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Abstract

This paper proposes a scalable and straightfor-
ward pre-training paradigm for efficient visual
conceptual representation called occluded image
contrastive learning (OCL). Our OCL approach
is simple: we randomly mask patches to gener-
ate different views within an image and contrast
them among a mini-batch of images. The core
idea behind OCL consists of two designs. First,
masked tokens have the potential to significantly
diminish the conceptual redundancy inherent in
images, and create distinct views with substan-
tial fine-grained differences on the semantic con-
cept level instead of the instance level. Second,
contrastive learning is adept at extracting high-
level semantic conceptual features during the pre-
training, circumventing the high-frequency inter-
ference and additional costs associated with image
reconstruction. Importantly, OCL learns highly
semantic conceptual representations efficiently
without relying on hand-crafted data augmenta-
tions or additional auxiliary modules. Empiri-
cally, OCL demonstrates high scalability with
Vision Transformers, as the ViT-L/16 can com-
plete pre-training in 133 hours using only 4 A100
GPUs, achieving 85.8% accuracy in downstream
fine-tuning tasks. Code is available at https:
//github.com/XiaoyuYoung/OCL.
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1. Introduction
Self-supervised learning (SSL) is a key approach for build-
ing world models, especially for pre-training vision models
(Chen et al., 2020a; He et al., 2022; Bao et al., 2021; Rad-
ford et al., 2021; Wang et al., 2023; Yang et al., 2024b).
Its strength lies in learning versatile visual representations
without relying on human annotations. Currently, the two
main paradigms in visual SSL are Masked Image Mod-
eling (MIM) (He et al., 2022; Wang et al., 2023; Kong
et al., 2023; Zhang et al., 2022; Gupta et al., 2023) and
Contrastive Learning (CL) (Chen et al., 2020a). Both have
shown strong scalability, particularly for Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021).

Despite the success of existing methods, both MIM and
CL struggle to achieve efficient visual representation. MIM
focuses heavily on pixel-level reconstruction, which often
prioritizes local details over high-level semantic concepts.
Similarly, CL suffers from conceptual redundancy, where
transformed images may lack meaningful differences. This
raises a critical question: How can we bridge the gap be-
tween efficient visual representation and effective concep-
tual pre-training, overcoming the limitations of current MIM
and CL approaches?

To address this question, we first revisit the two main pre-
training paradigms: MIM and CL. MIM learns visual rep-
resentations by reconstructing masked image patches (see
Fig.1b). Notable examples include BEiT (Bao et al., 2021)
and MAE (He et al., 2022). MAE highlights that images
contain significant semantic redundancy, meaning only a ba-
sic understanding of objects and scenes is needed to predict
missing patches from their surroundings. However, pixel-
level reconstruction is too detailed for pre-training vision
models. It focuses excessively on high-frequency details
and local features, conflicting with the goal of pre-training:
learning high-level semantic concepts. While this detailed
task helps models learn visual representations, it comes at
the cost of pre-training efficiency.

In CL, the core idea is simple: maximize agreement be-
tween different views of the same image (see Fig.1a). Pop-
ular methods like SimCLR (Chen et al., 2020a;b), MoCo
v3 (Chen et al.), and DINO (Caron et al., 2021) use com-
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plex pre-processing and auxiliary networks to create distinct
views of an image. The main challenge lies in optimiz-
ing the agreement between these views. For CL to work
well, distinct views are essential. However, this is difficult
because images often have conceptual redundancy. Addi-
tionally, the dependency on large-scale batches to generate
sufficiently diverse negative samples imposes stringent com-
putational constraints, notably escalating computational and
time consumption overhead during training.

Driven by this analysis, we found that these two paradigms
can complement each other: masked tokens have the po-
tential to significantly diminish the conceptual redundancy
inherent in images, whereas contrastive learning is adept
at extracting high-level semantic features during the pre-
training phase. Thus, we present a novel and straightforward
paradigm for self-supervised visual representation learning:
occluded image contrastive learning (OCL). OCL tackles
the above issues systematically: I) Masked image tokens
offer diverse views of a single image with substantial fine-
grained conceptual differences. II) Contrastive learning
enables pre-training to concentrate exclusively on the high-
level semantic information contained within images while
disregarding high-frequency redundancies. III) The pro-
posed paradigm obviates the need for auxiliary modules and
expedites the efficient extraction of model features.

OCL has a particularly simple and straightforward work-
flow, as presented in Fig.1c. Here is how it works: Firstly,
we mask a batch of images with a high rate, dividing vis-
ible patches within one image into two non-overlapping
groups. In succession, the pre-train model extracts the fea-
tures of these two groups of batch image tokens, respectively.
Subsequently, contrastive learning is employed to predict
the correct pairings for a batch of visible image tokens.
Positive samples are different visible tokens in the same
image, while negative samples are from different images
of the mini-batch. Finally, inspired by T-distributed classi-
fier (Yang et al.; 2024a), we use the T-distributed spherical
loss to constrain the inter-class margins in the pre-training.
Comprehensive experiments demonstrate the scalability and
efficacy of our approaches, where ViT-L/16 can complete
pre-training in 133 hours using only 4 A100 GPUs and at-
tain an 85.8% top-1 accuracy in fine-tuning classification.
In particular, our model stands out from other pre-training
methods as it operates without the need for auxiliary mod-
ules or hand-crafted data augmentation to generate diverse
views.

In summary, our paper mainly makes the following contri-
butions:

1. We endeavour to explore an alternative of using masked
images to create diverse views with fine-grained con-
ceptual differences for contrastive learning. By forgo-
ing the conventional approach of employing instance-

level hand-crafted data augmentation to generate dis-
tinct views, OCL diminishes the conceptual redun-
dancy inherent in images and improves efficiency.

2. Our approach eschews the reconstruction of masked
images in favour of leveraging contrastive loss to steer
the entire model. Independently of additional auxiliary
modules, OCL is adept at extracting high-level seman-
tic concept features from images more efficiently.

3. Extensive experiments are conducted to verify the effi-
ciency and scaling capability of our method. ViT-L/16
can complete pre-training in 133 hours using only 4
A100 GPUs with 85.8% accuracy in fine-tuning. Ad-
ditionally, we have structured ablation experiments to
delve into the implications of different configurations
within OCL, with a particular focus on the need of the
MLP head in contrastive learning.

2. Methodology
2.1. Architecture

With an input image xi ∈ RH×W×C , it is reshaped into a
sequence of 2D patches xp ∈ RN×(P 2·C), where (H,W )
denotes the original image resolution, C is the number of
channels, P represents the patch size, and N = HW/P 2

indicates the number of patches. Subsequently, a linear
projection is employed on xp to transform it into D dimen-
sions, yielding patch embeddings x ∈ RN×D. Following
the MoCo v3 (Chen et al.), the linear projection is initial-
ized using the Xavier uniform method and remains fixed
throughout pre-training to mitigate potential instability in
ViT caused by the large batch size. Thereafter, fixed position
embeddings p ∈ R(N+1)×D are incorporated into the patch
embeddings to preserve positional information, employing
sinusoidal positional encoding.

After random masking patches, visible patches that retain
the original image position information are divided into two
non-overleaping groups: xU ∈ Rn×D and xL ∈ Rn×D,
where n denotes the number of visible patches. Each group
adds an independent [CLS] token xcls ∈ RD to aggregate
the information of each group. Moreover, [CLS] tokens of
each group will add the position embeddings p0. In succes-
sion, ViT (Dosovitskiy et al., 2021) is utilized as our encoder.
zU = [xU

cls;xU ]⊕ p and zL = [xL
cls;xL]⊕ p are the input

of pre-training ViT, where ⊕ denotes element-wise plus,
and f(·) represents the ViT. Consequently, image feature
tokens extracted by ViT are symbolized as y = f(z), where
y ∈ R(n+1)×D. Furthermore, we only preserve [CLS] to-
kens ycls ∈ RD of both groups for contrastive learning, as
it aggregates the high-level semantic information of each
image. It is noteworthy that, unlike existing methodologies,
we abstain from employing auxiliary modules. This allows
our model to more easily extract image features and reduce
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(c) Our occluded image contrastive learning

Figure 1. Comparison between different pre-training paradigms. The Model in blue is the pre-training model, and the orange modules
indicate auxiliary modules. (a) Contrastive Learning (CL) endeavours to maximize the agreement between different views of an image.
(b) Masked Image Modeling (MIM) aims to restore masked image patches. (c) Our occluded image contrastive learning: Through
non-overlapping occluding, distinct tokens within an image are categorized as intraclass, while across-image tokens within a batch are
viewed as interclass. Our objective is to enhance intraclass compactness and interclass separability through a contrastive learning approach.
Just as a single leaf can tell the coming of autumn, we believe that a small area of the image contains the majority of the meaning of the
entire image.

the consumption of computing resources.
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Figure 2. A toy example of masked images for conceptual con-
trastive learning. The low global masking ratio aids the model
in capturing comprehensive information from the image and un-
derstanding the interconnectedness of various concepts within a
mini-batch. Beyond that, each contrastive branch has a higher
masking ratio, generating diverse views with different semantic
concepts for contrastive learning and diminishing conceptual re-
dundancy within the image.

2.2. Occluded Image for Conceptual Pre-training

Despite the strides made in instance-wise contrastive learn-
ing (Chen et al., 2020a; Caron et al., 2021), the differences
between various views primarily manifest at the pixel level,
instead of semantic concept disparities. In this context,
a patch is abstracted as a concept containing fine-grained

semantics. The concepts within an image exhibit distinct
conceptual characteristics, yet they are all interconnected
with the overall meaning of the image, albeit to varying
extents. Thus, masked images are used to create views that
contain semantic distinctions of concepts, and mitigate the
conceptual redundancy present in images, as presented in
Fig. 2.

We apply the masking strategy of random sampling, the
same as the MAE, which samples random patches without
replacement following the uniform distribution. Beyond
that, a low masking ratio (e.g. 30%) is implemented overall,
but leads to a higher masking ratio (e.g. 65%) for indi-
vidual contrastive branches, as illustrated in Fig. 2. The
low global masking rate helps the model capture the over-
all image structure and the relationships between different
concepts within a mini-batch. During each forward pass,
the model only sees a small portion of the visible tokens.
This creates diverse views with fine-grained semantic differ-
ences, making the task more challenging and reducing the
risk of the model relying on simple patterns or redundant
information. The high masking ratio for each contrastive
branch ensures that the task cannot be solved by simply ex-
trapolating from basic image transformations. This reduces
conceptual redundancy and forces the model to focus on
localized features. Additionally, by training on only a few
parts of the image, the masking strategy also improves scal-
ability and efficiency, making it easier to handle the large
batch sizes required for contrastive learning.

To divide visible patches into two separate, non-overlapping
groups, we use a random sampling strategy similar to the
masking approach described earlier. This helps avoid poten-
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tial biases and ensures that the central positions of the visi-
ble patches are consistent across both groups. Meanwhile,
non-overlapping patches present a challenging scenario, im-
peding the model from relying solely on analogous patches
for inference.

2.3. Efficient Contrastive Learning

We randomly select a mini-batch of B instances and estab-
lish the contrastive prediction task on the visible token pairs
extracted from this mini-batch, yielding a total of 2 × B
data points. Feature tokens from different groups within
the same image are treated as positive pairs, while tokens
from different images in the same mini-batch are treated as
negative pairs. We concurrently maximise the similarity of
B positive pairs while minimizing the similarity of B2 −B
negative examples to drive the network.

In terms of similarity computation, we introduce T-
distributed spherical (T-SP) metric (Yang et al.; Kobayashi)
to significantly promote the intraclass compactness and
interclass separability of features. Given [CLS] tokens
yUi ∈ RD and yLj ∈ RD of both non-overlapping groups,
the cosine distances between yUi and yLj are:

cosLU (y
U
i , y

L
j ) =

yUi
T
yLj

|yUi ||yLj |
(1)

and the T-SP similarity is defined as follows:

simtsp(y
U
i , y

L
j ) = 0.5× 1 + cosLU

1 + (1− cosLU ) ∗ κ
(2)

where κ ≥ 0 denotes the concentration hyperparameter
of T-SP metric. As κ decreases, the similarity function
becomes more condensed, where only two tokens in close
proximity are deemed positive examples. Besides, we add
a trainable temputare parameter τ to effectively scale the
different samples. Thus, the loss function for a positive pair
is:

L(yUi , yLj )

=− log
exp (simtsp(y

U
i , y

L
j )× τ)∑2B

k=1 ⊮[k ̸=i] exp (simtsp(yUi , y
L
k )× τ)

(3)

where ⊮[k ̸=j] ∈ {0, 1} is an indicator function evaluating to
1 if k ̸= i. Finally, inspired by CLIP (Radford et al., 2021),
we optimize a symmetric loss over these similarity scores
within a mini-batch exhibited in Algorithm 1.

2.4. Simple Implementation

The implementation of our OCL pre-training is efficient and
involves minimal specialized operations. As pseudo code
depicted in Algorithm 1, we make only minor modifications

Algorithm 1 Pytorch-like pseudo-code for the core of an
implement of OCL
# x[B,N,D] - patch embeddings

# mask image and split into two
non-overleaping groups
# x [B×2, n, L]
x = masking(x, ratio = 0.3)
# extract [CLS] token of both groups
using pre-training model
x = model(x) # [B×2, 1, L]
x = x.reshape(-1, 2, x.shape[-1])
# L2 normalize the [CLS] token of each
group
m, n = x[:,0], x[:,1] # [B, L]
m = m/m.norm(dim=-1,keepdim=True)
n = n/n.norm(dim=-1,keepdim=True)
# compute the scaled pairwise T-SP
similarities
sim mn = compute tSP(m @ n.T)
sim nm = compute tSP(n @ m.T)
# symmetric loss function
labels = torch.arange(B)
loss=(F.cross entropy(sim mn,labels)
+F.cross entropy(sim nm,labels))/2

based on the MAE code, mainly involving the process subse-
quent to the acquisition of image feature embeddings from
the encoder. First, we randomly mask a subset of embed-
ded patch tokens with a low masking ratio. In succession,
listed tokens are shuffled randomly and divided into two
non-overlapping groups. Following MAE (He et al., 2022),
within positional and [CLS] embeddings, lists of tokens are
encoded by the ViT. It is noteworthy that we obtain the
encoded [CLS] token from the ViT directly, without the
incorporation of additional auxiliary modules, even a linear
head or lightweight decoder.

Subsequently, the obtained [CLS] tokens within each group
are L2 normalized, and then the T-SP metric is applied to
calculate the similarity between tokens from each group.
Finally, a simple cross-entropy loss is calculated symmet-
rically to drive model training, enhancing the intraclass
conceptual compactness within an image and the interclass
semantic separability across images.

3. Experiments
We perform self-supervised pre-training on the ImageNet-
1K (Russakovsky et al., 2015) dataset with the resolution of
224×224. By default, ViT-B/16 and ViT-L/16 (Dosovitskiy
et al., 2021) are leveraged as the backbone architecture with
800 epochs for pre-training and 40 epochs for warm-up.
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Model Blocks Dim Heads Params

ViT-B/16 12 768 12 86M
ViT-L/16 24 1024 16 304M
ViT-h/16 32 1280 16 632M

Table 1. Configurations of Vision Transformer (Dosovitskiy
et al., 2021) models in our experiments. Block denotes the num-
ber of transformer blocks, with dim representing the input/output
channel dimension of all blocks. Heads are the number of heads in
multi-head attention modules. We also provide the parameter sizes
of different models.

ViT-B/16 applies the overall masked ratio of 0.3, while ViT-
L/16 is set to 0.4. The initial base learning rate is 1.5×10−4.
Like other contrastive learning (Chen et al., 2020a; Radford
et al., 2021), our method relies on a large effective batch
size: 9,600 for ViT-B/16 and 2,048 for ViT-L/16. Besides,
κ is set to 64 in the T-SP metric for computing similarity by
default. Our implementation is based on MAE (He et al.,
2022), with further details provided in the Supplementary
Material.

In terms of supervised validation, OCL is evaluated through
end-to-end fine-tuning and linear probing on the ImageNet-
1k dataset for classification with 100 epochs for ViT-B/16
and 50 for ViT-L/16, following common practices (Caron
et al., 2021; He et al., 2022; Wang et al., 2023). Top-1
accuracy is utilized to verify the performance of different
methods.

3.1. Scalability

To demonstrate the scalability of our OCL for efficient con-
ceptual pre-training, we access the efficiency and scaling
of our model in Fig.3. It illustrates the pre-training hours
related to various model sizes for different methods, with
linear probing accuracy. OCL is highly scalable compared
to previous methods, requiring less computational resources
while achieving strong results and without relying on hand-
crafted data augmentations. Unlike reconstruction-based
approaches like MAE and I-JEPA, OCL needs fewer training
epochs and avoids the need for pixel-level reconstruction,
significantly improving training speed. In contrast to con-
trastive learning methods such as MoCo v3, which depend
on handcrafted augmentations and complex architectures to
generate and process multiple image views, OCL eliminates
the need for auxiliary modules like momentum encoders.
This simplicity makes OCL’s framework more efficient and
accelerates pre-training. For example, when scaling up from
ViT-B/16 to ViT-L/16, OCL requires far less additional pre-
training time compared to MoCo v3.

Scaling model size. Moreover, our model leverages a scal-
able model size, resulting in more substantial performance
enhancements with the larger model as illustrated in Fig.3.

OCL

Pre-training GPU Hours

Li
ne

ar
 P

ro
bi

ng
 T

op
-1

 A
cc

ur
ac

y

Figure 3. Efficiency and Scaling. MAE (He et al., 2022), I-JEPA
(Assran et al., 2023) and MoCo v3 (Chen et al.) are opted for
comparison. All methods are evaluated by linear probing with
Top-1 accuracy (Acc) as the metric, and the pre-training GPU time
with A100 hour as the indicator. The pre-training epochs (denoted
as ep) and model architecture are also exhibited.

Compared to ViT-B/16, OCL achieves nearly 4% improve-
ment in linear probing with ViT-L/16, surpassing MoCo
v3. It implies that we can efficiently train larger models to
achieve better performance, within an acceptable timeframe.

3.2. Ablation Studies

3.2.1. MASKED RATIO

Firstly, we conduct ablation experiments to discuss the im-
pact of the overall masked ratio on the performance of con-
ceptual pre-training, revealed in Table 2. To ensure clarity
in presentation, we offer the visible ratio of each contrastive
branch within a single forward pass of the mini-batch, which
is a crucial factor for the cross-similarity within our OCL
framework. Likewise, the effective batch size is intertwined
with the scalable masked ratios, with larger batch sizes show-
casing performance enhancements for the model, as verified
in Section 3.2.2. Thus, we attribute this improvement to the
masked ratio.

Regarding large models such as ViT-L/16 in Table 2, the
increment of the overall masked ratio from 0.2 to 0.4 could
significantly diminish conceptual redundancy and increase
the effective batch size, thereby resulting in performance
improvement. Nevertheless, with a continued rise in the
masked ratio, the visible patches of images in one forward
process of the model diminish incrementally. Despite in-
creases in batch size, the precise extraction of conceptual
information from the images becomes compromised, result-
ing in degraded performance. Furthermore, as displayed
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Overall
Masked Ratio

Forward
Visible Ratio Bsz. LIN FT

ViT-L/16
0.2 0.4 1,024 74.2 84.4
0.4 0.3 2,048 77.9 85.8
0.8 0.1 7,200 69.1 83.0

ViT-B/16
0.3 0.35 9,600 74.2 83.4
0.6 0.2 9,600 71.0 82.8
0.8 0.1 12,800 65.7 81.6

Table 2. Ablation evaluation experiments on masked ratio. The
results are based on the ImageNet-1K with the Vit-B/16 and ViT-
L/16. All methods are evaluated by linear probing (LIN) and
fine-tuning (FT). We provide the visible ratio of each branch for
contrastive learning according to the masked ratio. Correspond-
ingly, we give different effective batch sizes (Bsz.) related to the
overall masked ratio. The resolution of images is fixed to 224×224.
Top-1 accuracy is used as the metric.

in ViT-B/16 of Table 2, once the batch size surpasses its
threshold, an excessively high masked ratio can impair the
model performance, transitioning from reducing conceptual
redundancy to damaging essential semantic information.

3.2.2. LARGE BATCH SIZE FOR EFFECTIVE
CONTRASTIVE REPRESENTATION

Effective
Batch Size LIN FT

Pre-training
Hour

2,048 77.9 85.8 533
4,096 77.7 85.7 533
1,800 77.4 85.7 559
1,024 74.4 84.9 586
512 71.6 84.6 613

Table 3. Ablation evaluation experiments on batch size. The
results are based on the ImageNet-1K with the ViT-L/16. All
methods are evaluated by pre-training hours, linear probing (LIN)
and fine-tuning (FT). Meanwhile, pre-training hours on A100 are
provided. The resolution of images is fixed to 224×224. Top-1
accuracy is used as the metric.

ViT models (Dosovitskiy et al., 2021) are inherently com-
putationally intensive, and training with large batches is a
preferred strategy for handling large ViT models. Moreover,
a sizable batch size is advantageous for achieving accuracy
in contemporary self-supervised learning techniques. In
particular, concerning contrastive learning methodologies
that heavily lean on large batch sizes, ablation experiments
are conducted to ascertain the influence of batch size on our
occluded image contrastive learning approach, as shown in
Table 3. The utilization of the ViT-L/16 model for validation

reveals that a larger effective batch size correlates with im-
proved model performance and efficiency, aligning with the
consensus within the community (Goyal et al., 2018; You
et al., 2019). We attribute this to the statistical advantage
of expanded negative sample pools, which achieve broader
coverage of the latent feature space. Such comprehensive
sampling sharpens inter-class separation by refining deci-
sion boundaries during contrastive optimization. However,
limited by computational resources, we are unaware of the
maximum capacity of the effective batch size.

3.2.3. MLP HEAD IS NOT YOU NEED

MLP Head FLOPs Param. Hours Bsz. LIN FT

w/o 42.3 303 533 2,048 77.9 85.8
w/o 42.3 303 559 1,800 77.4 85.7
2-layer 43.6 305 600 1,800 76.7 85.6
3-layer 43.7 306 611 1,800 76.6 85.6

Table 4. Ablation experiments on MLP head. The results are
based on the ImageNet-1K with the ViT-L/16. All methods are
evaluated by FLOPs/G, Parameters (Param.)/M, pre-training hours
(Hours), effective batch size (Bsz.), linear probing (LIN) and fine-
tuning (FT). Correspondingly, we give different effective batch
sizes related to the MLP head within the pre-trained model. Be-
sides, pre-training hours on A100 are provided. The resolution of
images is fixed to 224×224. Top-1 accuracy is used as the metric.

In many contrastive learning methods (Chen et al., 2020a;
Chen et al.), the ViT model is typically paired with an MLP
head (Taud & Mas, 2018) to assist with the pretext task.
The ViT learns semantic features from the image, while
the MLP head handles the pretext classification task, en-
hancing the ViT’s learning capabilities, as shown in earlier
work. However, traditional contrastive learning methods
rely on handcrafted data augmentations to generate and pro-
cess multiple image views at the instance level. In contrast,
OCL explores an alternative approach: using masked im-
ages to create diverse views with fine-grained conceptual
differences at the token level. As a result, OCL does not
require an MLP head for instance-level classification tasks.

The ablation experiments on the MLP head involve test-
ing different configurations, including a 2-layer MLP, a
3-layer MLP, and no MLP head (see Table 4). The de-
sign of the MLPs follows MoCo v3 (Chen et al.), where
the hidden layers of both the 2-layer and 3-layer MLPs are
1024-dimensional and employ the GELU activation function
(Hendrycks & Gimpel, 2023). The output layers of both
MLPs are 512-dimensional and do not use GELU. Addition-
ally, all layers in the MLPs incorporate Batch Normalization
(BN) (Ioffe, 2015), consistent with the methodology in Sim-
CLR (Chen et al., 2020b). Due to GPU memory constraints,
the batch size was adjusted to 1,800 for validation. From
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the fine-tuning results presented in Table 4, OCL is capable
of operating effectively without an MLP head. Unlike tra-
ditional contrastive learning approaches, the absence of an
MLP head does not degrade the model’s performance. On
the other hand, the inclusion of additional auxiliary modules,
such as deeper MLP heads, increases both the cost and time
required for pre-training. However, the benefits of these
modules do not outweigh the performance gains achieved
by simply increasing the batch size.

T-SP Loss MLP Head LIN FT

✓ ✓ 77.0 85.5
× ✓ 72.4 85.1
✓ × 77.9 85.8
× × 61.3 82.6

Table 5. Ablation experiments on the relationship between
MLP head and T-SP loss. The results are based on the ImageNet-
1K with the ViT-L/16. All methods are evaluated by linear probing
(LIN) and fine-tuning (FT). The resolution of images is fixed to
224×224. Top-1 accuracy is used as the metric.

Besides, Table 5 provides the ablation experiments about
the relationship between the MLP head and T-SP loss. It
is demonstrated that T-SP loss is utilized to constrain the
similarity distributions between two views, enforcing more
elaborate feature extraction and representations through ex-
plicit probabilistic margin compression. In contrast, the
MLP head operates through implicit feature projection into
a lower-dimensional space. While their mechanisms differ,
both components contribute to efficient representations in
pre-trained models.

3.2.4. CONCENTRATION OF SIMILARITY METRIC κ

kappa 4 16 32 64 128
FT 84.8 85.1 85.6 85.8 85.5

Table 6. Ablation experiments on concentrate parameter of
kappa. The results are based on the ImageNet-1K with the ViT-
L/16. Fine-tuning (FT) results are provided. The resolution of
images is fixed to 224×224. Top-1 accuracy is used as the metric.

Following the approach of T-SP (Yang et al.), we conduct
ablation experiments to evaluate how different concentra-
tions of the T-distributed adapter affect the pre-training
model’s performance. The results are shown in Table 6.
This study involves five specific degrees of concentration,
namely κ = 4, 16, 32, 64, and 128. From the Table 6, we
can infer that as kappa increases, the pre-training perfor-
mance of the model improves progressively until reaching
κ = 64 with the fine-tuning result of 85.8 under ViT-L/16.
We explain that as kappa increases, the model must extract
more precise semantic concepts from positive samples, cre-
ating a more challenging pretext task for pre-training. How-

ever, if kappa becomes too large, the model converges too
slowly, which negatively impacts the overall effectiveness
of the pre-training process.

3.3. Comparisons with previous results

Aug. Ep. FLOPs Param. LIN FT

Masked Image Modeling

BEiT † w/o 800 17.6 87 - 83.2
MAE † w/o 1,600 17.5 86 68.0 83.6
CAE † w/o 1,600 17.5 86 70.4 83.9
I-JEPA w/o 600 17.5 86 72.9 -

Contrastive Learning

DINO w/ 1,600 74.7 171 78.2 82.8
MoCo v3 w/ 600 74.7 171 76.7 83.2

Masked Image Modeling with Contrastive Learning

SiameseIM w/ 1,600 16.3 88 78.0 84.1
ccMIM w/o 800 39.1 86 68.9 84.2
ConMIM w/ 800 17.5 86 - 85.3
MixMAE † w/o 600 15.6 88 61.2 84.6
iBOT † w/ 1,600 17.5 86 79.5 -

OCL w/o 800 12.0 86 74.2 83.4

Table 7. Comparison with previous methods on ImageNet-1K
classification with ViT-B model. All methods are evaluated by
Aug., Epoch (Ep.), FLOPs/G, Parameters (Param.)/M, linear prob-
ing (LIN) and fine-tuning (FT). The resolution of images is fixed
to 224×224. Aug. indicates the utilization of handcrafted view
data augmentation during pre-training. FLOPs/G is utilized to
show the runtime and computational resources of the pre-training.
Param./M is calculated for the encoders of the pre-training model,
following the MixMAE. † denotes the results are copied from the
MixMAE. Top-1 accuracy (Acc) is used as the metric.

To demonstrate OCL’s ability to learn high-level conceptual
representations without relying on handcrafted data augmen-
tations, we compare its performance on linear probing and
fine-tuning tasks under pre-training on ImageNet-1k. Im-
portantly, while masked images are used to reduce semantic
redundancy, OCL avoids reconstructing masked images. In-
stead, it uses contrastive loss to guide the network’s learning
process. As a result, OCL is categorized as a contrastive
learning method.

Table.7 exhibits the performance of our method under the
fine-tuning and linear probing for ImageNet-1k classifica-
tion. Of greater significance, our FLOPs of 12.0 G exceed
those of the second-best method MixMAE (Liu et al., 2023a)
with 15.6 G, improving efficiency by about 23%. Concern-
ing DINO (Caron et al., 2021) and MoCo v3 (Chen et al.),
they leverage student-teacher dual networks to pre-train,
leading to higher FLOPs and Parameters of the pre-training
encoder. Our OCL method has demonstrated outstanding
performance in contrastive learning, notably obviating the
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need for intricate augmentations across multiple views. It
validates the practicality and efficacy of masked images
for generating diverse views encapsulating distinct fine-
grained semantic concepts, which diminishes conceptual re-
dundancy and expedites the conceptual pre-training process.
Beyond that, it also stands out the significant competency
of contrastive learning in extracting high-level semantic
concepts.

Methods Epochs COCO ADE20k
APb APm mIoU

ViT-B/16

Supervised (Tao et al., 2023) 300 47.9 42.9 47.4
DINO (Caron et al., 2021) 800 50.1 43.4 46.8
iBOT (Zhou et al., 2022) 1600 51.2 44.2 50.0
DenseCL (Wang et al., 2021) 400 46.6 41.6 44.5
MoCo-v3 (Chen et al., 2021b) 600 47.9 42.7 47.3
BEiT (Bao et al., 2021) 800 49.8 44.4 47.1
MAE (He et al., 2022) 400 50.6 45.1 45.0
MAE (He et al., 2022) 1600 51.6 45.9 48.1
GreenMIM (Huang et al., 2022) 800 50.0 44.1 -
EsViT (Li et al., 2021a) 300 - - 47.3
MixMAE (Liu et al., 2023a) 300 52.3 46.4 49.9
MixMAE (Liu et al., 2023a) 600 52.7 47.0 51.1
SiameseIM (Tao et al., 2023) 400 50.7 44.9 49.6
SiameseIM (Tao et al., 2023) 1600 52.1 46.2 51.1
SimMIM (Xie et al., 2022) 300 51.1 45.4 48.9

OCL 800 51.5 45.5 46.1

ViT-L/16

MoCo-v3 (Chen et al., 2021b)
BEiT (Bao et al., 2021) 800 53.3 47.1 53.3
MAE (He et al., 2022) 1600‘ 53.3 47.2 53.6
SimMIM (Xie et al., 2022) 800 53.8 - 53.6
MixMAE (Liu et al., 2023a) 600 54.3 48.2 53.8

OCL 800 53.2 47.0 53.2

Table 8. Comparison with previous methods on various down-
stream tasks, including object detection and segmentation on
COCO and ADK20K. We report APbox (APb) and APmask (APm)
on COCO, and mIoU on ADE20K. Arch. represents the model
architecture, where ViT-B/16 and ViT-L/16 are utilized to validate
the performance of various methods.

Compared to MIM methods, due to the absence of pixel-
level image reconstruction in OCL, the training process is
finished in 800 epochs, in contrast to the 1600 epochs re-
quired for MAE (He et al., 2022), CAE (Chen et al., 2024).
It corroborates the contribution of our methodology from
the perspective of efficiency and high-level semantic con-
cept extraction. Moreover, our OCL method is superior
to BEiT (Bao et al., 2021) regarding the fine-tuning and
linear probing results, also confirming the competency and

robustness of our method.

Concerning the fusion of MIM and CL, significant endeav-
ours (Tao et al., 2023; Yi et al., 2023; Zhou et al., 2022)
are made to enhance pre-training performance on down-
stream tasks. However, they result in inefficiencies due to
increased training iterations, augmented data, auxiliary mod-
ules, and diverse loss combinations. For instance, Siame-
seIM (Tao et al., 2023), ConMIM (Yi et al., 2023) and iBOT
(Zhou et al., 2022) leverage both hand-crafted data augmen-
tation and more training epochs. Despite our model also
integrating masking strategy with contrastive learning, it
does not rely on hand-crafted view data augmentations and
additional auxiliary modules, reconciling the divergence
between efficient visual representation and effective concep-
tual pre-training. Besides, our model OCL also achieves
competitive results on downstream tasks of linear probing
and fine-tuning, and more importantly, shows promising
scaling behavior.

Beyond that, we conducted supervised fine-tuning on the
COCO dataset for object detection and instance segmenta-
tion using the Mask RCNN (He et al.) framework, with our
pre-trained encoder serving as the backbone. We follow the
setup of MixMAE (Liu et al., 2023a), with the window size
to 16 × 16 to align with the 1024 × 1024 input image reso-
lution. In terms of semantic segmentation on the ADE20k
dataset, We use the UperNet (Xiao et al.) framework with
our pre-trained encoder as its backbone, with the changed
window size as mentioned above. The results are shown in
Table 8, that our model achieves competitive results com-
pared to other models with efficient pre-training progress.
Compared to the contrastive learning method of MoCo-v3,
our method obtains 3.6% improvement of APbox under ViT-
B/16, especially without view data augmentations. Besides,
the consistent performance gains on ADE20K semantic
segmentation, achieving +7.1 mIoU improvements from
ViT-B to ViT-L, empirically validate our method’s scala-
bility across model capacities while maintaining parameter
efficiency

Moreover, we conduct experiments in the domain general-
ization setting following the SiameseIM (Tao et al., 2023), as
shown in Table 9. Experiments are conducted on ImageNet-
A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a) and ImageNet-Sketch (Wang et al., 2019), with Ima-
geNet (Russakovsky et al., 2015) as the source dataset. Our
method achieves results with a competitive edge, demon-
strating the advantages of our model in generalization and ro-
bustness. Notably, our framework achieves competitive per-
formance with significantly fewer training epochs than con-
ventional contrastive approaches, demonstrating remarkable
training efficiency while maintaining stable convergence—a
critical advantage for scaling to large-scale datasets and
complex architectures.
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Methods Epochs IN-A IN-R IN-S

MSN (Assran et al., 2022b) 1200 37.5 50.0 36.3
iBOT (Zhou et al., 2022) 1600 42.4 50.9 36.9
DenseCL (Wang et al., 2021) 400 30.8 43.8 29.9
MoCo-v3 (Chen et al., 2021b) 600 32.4 49.8 35.9
MAE (He et al., 2022) 1600 35.9 48.3 34.5
SiameseIM (Tao et al., 2023) 1600 43.8 52.5 38.3

OCL 800 42.2 52.3 37.6

Table 9. Comparsion with previous methods on generalization
capability and robustness on ImageNet-A (IN-A), ImageNet-
R (IN-R) and ImageNet-Sketch (IN-S) datasets. ViT-B/16 is
utilized as the backbone to validate the performance of various
methods. Top-1 accuracy is used as the metric.

4. Conclusions and Outlooks
In this paper, we introduce OCL, a novel, simple, and effec-
tive pre-training paradigm for visual conceptual representa-
tion. Our approach uses a masking strategy to generate di-
verse views with fine-grained semantic differences, enabling
contrastive learning to classify and learn agreements within
a mini-batch. This design eliminates the need for I) ad-
dressing semantic conceptual redundancy within images, II)
reconstructing images, III) hand-crafted data augmentations,
and IV) additional auxiliary modules, thereby improving
efficiency and scalability. Experiments showcase the effi-
ciency and scalability of our method, yielding competitive
results compared to previous approaches. Additionally, ab-
lation experiments provide insights that could inspire future
pre-training paradigms.

We hope that our work will inspire future advancements in
contrastive pre-training paradigms, specifically efficient vi-
sual representation. Our further work will focus on enhanc-
ing computational efficiency for billion-parameter models
without sacrificing representation quality.
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A. Related Works
The remarkable success of large-scale models across diverse domains has catalyzed a paradigm shift in machine learning
(Yang et al., 2025b;a), with pretraining emerging as a cornerstone methodology. However, visual representation learning
remains constrained by prohibitive computational requirements compared to its NLP counterparts, leading to more research
concerning the efficiency of the visual pre-training. In this section, we will review the three main vision pre-training methods,
namely masked image modeling, contrastive learning and their combination. Besides, the difference between ours and theirs
is also provided.

A.1. Masked Image Modeling

Inspired by masked language modeling in NLP, the core of masked image modeling is to predict the masked part of the input
image. Among them, BEiT (Bao et al., 2021) tokenizes image patches through the reconstruction of the individual image
using dVAE, and then predicts the tokens of the masked patches to learn visual representation. Similarly, MAE (He et al.,
2022) utilizes a high masked ratio (75%) to corrupt the image and directly reconstruct the pixel-level masked image patches.
Subsequently, numerous studies have referenced this paradigm for pre-training endeavours, including DropPos (Wang
et al., 2023), U-MAE (Zhang et al., 2022) and CAE (Chen et al., 2024). DropPos (Wang et al., 2023) incorporates position
reconstruction to bolster the spatial awareness of ViTs. U-MAE (Zhang et al., 2022) introduces a uniformity loss as a
regularization to the MAE loss to further encourage the feature consistency of the pre-training, and addresses the dimensional
feature collapse. CAE (Chen et al., 2024) decouples the learning processes for image representation and pretext tasks,
enabling the pre-trained model to prioritize image representation while disregarding the pretext task. Additionally, following
the successful implementation of MAE, its applicability has been extended to diverse disciplines, such as SiamMAE (Gupta
et al., 2023) and MR-MAE (Gao et al., 2024). Similarly, I-JEPA (Assran et al., 2023) predicts the feature encoding of the
contextual region via MIM, and employs contrastive learning to align the features of neighbouring regions at the feature
level.

Besides, latentMIM (Wei et al., 2025) tackles key training challenges in Latent MIM, showcasing its ability to produce
spatially diverse, high-level semantic representations. Context Autoencoders (Chen et al., 2021a) employ an encoder-decoder
framework optimized with a combined reconstruction loss and alignment constraint, ensuring predictable representations of
missing patches. data2vec (Baevski et al., 2022) predicts representations of missing patches using an online target encoder,
eliminating the need for handcrafted augmentations and achieving strong performance across vision, text, and speech
modalities. Its successor, data2vec-v2 (Baevski et al., 2023), further explores efficient architectures for multimodal learning.

A.2. Contrastive Learning

Among these methods, SimCLR (Chen et al., 2020a) relies on complex pre-processing techniques to create distinct views of
an image, aiming to make the task challenging enough to learn effective visual representations during pre-training. However,
it requires large batch sizes to generate negative sample pairs, leading to long training times and high computational costs.
DINO (Caron et al., 2021) uses a student-teacher architecture to extract visual representations from different views. Similarly,
MoCo v3 (Chen et al.) employs momentum updates to optimize its auxiliary network. These methods highlight that the core
of contrastive learning lies in creating views with significant differences. However, this is challenging due to the inherent
semantic redundancy in images. Additionally, ConCL (Yang et al., 2022) generates distinct concepts by cropping images
and applies contrastive learning within a teacher-student framework, specifically for pre-training on pathological images.

DenseCL (Wang et al., 2021) introduces the concept of dense contrastive loss, which calculates the contrastive loss between
dense feature vectors generated by the dense projection head at the local feature level, contrasting with traditional contrastive
learning methods that operate at the global feature level. Moreover, MaskCo (Zhao et al.) utilizes the teacher-student
network for generating image features of query and keys. The key features of different images are used to query certain
images to generate positive and negative examples for contrastive learning. Furthermore, MSN (Assran et al., 2022b)
leverages data augmentation to create two views known as the anchor view and the target view. Subsequently, a random
mask is applied to the anchor view, aligning the representation of the masked anchor view with the clusters of the unmasked
target view. Besides, ResilientCL(Yang et al., 2025c) leverages causal inference to analyze bias sources in contrastive
pre-training’s momentum updates and proposes a causal interventional objective to address distribution shifts. Moreover,
building on vision-specific uncertainty principles, multi-stage framework (Liu et al., 2023b; 2024; 2025) employs learnable
concept lattices to stabilize pretraining under covariate shift.
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A.3. Combination between MIM and CL

There are also a lot of efforts to bridge the gap between mask image modeling and contrastive learning, where the integration
of teacher-student models emerges as the prevailing approach. iBOT (Zhou et al., 2022) employs the teacher-student
network to independently encode the two augmented views, with the student network processing masked images. The
objectives of MIM and CL are jointly trained for self-distillation. Likewise, MST (Li et al., 2021b) introduces a masked
token strategy leveraging multi-head self-attention maps, which selectively mask the tokens of the student network based on
the output self-attention map of the teacher network, ensuring vital foreground remains intact. Similarly, SiameseIM (Tao
et al., 2023) employs a Siamese network featuring two branches. The online branch encodes the initial view and predicts
the representation of the second view based on their relative positions. Meanwhile, the target branch generates the target
by encoding the second view. MSCN (Jing et al.) generates multiple augmented views from input images and applies
random masking. These masked views are encoded using a standard ConvNet, with representations optimized through
a joint-embedding loss. RECON (Qi et al., 2023) integrates generative and contrastive learning paradigms via ensemble
distillation, where a generative student model guides a contrastive student to unify both approaches. CMAE (Huang et al.,
2023) employs a dual-branch architecture: an online branch with an asymmetric encoder-decoder for reconstructing masked
images, and a momentum branch with a momentum encoder for contrastive learning on full images. This design enables
holistic feature learning and enhanced discrimination.

ccMIM (Zhang et al., 2023) leverages a contrastive loss to aid the reconstruction task as a regularizer, facilitating the
extraction of image-wide global information from both masked and unmasked patches. Likewise, ConMIM (Yi et al., 2023)
produces simple intra-image inter-patch contrastive constraints as the sole learning objectives for masked patch prediction,
and strengthens the denoising mechanism with asymmetric designs to improve the network pre-training. Additionally,
CoMAE (Yang et al., 2023a) also applies CL to assist cross-modal MIM tasks. Besides, LGP (Jiang et al., 2023) integrates
MIM and CL in a sequential cascade manner: early layers are first trained under one MIM loss, on top of which latter layers
continue to be trained under another CL loss.

A.4. Differences of OCL from Existing Methods

Masking has been adopted as an effective data augmentation technique to enhance training efficiency in several studies
(Li et al., 2023; Yang et al., 2023b; Mishra et al., 2022; Wu et al., 2022; Assran et al., 2022a). Previous studies have
demonstrated its effectiveness in improving model performance and training efficiency (Li et al., 2023; Yang et al., 2023b).
ExtreMA (Wu et al., 2022) employs random masking as a computationally efficient augmentation for Siamese representation
learning, accelerating learning and enhancing performance on large datasets. MSN (Assran et al., 2022a), the most relevant
work to ours, generates two image views: a masked anchor view and an unmasked target view, aiming to cluster their
representations. CAN (Mishra et al., 2022) integrates contrastive learning, masked auto-encoding, and diffusion denoising
into a unified framework. Our approach distinguishes itself from previous hybrid methods by achieving superior performance
with a better performance-efficiency trade-off. Specifically, our masking strategy generates semantically diverse views
and leverages contrastive learning to promote classification agreement within mini-batches. This approach eliminates: (I)
semantic redundancy, (II) image reconstruction, (III) hand-crafted augmentations, and (IV) additional auxiliary modules,
resulting in enhanced efficiency and scalability.

B. Experiments
In this section, we first introduce the utilized datasets for pre-training and various downstream tasks. Subsequently,
implementation details are provided. Finally, we present more results on downstream tasks, such as object detection,
segmentation and domain generalization.

B.1. Datasets

The ImageNet-1k dataset (Russakovsky et al., 2015) is a widely used image dataset consisting of 1.28M labeled images
across 1k categories, with 50K validation images and 100k test images. The dataset has been instrumental in advancing
computer vision research by providing a large-scale benchmark for image classification tasks. By leveraging the vast amount
of labeled images in ImageNet-1k, self-supervised models can learn rich representations of visual data in an unsupervised
manner, which can then be fine-tuned on downstream tasks with smaller labeled datasets. Besides, ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-Sketch (Wang et al., 2019) are leveraged for validation
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of the generalization capability and robustness of the vision model, with the training source of ImageNet.

MSCOCO (Lin et al., 2014) dataset is a large-scale dataset widely used for object detection and instance segmentation tasks
created by Microsoft Research Asia. The COCO Detection dataset contains more than 330K images, including more than
1.5M labeled object instances for 80 different categories. Each object instance is labeled with category, bounding box, and
segmentation mask information.

The ADE20K (Zhou et al.) semantic segmentation dataset comprises over 20K scene-centric images for 150 semantic
categories, meticulously annotated with pixel-level object and object parts labels.

B.2. Implementation Details

We employ ViT-Base and ViT-Large as our visual backbones, respectively. Among them, Vit-Base consists of 12 transformer
encoder layers and an FFN intermediate size of 3,072. The hidden dimensions of the ViT-Base are 768, with 12 attention
heads. The number of parameters is about 86 million. The input image size is set to 224 × 224. In terms of ViT-L/16,
ViT-L/16 consists of 24 transformer encoder layers and an FFN intermediate size of 4,096. The input image size is set to
224× 224, with a patch size of 16× 16. The hidden dimensions of the ViT-Large are 1,024, with 16 attention heads. And,
the number of parameters is about 307 million.

Table 10. The pre-training hyperparameters.

ViT-B/16 ViT-L/16

Training Epochs 800 800
Warmup Epochs 40 40
Optimizer AdamW AdamW
Base Learning Rate 1.5e-4 1.5e-4
Learning Rate Decay Cosine Cosine
Adam β (0.9, 0.95) (0.9, 0.95)
Weight Decay 0.05 0.05
Batch Size 9,600 2,400

Table 11. The fine-tuning hyperparameters.

ViT-B/16 ViT-L/16

Training Epochs 100 50
Warmup Epochs 5 5
Optimizer AdamW AdamW
Base Learning Rate 5e-4 1e-3
Learning Rate Decay Cosine Cosine
Adam β (0.9, 0.95) (0.9, 0.95)
Weight Decay 0.05 0.05
Batch Size 1,024 1,024

In terms of the pre-training progress, the hyperparameters are presented in Table 10. We utilize the AdamW optimizer, which
is configured with a cosine annealing schedule as the learning policy. The initial base learning rate is set to 1.5× 10−4, and
the AdamW optimizer is employed with hyperparameters β = (0.9, 0.95). Additionally, we set the weight decay to 0.05
without dropout. We use the strategy of cosine learning rate decay, with 40 warm-up epochs. Unless otherwise specified, the
pre-training of our vision language model consists of 800 epochs, executed on 2× 2 NVIDIA A100 GPUs.

Concerning the downstream tasks of fine-tuning and linear probing on ImageNet, the hyperparameters are shown in Table 11
and Table 12.

Table 12. The linear probing hyperparameters.

ViT-B/16 ViT-L/16

Training Epochs 90 50
Warmup Epochs 10 10
Optimizer LARS LARS
Base Learning Rate 0.1 0.1
Learning Rate Decay Cosine Cosine
Weight Decay 0.0 0.0
Batch Size 16,384 1,024
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