Do Large Language Models Show Biases in Causal
Learning? Insights from Contingency Judgment

Maria Victoria Carro' 2} Denise Alejandra Mester?, Francisca Gauna Selasco?,
Giovanni Franco Gabriel Marraffini®, Mario Alejandro Leiva?,
Gerardo I. Simari*/ Maria Vanina Martinez®f

IUniversita degli Studi di Genova, Italy
2FAIR, TALAB, Universidad de Buenos Aires UBA, Argentina
3Paris Brain Institute, France
4Dept. of Comp. Sci. and Eng., Universidad Nacional del Sur & ICIC UNS-CONICET, Argentina
5 Artificial Intelligence Research Institute (IINA-CSIC), Spain

Abstract

Causal learning is the cognitive process of developing the capability of making
causal inferences based on available information, often guided by normative princi-
ples. This process is prone to errors and biases, such as the illusion of causality, in
which people perceive a causal relationship between two variables despite lacking
supporting evidence. This cognitive bias has been proposed to underlie many
societal problems, including social prejudice, stereotype formation, misinforma-
tion, and superstitious thinking. In this work, we examine whether large language
models are prone to developing causal illusions when faced with a classic cog-
nitive science paradigm: the contingency judgment task. To investigate this, we
constructed a dataset of 1,000 null contingency scenarios (in which the available
information is not sufficient to establish a causal relationship between variables)
within medical contexts and prompted LLMs to evaluate the effectiveness of po-
tential causes. Our findings show that all evaluated models systematically inferred
unwarranted causal relationships, revealing a strong susceptibility to the illusion of
causality. While there is ongoing debate about whether LLMs genuinely “under-
stand” causality or merely reproduce causal language without true comprehension,
our findings support the latter hypothesis and raise concerns about the use of lan-
guage models in domains where accurate causal reasoning is essential for informed
decision-making.

1 Introduction

Illusions of causality occur when people develop the belief that there is a causal connection between
two variables with no supporting evidence [Matute et al.| 2015, Blanco et al.,|2018|, |(Chow et al.|
2024]. Examples of this are common in everyday life—for instance, many avoid walking under a
ladder, fearing it will bring bad luck. This cognitive bias is so strong that people infer them even
when they are fully aware that no plausible causal mechanism exists to justify the connection [Matute
et al.,[2015]. Such illusions have been proposed to underlie many societal problems, including social
prejudice, stereotype formation [Hamilton and Gitford, 1976, Kutzner et al., | 2011f], pseudoscience,
superstitious thinking [Matute et al.| [2015]], and misinformation [Xiong et alJ 2020]. In critical
domains such as health, the illusion of causality arises from simple intuitions based on coincidences:
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Outcome Present | Outcome Absent
Cause Present 40 60

Cause Absent 40 60

Table 1: A null-contingency case in which 40% of the patients who took a pill recovered from a
disease, but 40% of patients who did not take the pill recovered just as well.

“I take the pill. I happen to feel better. Therefore, it works.” [Matute et al., [2015]]. Some people go
even further and prefer alternative medicine over scientifically validated treatments, which in some
cases has resulted in severe outcomes, including death [Freckelton) 2012]. Once established, such
beliefs are resistant to correction, even in the face of scientific evidence [Matute et al.,[2015]].

Recently, the growing reliance on large language models (LLMs) has introduced concerns about
their potential to reflect and amplify human cognitive biases [Cheung et al., 2025, [Hu et al.} 2025,
Opedal et al., 2024, |(Chow et al.,[2019], including illusions of causality. Automated large-scale text
generation may inadvertently serve as a powerful mechanism for reinforcing causal illusions, further
exacerbating related societal issues. In this paper, we investigate the extent to which state-of-the-art
LLMs exhibit the illusion of causality when faced with a classic cognitive science paradigm: the
contingency judgment task. To this end, we construct a series of null contingency scenarios, that lack
sufficient information to establish causal relationships between variables, within the critical context of
healthcare. Finally, we prompted three LLMs, GPT-40-Mini, Claude-3.5-Sonnet, and Gemini-1.5-Pro,
to answer a question about the effectiveness of the potential cause based on the provided scenarios.
Our results indicate that all three models systematically infer causality inappropriately, demonstrating
a high susceptibility to the illusion of causality. Code, data, and analysis scripts are publicly available
for reproducibility at a GitHub Repository ﬂ

2 Preliminaries: The Contingency Judgment Task

Contingency is a crucial cue to causal learning. Studies have shown that people are very sensitive to
changes in manipulated contingencies [Msetfi et al.,[2013]]. Experimental psychology research that
explored whether humans develop an illusion of causality have consistently employed variations of
the same procedure: the contingency judgment task [Matute et al.| 2015| |Garcia-Arch et al., 2025,
Vogel et al.| 2022]. This consists of two events, a potential cause and an outcome, that are repeatedly
paired across multiple trials. Participants are typically exposed to 20 to 100 trials, where the presence
or absence of the cause is followed by the presence or absence of the outcome. For example: Patient 1
didn’t take the pill (potential cause absent) and recovered from a disease (potential outcome present).

These trials reveal a null-contingency scenario, where the probability of the outcome remains
the same regardless of whether the cause is present or absent. An example of this contingency
matrix is shown in Table [l} In contrast, a positive contingency indicates that the probability of
the outcome occurring is higher when the cause is present than when it is absent. Conversely, a
negative contingency suggests that the probability of the outcome is greater in the absence of the
cause, implying that the cause inhibits or prevents the outcome [Matute et al., 2015[]. In both of these
latter cases, a causal relationship exists.

At the end of the experiment, participants are asked to judge the relationship between the potential
cause and the potential outcome, typically on a scale from 0 (non-effective) to 100 (totally effective).
In a null-contingency situation, there is insufficient evidence to support the existence of a causal link
between the variables, making this the appropriate response of participants to demonstrate they are
free of the causal illusion. Therefore, any score above 0 suggests the presence of some degree of the
bias [Vinas et al., [2023].

3 Experiments

3.1 Dataset Construction

We first manually generated a total of 100 variables pairs, organized into four categories: 1) Fabri-
cated names of diseases and treatments, such as “Glimber medicine” and “Drizzlemorn disorder”;
2) Indeterminate variables, including “Disease X’ and “Medicine Y”’; 3) Variables from alternative
medicine and pseudo-medicine, such as “Acupuncture Process” and “Labor Pain and Contractions”;
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and 4) Established and scientifically validated drugs used to treat diseases, including “Paracetamol”
and “Fever.” We then created 1,000 null-contingency scenarios, each formatted as a list of trials in
natural language. These scenarios were synthetically generated using an algorithm, and subsequently
assigned to a specific pair of medical variables. For further see Appendix D]

3.2 Task

In typical human experiments, information for each trial is presented sequentially on a screen. To
evaluate LLMs, we adapted the task by presenting scenarios in a natural-language list format. The
number of trials per scenario varied between 20 and 100, with each case revealing a null contingency
situation. In line with human task variants, LLMs were asked to assess the effectiveness of the
potential cause in producing the outcome, responding on a scale from 1 to 100, where O indicates
non-effective, 50 signifies quite effective, and 100 represents totally effective.

The instructions for this experiment were designed to closely resemble those given to human
participants in experimental psychology. Specifically, we drew inspiration from the work of Moreno-
Fernandez et al.|[2021]]. In this context, the LLM was positioned as a doctor in a hospital specializing
in the treatment of a rare disease, where the efficacy of a drug under experimental phases had not yet
been validated. In cases involving alternative medicine variables, the LLM was framed as a medical
researcher at a university. Prompts for all four variable types are provided in Appendix [E]

Implementation Details. We conducted three experiments: (1) in the first, we evaluated the
1,000 scenarios with ten (n=10) repetitions per scenario at a temperature of 1 to assess the models’
consistency; (2) in the second, we set the temperature to 0, rendering the models more deterministic
(n=1); and (3) finally, we ran each scenario once at the models’ default temperature (n=1).

4 Results

We now analyze the results ob-

tained from the ten repetitions Results at Temperature 1

at temperature 1 (details in Ap- 100 ° —_—
pendix [A). The results for temper-
ature 0 and for the models’ default
temperature are presented in Ap-
pendices [B]and[C] resp. Across all
three settings we observed consis-
tent trends and similar outcomes.
GPT-40-Mini displayed the highest
degree of causal illusion, character-
ized by a distribution that is cen-
tered around a mean of 75,74 with
some outlier values falling below
50 as shown in Figurem In contrast,
Claude-3.5-Sonnet exhibited a nar- 0
rower interquartile range compared

to the other two models; however,

its standard deviation of 19.67 indi- (% Mean 7574 Mean: 4053 % Mean: 33.07)
cates significant overall data disper-
sion, influenced by outlier values. Figure 1: Distribution of outputs across models in null-
Finally, Gemini-1.5-Pro showed the Contingency scenarios.

lowest degree of causal illusion.

Our contributions are threefold. First, we show that models encode a criterion of causality in
null-contingency situations, leading them to infer causal links even in the absence of sufficient
supporting evidence. One-sample, one-sided Wilcoxon tests provide enough statistical evidence
to reject the null hypothesis that any model produces a distribution centered at 0, i.e., consistently
reporting no causality. (For GPT-40-Mini: median = 75.7, 95% CI [75.0, 76.5], p < 0.001, 0% zeros;
Claude-3.5-Sonnet: median = 50.0, 95% CI [50.0, 50.0], p < 0.001, 4.6% zeros; Gemini-1.5-Pro:
median = 45.0, 95% CI [41.5, 50.0], p < 0.001, 20.5% zeros).

Second, we find that models do not rely on a common encoded criterion when assessing causality
in null-contingency scenarios. A Friedman test provides strong statistical evidence to reject the
hypothesis that all models generate responses with the same central tendency (x2(df = 2) = 1516.99,
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Figure 2: Models’ responses across the four variable categories.

p < 0.001, Kendall’s W = 0.75). Moreover, there is no agreement between any pair of models;
instead, each exhibits a distinct criterion. Pairwise Wilcoxon signed-rank tests further support this
conclusion by rejecting the hypothesis that the differences in responses between any two models are
centered at 0. In practice, this means that one model consistently assigns higher values than another,
indicating that their underlying criteria are misaligned.

Finally, we demonstrate that the probability of each model responding with 0 (correctly rejecting
causality) differs across models. A Cochran’s Q test provides strong evidence to reject the hypothesis
that Gemini shares the same probability of producing 0 responses as other models (Q(df =2) =297.94,
p < 0.001). Gemini is more likely to output O in certain scenarios, while others show no consistent
evidence of doing so. However, this result should be interpreted in light of the high variance observed
in Gemini’s responses with an SD of 23.72. The greater likelihood of Gemini producing 0 may be an
artifact of this variability, reflecting uncertainty about how to respond rather than a stable criterion for
rejecting causality. Figure 2] shows no evidence of reduced causal attributions for indeterminate or
invented variables. Notably, there is a slight tendency to assign higher values to such cases.

5 Related Work

Several studies have evaluated causal reasoning in LLMs (e.g., [Gao et al., 2023| [Liu et al., 2023}
Miliani et al.| 2025]]. Regarding illusions of causality, |Carro et al.|[2024] investigated correlation-
to-causation exaggeration in the context of journalistic headlines. There are also relevant papers
examining invalid causal reasoning patterns in these models. [Jin et al.| [2024]] found that LLMs
perform close to random when inferring causation from correlation. Jin et al.|[2022]] reported that
LLMs have limited performance in tasks for logical fallacy detection, including a specific type “false
causality”, which interprets co-occurrence as causation. Joshi et al.|[2024]] found that LLMs infer
causal relations from temporal and spatial data in text but fail with counterfactual cues. Finally,
Keshmirian et al.|[2024] identified biased causal judgments in LLMs, mirroring patterns previously
observed in human subjects across chain and common cause structures. Our work is the first to adapt
the classic contingency judgment task from experimental psychology to LLMs.

6 Limitations and Future Work

Some limitations should be acknowledged. First, we did not conduct human experiments that could
serve as a baseline to contextualize our results. While contingency judgment tasks are used with
human participants and performance data exist, certain methodological differences prevent us from
considering these as fair baselines for direct comparison.

Second, an important principle in the literature for evaluating LLMs is external validity [Liao
et al.,[2021} Biderman et al., 2024} Burden| [2024]]. Although the design of the contingency judgment
tasks in our experiments followed best practices from experimental psychology, the methodology
is not fully representative of real-world usage. Therefore, caution is needed when interpreting the
implications of our results. Similarly, there are also concerns regarding internal validity: while 0—100
rating scales are commonly used to capture human judgments, the evaluated LLMs may exhibit a
bias against extreme-valued responses, thereby favoring a positive contingency. Future work could



consider to explore alternative ways of structuring the task, such as using binary or multi-class
formats, that are more typical in Al evaluation settings.

Finally, future work could benefit from incorporating prompting techniques such as chain-of-
thought (CoT) to guide the model toward expected reasoning patterns. Another promising direction
would be to expose LLMs to a broader range of contingency scenarios, including positive and
negative contingencies, in addition to null ones, to assess whether their causal judgments and
response tendencies vary across different contexts. Additionally, it would be valuable to investigate
the effect of trial order on LLM responses; for instance, presenting trials in which the patient takes
the pill and recovers early in the sequence might lead to higher causal ratings compared to presenting
these trials later.

7 Discussion and Conclusion

This research evaluates the illusion of causality in LLMs using a contingency judgment task within
health-related scenarios. These biases have important real-world implications, particularly in domains
where precise causal inference is essential for informed decision-making.

A central question of this research is whether contingency is reflected in natural language. Since
LLM:s are trained almost exclusively on human textual data, we expect LLMs to pick up on biases
that are reflected in language use but not those only learned through experience [Keshmirian et al.|
2024]]. This distinction is particularly relevant for illusions of causality, which are typically formed
through direct experience rather than language alone.

Although humans do not reach perfect performance on this task, we anticipated that LLMs would
achieve a high accuracy rate in the contingency judgment, correctly identifying that in scenarios of
null contingency, the potential cause is unrelated to the potential outcome. This expectation stemmed
from the adapted version of the task, which presents trial information in an accessible list format,
capitalizing on LLMs’ ability to process large volumes of data. Carrying out exact computational
operations internally, LLMs can, in theory, perform perfect normative reasoning [[Keshmirian et al.|
2024]).

However, the results were markedly different. The wide variability in responses across models
indicates that they have not uniformly, consistently, or reliably internalized contingency as a normative
principle that should guide causal inference, nor can they generalize these principles across varied
contexts. While there is an ongoing debate regarding whether LLMs genuinely “understand” causality
or merely replicate causal language without true comprehension [Kiciman et al.| [2023]], our findings
support the latter hypothesis.
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A Appendix: Additional Experimental Results

GPT-40-Mini | Claude-3.5-Sonnet | Gemini-1.5-Pro
Mean 75.74 40.54 33.07
Median 75 50 50
Standard Deviation 11.41 19.67 23.72

Table 2: Summary statistics (mean, median, and standard deviation) over 10 runs with temperature

setto 1.

B Zero-Temperature Results

GPT-40-Mini | Claude-3.5-Sonnet | Gemini-1.5-Pro
Mean 75.74 40.54 33.07
Median 75 50 50
Standard Deviation 11.41 19.67 23.72

Table 3: Summary statistics (mean, median, and standard deviation) from a single run wit
ture set to 0.

100

80

60

40

Probability of Outcome

20

GPT-40-Mini

Results at Temperature 0

Claude-3.5-Sonnet

(e} ale o]

© 0 O omo

Gemini-1.5-Pro

[ % Mean 7627

Mean: 40.48

% Mean: 33,40]

h tempera-

Figure 3: Results generated under deterministic conditions (temperature = 0), with one sample per
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C Results at Default Temperature Setting

GPT-40-Mini | Claude-3.5-Sonnet | Gemini-1.5-Pro
Mean 75.21 43.46 33.75
Median 75 50 50
Standard Deviation 12.52 16.83 23.93

Table 4: Summary statistics (mean, median, and standard deviation) from a single run with default
temperature.
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D Null-contingency scenarios

r N
1. Patient. Took medicine: True. Recovered from illness: True
2. Patient. Took medicine: True. Recovered from illness: True
3. Patient. Took medicine: True. Recovered from illness: True
4. Patient. Took medicine: True. Recovered from illness: True
5. Patient. Took medicine: True. Recovered from illness: True
6. Patient. Took medicine: True. Recovered from illness: True
7. Patient. Took medicine: True. Recovered from illness: True
8. Patient. Took medicine: True. Recovered from illness: True
9. Patient. Took medicine: True. Recovered from illness: True

10. Patient. Took medicine: True. Recovered from illness: True

11. Patient. Took medicine: True. Recovered from illness: True

12. Patient. Took medicine: True. Recovered from illness: True

13. Patient. Took medicine: True. Recovered from illness: True

14. Patient. Took medicine: False. Recovered from illness: False
15. Patient. Took medicine: False. Recovered from illness: False
16. Patient. Took medicine: False. Recovered from illness: False
17. Patient. Took medicine: False. Recovered from illness: True
18. Patient. Took medicine: False. Recovered from illness: True
19. Patient. Took medicine: False. Recovered from illness: True
20. Patient. Took medicine: True. Recovered from illness: False
21. Patient. Took medicine: True. Recovered from illness: False
22. Patient. Took medicine: True. Recovered from illness: False
23. Patient. Took medicine: True. Recovered from illness: False
24. Patient. Took medicine: True. Recovered from illness: False
25. Patient. Took medicine: True. Recovered from illness: False
26. Patient. Took medicine: True. Recovered from illness: False
27. Patient. Took medicine: True. Recovered from illness: False
28. Patient. Took medicine: True. Recovered from illness: False
29. Patient. Took medicine: True. Recovered from illness: False
30. Patient. Took medicine: True. Recovered from illness: False
31. Patient. Took medicine: True. Recovered from illness: False
32. Patient. Took medicine: True. Recovered from illness: False

(& J

We generated 1,000 null-contingency scenarios, with 10 scenarios assigned to each of the 100
variable pairs. Each scenario contained between 20 and 100 trials. An example scenario with 32 trials
is provided above. To ensure null contingency, trials with binary observations (present/absent) of
both the potential cause and the outcome were organized using a controlled 80/20 distribution.

Trials within each scenario were divided into two halves. Within each half, 80% of the trials
were assigned to combinations in which one variable remained constant while the other varied (e.g.,
potential cause present and potential outcome absent). The remaining 20% of trials were assigned to
configurations in which both variables either remained fixed or varied together (e.g., potential cause
present and potential outcome present). This allocation ensured that all possible combinations were
represented while maintaining the controlled distribution.

In the 32-trial example, each half consisted of 16 trials. In 80% of the trials within each half
(the first 13 trials), the outcome remained constant (e.g., always present), while the presence of the



Outcome Present | Outcome Absent
Cause Present | 80 (13 patients) 20 (3 patients)
Cause Absent 80 (13 patients) 20 (3 patients)
Table 5: Summary of the null-contingency scenario illustrated above: 80% of patients who took the
pill recovered from the disease, while 80% of patients who did not take the pill also recovered

potential cause varied. In the remaining 20% of trials (3 trials per half), both the potential cause and
the outcome varied together.

E Prompts Used in the Experiments

E.1 Invented Variables

Imagine you are a doctor at a hospital specializing in treating a rare
disorder called "Drizzlemorn". The crisis caused by this "Drizzlemorn"
disorder can potentially be resolved immediately with the medicine
"Glimber" that is currently in the experimental phase, meaning its
effectiveness has not yet been thoroughly validated. We will provide
you with a series of medical records for patients who have suffered from
this "Drizzlemorn" disorder detailing whether they received "Glimber"
medicine and whether they recovered.

Based on this information, to what extent the medicine "Glimber" is
effective to address the crisis of the "Drizzlemorn" disorder? Respond
exclusively on a scale from O to 100, where O indicates non-effective,
50 signifies quite effective, and 100 represents totally effective.
Please do not include any additional information or explanations -just
provide the requested number.

E.2 Indeterminate Variables

Imagine you are a doctor at a hospital specializing in treating

a rare illness, illness B. The crisis caused by this illness can
potentially be resolved immediately with treatment A, that is currently
in the experimental phase, meaning its effectiveness has not yet been
thoroughly validated. We will provide you with a series of medical
records for patients who have suffered from this illness, detailing
whether they received the treatment A and whether they recovered.

Based on this information, to what extent the treatment A is effective
to address the crisis of the illness B? Respond exclusively on a scale
from O to 100, where O indicates non-effective, 50 signifies quite
effective, and 100 represents totally effective. Please do not include
any additional information or explanations -just provide the requested
number.

10



E.3 Alternative Medicine Variables

P
Imagine you are a medical researcher at a university investigating

the effects of Acupuncture process. Acupuncture process may have the
potential to reduce back pain, but you need to verify its effectiveness
by consulting prior information. We will provide you with a series of
medical records for patients who have suffered from back pain, detailing
whether they received Acupuncture process and whether they improved.
Based on this information, to what extent Acupuncture process is
effective to address back pain? Respond exclusively on a scale from

0 to 100, where O indicates non-effective, 50 signifies quite effective,
and 100 represents totally effective. Please do not include any
additional information or explanations -just provide the requested

number.
\§

E.4 Conventional Medical Variables

p
Imagine you are a doctor at a hospital treating a fever. Paracetamol
may have the potential to resolve the fever immediately, but you need
to verify its effectiveness by consulting prior information. We will
provide you with a series of medical records for patients who have
suffered from fever, detailing whether they received paracetamol and
whether they recovered.

Based on this information, to what extent Paracetamol is effective

to address the fever? Respond exclusively on a scale from O to 100,
where O indicates non-effective, 50 signifies quite effective, and 100
represents totally effective. Please do not include any additional
information or explanations -just provide the requested number.
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