using the SAbDab database in Section 6.3.

Baselines On graph classification tasks, we evaluate Top-
Nets using standard vertex-color (VC) and RePHINE (Im-
monen et al., 2023) persistence diagrams. We adopt differ-
ent GNN/TNN architectures like GCN (Kipf and Welling,
2016), GIN (Xu et al., 2019), TOGL (Horn et al., 2021),
and MPSN (Bodnar et al., 2021a) and process the persis-
tence diagrams exactly the same way using DeepSets. We
also compare the performance between each method’s con-
tinuous and discrete counterparts. On QM9 property pre-
diction tasks we compare to several equivariant methods
like NMP (Gilmer et al., 2017), TFN (Thomas et al., 2018),
SE(3)-Tr (Fuchs et al., 2020), DimeNet++(Gasteiger et al.,
2020a), SphereNet (Liu et al., 2021), MPSN(Bodnar et al.,
2021a), EGNN (Satorras et al., 2021) and IMPSN (Eijkel-
boom et al., 2023). Lastly, on CDR-H3 Antibody design, we
compare to recent SOTA like RefineGNN (Jin et al., 2022),
MEAN (Kong et al., 2023) and AbODE (Verma et al., 2023).

Implementation TopNets is implemented in Py-
Torch (Paszke et al., 2019). Details regarding hyper-
parameters training are in Appendix B.

6.1. Graph Classification

The results presented in Table 2 and Table 3 demonstrate
the performance of TopNets on graph classification. These
results offer a detailed assessment of different GNN/TNN
architectures, PH vectorization methods, and their contin-

7

Topological Neural Networks go Persistent, Equivariant and Continuous

Table 4: Test Mean absolute error (MAE) on QM9 dataset. The △ denotes the methods trained with different train-test
splits, and ∗∗ denotes the reproduced results. Benchmarks are from Eijkelboom et al. (2023). We denote the best-performing
methods in bold and the second-best ones in blue. We used TopAggRePHINE for aggregating the PH embeddings.

Architecture Diagram Method α ∆ϵ ϵHOMO ϵLUMO µ Cv R2 ZPVE
bohr3 meV meV meV D cal/mol K bohr3 meV

DimeNet++△ - - 0.044 33 25 20 0.030 0.023 0.331 1.21
SphereNet△ - - 0.046 32 23 18 0.026 0.021 0.292 1.21

NMP - - 0.092 69 43 38 0.030 0.040 0.180 1.50
SE(3)-Tr - - 0.142 53 35 33 0.051 0.054 - -
TFN - - 0.223 58 40 38 0.064 0.101 - -
MPSN - - 0.266 153 89 77 0.101 0.122 0.887 3.02
EGNN - - 0.071 48 29 25 0.028 0.031 0.106 1.55
IMPSN∗∗ - - 0.066 51 32 25 0.031 0.027 0.114 1.44

IMPSN
VC Disc. E-TopNets 0.083 47 37 24 0.035 0.032 0.125 1.45

Cont. E-TopNets 0.075 49 36 27 0.030 0.035 0.129 1.43

RePHINE Disc. E-TopNets 0.072 57 33 28 0.029 0.028 0.132 1.39
Cont. E-TopNets 0.070 50 35 25 0.032 0.030 0.118 1.37

uous counterparts. The reported results include the mean
and standard deviation of predictive metrics — AUROC for
MOLHIV and accuracy for the remaining datasets. This
comprehensive analysis provides valuable insights into Top-
Nets performance. Notably, incorporating the continuous
component consistently improves downstream performance
across all datasets, TNNs, and TopAgg schemes.

6.2. Molecular data - QM9

The QM9 dataset, introduced by Ramakrishnan et al. (2014),
comprises small molecules with a maximum of 29 atoms in
3D space. Each atom is characterized by a 3D position and
a five-dimensional one-hot node embedding representing
the atom type, denoted as (H,C,N,O,F). The dataset’s
primary objective is to predict various chemical properties
of the molecules, which remain invariant to translations, ro-
tations, and reflections on the atom positions. Following the
data preparation strategy of Eijkelboom et al. (2023); Sator-
ras et al. (2021), we partition the dataset into training, vali-
dation, and test sets. The mean absolute error between pre-
dictions and ground truth for test set is reported in Table 4,
revealing the competitive performance of TopNets compared
to baselines. Notably, on many targets, TopNets achieve
results nearly on par with SOTA approaches, surpassing
in predicting ZPVE, ∆ϵ and ϵLUMO. This achievement is
intriguing as our architecture, not specifically tailored for
molecular tasks, lacks many molecule-specific intricacies,
like Bessel function embeddings (Gasteiger et al., 2020b).

6.3. CDR-H3 Antibody Design

We took the antigen-antibody complexes dataset from Struc-
tural Antibody Database (Dunbar et al., 2014) and removed
invalid data points. We followed a strategy similar to Verma
et al. (2023) for data preparation and splitting and employ

Amino Acid Recovery (AAR) and RMSD for quantitative
evaluation. AAR is defined as the overlapping rate between
the predicted 1D sequences and the ground truth. RMSD is
calculated via the Kabsch algorithm (Kabsch, 1976) based
on Cα spatial features of the CDR residues. Table 5 show-
cases the performance of TopNets compared to the baseline
methods over CDR-H3 design. TopNets outperform other
methods in terms of sequence prediction, thus improving
over the SOTA and demonstrating the benefit of persistent
homology in generative design.

Table 5: Results on CDR-H3 design benchmark. We report
AAR and RMSD metrics. TopNets significantly outperform
baselines on AAR while being competitive on RMSD. We
used TopAggRePHINE for aggregating the PH embeddings.

Method Diagram AAR % (↑) RMSD (↓)
LSTM - 15.69 ± 0.91 (N/A)
C-LSTM - 15.48 ± 1.17 (N/A)
RefineGNN - 21.13 ± 1.59 6.00 ± 0.55
C-RefineGNN - 18.88 ± 1.37 6.22 ± 0.59
MEAN - 36.38 ± 3.08 2.21 ± 0.16
AbODE - 39.8 ± 1.17 1.73 ± 0.11

TopNets VC 43.00 ± 1.34 1.73 ± 0.21
RePHINE 44.80 ± 1.57 1.75 ± 0.17

7. Conclusion and Limitations
We introduce TopNets to illustrate the theoretical and practi-
cal benefits of including persistent features in topological
networks, and their geometric and continuous-time exten-
sions. TopNets incur considerable computational expense
due to costs involved in computing PH embeddings as well
as higher-order message-passing. Additionally, our research
is confined to simplicial complexes, and exploring combina-
torial complexes is an interesting avenue for future work.

8

Topological Neural Networks go Persistent, Equivariant and Continuous

Acknowledgements
This work has been supported by the Research Council of
Finland under the HEALED project (grant 13342077), Jane
and Aatos Erkko Foundation project (grant 7001703) on
“Biodesign: Use of artificial intelligence in enzyme design
for synthetic biology”, and Finnish Center for Artificial In-
telligence FCAI (Flagship programme). We acknowledge
CSC – IT Center for Science, Finland, for providing gener-
ous computational resources.

References
Henry Adams, Tegan Emerson, Michael Kirby, Rachel

Neville, Chris Peterson, Patrick Shipman, Sofya Chepush-
tanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier.
Persistence Images: A Stable Vector Representation of
Persistent Homology. Journal of Machine Learning Re-
search, 18(8):1–35, 2016.

Sergio Barbarossa and Stefania Sardellitti. Topological
signal processing over simplicial complexes. IEEE Trans-
actions on Signal Processing, 68:2992–3007, 2020.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang
Wang, Pietro Liò, Guido F Montufar, and Michael Bron-
stein. Weisfeiler and lehman go cellular: Cw networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Ot-
ter, Guido F Montufar, Pietro Lio, and Michael Bronstein.
Weisfeiler and lehman go topological: Message passing
simplicial networks. In International Conference on Ma-
chine Learning (ICML), 2021b.

Johannes Brandstetter, Rianne van den Berg, Max Welling,
and Jayesh Gupta. Clifford neural layers for PDE model-
ing. In ICLR, 2023.

Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco
Cohen. Geometric algebra transformers. arXiv preprint
arXiv:2305.18415, 2023.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar
Velicković. Geometric deep learning: Grids, groups,
graphs, geodesics, and gauges, 2021.

P. Bubenik. Statistical topological data analysis using persis-
tence landscapes. Journal of Machine Learning Research,
16:77–102, 2015.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo La-
combe, Martin Royer, and Yuhei Umeda. PersLay: A
Neural Network Layer for Persistence Diagrams and New
Graph Topological Signatures. In Artificial Intelligence
and Statistics (AISTATS), 2020.

Ben Chamberlain, James Rowbottom, Maria I Gorinova,
Michael Bronstein, Stefan Webb, and Emanuele Rossi.
Grand: Graph neural diffusion. In International Confer-
ence on Machine Learning, pages 1407–1418. PMLR,
2021.

Binghui Chen, Weihong Deng, and Jiani Hu. Mixed high-
order attention network for person re-identification. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 371–381, 2019.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-
Bae Cho. Gread: Graph neural reaction-diffusion equa-
tions. arXiv preprint arXiv:2211.14208, 2022.

Jean-Pierre Demailly. Analyse numérique et équations dif-
férentielles. EDP sciences Les Ulis, 2006.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hyper-
graph networks with hyperedge neurons. arXiv preprint
arXiv:2006.12278, 2020.

James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry
Baker, Angelika Fuchs, Guy Georges, Jiye Shi, and Char-
lotte M Deane. Sabdab: the structural antibody database.
Nucleic acids research, 42(D1):D1140–D1146, 2014.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Aug-
mented neural odes. Advances in neural information
processing systems, 32, 2019.

Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi,
Victor Schmidt, Santiago Miret, Fragkiskos D. Malliaros,
Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael
Bronstein. A hitchhiker’s guide to geometric gnns for 3d
atomic systems, 2023.

H. Edelsbrunner and J. Harer. Computational Topology - an
Introduction. American Mathematical Society, 2010.

Floor Eijkelboom, Rob Hesselink, and Erik Bekkers. E(n)
equivariant message passing simplicial networks. arXiv
preprint arXiv:2305.07100, 2023.

Linton Freeman. The development of social network analy-
sis. A Study in the Sociology of Science, 1(687):159–167,
2004.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. Se (3)-transformers: 3d roto-translation equiv-
ariant attention networks. Advances in neural information
processing systems, 33:1970–1981, 2020.

9

Topological Neural Networks go Persistent, Equivariant and Continuous

Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Gen-
eralization and representational limits of graph neural net-
works. In International Conference on Machine Learning,
2020.

Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and
Stephan Günnemann. Fast and uncertainty-aware direc-
tional message passing for non-equilibrium molecules.
arXiv preprint arXiv:2011.14115, 2020a.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann.
Directional message passing for molecular graphs. arXiv
preprint arXiv:2003.03123, 2020b.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural
networks. arXiv preprint arXiv:2207.09453, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In International conference on
machine learning, pages 1263–1272. PMLR, 2017.

Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo
Di Lorenzo, Stefania Sardellitti, and Sergio Barbarossa.
Cell attention networks. In 2023 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8. IEEE,
2023.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form con-
tinuous dynamics for scalable reversible generative mod-
els. arXiv preprint arXiv:1810.01367, 2018.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey
of topological machine learning methods. Frontiers in
Artificial Intelligence, 4, 2021.

C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl. Deep
learning with topological signatures. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Max Horn, Edward De Brouwer, Michael Moor, Yves
Moreau, Bastian Rieck, and Karsten Borgwardt. Topo-
logical graph neural networks. arXiv preprint
arXiv:2102.07835, 2021.

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki.
Learning continuous-time pdes from sparse data with
graph neural networks. arXiv preprint arXiv:2006.08956,
2020.

Johanna Immonen, Amauri H. Souza, and Vikas Garg. Go-
ing beyond persistent homology using persistent homol-
ogy. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023.

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Predic-
tion of protein–protein interaction using graph neural
networks. Scientific Reports, 12(1):8360, 2022.

Wengong Jin, Jeremy Wohlwend, Regina Barzilay, and
Tommi Jaakkola. Iterative refinement graph neural net-
work for antibody sequence-structure co-design, 2022.

Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco
Cohen, and Pietro Liò. On the expressive power of geo-
metric graph neural networks, 2023.

Wolfgang Kabsch. A solution for the best rotation to relate
two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General
Crystallography, 32(5):922–923, 1976.

Timothy Doyeon Kim, Tankut Can, and Kamesh Krish-
namurthy. Trainability, expressivity and interpretability
in gated neural odes. arXiv preprint arXiv:2307.06398,
2023.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Dmitrii Kochkov, Jamie Smith, Ayya Alieva, Qing Wang,
Michael Brenner, and Stephan Hoyer. Machine learning–
accelerated computational fluid dynamics. Proceedings
of the National Academy of Sciences, 118(21), 2021.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. Condi-
tional antibody design as 3d equivariant graph translation,
2023.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Per-
sistence weighted Gaussian kernel for topological data
analysis. In International Conference on Machine Learn-
ing (ICML), pages 2004–2013, 2016.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Fourier neural operator for paramet-
ric partial differential equations. In ICLR, 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxim-
ilian Nickel, and Matt Le. Flow matching for generative
modeling, 2023.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin,
and Shuiwang Ji. Spherical message passing for 3d graph
networks. arXiv preprint arXiv:2102.05013, 2021.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and
George Em Karniadakis. Learning nonlinear operators via
DeepONet based on the universal approximation theorem
of operators. Nature machine intelligence, 3(3):218–229,
2021.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong.
Beyond finite layer neural networks: Bridging deep ar-
chitectures and numerical differential equations. In Inter-
national Conference on Machine Learning, pages 3276–
3285. PMLR, 2018.

10

Topological Neural Networks go Persistent, Equivariant and Continuous

Pierre Marion. Generalization bounds for neural ordinary
differential equations and deep residual networks. arXiv
preprint arXiv:2305.06648, 2023.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina
Miolane. Architectures of topological deep learning: A
survey on topological neural networks. ArXiv e-prints,
2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems,
32, 2019.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi
Yamashita, Hajime Asama, and Jinkyoo Park. Graph
neural ordinary differential equations. arXiv preprint
arXiv:1911.07532, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp,
and O Anatole Von Lilienfeld. Quantum chemistry struc-
tures and properties of 134 kilo molecules. Scientific data,
1(1):1–7, 2014.

B. Rieck. On the expressivity of persistent homology in
graph learning. arXiv: 2302.09826, 2023.

Carl Runge. Über die numerische auflösung von differen-
tialgleichungen. Mathematische Annalen, 46(2):167–178,
1895.

Michael Sander, Pierre Ablin, and Gabriel Peyré. Do resid-
ual neural networks discretize neural ordinary differential
equations? Advances in Neural Information Processing
Systems, 35:36520–36532, 2022.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max
Welling. E (n) equivariant graph neural networks. In In-
ternational conference on machine learning, pages 9323–
9332. PMLR, 2021.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong,
Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised clas-
sification. arXiv preprint arXiv:2009.03509, 2020.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Ten-
sor field networks: Rotation-and translation-equivariant
neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

Matthew Thorpe, Tan Minh Nguyen, Heidi Xia, Thomas
Strohmer, Andrea Bertozzi, Stanley Osher, and Bao Wang.
Grand++: Graph neural diffusion with a source term. In
International Conference on Learning Representation
(ICLR), 2022.

Petar Velicković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

Yogesh Verma, Samuel Kaski, Markus Heinonen, and Vikas
Garg. Modular flows: Differential molecular generation.
arXiv preprint arXiv:2210.06032, 2022.

Yogesh Verma, Markus Heinonen, and Vikas Garg. AbODE:
Ab initio antibody design using conjoined ODEs. In Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, pages 35037–35050. PMLR, 2023.

Yogesh Verma, Markus Heinonen, and Vikas Garg.
ClimODE: Climate and weather forecasting with physics-
informed neural ODEs. In The Twelfth International
Conference on Learning Representations, 2024.

Ee Weinan. A proposal on machine learning via dynamical
systems. Communications in Mathematics and Statistics,
1(5):1–11, 2017.

Boris Weisfeiler and Andrei Leman. The reduction of a
graph to canonical form and the algebra which appears
therein. nti, Series, 2(9):12–16, 1968.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful
are graph neural networks? In International Conference
on Learning Representations (ICLR), 2019.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki.
ODE2VAE: Deep generative second order ODEs with
Bayesian neural networks. NeurIPS, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in Neural Information
Processing Systems (NeurIPS), volume 30, 2017.

11

Topological Neural Networks go Persistent, Equivariant and Continuous

A. Persistent homology
Persistent homology (PH) stands as a cornerstone in topological data analysis (TDA). At its core, PH seeks to capture
multiresolution topological features (e.g., connected components, loops, voids, etc.) from data. Here, we offer a short
overview of PH and direct readers to (Hensel et al., 2021) and (Edelsbrunner and Harer, 2010) for an exhaustive treatment.

In the following, we consider topological spaces given by simplicial complexes. In particular, consider a simplicial complex
denoted by K. The p-chains are formal sums c =

∑
aiσi, where ai ∈ Z/2Z and σi represent p-dimensional simplices in

K. By equipping p-chains with addition, we obtain the group Cp(K). Another important notion is that of boundary of a
simplex. Consider a p-simplex σ = [v0, ..., vp] ∈ K. The boundary of σ corresponds to the sum of its (p− 1)-dimensional
faces, i.e.,

∂pσ =

p∑
j=0

[v0, ..., vj−1, vj+1, . . . , vp].

Importantly, we can extend this definition to define the boundary homomorphism ∂p : Cp(K) → Cp−1(K), where
∂p

∑
aiσi =

∑
ai∂pσi. Then, we can define a sequence of groups, also called a chain complex, as:

...Cp+1(K)
∂p+1−−−→ Cp(K)

∂p−→ Cp−1(K)...

where groups are connected via boundary homomorphisms. The p-th homology group comprises p-chains with empty
boundaries (i.e., ∂pσ = 0), whereby each of these specific p-chains (cycles) represents a boundary of a distinct simplex in
Cp+1(K). Hence, we define the p-th homology group Hp as the quotient space:

Hp = ker∂p/Im∂(p+1).

The p-th Betti number of K, denoted by βp, is equal to the rank of Hp.

In persistent homology, we keep track of the evolution of Betti numbers across a sequence of chain complexes. The sequence
of complexes arise from a filtration — a nested sequence of simplicial subcomplexes ∅ ⊂ Kα1

⊂ . . . ⊂ Kαn = K, indexed
by timestamps αi (with αi+1 > αi for all i). By computing the homology groups for each of these simplicial complexes,
we obtain detailed topological information from K. In practice, this is done by associating a pair of timestamps (αi, αj) for
every element of the homology groups (or topological features), indicating the filtration timestamp at which it emerged
and disappeared. The persistence of a point (αi, αj) denotes the duration for which the corresponding feature persisted.
We set αj = ∞ if the topological feature persists until the final filtration timestamp. Formally, let Zp(Kαi) = ker∂αip and
Bp(Kαi) = Im∂αip be the standard p-cycle and p-boundary groups for the complex Kαi . Then, the pth persistent homology
groups are

Hi,j
p = Zp(Kαi)/(Bp+1(Kαj) ∩ Zp(Kαi))

for all 1 ≤ i ≤ j ≤ n. Again, the p-th persistent Betti number βi,jp corresponds to the rank of Hi,j
p . Finally, a persistence

diagram comprising the persistence pairs (αi, αj) with corresponding multiplicities given by µi,jp = (βi,j−1
p − βi,jp) −

(βi−1,j−1
p − βi−1,j

p) encodes the persistent homology groups.

B. Implementation Details
Below are the implementation details.

B.1. Graph Classification

We followed the following hyperparameters and training setup in Table 6 to conduct our experiments on real-world graph
classification.

B.2. Molecular Data QM9

For the discrete case, we followed the data-preparation strategies, training setup, and hyperparameters as outlined by Eijkel-
boom et al. (2023). We enhanced each layer with an Equivariant RePHINE layer, inspired by the original RePHINE (Im-
monen et al., 2023), incorporating Euclidean distance as an invariant feature in the filtration function. The Vertex Cloud
(VC) retained its absence of 3D positional information, consistent with (Immonen et al., 2023). For the continuous case,

12

Topological Neural Networks go Persistent, Equivariant and Continuous

Table 6: Default hyperparameters for TopNets for Graph Classification Benchmark

Hyperparameter Meaning Value

Solver ODE-Solver adaptive-heun,euler
GNN GNN Architecture {GCN,GIN,MPSN}

PH Type of PH {VC,TOGL,RePHINE}
Steps Number of steps for ODE solver {20,15,10,5}

Node Hidden Dim Latent dimension of node features 128
PH embed dim Latent dimension of PH features 64

Num Filt Number of filtrations 8
Hiden Filtration Hidden dimension of filtration functions 16

Batch Size Size of batches 64
LR Learning Rate 0.001

Scheduler Learning Rate scheduler Cosine-Annealing-LR
Epochs Number of epochs 300

we employed a single layer of EMPSN to parameterize the ODE dynamics, leveraging the odeint package to solve these
dynamics. Additionally, an Equivariant RePHINE layer was applied per time step. Solver options included euler and
adaptive-heun, with the number of time steps ranging from 5 to 20. Filtration parameters remained consistent with
those described in Table 6, alongside identical training hyperparameters and setup as in the original EPMSN paper.

B.3. CDR-H3 Antibody Design

We followed the following hyperparameters to conduct our experiments on CDR-H3 Antibody Design.

Table 7: Default hyperparameters for TopNets for CDR-H3 Antibody Design

Hyperparameter Meaning Value

GNN GNN Architecture TransformerConv (Shi et al., 2020)
PH Type of PH {VC,RePHINE}

Layers Number of layers 4
Node Hidden Dim Latent dimension of node features [128,256,128,64]

PH embed dim Latent dimension of PH features 64
Num Filt Number of filtrations 8

Hiden Filtration Hidden dimension of filtration functions 16
Batch Size Size of batches 32

LR Learning Rate 0.001
Scheduler Learning Rate scheduler Cosine-Annealing-LR

Epochs Number of epochs 1000

C. Deduction from TopNets
In our study we restrict ourselves to 1-dim simplicial complexes (otherwise mentioned) and here we showcases the deductions
of various methods from TopNets.

TopAggTOGL =


TopAgg0(x̃

ℓ
σ, r

ℓ
σ) = x̃σ + rℓσ,

TopAgg1(x̃
ℓ
σ, r

ℓ
σ) = x̃ℓσ

Aggℓ,0({rℓσ}) : NA
Aggℓ,1({rℓσ}) = DeepSetℓ({rℓσ})

13

Topological Neural Networks go Persistent, Equivariant and Continuous

The readout layers for TOGL concatenate the aggregated topological embeddings (1-dim) with the last layer pooled 0-dim
simplex features and using it for downstream tasks such as classification.

In case of PersLay, they does not use any TNN layers over the node features, thus TopAgg0,1 are N/A, and the other
aggregation is performed as,

TopAggPersLay =

{
Agg0({rσ}) = DeepSet0({rσ}),
Agg1({rσ}) = DeepSet1({rσ})

However PersLay, utilizes an additional option to use the pooled 0-dim simplex features via concatenating it with the
aggregated topological embeddings (0-dim and 1-dim) and using it for downstream tasks such as classification.

TopAggRePHINE =


TopAgg0(x̃

ℓ
σ, r

ℓ
σ) = x̃σ,

TopAgg1(x̃
ℓ
σ, r

ℓ
σ) = x̃ℓσ,

Aggℓ,0({rℓσ}) = DeepSetℓ({rℓσ})
Aggℓ,1({rℓσ}) = DeepSetℓ({rℓσ})

The readout layers for RePHINE concatenate the aggregated topological embeddings (0-dim and 1-dim) with the last layer
pooled 0-dim simplex features and using it for downstream tasks such as classification.

Note that wherever we utilise TopAggTOGL/RePHINE/PersLay as the topological aggregation method we utilise their specific
readout layers as well. The Table 8 summarizes the deduction further from TopNets for various methods.

Table 8: Deduction of PH-based methods from TopNets

Module Meaning TOGL PersLay RePHINE

TNNLayer TNN/GNN Architecture {GCN,GIN} - {GCN,GIN}
PD Type of PH-diagrams used VC VC, Point transformations RePHINE
f ℓ Filtration functions fv fv (f ℓv , f

ℓ
e)

ψ Diagram combining functions DeepSets DeepSets DeepSets
TopAgg Topological Aggregation TopAggTOGL TopAggPersLay TopAggRePHINE

D. Proofs
D.1. Proof of Proposition 1

Let us first introduce two important notions of neighborhood for simplicial complexes: the boundary-adjacency and the
upper-adjacency neighborhoods. Let σ be a simplex. Then, the boundary neighborhood of σ is given by B(σ) = {τ ⊂
σ : dim(τ) = dim(σ)− 1} — the set of σ’s faces of dimension dim(σ)− 1. The upper-adjacency neighborhood of σ is
N↑(σ) = {σ′ : ∃δ such that σ ⊂ δ, σ′ ⊂ δ and dim(δ)− 1 = dim(σ′) = dim(σ)} — i.e., there exists a simplex δ that is
co-face of both σ and σ′ with dimension equal to dim(σ′) + 1.

Consider simplices of a graph (1-dim complex). If σ is a vertex, it has no boundary neighborhood and its upper-adjacency
neighborhood are the vertices directly connected to σ. On the other hand, if σ is an edge, it has no upper-adjacency
neighborhood and its boundary one is given by the vertices that σ is incident to.

The simplicial Weisfeiler-Leman test (Bodnar et al., 2021b) resembles the original 1-WL test but takes into account the
colors of the simplices of both boundary adjacency and upper adjacency in the hash (aggregating) function. Every simplex
has an associated color. For a proper definition, we refer to Bodnar et al. (2021b).

To prove Proposition 1, it suffices to i) show a pair of clique complexes that SWL cannot distinguish, ii) and derive a
color-based filtration that produces different persistence diagrams. Consider the clique complexes K and K ′ in Figure 2.

We know that the multisets of colors of 0-simplices (vertices) from K and K ′ are identical at any iteration of the WL
algorithm. This stems from the fact that these graphs are known to be indistiguashable by 1-WL and that the only valid

14

Topological Neural Networks go Persistent, Equivariant and Continuous

Figure 2: Two non-isomorphic simplicial complexes.

neighborhood structure for vertices is the classic one (adjacent vertices) — upper-adjacency neighborhood. In other words,
for each vertex in v ∈ K with computation tree Tv, there is a corresponding vertex v′ ∈ K ′ such that Tv is isomorphic to
Tv′ for any depth. We also note that, in SWL, the color-refinement procedure for a vertex v from upper-adjacency includes
the color of the edge that v is incident to. However, in our example, the color of each edge is fully defined by the history of
colors of its incident vertices. Thus, we can disregard the colors of 0-simplices.

Similarly, if σ = [u, v] is an edge, its only neighbors are u and v (boundary adjacency). If we consider edges of the same
colors in K and K ′, their neighbors have isomorphic computation trees. As a result, at every iteration of the test, the colors
used to update these edges are exactly the same. Therefore, SWL cannot distinguish these complexes. As noted by Bodnar
et al. (2021b), when SWL is applied to 1-simplicial complexes, i.e. graphs, it corresponds to the 1-WL test.

To prove that there exists a color-based filtration that distinguishes these graphs. We can directly leverage Theorem 2 in
(Immonen et al., 2023) to show that there is a color-disconnecting set to these graphs Q = {blue}. If we remove the blue
edges from K and K ′, they end up with different numbers of connected components. This concludes the proof.

D.2. Proof of Proposition 2

Consider a geometric simplicial complex (K,x, z) and geometric i-simplex-color filtrations induced by a function f .
Let R ∈ E(n) be a group element that acts on the 0-simplex positional features. Recall that geometric i-simplex-color
filtrations leverage a function Inv(·), which is invariant to E(n) group actions. Thus, for any simplex τ , we have that
Inv({zv}v∈τ)) = Inv(R · {zv}v∈τ)). The diagrams of any dimension are fully determined by the filtrations, which in turn
are obtained from the simplex rank function of (σ) as

of (σ) =

 max
τ⊂σ:dim(τ)=i

f(xτ , Inv({zv}v∈τ)) if dim(σ) ≥ i

0 otherwise,
(19)

Note that group actions only affect geometric i-simplex-color filtrations via the input of the Inv function. Thus, we can write

R · of (σ) =

 max
τ⊂σ:dim(τ)=i

f(xτ , Inv(R · {zv}v∈τ)) if dim(σ) ≥ i

0 otherwise,
(20)

Recalling that invariant features remain intact via the transformation, this would imply of (σ) = R · of (σ), which would
lead to identical filtrations and, consequently, the same persistence diagrams (of any dimension) and topological embeddings.
This holds for any i ≥ 0.

E. Approximation Error Bounds
Below are the bounds for the TOGL and RePHINE cases. Note that we assume a fixed simplicial complex for deriving the
bound.

E.1. TOGL

E.1.1. CONTINUOUS COUNTERPART

The dynamics of the TOGL-GNN for a node v can be described as,

xℓv = TNNLayerℓ(x
ℓ−1
v ,K) + ψ(PD(σ; fθ, x

ℓ−1
v ,K)) (21)

15

Topological Neural Networks go Persistent, Equivariant and Continuous

For clarity of exposition, let TNNLayerℓ(x
ℓ−1,K) = xℓ−1

v +mℓ
v, where mℓ

v is the aggregated message as described in
Section 5. The continuous depth counterpart can be written as a graph ODE, parametrized by the following differential
equation,

ẋtv = ψ(PD(σ; fθ, x
t,K)) +mt

v (22)

E.1.2. ERROR BOUND

We consider N-layered TOGL GNN and assume an Euler discretization scheme for the ODE system consisting of N steps
to be consistent. We define sℓ = ℓ/N = ℓh, where h = 1/N is the step size and, sℓ represents a time at ℓth step. We utilize
the Taylor expansion as,

xsℓ+hv = xsℓv + hẋsℓv +R1(h) (23)

We consider a simple modification of the discrete TOGL GNN network for N -depth by letting the mapping explicitly
depend on the depth of the network as,

xℓv = xℓ−1
v +

1

N

(
ψ(PD(σ; fθ, x

ℓ−1,K)) +mℓ−1
v

)
(24)

We consider the error ev(ℓ) = xsℓv − xℓv , where xℓv is the node v embeddings after l TOGL-GNN layers,

ev(ℓ+ 1)− ev(ℓ) = xsℓ+1
v − xsℓv + xℓv − xℓ+1

v (25)

= hẋsℓv +R1(h)−
1

N

(
ψ(PD(σ; fθ, x

ℓ,K)) +mℓ
v

)
(26)

= R1(h) + h
(
msℓ
v −mℓ

v

)
(27)

+ h
(
ψ(PD(σ; fθ, x

sℓ ,K))− ψ(PD(σ; fθ, x
ℓ,K))

)
(28)

We assume mv,ψ to be Lm, Lβ-Lipschitz (Lβ = LψLθ, due to the composition of ψ and fθ), giving us, (note that the
parametrization of mℓ

v and msℓ
v is the same, and only differs in inputs.)

∥ev(ℓ+ 1)− ev(ℓ)∥ ≤ R1(h) + hLm∥ev(ℓ)∥+ hLβ∥ev(ℓ)∥ (29)

∥ev(ℓ+ 1)∥ ≤ R1(h) +

(
1 +

Lm + Lβ
N

)
∥ev(ℓ)∥ (30)

Using the discrete Gronwall lemma (Sander et al., 2022; Demailly, 2006), we get the following relation, where ev(0) = 0,

∥ev(ℓ)∥ ≤ 0 +R1(h)
∑

0≤j≤n−1

exp(
Lm + Lβ

N
(N − 1− j)) (31)

≤ R1(h)
exp(

Lm+Lψ
N N)− 1

exp(
Lm+Lβ

N)− 1
(32)

But, exp(Lm+Lβ
N)− 1 ≥ Lm+Lβ

N , using that we get,

∥ev(ℓ)∥ ≤ R1(h)
N(exp(Lm + Lβ)− 1)

Lm + Lβ
(33)

E.2. RePHINE

E.2.1. CONTINUOUS COUNTERPART

The dynamics of RePHINE-GNN for node v can be expressed as,

xℓv = TNNLayerℓ(x
ℓ−1
v ,K) (34)

rℓ = ψℓ(PD(σ; f ℓθ , x
ℓ−1,K)) (35)

16

Topological Neural Networks go Persistent, Equivariant and Continuous

Let TNNLayerℓ(x
ℓ−1
v ,K) = xℓ−1

v +mℓ
v , where mℓ

v is the aggregate as described in Section 5 and xℓ = {xℓu}u. Moreover,
collecting all node updates, the recursive update can be expressed as xℓ = xℓ−1 +mℓ, where mℓ are the message updates
for the all node embeddings. RePHINE parameterizes each layer filtration function f ℓθ and DeepSet function ψℓ distinctively.
The continuous depth counterpart can be written as a coupled latent graph ODE, parametrized by the following set of
differential equations as,

ẋtv = mt
σ (36)

rt = ψt(PD(σ; f tθ, x
t,K)) (37)

E.2.2. ERROR BOUND

We consider N layered RePHINE GNN, and assume an Euler discretization scheme for the ODE system consisting of N
steps to be consistent. We define sℓ = ℓ/N = ℓh, where h = 1

N is the step size and, sℓ represents a time at ℓth step. We
derive the error bounds both for the node features and topological embeddings as follows.

Node Embeddings We utilize the Taylor expansion, as,

xsℓ+hv = xsℓv + hẋsℓv +R1(h) (38)

We consider a simple modification of the discrete RePHINE GNN network for N -depth by letting the mapping explicitly
depend on the depth of the network as,

xℓv = xℓ−1
v +

1

N
mℓ
v (39)

We consider the node-embedding error, ev(ℓ) = xsℓv − xℓv ,

ev(ℓ+ 1)− ev(ℓ) = xsℓ+1
v − xsℓv + xℓv − xℓ+1

v (40)

= hẋsℓv +R1(h)−
1

N
mℓ
v (41)

= R1(h) + h
(
msℓ
v −mℓ

v

)
(42)

Assuming mσ to be Lm-Lipschitz, gives us (note that the parametrization of msℓ
σ and mℓ

σ is the same, and only differs in
inputs.)

∥ev(ℓ+ 1)− ev(ℓ)∥ ≤ R1(h) + hLm||ev(ℓ)|| (43)

∥ev(ℓ+ 1)∥ ≤ R1(h) +

(
1 +

Lm
N

)
||ev(ℓ)|| (44)

Using the discrete Gronwall lemma, we get the following relation, where ex(0) = 0,

∥ev(ℓ)∥ ≤ 0 +R1(h)
∑

0≤j≤n−1

exp(
Lm
N

(N − 1− j)) (45)

≤ R1(h)
exp(LmN N)− 1

exp(LmN)− 1
(46)

But, exp(LmN)− 1 ≥ Lm
N , using that we get,

∥ev(ℓ)∥ ≤ R1(h)
N(exp(Lm)− 1)

Lm
(47)

Topological Embeddings We consider the bound on topological-embedding in this section. Let rℓ is the topological-
embedding after l RePHINE-GNN layers, the error bound can be computed as,

er(ℓ) = rsℓ(xsℓ ,K)− rℓ(xℓ,K) (48)

= rsℓ(xsℓ−1) + h
drsℓ(xsℓ−1)

dxsℓ−1
msℓ−1 +R1(h)− rℓ(xℓ−1 +

1

N
mℓ−1) (49)

17

Topological Neural Networks go Persistent, Equivariant and Continuous

Now, using the Taylor expansion to expand the second term, we can write (h = 1/N)

rℓ(xℓ−1 +
1

N
mℓ−1) = rℓ(xℓ−1) + h

drℓ(xℓ−1)

dxℓ−1
mℓ−1 +R1(m

ℓ−1) (50)

Putting into the original equation, we get,

er(ℓ) = rsℓ(xsℓ−1)− rℓ(xℓ−1)︸ ︷︷ ︸
First Term

+h
drsℓ(xsℓ−1)

dxsℓ−1
msℓ−1 − h

drℓ(xℓ−1)

dxℓ−1
mℓ−1︸ ︷︷ ︸

Second Term

(51)

+R1(h)−R1(m
ℓ−1) (52)

We simplify each term as follows,

First Term: The first term denotes the difference between the topological embeddings, and we assume that ψsℓ ≡ ψℓ, as
both functions are evaluated at the ℓ layer (step), and let it be Lℓβ-Lipschitz (Lℓβ = LℓψL

ℓ
θ, due to the composition of ψℓ and

f ℓθ) at the time-step, giving us

∥rsℓ(xsℓ−1)− rℓ(xℓ−1)∥ = ∥ψsℓ(PD(σ; fsℓθ , x
sℓ−1,K))− ψℓ(PD(σ; f ℓθ , x

ℓ−1,K)|| (53)

≤ Lℓβ∥ev(ℓ− 1)∥ (54)

Second Term: We simplify the second term as follows, by adding and subtracting a term as,

=h
drsℓ(xsℓ−1)

dxsℓ−1
msℓ−1 − h

drsℓ(xsℓ−1)

dxsℓ−1
mℓ−1 + h

drsℓ(xsℓ−1)

dxsℓ−1
mℓ−1 − h

drℓ(xℓ−1)

dxℓ−1
mℓ−1 (55)

=h

(
drsℓ(xsℓ−1)

dxsℓ−1

(
msℓ−1 −mℓ−1

)
+mℓ−1

(
drsℓ(xsℓ−1)

dxsℓ−1
− drℓ(xℓ−1)

dxℓ−1

))
(56)

where the parts of the second term can be simplified as,

drsℓ(xsℓ−1)

dxsℓ−1
=

|rsℓ(xsℓ−1+h)− rsℓ(xsℓ−1)|
|xsℓ−1+h − xsℓ−1 |

≤ Lℓβ (57)

Similarly, the other term,

drℓ(xℓ−1)

dxℓ−1
=

|rℓ(xℓ−1+h)− rℓ(xℓ−1)|
|xℓ−1+h − xℓ−1|

≤ Lℓβ (58)

leading to ≤ (Lℓβ − Lℓβ) = 0. So, the equation will become,

h
drsℓ(xsℓ−1)

dxsℓ−1

(
msℓ−1 −mℓ−1

)
≤hdr

sℓ(xsℓ−1)

dxsℓ−1
Lm∥ev(ℓ− 1)∥ (59)

≤
LℓβLm

N
∥ev(ℓ− 1)∥ (60)

Collecting all the terms, it will account for,

∥er(ℓ)∥ ≤ Lℓβ∥ev(ℓ− 1)∥+
LℓβLm

N
∥ev(ℓ− 1)∥+R1(h)−R1(m

ℓ−1) (61)

18

