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Abstract
Topological Neural Networks (TNNs) have en-
abled representations using higher dimensional
simplicial complexes. Concurrently, persistence
homology methods have undergone rapid strides,
offering rich topological descriptors that improve
the expressivity of GNNs. However, the integra-
tion of these methods to increase the expressivity
of TNNs, and adaptation in handling geometric
complexes, remains an unexplored frontier. We in-
troduce TopNets, extending the concept of TNNs
by unifying them with persistent homology (PH),
equivariance and making them continuous. This
framework provides a generalized approach that
encompasses various methods at the intersection
of PH and TNNs. TopNets enhances the expres-
siveness of Equivariant Message Passing (MP)
simplicial networks, allowing them to acquire
high-dimensional simplex features alongside topo-
logical embeddings generated through geometric
color filtrations in an E(n)-equivariant manner.
Empirical evaluation demonstrates the efficacy of
the proposed method across diverse tasks such as
graph classification, drug property prediction, and
generative design.

1. Introduction
Many natural systems, such as social networks (Freeman,
2004), and proteins (Jha et al., 2022), exhibit relational
structures represented as graphs. In Geometric Deep Learn-
ing (Bronstein et al., 2021), graph neural networks (GNNs)
have been successfully used to analyze relational data using
graphs. Despite their success, the 1-Weisfeiler-Lehman
(1-WL) test limits their success in distinguishing non-
isomorphic graphs (Xu et al., 2019; Weisfeiler and Leman,
1968). This limitation has spurred research efforts to design

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review at ICML 2024 AI for Science
workshop.

more powerful GNNs and consider higher-order relational
structures such as simplicial complexes.

Graphs can be generalized to (higher-dimensional) simpli-
cial complexes to incorporate hierarchical part-whole re-
lations. This falls under topological deep learning (TDL)
(Papillon et al., 2023), which employs general abstractions
to process data with higher-order relational structures. Theo-
retical guarantees of its models, topological neural networks
(TNNs), have propelled them to state-of-the-art performance
on various machine learning tasks (Dong et al., 2020; Chen
et al., 2019; Barbarossa and Sardellitti, 2020), showcasing
high potential for numerous applications.

Simultaneously, persistence homology methods (Horn et al.,
2021; Carrière et al., 2020; Immonen et al., 2023) from
topological data analysis have made rapid strides, providing
topological descriptors that augment GNNs with persistent
information to obtain more powerful representations.

Recently, Neural ODEs (Chen et al., 2018b) have demon-
strated remarkable success across various domains, includ-
ing spatiotemporal forecasting (Yildiz et al., 2019; Li et al.,
2021; Lu et al., 2021; Kochkov et al., 2021; Brandstetter
et al., 2023; Verma et al., 2024), generative modeling (Grath-
wohl et al., 2018; Lipman et al., 2023; Anonymous, 2022;
Verma et al., 2022; 2023), and graph representation learning
(Poli et al., 2019; Iakovlev et al., 2020; Chamberlain et al.,
2021; Thorpe et al., 2022; Choi et al., 2022). Motivated by
the downstream success and expressiveness of ODE-based
models (Kim et al., 2023; Marion, 2023), we extend this
paradigm by developing continuous versions of our method.

Numerous real-world tasks involve handling topological ob-
jects exhibiting natural symmetry under the Euclidean group
E(n), such as translations, rotations, and reflections. Exam-
ples range from predicting molecular properties (Ramakr-
ishnan et al., 2014), 3D atomic systems (Duval et al., 2023),
to generative design and beyond. While various approaches
use these symmetries effectively, including Tensor Field Net-
works (Thomas et al., 2018), SE(3) Transformers (Fuchs
et al., 2020), EGNN (Satorras et al., 2021), and EMPSN
(Eijkelboom et al., 2023), their expressivity remains limited
as they fail to capture certain topological structures (Joshi
et al., 2023) in geometrical simplicial complexes.

We present TopNets (Topological Persistent Neural
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Topological Neural Networks go Persistent, Equivariant and Continuous

Table 1: Overview of recent methods for relational data and summary of our contributions. E: Equivariant, P: Persistent,
C: Continuous, and HO: higher order.

Recent methods for relational data Main contributions of this work
Method E P C HO

TOGL (Horn et al., 2021) ✗ ✓ ✗ ✗ Section 3
PersLay (Carrière et al., 2020) ✗ ✓ ✗ ✗ Unified Framework: TopNets
RePHINE (Immonen et al., 2023) ✗ ✓ ✗ ✗ TNNs + PH ≻ TNNs Prop. 1
MPSN (Bodnar et al., 2021b) ✗ ✗ ✗ ✓ Section 4
CWN (Bodnar et al., 2021a) ✗ ✗ ✗ ✓ E(n)-Equivariant TopNets (E-TopNets)
CAN (Giusti et al., 2023) ✗ ✗ ✗ ✓ Invariant PH embedding Prop. 2
IMPSN (Eijkelboom et al., 2023) ✓ ✗ ✗ ✓ Section 5
EGNN (Satorras et al., 2021) ✓ ✗ ✗ ✗ Continuous (Equivariant) TopNets
E3NN (Geiger and Smidt, 2022) ✓ ✗ ✗ ✗ Discretization error (TOGL) Prop. 3
GATr (Brehmer et al., 2023) ✓ ✗ ✗ ✗ Discretization error (RePHINE) Prop. 4
GRAND (Chamberlain et al., 2021) ✗ ✗ ✓ ✗ Section 6
GREAD (Choi et al., 2022) ✗ ✗ ✓ ✗ Experiments: graph classification, drug

property prediction, and generative designGRAND++ (Thorpe et al., 2022) ✗ ✗ ✓ ✗

TopNets (ours) ✓ ✓ ✓ ✓

Networks), a comprehensive framework unifying Topologi-
cal Neural Networks (TNN) with Persistent Homology (PH)
to enhance the expressivity of TNNs. TopNets subsumes var-
ious methods at the intersection of PH and TNNs, offering a
generalized approach. Moreover, it harnesses persistent ho-
mology to enhance the expressivity of Equivariant Message
Passing (MP) simplicial networks through geometric color
filtrations. Additionally, TopNets introduces a framework
defining associated Neural ODEs of TNNs and PH over
simplicial complexes, elucidating error bounds between dis-
crete and continuous systems. Empirical evidence highlights
TopNets effectiveness in achieving state-of-the-art perfor-
mance across diverse tasks such as graph classification, drug
property prediction, and generative design, underscoring the
efficacy of PH-based methods.

Our main contributions are (see Table 1):

1. (Methodology) We propose TopNets, a general uni-
fying framework that combines TNN with PH and
leverages persistent homology to boost the expressivity
of Equivariant MP simplicial networks

2. (Theory) We derive a set of associated Neural-ODEs
for various TNNs and PH over simplicial complexes
and compute the associated discretization error bound
between discrete and continuous systems.

3. (Empirical) TopNets achieve SOTA performance
across diverse real-world tasks such as graph classifica-
tion, drug property prediction, and generative design.

2. Background
We begin with notions from topological ML, persistent ho-
mology, equivariance, and Graph ODEs that we use.

Simplicial complexes. An abstract simplicial complex
(ASC) over a vertex set V is a set K of subsets of V (called
simplices) such that, for every σ ∈ K and every non-empty
τ ⊂ σ, we have that τ ∈ K. Let σ be a simplex, then its non-
empty subsets τ ⊂ σ are called faces, and σ is a coface of τ .
The dimension of a simplex is equal to its cardinality minus
1, and the dimension of a simplicial complex is the maximal
dimension of its simplices. We denote by K[i] the subset of
i-dim simplices of K. Here, we represent simplices using
square brackets. For instance, K = {[0], [1], [0, 1]} denotes
a 1-dim simplicial complex over V = {0, 1}, and the 0-dim
simplices [0] and [1] are the faces of the simplex [0, 1].

We also consider simplicial complexes with features. In
particular, a geometric simplicial complex is a tuple (K, x,
z) where x : K → Rdx and z : K → Rdz are functions that
assign to each simplex σ ∈ K an attribute (or color) x(σ)
and a geometric feature z(σ), respectively. For convenience,
hereafter, we denote the feature vectors of σ by xσ and zσ .

Graph neural networks (GNNs). Let G = (V,E) be an
undirected graph with vertex set V and edge setE ⊆ V ×V
— note that graphs are 1-dim ASCs. To obtain meaning-
ful graph representations, message-passing GNNs (Gilmer
et al., 2017a; Xu et al., 2019; Velicković et al., 2017) em-
ploy a sequence of message-passing steps, where each node
v aggregates messages from its neighbors N (v) = {u :
(v, u) ∈ E} and use the resulting vector to update its own
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Figure 1: Comparison of representative PH-based architectures for graph learning.

embedding. In particular, starting from x
(0)
v = xv ∀v ∈ V ,

GNNs recursively apply the update rule

x(ℓ+1)
v = Updℓ

(
x(ℓ)v ,Aggℓ({{x(ℓ)u : u ∈ N (v)}})

)
,

where {{·}} denotes a multiset, Aggℓ is an order-invariant
function and Updℓ is an arbitrary update function.

Topological neural networks (TNNs, e.g., Bodnar et al.,
2021a; Hensel et al., 2021; Hofer et al., 2017) consist of
neural models for processing data with high-order relational
structure. Papillon et al. (2023) provide a unified framework
to describe message-passing TNNs — here we focus on
models for simplicial complexes. After specifying neigh-
borhood structures, which define how simplices (possibly
of different dimensions) can locally interact, TNNs recur-
sively update the simplices’ embeddings via message pass-
ing. This general message-passing procedure comprises:
i) message computation, ii) within-neighborhood aggrega-
tion, iii) between-neighborhood aggregation, and iv) update.
More specifically, let Nk define a neighborhood structure.
For each simplex σ ∈ K(ℓ) at layer ℓ, we compute the mes-
sages mℓ,Nk

σ′→σ = Msgℓ,Nk(x
(ℓ)
σ , x

(ℓ)
σ′ ) from all σ′ ∈ Nk(σ),

where Msgℓ,Nk is an arbitrary function. Then, the messages
to simplex σ are aggregated, that is,

mℓ,Nk
σ = WithinAggℓ({m

ℓ,Nk
σ′→σ : σ′ ∈ Nk(σ)}), (1)

mℓ
σ = BetweenAggℓ({mℓ,Nk

σ : Nk ∈ N}). (2)

Finally, we apply a function Updateℓ to obtain the refined
feature vector at layer ℓ+ 1 as

x(ℓ+1)
σ = Updateℓ(m

ℓ
σ, x

(ℓ)
σ ). (3)

Notably, TNNs subsume a large class of models, including
message-passing GNNs.

Persistent homology. A filtration of a simplicial com-
plex K is a finite nested sequence of subcomplexes of
K, i.e., ∅ = K0 ⊂ K1 ⊂ ... ⊂ K. To obtain a valid
filtration, it suffices to ensure that all the faces of a sim-
plex σ do not appear later than σ in the filtration. To
achieve that, a typical choice consists of defining a filter-
ing (or filtration) function on the vertices of the simplicial
complex, and use it to set a partial ordering for the sim-
plices σ as of (σ) = maxv∈σ f(v). Let α1 < · · · < αn
be an increasing sequence of vertex filtered values, i.e.,
αi ∈ {f(v) : v ∈ K[0]}; then, we index the filtration steps
using real numbers and define the filtration of K induced by
f as Kαi = {σ ∈ K : of (σ) ≤ αi} for i = 1, . . . , n. An-
other common strategy adopts filtering functions on vertex
features xv and redefine of (σ;x) = maxv∈σ f(xv). Filtra-
tions induced by functions on vertex features (or colors) are
called vertex-color filtrations.

The idea of persistent homology (PH) is to keep track of the
appearance and disappearance of topological features (e.g.,
connected components, loops, voids) in a filtration. If a topo-
logical feature first appears in Kαi and disappears in Kαj ,
then we encode its persistence as a pair (αi, αj); if a feature
does not disappear, then its persistence is (αi,∞). The col-
lection of all pairs forms a multiset that we call persistence
diagram. We use Di to denote the persistence diagram for
i-dim topological features. For details on PH and its appli-
cation to machine learning, we refer to Edelsbrunner and
Harer (2010) and Hensel et al. (2021).

Persistence diagrams are usually vectorized before being
combined with ML models. In this regard, Carrière et al.
(2020) proposed a general framework, called PersLay, that
computes a vector representation for a given diagram D as

Agg ({ω(p)φ(p) : p ∈ D}) ,

where Agg is a permutation invariant operation (e.g., mean,
maximum, sum), ω : R2 7→ R is an arbitrary function that
assigns a weight to each persistence pair, and φ : R2 7→ Rq

3
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maps each pair to a higher dimensional space. Notably,
PersLay introduces choices for φ that generalize many vec-
torization methods in the literature (e.g., Zaheer et al., 2017;
Bubenik, 2015; Adams et al., 2016; Kusano et al., 2016).

Combining PH and GNNs. Recently, PH has been used
to boost the expressive power of GNNs. Horn et al. (2021)
introduce TOGL — a general approach for incorporating
topological features from PH into GNN layers. In particular,
TOGL leverages node embeddings at each layer of a GNN
to obtain vertex-color filtrations. The 0-dim individual per-
sistence tuples are vectorized using MLPs and added to the
corresponding node features at each layer. For 1-dim tuples,
TOGL applies DeepSets to get a graph-level vector that runs
through the final fully-connected layers of the GNN.

Immonen et al. (2023) use independent vertex-color and
edge-color filtering functions to obtain more expressive
persistent diagrams called RePHINE. More specifically,
RePHINE first computes persistence diagrams from a fil-
tration induced by edge colors. Each tuple of the diagram
is then augmented based on the vertex colors and the local
edge-color information around each vertex. RePHINE di-
agrams are vectorized using DeepSets and combined with
graph-level GNN embeddings in the final classifier. Figure 1
depicts the architectures of RePHINE, TOGL, and PersLay.

E(n)-Equivariant networks. Let G be a group acting on
two sets X and Y . We say a function f : X → Y is G-
equivariant if it commutes with the group actions, i.e., for all
g ∈ G and x ∈ X , we have that f(g·x) = g·f(x). Here, we
are interested in models on geometric simplicial complexes
that are equivariant to the Euclidean group E(n), which
comprises all translations, rotations, and reflections of the
n-dim Euclidean space. Eijkelboom et al. (2023) introduce
Equivariant Message-Passing Simplicial Networks (EMP-
SNs), which extends the E(n)-equivariant GNNs (Sator-
ras et al., 2021) to geometric simplicial complexes. For
each simplex σ ∈ K(ℓ) at layer ℓ, we compute the mes-
sages mℓ,Nk

σ′→σ = Msgℓ,Nk(x
(ℓ)
σ , x

(ℓ)
σ′ , Inv(σ, σ′)) from all

σ′ ∈ Nk(σ). Then, the messages to simplex σ are aggre-
gated using WithinAggℓ and BetweenAggℓ the same way
as in TNNs to obtain an aggregated message mℓ

σ. Finally,
we apply function Updateℓ,Update′ℓ to obtain the refined
feature vectors at layer ℓ+ 1 as

x(ℓ+1)
σ = Updateℓ(m

ℓ
σ, x

(ℓ)
σ ). (4)

z(ℓ+1)
σ =

∑
σ′∈Nk(σ)

(z(ℓ)σ − z
(ℓ)
σ′ )Cϕ

ℓ
z(m

ℓ,Nk
σ′→σ) ∀σ ∈ K[0] (5)

where z are the geometrical features (e.g., positions), the
Inv(σ, τ) denote the combined invariant features like vol-
umes, angles, distances, etc.

Graph ODEs. Neural Ordinary Differential Equations
(ODEs) represent a class of implicit deep learning models
characterized by an ODE, where the vector field is parame-
terized by a neural network (Weinan, 2017; Dupont et al.,
2019; Chen et al., 2018a; Lu et al., 2018). Graph ODEs (Poli
et al., 2019) generalize Neural ODEs to garphs. For instance,
we can track the evolution of signals defined over the ver-
tices of a graph as a differential equation

żv =
dzv
dt

= f(t, zv, {zu}u∈N (v)). (6)

Here, the vector field f is parameterized by a neural net-
work. A notable feature is that, under a mild assumption on
f , employing an Euler scheme for N time-steps converges
to an N -layer Graph ResNet (Sander et al., 2022). This
convergence implies that Graph ODEs inherently inherit the
capability to incorporate relational inductive biases seen in
GNNs while maintaining the dynamic system perspective
of continuous-depth models. The versatility of Graph ODEs
has paved the way for the design of novel graph neural net-
works, such as GRAND (Chamberlain et al., 2021), GREAD
(Choi et al., 2022), and AbODE (Verma et al., 2023).

3. A unified framework: Topological persistent
neural networks (TopNets)

We now introduce a general framework that combines TNNs
and PH for expressive learning on topological objects. We
call this framework topological persistent neural networks
or TopNets, in short. Notably, we show that TopNets sub-
sume several methods at the intersection of PH and GNNs.

To motivate our framework, we show that persistent homol-
ogy features bring in additional expressive power to TNNs.
Bodnar et al. (2021b) introduce a Simplicial Weisfeiler-
Leman (SWL) test to characterize the expressivity of simpli-
cial message-passing networks (SMPNs) — a general TNN
for simplicial complexes. They show that SWL (with clique
complex lifting) is strictly more powerful than 1-WL. Our
next result (Proposition 1) implies that the combination of
SWL and PH is strictly more expressive than the SWL test.

Proposition 1 (SWL + PH ≻ SWL). There are pairs of non-
isomorphic clique complexes that SWL cannot distinguish
but persistence diagrams from color-based filtrations can.

Prior works (Horn et al., 2021; Rieck, 2023; Immonen et al.,
2023) have demonstrated that PH can be used to increase the
power of GNNs. Proposition 1 shows that this also applies
to TNNs on simplicial complexes.

Given an input simplicial complex, each layer in a TopNet
first applies a general message-passing (MP) procedure to
obtain a refined attributed complex, as in TNNs. Then, we
compute persistence diagrams followed by a vectorization
scheme that assigns each simplex a topological embedding.

4
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Next, TopNets obtain two complex-level representations:
the first consists of a joint MP-PH vector derived from a
combination of the features of the complex and the topologi-
cal embeddings; and the second one is obtained by merging
the PH-based descriptor associated with each simplex via
an order-invariant function. Finally, we apply two readout
layers. The first aims to combine information from different
layers (but same dimension) while the second readout func-
tion further processes the resulting representations across
dimensions. In the following, we formalize these steps for
complex-level prediction tasks.

Steps of a TopNet layer

1. General Message Passing (MP): Let (Kℓ, xℓ)
denote an attributed simplicial complex at layer ℓ.
TopNets recursively refine the attributed complex
using a general TNN layer as

Kℓ, xℓ = TNNLayerℓ(K
ℓ−1, xℓ−1). (7)

2. PH Vectorization: Next, we compute a persis-
tence diagram induced by a filtering function f ℓ

followed by a vectorization procedure ψ. As a re-
sult, we obtain a topological vector representation
rℓσ for each simplex σ in Kℓ:

rℓσ = ψ(PD(σ; f ℓ, xℓ,Kℓ)) ∀σ ∈ Kℓ. (8)

We note that the map PD computes persistence dia-
grams for all dimensions i = 0, 1, . . . ,dim(Kℓ).

3. Topological aggregation: For each dimension
i = 0, . . . ,dim(Kℓ), we combine the PH and
MP embeddings of simplices of dimension i ap-
plying a so-called topological aggregation function
TopAggi. We also group the topological vectors
using a dimension-wise set pooling operation, i.e.,

hℓ,i = TopAggi({xℓσ}σ∈Kℓ
[i]
, {rℓσ}σ∈Kℓ

[i]
) (9)

mℓ,i = Pool({rℓσ}σ∈Kℓ
[i]
). (10)

4. Readout: We then merge the joint PH-MP vec-
tors hℓ,i and the topological embeddingsmℓ,i across
layers and, subsequently, across dimensions using
two interleaved readout functions:

hi = Readoutlayer({hℓ,i}ℓ, {mℓ,i}ℓ) (11)

h = Readoutdim({hi}i). (12)

The final representation h in Equation 12 is typically
fed through multi-layer perceptrons (MLP) to obtain a
complex-level prediction. Importantly, the formalism of
TopNets includes PH-based (graph) neural networks such as

TOGL (Horn et al., 2021), PersLay (Carrière et al., 2020),
and RePHINE (Immonen et al., 2023) as particular cases:

a) TOGL: Here, the TNNLayerℓ functions correspond to
GNN layers, while the computation of persistence diagrams
(PD) involves vertex color filtrations, with vectorization
achieved via a DeepSet function ψ. The topological aggre-
gation TopAggTOGL is specifically applied to persistence
tuples of dimension i = 0, whose vector representations
are added to the initial node features. Tuples of dimension
i = 1 are pooled and then concatenated with the final GNN
embedding for use in the subsequent readout phase.

b) PersLay: The TNNLayerℓ serves as an identity trans-
formation, and the computation of the persistence diagram
(PD) involves (0-dim and 1-dim) ordinary and extended
persistence pairs. Moreover, TopAggPersLay simply concate-
nates node features with graph-level topological vectors

c) RePHINE: Again, GNN is the choice of TNN. However,
the computation of persistence diagrams (PD) involves ver-
tex and edge filtrations specific to RePHINE. The results
are aggregated using a DeepSet function ψ to yield a topo-
logical embedding rℓ,iσ per layer ℓ. In conjunction with the
node features from the final layer, these topological em-
beddings are concatenated (TopAggRePHINE) and pooled for
subsequent use in the downstream readout phase.

More details about deductions can be found in Appendix B.

4. E(n) Equivariant TopNets
In this section, we extend TopNets to deal with topologi-
cal objects that are symmetric to rotation, reflections and
translations — i.e., to actions of the Euclidean group E(n).
In particular, we consider geometric SCs, and build upon
EMPSNs (Eijkelboom et al., 2023) and equivariant filter-
ing functions to propose Equivariant TopNets (E-TopNets).
Compared to regular TopNets, E-TopNets employ modified
general message passing and PH vectorization steps (the
other steps remain untouched).

Starting from an input geometric (attributed) SC
(K0, x0, z0); at each layer ℓ, E-TopNets recursively obtain
a refined SC via an EMPSN layer as

Kℓ, xℓ, zℓ = EMPSNLayerℓ(K
ℓ−1, xℓ−1, zℓ−1).

To achieve an equivariant variant of TopNet, one could
disregard the vertex coordinates zℓ of (Kℓ, xℓ, zℓ) when
computing persistence diagrams. For instance, this can be
obtained from an i-simplex-color filtration (Definition 1).
This generalizes the notion of vertex-color filtrations to
higher dimensions. Thus, 0-simplex-color filtrations are
vertex-color ones, 1-simplex-color filtrations correspond to
edge-color filtrations, and so on.

Definition 1. Let (K,x) be an attributed simplicial complex

5
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and f : Rd → R+ a filtering function. Also, let α1 <
· · · < αn with αj ∈ {f(xw) : w ∈ K[i]}. An i-simplex-
color filtration induced by f is a sequence of complexes
Kαj = {σ ∈ K : of (σ;x) ≤ αj} for j = 1, . . . , n, where

of (σ;x) =

 max
τ⊂σ:dim(τ)=i

f(xτ ) , if dim(σ) ≥ i

0 , otherwise.

Obtaining persistence diagrams from i-simplex-color filtra-
tions incurs losing (possibly) relevant geometric informa-
tion. Thus, here, we are interested in filtering functions that
leverage both attributes and coordinates.

Definition 2. Let (K,x, z) be a geometric simplicial com-
plex and f a filtering function. Also, let α1 < · · · < αn
with αj ∈ {f(xw, ·) : w ∈ K[i]}. A geometric i-simplex-
color filtration induced by f is a sequence Kαj = {σ ∈ K :
of (σ;x) ≤ αj} for j = 1, . . . , n, where

of (σ;x) =


max
τ⊂σ:

dim(τ)=i

f(xτ , Inv({zv}v∈τ )) if dim(σ) ≥ i

0 otherwise,

and Inv(·) is any E(n)- and Sn-invariant function.

For many tasks, e.g., in graph learning, colors are only given
to 0-dim simplices. In such cases, we can obtain colors
to higher-order simplices σ via a learnable permutation
invariant function on the colors of the vertices in σ. Thus,
we can rewrite the filtering functions in Definition 2 as
f(ϕ({xv}v∈τ ), Inv({zv}v∈τ )). As usual, we parameterize
f using multilayer perceptrons and ϕ using DeepSets.

We note that persistence diagrams extracted from geometric
0-simplex-color filtrations are not more expressive than their
non-geometric counterparts — i.e., vertex-color (VC) filtra-
tions. The reason is that the only E(n)-invariant function
of a single element is a constant function, i.e., the condition
f(z) = f(g · z) for all g ∈ E(n) implies that f is a con-
stant function. Thus, we refer to their non-geometric variant
whenever we mention VC filtrations.

For instance, recall that RePHINE diagrams are built from
independent edge-and vertex-color filtering functions. To
achieve a geometric extension of RePHINE diagrams, we
replace its edge-color filtration with geometric 1-simplex-
color filtration and then use an independent vertex-color
function as in the original formulation. This highlights that
the vertex coordinates are only used to define filtrations,
and any persistence descriptor and vectorization procedure
can be applied — having no impact on the equivariance of
E-TopNets.

Proposition 2 (Invariant PH embeddings). Consider a geo-
metric simplex (K, x, z) and geometric i-simplex-color filtra-
tions induced by a function f . If f is E(n) invariant function,

then the mapping ψ(PD(σ; f, x, z,K)) is E(n)-invariant..
Details in Appendix C.1.

We can rewrite the PH vectorization step of E-TopNets as

rℓσ = ψ(PD(σ; f ℓinv, x
ℓ, zℓ,Kℓ)) ∀σ ∈ Kℓ

where f ℓinv denotes one or more filtering functions such that
at least one of them is an E(n)-invariant function on the
simplices’ positions zℓ and induces a geometric i-simplex-
color filtration for some i in {0, 1, . . . ,dim(Kℓ)}.

5. Continuous (Equivariant) TopNets
In this section, we expand the general framework of (Equiv-
ariant) TopNets to encompass continuous systems. Unlike
conventional E-TopNets, Continuous E-TopNets use a con-
tinuous message-passing scheme based on EMPSNs. For
each simplex σ ∈ K(t) at time-step t, we compute the
messages mt,Nk

σ′→σ = Msgt,Nk(x
(t)
σ , x

(t)
σ′ , Inv(σ, σ′)) from

all σ′ ∈ Nk(σ). Then, the messages to simplex σ are ag-
gregated using WithinAggt and BetweenAggt the same
way as in TNNs to obtain an aggregated message mt

σ. Fi-
nally, we apply the following functions to obtain the refined
feature vectors as

ẋσ = Updateℓ(m
t
σ, x

t
σ). (13)

żσ = C
∑

σ′∈Nk(σ)

(ztσ − ztσ′)ϕz(m
t,Nk
σ′→σ) ∀ σ ∈ K[0] (14)

where C is a constant and ϕz is an arbitrary non-linear map-
ping. The forward solution of x and z can be accurately
approximated with numerical solvers such as RK4 (Runge,
1895) with low computational cost. The geometrical filtra-
tions and topological embeddings are computed in the same
way as described in the previous section.

Interestingly, one can define a set of associated Neural ODEs
for a given PH-based (graph) neural network such as TOGL
and RePHINE. We derive the set of neural ODEs and utilize
it to derive the discretization error bounds between discrete
and continuous trajectories.

5.1. Discretization Error Bound

We compute the discretization error bounds between the
trajectories learned by the discrete and continuous cases
of PH-based methods for specific cases of RePHINE and
TOGL. All the proofs can be found in Appendix D.

Proposition 3 (Discretization error TOGL). The discretiza-
tion error between the node features leaned by N-layer
(time-steps) Continuous and discrete TOGL after ℓ-layers is
bounded as, where e(ℓ) = xsℓσ − xℓσ and sℓ = ℓ/N .

||e(ℓ)|| ≤ R1(h)
N(eLm+Lβ − 1)

Lm + Lβ
(15)
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Table 2: Predictive performance on graph classification.

TNN Topological Agg Diagram Method NCI109 ↑ IMDB-B ↑ NCI1 ↑ MOLHIV ↑ PROTEINS ↑

GCN TopAggRePHINE

VC Discrete 77.92 ±1.03 64.80 ±1.30 79.08 ±1.06 73.64 ±1.29 69.46 ±1.83
Continuous 80.37 ±2.21 73.40 ±3.40 81.75 ±2.93 72.41 ±3.29 72.89±2.10

RePHINE Discrete 79.18 ±1.97 69.40 ±3.78 80.44 ±0.94 75.98 ±1.80 71.25 ±1.60
Continuous 80.63 ±1.56 76.00 ±2.10 82.15 ±1.75 74.90 ±2.78 73.79 ±1.30

GIN TopAggRePHINE

VC Discrete 78.35 ±0.68 69.80 ±0.84 79.12 ±1.23 73.37 ±4.36 69.46 ±2.48
Continuous 80.39±1.13 74.00 ±3.25 82.18 ±1.56 71.90 ±5.20 72.89 ±2.15

RePHINE Discrete 79.23 ±1.67 72.80 ±2.95 80.92 ±1.92 73.71 ±0.91 72.32 ±1.89
Continuous 81.60 ±0.95 76.00 ±1.60 84.16 ±1.89 72.10 ±4.27 73.79 ±1.45

MPSN TopAggRePHINE

VC Discrete 79.40 ±2.74 66.50 ±3.65 77.10 ±1.37 72.40 ±3.90 70.50 ±1.75
Continuous 80.10 ±3.45 73.00 ±1.80 81.10 ±4.64 72.70 ±4.65 71.20 ±3.20

RePHINE Discrete 79.43 ±1.65 67.20 ±2.85 81.22 ±1.48 71.20 ±4.78 71.70 ±2.56
Continuous 80.40 ±3.55 74.00 ±2.65 83.20 ±3.24 71.50 ±4.54 72.10 ±2.35

Proposition 4 (Discretization error RePHINE). The dis-
cretization error between the node features and topologi-
cal embeddings leaned by N-layer (time-steps) Continuous
and discrete RePHINE after ℓ-layers is bounded as, where
e(ℓ) = xsℓσ − xℓσ , er(ℓ+ 1) = r

sℓ+1
σ − rℓ+1

σ and sℓ = ℓ/N .

||e(ℓ)|| ≤ R1(h)
N(eLm+Lβ − 1)

Lm + Lβ
(16)

|||er(ℓ+ 1)|| ≤ Lℓ+1
β ||ex(ℓ)||+

Lℓ+1
β Lm

N
||ex(ℓ)||

+R1(h)−R1(m
ℓ
σ)

(17)

Implication The bound indicates that the proximity to the
ODE solution cannot be assured since it is uncertain whether
R1(h)N → 0. This suggests the necessity of incorporating
additional regulatory assumptions over the network to obtain
the Neural ODE in the large depth limit. This observation
resonates closely with the analysis conducted by Sander
et al. (2022) in characterizing Neural ODEs with ResNets.

6. Experiments
Tasks We assess the performance of TopNets on diverse
tasks: (i) we evaluate our method performance on real-world
graph classification data between discrete and continuous
counterparts across various GNNs and TNNs in section 6.1,
(ii) we benchmark its efficacy in property prediction us-
ing QM9 molecular data, highlighting the effectiveness of
its equivariant method in Section 6.2, and (iii) we demon-
strate TopNets utility by co-designing antibody sequence
and structure using the SAbDab database in Section 6.3.

Baselines On graph classification tasks, we evaluate Top-
Nets using standard vertex-color (VC) and RePHINE (Im-
monen et al., 2023) persistence diagrams. We adopt differ-
ent GNN/TNN architectures like GCN (Kipf and Welling,
2016), GIN (Xu et al., 2019), TOGL (Horn et al., 2021), and
MPSN (Bodnar et al., 2021a) and process the persistence
diagrams exactly the same way using DeepSets. We also

compare the performance between each method’s contin-
uous and discrete counterparts. On QM9 property predic-
tion tasks we compare to several equivariant methods like
NMP (Gilmer et al., 2017b), TFN (Thomas et al., 2018),
SE(3)-Tr (Fuchs et al., 2020), DimeNet++(Gasteiger et al.,
2020a), SphereNet (Liu et al., 2021), MPSN(Bodnar et al.,
2021a), EGNN (Satorras et al., 2021) and IMPSN (Eijkel-
boom et al., 2023). Lastly, on CDR-H3 Antibody design, we
compare to recent SOTA like RefineGNN (Jin et al., 2022),
MEAN (Kong et al., 2023) and AbODE (Verma et al., 2023).

Implementation TopNets is implemented in Py-
Torch (Paszke et al., 2019). Details regarding hyper-
parameters training are in Appendix A.

Table 3: Comparison with TOGL. We used TopAggTOGL
for aggregating the PH embeddings.

Model Diagram Enzymes ↑ DD ↑ Proteins ↑
GCN - 65.8 ±4.6 72.8 ±4.1 76.1 ±2.4
TOGL VC 53.0 ±9.2 73.2 ±4.7 76.0 ±3.9
Cont. TopNets 69.7 ±3.2 73.1 ±1.9 78.7 ±2.7

GIN - 50.0 ±12.3 70.8 ±3.8 72.3 ±3.3
TOGL VC 43.8 ±7.9 75.2 ±4.2 73.6 ±4.8
Cont. TopNets 58.3 ±8.2 77.3 ±4.5 79.5 ±3.9

6.1. Graph Classification

As presented in Table 2,3 shows the performance of TopNets
over real-world datasets and provides a detailed compari-
son between different types of GNN/TNN architectures, PH
vectorization, and their continuous counterparts offering
a comprehensive insight into the performance of TopNets.
The reported results include the mean and standard devia-
tion of predictive metrics, with the AUC for MOLHIV and
Accuracy for the remaining datasets, averaged over five runs
for robustness.
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Table 4: Test Mean absolute error (MAE) on QM9 dataset. The △ denotes the methods trained with different train-test
splits, and ∗∗ denotes the reproduced results. Benchmarks are from Eijkelboom et al. (2023). We denote the best-performing
methods in bold and the second-best ones in blue. We used TopAggRePHINE for aggregating the PH embeddings.

Architecture Diagram Method α ∆ϵ ϵHOMO ϵLUMO µ Cv R2 ZPVE
bohr3 meV meV meV D cal/mol K bohr3 meV

DimeNet++△ - - 0.044 33 25 20 0.030 0.023 0.331 1.21
SphereNet△ - - 0.046 32 23 18 0.026 0.021 0.292 1.21

NMP - - 0.092 69 43 38 0.030 0.040 0.180 1.50
SE(3)-Tr - - 0.142 53 35 33 0.051 0.054 - -
TFN - - 0.223 58 40 38 0.064 0.101 - -
MPSN - - 0.266 153 89 77 0.101 0.122 0.887 3.02
EGNN - - 0.071 48 29 25 0.028 0.031 0.106 1.55
IMPSN∗∗ - - 0.066 51 32 25 0.031 0.027 0.114 1.44

IMPSN
VC Disc. E-TopNets 0.083 47 37 24 0.035 0.032 0.125 1.45

Cont. E-TopNets 0.075 49 36 27 0.030 0.035 0.129 1.43

RePHINE Disc. E-TopNets 0.072 57 33 28 0.029 0.028 0.132 1.39
Cont. E-TopNets 0.070 50 35 25 0.032 0.030 0.118 1.37

6.2. Molecular data - QM9

The QM9 dataset, introduced by Ramakrishnan et al. (2014),
comprises small molecules with a maximum of 29 atoms in
3D space. Each atom is characterized by a 3D position and
a five-dimensional one-hot node embedding representing
the atom type, denoted as (H,C,N,O,F). The dataset’s
primary objective is to predict various chemical properties
of the molecules, which remain invariant to translations,
rotations, and reflections on the atom positions. Following
the data preparation strategy of Eijkelboom et al. (2023);
Satorras et al. (2021), we partition the dataset into training,
validation, and test sets. The mean absolute error between
predictions and ground truth is reported in Table 4, revealing
the competitive performance of TopNets compared to base-
lines. Notably, on many targets, TopNets achieves results
nearly on par with SOTA approaches, surpassing in predict-
ing ZPVE, ϵ and ϵLUMO. This achievement is intriguing
as our architecture, not specifically tailored for molecular
tasks, lacks many molecule-specific intricacies, like Bessel
function embeddings (Gasteiger et al., 2020b).

6.3. CDR-H3 Antibody Design

We took the antigen-antibody complexes dataset from Struc-
tural Antibody Database (Dunbar et al., 2014) and removed
the illegal data points. We followed a strategy similar to
Verma et al. (2023) for data preparation and splitting. We
employ Amino Acid Recovery (AAR) and RMSD for quan-
titative evaluation. AAR is defined as the overlapping rate
between the predicted 1D sequences and the ground truth.
RMSD is calculated via the Kabsch algorithm (Kabsch,
1976) based on Cα spatial features of the CDR residues.

Table 5 showcases the performance of TopNets compared
to the baseline methods over CDR-H3 design. TopNets

outperform other methods in terms of sequence prediction,
thus improving over the SOTA and demonstrating the benefit
of persistent homology in generative design.

Table 5: Results on CDR-H3 design benchmark. We report
AAR and RMSD metrics. TopNets significantly outperform
baselines on AAR while being competitive on RMSD. We
used TopAggRePHINE for aggregating the PH embeddings.

Method Diagram AAR % (↑) RMSD (↓)
LSTM - 15.69 ± 0.91 (N/A)
C-LSTM - 15.48 ± 1.17 (N/A)
RefineGNN - 21.13 ± 1.59 6.00 ± 0.55
C-RefineGNN - 18.88 ± 1.37 6.22 ± 0.59
MEAN - 36.38 ± 3.08 2.21 ± 0.16
AbODE - 39.8 ± 1.17 1.73 ± 0.11

TopNets VC 43.00 ± 1.34 1.73 ± 0.21
RePHINE 44.80 ± 1.57 1.75 ± 0.17

7. Conclusion
We introduce TopNets, a unifying framework that unifies
Persistent Homology with TNNs and encompasses vari-
ous methods operating at their intersection. By extending
Persistent Homology, TopNets enhances E(n)-equivariant
simplicial expressivity. This extension enables learning
higher-dimensional simplex features alongside topological
embeddings generated through geometric color filtrations in
an E(n)-equivariant manner. Moreover, TopNets introduces
the concept of continuous-time modeling over simplicial
complexes, offering insights into error bounds between dis-
crete and continuous cases. Empirical results demonstrate
the efficacy of TopNets across diverse real-world tasks.
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A. Implementation Details
Below are the implementation details.

A.1. Graph Classification

We followed the following hyperparameters and training setup to conduct our experiments on real-world graph classification.

Table 6: Default hyperparameters for TopNets for Graph Classification Benchmark

Hyperparameter Meaning Value

Solver ODE-Solver adaptive-heun,euler
GNN GNN Architecture {GCN,GIN,MPSN}

PH Type of PH {VC,TOGL,RePHINE}
Steps Number of steps for ODE solver {20,15,10,5}

Node Hidden Dim Latent dimension of node features 128
PH embed dim Latent dimension of PH features 64

Num Filt Number of filtrations 8
Hiden Filtration Hidden dimension of filtration functions 16

Batch Size Size of batches 64
LR Learning Rate 0.001

Scheduler Learning Rate scheduler Cosine-Annealing-LR
Epochs Number of epochs 300

A.2. Molecular Data QM9

For the discrete case, we followed the data-preparation strategies, training setup, and hyperparameters as outlined by Eijkel-
boom et al. (2023). We enhanced each layer with an Equivariant RePHINE layer, inspired by the original RePHINE (Im-
monen et al., 2023), incorporating Euclidean distance as an invariant feature in the filtration function. The Vertex Cloud
(VC) retained its absence of 3D positional information, consistent with (Immonen et al., 2023). For the continuous case,
we employed a single layer of EMPSN to parameterize the ODE dynamics, leveraging the odeint package to solve these
dynamics. Additionally, an Equivariant RePHINE layer was applied per time step. Solver options included euler and
adaptive-heun, with the number of time steps ranging from 5 to 20. Filtration parameters remained consistent with
those described in Table 6, alongside identical training hyperparameters and setup as in the original EPMSN paper.

A.3. CDR-H3 Antibody Design

We followed the following hyperparameters to conduct our experiments on CDR-H3 Antibody Design.

B. Deduction from TopNets
The table 8 shows the deductions of various methods from TopNets. We define the following Topological aggregation
methods derived from these methods as,

TopAggTOGL =

{
D0 → MLP → Agg, Node-level
D1 → DeepSets → Cat Graph-level,

TopAggPersLay =
{
D0,1 → DeepSets → Cat, Graph-level,

TopAggRePHINE =
{
R(l) → DeepSets → Cat, Graph-level

12
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Table 7: Default hyperparameters for TopNets for CDR-H3 Antibody Design

Hyperparameter Meaning Value

GNN GNN Architecture TransformerConv (Shi et al., 2020)
PH Type of PH {VC,RePHINE}

Layers Number of layers 4
Node Hidden Dim Latent dimension of node features [128,256,128,64]

PH embed dim Latent dimension of PH features 64
Num Filt Number of filtrations 8

Hiden Filtration Hidden dimension of filtration functions 16
Batch Size Size of batches 32

LR Learning Rate 0.001
Scheduler Learning Rate scheduler Cosine-Annealing-LR

Epochs Number of epochs 1000

Table 8: Deduction of PH-based methods from TopNets

Module Meaning TOGL PersLay RePHINE

TNNLayer TNN/GNN Architecture {GCN,GIN} - {GCN,GIN}
PD Type of PH-diagrams used VC VC, Point transformations RePHINE
f ℓ Filtration functions fv fv (f ℓv , f

ℓ
e)

ψ Diagram combining functions DeepSets DeepSets DeepSets
TopAgg Topological Aggregation TopAggTOGL TopAggPersLay TopAggRePHINE

C. Proofs
C.1. Proof of Proposition 1

Let us first introduce two important notions of neighborhood for simplicial complexes: the boundary-adjacency and the
upper-adjacency neighborhoods. Let σ be a simplex. Then, the boundary neighborhood of σ is given by B(σ) = {τ ⊂
σ : dim(τ) = dim(σ)− 1} — the set of σ’s faces of dimension dim(σ)− 1. The upper-adjacency neighborhood of σ is
N↑(σ) = {σ′ : ∃δ such that σ ⊂ δ, σ′ ⊂ δ and dim(δ)− 1 = dim(σ′) = dim(σ)} — i.e., there exists a simplex δ that is
co-face of both σ and σ′ with dimension equal to dim(σ′) + 1.

Consider simplices of a graph (1-dim complex). If σ is a vertex, it has no boundary neighborhood and its upper-adjacency
neighborhood are the vertices directly connected to σ. On the other hand, if σ is an edge, it has no upper-adjacency
neighborhood and its boundary one is given by the vertices that σ is incident to.

The simplicial Weisfeiler-Leman test (Bodnar et al., 2021b) resembles the original 1-WL test but takes into account the
colors of the simplices of both boundary adjacency and upper adjacency in the hash (aggregating) function. Every simplex
has an associated color. For a proper definition, we refer to Bodnar et al. (2021b).

To prove Proposition 1, it suffices to i) show a pair of clique complexes that SWL cannot distinguish, ii) and derive a
color-based filtration that produces different persistence diagrams. Consider the clique complexes K and K ′ in Figure 2.

Figure 2: Two non-isomorphic simplicial complexes.
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We know that the multisets of colors of 0-simplices (vertices) from K and K ′ are identical. This stems from the fact that
these graphs are known to be indistiguashable by 1-WL and that the only valid neighbohood structure for vertices is the
classic one (adjacent vertices) — upper-adjacency neighborhood. In other words, for each vertex in v ∈ K with computation
tree Tv , there is a corresponding vertex v′ ∈ K ′ such that Tv is isomorphic to Tv′ for any depth. Thus, we can disregard the
colors of 0-simplices.

Similarly, if σ = [u, v] is an edge, its only neighbors are u and v (boundary adjacency). If we consider edges of the same
colors in K and K ′, their neighbors have isomorphic computation trees. As a result, at every iteration of the test, the colors
used to update these edges are exactly the same. Therefore, SWL cannot distinguish these complexes.

To prove that there exists a color-based filtration that distinguishes these graphs. We can directly leverage Theorem 2 in
(Immonen et al., 2023) to show that there is a color-disconnecting set to these graphs Q = {blue}. If we remove the blue
edges from K and K ′, they end up with different numbers of connected components. This concludes the proof.

Proposition 2 : Invariant PH embeddings: Consider a geometric simplex (K, x, z) and geometric i-simplex-color
filtrations induced by a function f . If f is E(n) invariant function on (K,x, z), then the mapping ψ(PD(σ; f, x, z,K)) is
E(n)-invariant.

Proof. Consider a geometric simplex (K, x, z) and geometric i-simplex-color filtrations induced by a function f . Let there
be a E(n)-transformation on the simplex positional features, such that zσ → Rzσ. The coloring obtained by geometric on
the original positional features is,

of (σ) =

 max
τ⊂σ:dim(τ)=i

f(xτ , ({zv}v∈τ )) if dim(σ) ≥ i

0 otherwise,
(18)

Whereas the ordering obtained after transformation on transformed features would be,

o′f (σ) =

 max
τ⊂σ:dim(τ)=i

f(xτ , ({Rzv}v∈τ )) if dim(σ) ≥ i

0 otherwise,
(19)

Since the function f is invariant, this would imply of (σ) = o′f (σ), which would lead to the same diagrams leading to the
same ordering → vectorization, giving the same topological embeddings, even though the complex is same. Since ψ is a
DeepSets mapping, which has no effect due to the E(n)-transformation, this would imply,

ψ(PD(σ; f, x, z,K)) = ψ(PD(σ; f, x,Rzℓ,K)) (20)

D. Approximation Error Bounds
D.1. TOGL

D.1.1. CONTINUOUS COUNTERPART

The dynamics of the TOGL GNN can be expressed as follows by following the notation from Sec.3. Note that we assume a
fixed simplicial complex for deriving the bound.

xℓσ = TNNLayerℓ(x
ℓ−1
σ ,K) + ψ(PD(σ; fθ, x

ℓ−1
σ ,K)) (21)

For clarity of exposition, let TNNLayerℓ(x
ℓ−1
σ ,K) = xℓ−1

σ +mℓ
σ, where mℓ

σ is the aggregated as described in Section 5.
The continuous depth counterpart can be written as a graph ODE, parametrized by the following differential equation,

ẋtσ = ψ(PD(σ; fθ, x
t
σ,K)) +mt

σ (22)
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D.1.2. ERROR BOUND

We consider N-layered TOGL GNN and assume an Euler discretization scheme for the ODE system consisting of N steps
to be consistent. We define sℓ = ℓ/N = ℓh, where h = 1

N is the step size and, sℓ represents a time at ℓth step. We utilize
the Taylor expansion as,

xsℓ+hσ = xsℓσ + hẋsℓσ +R1(h) (23)

We consider a simple modification of the discrete TOGL GNN network for N -depth by letting the mapping explicitly
depend on the depth of the network as,

xℓσ = xℓ−1
σ +

1

N

(
ψ(PD(σ; fθ, x

ℓ−1
σ ,K)) +mℓ−1

σ

)
(24)

We consider the error e(ℓ) = xsℓσ − xℓσ , where xℓ is the node embeddings after l TOGL-GNN layers,

e(ℓ+ 1)− e(ℓ) = xsℓ+1
σ − xsℓσ + xℓσ − xℓ+1

σ (25)

= hẋsℓσ +R1(h)−
1

N

(
ψ(PD(σ; fθ, x

ℓ
σ,K)) +mℓ

σ

)
(26)

= R1(h) + h
(
msℓ
σ −mℓ

σ

)
(27)

+ h
(
ψ(PD(σ; fθ, x

sℓ
σ ,K))− ψ(PD(σ; fθ, x

ℓ
σ,K))

)
(28)

We assume mσ,ψ to be Lm, Lβ-Lipschitz (Lβ = LψLθ, due to the composition of ψ and fθ), giving us, (note that the
parametrization of mℓ

σ and msℓ
σ is the same, and only differs in inputs.)

||e(ℓ+ 1)− e(ℓ)|| ≤ R1(h) + hLm||e(ℓ)||+ hLβ ||e(ℓ)|| (29)

||e(ℓ+ 1)|| ≤ R1(h) +

(
1 +

Lm + Lβ
N

)
||e(ℓ)|| (30)

Using the discrete Gronwall lemma (Sander et al., 2022; Demailly, 2006), we get the following relation, where e(0) = 0,

||e(ℓ)|| ≤ 0 +R1(h)
∑

0≤j≤n−1

e
Lm+Lβ

N (N−1−j) (31)

≤ R1(h)
e
Lm+Lψ

N N − 1

e
Lm+Lβ

N − 1
(32)

But, e
Lm+Lβ

N − 1 ≥ Lm+Lβ
N , using that we get,

||e(ℓ)|| ≤ R1(h)
N(eLm+Lβ − 1)

Lm + Lβ
(33)

D.2. RePHINE

D.2.1. CONTINUOUS COUNTERPART

The dynamics of RePHINE GNN can be expressed as follows, following the notation from Sec.3. Note that we assume a
fixed simplicial complex for deriving the bound.

xℓσ = TNNLayerℓ(x
ℓ−1
σ ,K) (34)

rℓσ = ψℓ(PD(σ; f ℓθ , x
ℓ−1
σ ,K)) (35)

Similarly, as above case, let TNNLayerℓ(x
ℓ−1
σ ,K) = xℓ−1

σ +mℓ
σ , , where mℓ

σ is the aggregated as described in Section 5.
RePHINE parameterizes each layer filtration function f ℓθ and DeepSet function ψℓ distinctively. The continuous depth
counterpart can be written as a coupled latent graph ODE, parametrized by the following set of differential equations as,

ẋtσ = mt
σ (36)

rtσ = ψt(PD(σ; f tθ, x
t
σ,K)) (37)
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D.2.2. ERROR BOUND

We consider N layered RePHINE GNN, and assume an Euler discretization scheme for the ODE system consisting of N
steps to be consistent. We define sℓ = ℓ/N = ℓh, where h = 1

N is the step size and, sℓ represents a time at ℓth step. We
derive the error bounds both for the node features and topological embeddings as follows.

Node Embeddings We utilize the Taylor expansion, as,

xsℓ+hσ = xsℓσ + hẋsℓσ +R1(h) (38)

We consider a simple modification of the discrete RePHINE GNN network for N -depth by letting the mapping explicitly
depend on the depth of the network as,

xℓσ = xℓ−1
σ +

1

N
mℓ
σ (39)

We consider the node-embedding error, ex(ℓ) = xsℓσ − xℓσ ,

ex(ℓ+ 1)− ex(ℓ) = xsℓ+1
σ − xsℓσ + xℓσ − xℓ+1

σ (40)

= hẋsℓσ +R1(h)−
1

N
mℓ
σ (41)

= R1(h) + h
(
msℓ
σ −mℓ

σ

)
(42)

Assuming mσ to be Lm-Lipschitz, gives us (note that the parametrization of msℓ
σ and mℓ

σ is the same, and only differs in
inputs.)

||ex(ℓ+ 1)− ex(ℓ)|| ≤ R1(h) + hLm||ex(ℓ)|| (43)

||ex(ℓ+ 1)|| ≤ R1(h) +

(
1 +

Lm
N

)
||ex(ℓ)|| (44)

Using the discrete Gronwall lemma, we get the following relation, where ex(0) = 0,

||ex(ℓ)|| ≤ 0 +R1(h)
∑

0≤j≤n−1

e
Lm
N (N−1−j) (45)

≤ R1(h)
e
Lm
N N − 1

e
Lm
N − 1

(46)

But, e
Lm
N − 1 ≥ Lm

N , using that we get,

||ex(ℓ)|| ≤ R1(h)
N(eLm − 1)

Lm
(47)

Topological Embeddings We consider the the topological-embedding error shown below, where rℓσ is the topological-
embedding after l RePHINE layers, using taylor expansion around xsℓ ,

er(ℓ+ 1) = rsℓ+1
σ (xsℓ+1

σ ,K)− rℓ+1
σ (xℓ+1

σ ,K) (48)

= rsℓ+1
σ (xsℓσ ) + h

dr
sℓ+1
σ (xsℓσ )

dxsℓσ
mt
σ +R1(h)− rℓ+1

σ (xℓσ +
1

N
mℓ
σ) (49)

Now, using the Taylor expansion to expand the second term, we can write (h = 1/N )

rℓ+1
σ (xℓσ +

1

N
mℓ
σ) = rℓ+1

σ (xℓσ) + h
drℓ+1
σ (xℓσ)

dxℓσ
mℓ
σ +R1(m

ℓ
σ) (50)
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Putting into the original equation, we get,

er(ℓ+ 1) = rsℓ+1
σ (xsℓσ )− rℓ+1

σ (xℓσ)︸ ︷︷ ︸
First Term

+h
dr
sℓ+1
σ (xsℓσ )

dxsℓσ
msℓ
σ − h

drℓ+1
σ (xℓσ)

dxℓσ
mℓ
σ︸ ︷︷ ︸

Second Term

(51)

+R1(h)−R1(m
ℓ
σ) (52)

We simplify each term as follows,

First Term: The first term denotes the difference between the topological embeddings, and we assume that ψsℓ+1 ≡ ψℓ+1, as
both functions are evaluated at the ℓ+1 layer (step), and let it be Lℓ+1

β -Lipschitz (Lℓ+1
β = Lℓ+1

ψ Lℓ+1
θ , due to the composition

of ψℓ+1 and f ℓ+1
θ ) at the time-step, giving us

||rsℓ+1
σ (xsℓσ )− rℓ+1

σ (xℓσ)|| = ||ψsℓ+1(PD(σ; f
sℓ+1

θ , xsℓσ ,K))− ψℓ+1(PD(σ; f ℓ+1
θ , xℓσ,K)|| (53)

≤ Lℓ+1
β ||ex(ℓ)|| (54)

Second Term: We simplify the second term as follows, by adding and subtracting a term as,

=h
dr
sℓ+1
σ (xsℓσ )

dxsℓσ
msℓ
σ − h

dr
sℓ+1
σ (xsℓσ )

dxsℓσ
mℓ
σ + h

dr
sℓ+1
σ (xsℓσ )

dxsℓσ
mℓ
σ − h

drℓ+1
σ (xℓσ)

dxℓσ
mℓ
σ (55)

=h

(
dr
sℓ+1
σ (xsℓσ )

dxsℓσ

(
msℓ
σ −mℓ

σ

)
+mℓ

σ

(
dr
sℓ+1
σ (xsℓσ )

dxsℓσ
− drℓ+1

σ (xℓσ)

dxℓσ

))
(56)

where the parts of the second term can be simplified as,

dr
sℓ+1
σ (xsℓσ )

dxsℓσ
=

|rsℓ+1
σ (x

sℓ+h
σ )− r

sℓ+1
σ (xsℓσ )|

|xsℓ+hσ − xsℓσ |
≤ Lℓ+1

β (57)

Similarly, the other term,

drℓ+1
σ (xℓσ)

dxℓ
=

|rℓ+1
σ (xℓ+hσ )− rℓ+1

σ (xℓσ)|
|xℓ+hσ − xℓσ|

≤ Lℓ+1
β (58)

leading to ≤ (Ln+1
β − Ln+1

β ) = 0. So, the equation will become,

h
dr
sℓ+1
σ (xsℓσ )

dxsℓσ

(
msℓ
σ −mℓ

σ

)
≤hdr

sℓ+1
σ (xsℓσ )

dxsℓσ
Lm||ex(ℓ)|| (59)

≤
Lℓ+1
β Lm

N
||ex(ℓ)|| (60)

Collecting all the terms, it will account for,

||er(ℓ+ 1)|| ≤ Lℓ+1
β ||ex(ℓ)||+

Lℓ+1
β Lm

N
||ex(ℓ)||+R1(h)−R1(m

ℓ
σ) (61)
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