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Break the Visual Perception: Adversarial Attacks Targeting
Encoded Visual Tokens of Large Vision-Language Models

Anonymous Authors

ABSTRACT
Large vision-languagemodels (LVLMs) integrate visual information
into large language models, showcasing remarkable multi-modal
conversational capabilities. However, the visual modules introduces
new challenges in terms of robustness for LVLMs, as attackers can
craft adversarial images that are visually clean but may mislead the
model to generate incorrect answers. In general, LVLMs rely on
vision encoders to transform images into visual tokens, which are
crucial for the language models to perceive image contents effec-
tively. Therefore, we are curious about one question: Can LVLMs
still generate correct responses when the encoded visual tokens
are attacked and disrupting the visual information? To this end, we
propose a non-targeted attack method referred to as VT-Attack
(Visual Tokens Attack), which constructs adversarial examples from
multiple perspectives, with the goal of comprehensively disrupting
feature representations and inherent relationships as well as the
semantic properties of visual tokens output by image encoders.
Using only access to the image encoder in the proposed attack,
the generated adversarial examples exhibit transferability across
diverse LVLMs utilizing the same image encoder and generality
across different tasks. Extensive experiments validate the superior
attack performance of the VT-Attack over baseline methods, demon-
strating its effectiveness in attacking LVLMs with image encoders,
which in turn can provide guidance on the robustness of LVLMs,
particularly in terms of the stability of the visual feature space.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Secu-
rity and privacy → Social aspects of security and privacy.

KEYWORDS
Large Vision-Language Model, Adversarial Attack, Image Encoder,
Visual Tokens Attack

1 INTRODUCTION
Large vision-language models (LVLMs) have garnered considerable
attention owing to their remarkable visual perception and language
interaction capabilities [2, 38]. Compared to large language mod-
els (LLMs), LVLMs exhibit superiority in image understanding by
leveraging visual models, making them highly effective for diverse
multimodal tasks, such as image captioning [20, 21], visual question
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Large Vision-
Language Model

Describe this image briefly.
…
What is the color of the fruit?
How many pens are visible?

A man is talking with others.
…
The color is purple.
Three pens are in this image.

Learned
perturbation

Clean image

Large Vision-
Language Model

A plate of sliced kiwifruit.
…
The color is green.
I can not see any pens.

Clean image

Figure 1: An example of attacking LVLM. By introducing
subtle perturbations to a clean image, the model fails to pro-
duce the correct answers. Despite using different prompts,
the model is unable to generate correct outputs, indicating a
breakdown in the effectiveness of visual information.

answering [4] and multimodal dialogue [9, 23, 42]. However, re-
cent research [5, 28, 41] highlights their vulnerability to adversarial
attacks, posing potential security concerns in practical domains
such as biological/medical image understanding [19] and document
information extraction [22]. This underscores the importance of
investigating the robustness of LVLMs from an attacker’s perspec-
tive.

Adversarial attacks involve the deliberate manipulation of input
data to induce incorrect or specific predictions. In general, adver-
sarial attacks can be classified into targeted attacks, which aim
to mislead the model into generating specific outputs, and non-
targeted attacks, which lead to any incorrect or undesired outputs.
Early research of adversarial attacks on visual models was primarily
conducted to explore the security and robustness of image classifica-
tion models [15, 25]. Attacking LVLMs is more challenging because
of a much broader prediction space, where an image can correspond
to multiple textual expressions while belonging to a specific class.

Extensive investigations have been conducted to explore the ro-
bustness of LVLMs, including targeted attacks [5, 28, 31, 32, 41] and
non-targeted attacks [8, 31]. Specifically, the non-targeted attacks
on LVLMs aim to mislead models into generating any erroneous an-
swers, which raise security concerns as these attacks can potentially
lead to the breakdown of models in practical scenarios. Therefore,
it is vital to design effective non-targeted attacks to investigate the
robustness of multimodal systems.

Existing non-targeted attacks commonly employ end-to-end [31]
or CLIP-based [8] cross-modal optimization methods, aiming to
deviate images from their original textual semantics. Nevertheless,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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these approaches overlook the impact of manipulated visual tokens
on the model robustness.

LVLMs typically employ ViTs [11] as image encoders to convert
images into visual tokens, which encapsulate comprehensive image
features/information, working as a bridge for subsequent modules
(e.g. language modules) to perceive image contents. Essentially,
disrupting visual tokens can impair the model’s visual perception
and ability to generate proper responses. Therefore, we suggest
investigating the robustness of LVLMs by conducting adversarial
attacks targeting the encoded visual tokens, providing assistance
for relevant research in defense.

In this paper, we propose a multi-angle attack approach called
VT-Attack (Visual Tokens Attack) which is designed to target the
image encoder of LVLMs. As shown in Figure 2, our proposed ap-
proach consists of three sub-methods that systematically and com-
prehensively disrupt feature representations, inherent relationships,
and global semantics of visual tokens output by the image encoder.
This facilitates the exploration of the vulnerability of LVLMs to com-
promised visual information in the embedding space, simulating
the operations of extreme adversaries in real-world scenarios.

Notebly, our approach yields two benefits. Firstly, adversarial
images crafted against the shared image encoder of LVLMs exhibit
global effectiveness across different LVLMs [32]. Secondly, we find
that the adversarial perturbations obtained through the image en-
coders of LVLMs are insensitive to specific prompts or tasks, as the
generation process does not rely on the prompt/task information.

Methodologically, our method is applicable to LVLMs employing
ViTs [11] as image encoder. We conduct experiments on a vari-
ety of prominent baseline LVLMs including LLaVA [23], MiniGPT-
4 [42], LLaMA-Adapter-v2 [14], InstructBLIP [9], Otter [18], Open-
Flamingo [3], BLIP-2 [21] and mPLUG-Owl-2 [37], with image en-
coders such as OpenAI CLIP [29], EVA CLIP [13] and other further-
trained ViTs. An example of our attack is demonstrated in Figure 1.
Empirical results demonstrate the effectiveness of our VT-Attack,
consistently outperforming baseline approaches and individual sub-
methods. Furthermore, employing adversarial examples generated
against image encoders to attack downstream LVLMs can success-
fully mislead the models into generating incorrect answers, even
with different questions as prompts. We also conduct experimental
analyses on the properties and functions of each sub-method to
demonstrate their distinct roles in attacking from different perspec-
tives.

In summary, our contributions can be summarized as follows:

• We propose VT-Attack, a joint method that constructs adver-
sarial images by disrupting the visual tokens output by image
encoders of LVLMs from multiple perspectives, in order to
investigate the robustness of LVLMs against compromised
visual information.

• We conduct extensive experiments on various models to
demonstrate the effectiveness of the proposed method. The
results indicate that the adversarial images generated by our
method exhibit cross-prompt generality and enhanced attack
performance over baseline methods.

• We explore the distinctive properties and contributions of
each sub-method in our attack approach through experimen-
tal analysis, validating the effectiveness of the joint method.

2 RELATEDWORK
2.1 Large Vision-Language Models
Research in large vision-language models (LVLMs) has been ad-
vancing rapidly, driven by the efforts of researchers who design
novel model architectures and employ specific training strategies
to propel their development [3, 9, 14, 18, 20, 21, 23, 37, 42].

The architecture of a large vision-language model typically com-
prises three components: a pre-trained image encoder, an intermedi-
ate module facilitating the transformation of visual tokens into the
language space, and a large language model. Various approaches
have been employed in designing the intermediate modules. For
instance, LLaVA [23] utilizes linear layers to project visual features
into the language space, while the BLIP-2 [21] series (MiniGPT-
4 [42], InstructBLIP [9]) adopt Q-Former to extract themost relevant
visual features to the text prompts for the language models.

Different LVLMs may employ diverse intermediate modules for
visual feature extraction, while utilizing a common pre-trained
image encoder (e.g. OpenAI CLIP [29] or EVA CLIP [13]) for feature
encoding. These pre-trained image encoders have been trained with
contrastive learning on large-scale image-text datasets, allowing
them to capture universal visual features that are beneficial for
various downstream tasks.

2.2 Adversarial Attack
Adversarial attacks have been extensively explored to assess model
robustness. Early research primarily focused on image classification,
while in recent years, it has expanded into other domains [1, 33, 39,
40].

In general, adversarial attacks can be categorized into white-
box attacks and black-box attacks, where white-box attacks allow
attackers to have complete access to the model’s architecture and
parameters [12, 25]. In contrast, black-box attacks require attackers
to launch attacks without any knowledge of the model’s internal
details [7, 27], making them intuitively more challenging. Because
our proposed method only has access to image encoders, it can be
classified into gray-box attacks, which involve partial access to the
model’s architecture and parameters.

Considerable research efforts have been devoted to developing
novel algorithms for adversarial attacks [6, 15, 17, 25, 34], aim-
ing to enhance the efficiency and imperceptibility of the attacks.
These studies have contributed to the gradual improvement and
refinement of adversarial attack methods.

2.3 Adversarial Robustness of LVLMs
With the expanding applications of adversarial attacks, researchers
have initiated investigations into the adversarial robustness of
LVLMs.

LVLMs are capable of performing various multimodal tasks,
including image-text dialogue, detailed image description, and con-
tent explanation, presenting heightened challenges for adversarial
attacks. Recent works have investigated the robustness of LVLMs.
Among them, transferable adversarial examples are constructed
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a close-up of a white
kitten with blue eyes

…

Feature Attack

Clustering

Relation
Attack

Cluster
Centers

Image 
Encoder

Text Encoder

…

Image 
Encoder

Adversarial Image Clean Image

Semantics
Attack

: Forward

: Loss

LVLM-1

Image
Encoder

Semantics
Feature
Relation

Attack LVLM-2

…

LVLM-N

Forward

Optimization

Error

Forward

(a) (b)𝒙𝐚𝐝𝐯 𝒙

𝒗𝐚𝐝𝐯 𝒗

𝒙

𝒙𝐚𝐝𝐯

: Proj Layer

Figure 2: Unified framework for VT-Attack. (a) Both the clean image and learnable adversarial image are fed into the image
encoder, yielding the [CLS] token and encoded visual tokens. The objectives of the feature attack and relation attack are to
perturb visual tokens away from their original feature representations while deviating from the original cluster centers they
belong to. And the aim of the semantics attack is to increase the semantic discrepancy between an image and its caption texts.
(b) We first utilize the image encoder to update the adversarial perturbation, inducing the disruption of the encoded visual
features at multiple levels. Next, we feed the adversarial image into various LVLMs to execute the attack.

using proxy models in [41], and methods such as gradient esti-
mation are employed to attack LVLMs in black box settings. Ma-
licious triggers are injected into the visual feature space to com-
promise the model security in [32]. The work in [8] conducts a
comprehensive analysis on the robustness of LVLMs and devises
a context-augmented image classification scheme to improve ro-
bustness. Other approaches utilize end-to-end gradient-based opti-
mization methods to generate adversarial perturbations [5, 28, 31],
typically with the cross-entropy loss as the objective to induce
errors or achieve proximity between the output and a predefined
target text.

Different from these works, we focus on investigating the ro-
bustness of LVLMs against impaired visual information encoded in
visual tokens. We construct adversarial perturbations that disrupt
visual features output by the image encoder from different perspec-
tives, resulting in more comprehensive corruption of visual tokens
and enhanced attack performance.

3 METHODOLOGY
In this section, we start with the problem formulation and then
provide detailed explanations of our proposed method The frame-
work of our method (VT-Attack) is shown in Figure 2, where we
first construct adversarial examples against image encoders and
proceed to attack LVLMs.

3.1 Problem Formulation
Let 𝐹𝜃 (𝒙, 𝒒) ↦→ 𝒛 denote a large visual language model parameter-
ized by 𝜃 , where 𝒙 is the input image and 𝒒 is the prompt input to

the LVLM. Let 𝐼𝜙 denote the image encoder of the LVLM parameter-
ized by 𝜙 , which encodes images into visual tokens 𝒗. Additionally,
let𝑀𝜓 represent the intermediate module, parameterized by𝜓 , that
processes visual tokens output by 𝐼𝜙 and transforms them into
mapped visual tokens 𝒑:

𝒗 = 𝐼𝜙 (𝒙), 𝒑 = 𝑀𝜓 (𝐼𝜙 (𝒙))

Given the input prompt 𝒒 and the image 𝒙 , the answer 𝒛 gener-
ated by LVLM can be represented as

𝒛 = 𝐹𝜃 (𝑀𝜓 (𝐼𝜙 (𝒙)), 𝒒)

Let 𝒙adv = 𝒙 + 𝚫adv denote the adversarial image being con-
structed, exhibiting subtle differences 𝚫adv from the clean image 𝒙 .
Our focus is on non-targeted attacks, where the adversarial image
𝒙adv leads the LVLM to generate any incorrect or unreasonable
answers �̂� different from the original answer 𝒛 as follows.

𝒛 ≠ �̂� = 𝐹𝜃 (𝑀𝜓 (𝐼𝜙 (𝒙 + 𝚫adv)), 𝒒)

With only access to the parameters and gradients of the image
encoder 𝐼𝜙 , our method constructs adversarial images by setting op-
timization objectives based on the visual tokens 𝒗. During the gener-
ation process of 𝒙adv, it is common to apply an 𝐿𝑝 norm constraint
on the perturbation size, written as ∥𝒙 − 𝒙adv∥𝑝 = ∥Δadv∥𝑝 ≤ 𝜖 . It
should be noted that setting 𝜖 to a large value may compromise the
stealthiness of the generated adversarial images.
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Figure 3: The comparison of original images and clustering
results, where tokens/patches belonging to the same cluster
are displayed in the same color.

3.2 Visual Feature Representation Attack
Large vision-language models commonly employ CLIP [29] as their
image encoders which are typically based on the ViT architec-
ture [11]. An input image is split into fixed-length patches, with
each patch treated as a token and fed into the ViT.

Subsequently, the ViT encodes the image and generates a se-
ries of visual tokens 𝒗 arranged in an 𝐿 × 𝐷 matrix, which can be
regarded as the visual feature representation of the image. After
further integration of these visual tokens by the intermediate mod-
ule, the language model can naturally generate outputs leveraging
the visual information.

Hence, the features output by the image encoder provides crucial
visual information to the entire model. Intuitively, if the visual
features are disrupted and deviated from the original representation,
subsequent modules will be unable to accurately interpret the image
contents, leading to erroneous model outputs.

Motivated by this, we apply a visual feature representation attack
as illustrated in Figure 2 (a), aiming to maximize the loss between
the feature representation in visual tokens of the adversarial image
and the original representation:

max E[
∑︁
𝑖

L(𝐼𝜙 (𝒙adv)𝑖 , 𝐼𝜙 (𝒙)𝑖 )] (1)

s.t. ∥𝒙 − 𝒙adv∥𝑝 ≤ 𝜖

where L measures the difference or distance, which can be cal-
culated using KL divergence or MSE. We employ the PGD [25]
optimization algorithm to update the adversarial perturbations.

3.3 Visual Token Relation Attack
While the visual feature attack explicitly disrupts individual visual
tokens, it may not fully consider the interdependencies among these
tokens. Therefore, we introduce visual token relation attack.

The self-attention [36] layers in the ViT image encoder are re-
sponsible for capturing the relationships and dependencies among
image patches or tokens, corresponding to the relevance between
different regions in the image [11]. These layers enable the model
to weigh the importance of each token in relation to the others, al-
lowing for a comprehensive understanding of the image’s contexts.

Therefore, within the visual tokens generated by the image en-
coder, each token tends to carry information of other tokens that
have a higher degree of relationship with it. This enables the visual
tokens to exhibit clustering properties, where tokens with higher
correlation tend to be grouped together in the same cluster. As
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: Visual Tokens : Attacked Visual Tokens
: Cluster Center : Discrepancy (Loss)

Feature Attack Relation AttackBefore Attack

(a) (b)

Figure 4: An illustration of feature and relation attack. (a)
and (b) demonstrate potential results of attacks based on
feature and attacks based on relation, respectively.

shown in Figure 3, visual tokens belonging to the same region
or entity tend to cluster together. This clustering effect arises be-
cause tokens that are related or depict similar aspects of the image
receive stronger attention connections through the self-attention
mechanism.

Nevertheless, relying solely on the feature representation attack
may not be sufficient to disrupt the clustering relationship among
relevant visual tokens, as illustrated in Figure 4 (a). Although fea-
ture attack introduce deviations between visual tokens and their
initial distribution, they may still exhibit proximity to the clustering
centers.

To effectively disrupt the clustering relationships, we introduce
a novel visual token relation attack, as illustrated in Figure 2 (a)
and Figure 4 (b). Specifically, we initially apply the K-Means clus-
tering [24] to the visual tokens generated by the image encoder,
where the number of clusters 𝑘 is determined based on the silhou-
ette coefficient [30]. Each visual token 𝒗𝑖 is assigned a cluster label
denoted as 𝑌 𝑖 ∈ Y, and 𝑘 cluster centers are identified and denoted
as C:

Y = {𝑌 1, · · · , 𝑌𝐿}, C = {𝐶1, · · · ,𝐶𝑘 } ⇐ Kmeans(𝐼𝜙 (𝒙)) (2)

Next, we maximize the discrepancy between the visual tokens
of the adversarial image and their respective cluster centers of the
clean image:

max E[
∑︁
𝑖

L(𝐼𝜙 (𝒙adv)𝑖 ,𝐶𝑌
𝑖

)] (3)

s.t. ∥𝒙 − 𝒙adv∥𝑝 ≤ 𝜖

where L can be measured using KL divergence or MSE. By en-
larging the discrepancy between visual tokens and the original
cluster centers, adversarial images can disrupt the relationships
among similar visual tokens. The disruption results in reduced de-
pendencies among tokens within each cluster, causing visual tokens
to contain less local adjacent feature information. Consequently,
the subsequent modules of LVLMs struggle to effectively exploit
the shared information among relevant tokens to comprehend the
features of neighboring image patches.
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Algorithm 1 VT-Attack
Require:

Image encoder 𝐼𝜙 of LVLM parameterized by 𝜙 , input image
𝒙 , image caption 𝒕 , CLIP text encoder 𝑇𝜂 , perturbation size 𝜖 ,
updating rate 𝛼 , optimization steps 𝐾 .

Ensure:
Adversarial images 𝒙adv;

1: Initialize 𝒙adv = 𝒙 + Clip(ΔGaussianNoise,−𝜖, 𝜖);
2: Y = {𝑌 1, · · · , 𝑌𝐿}, C = {𝐶1, · · · ,𝐶𝑘 } ⇐ Kmeans(𝐼𝜙 (𝒙));
3: for 𝑖 = 1 to 𝐾 do
4: LFeature = E[

∑
𝑖 L(𝐼𝜙 (𝒙adv)𝑖 , 𝐼𝜙 (𝒙)𝑖 )]

5: LRelation = E[∑𝑖 L(𝐼𝜙 (𝒙adv)𝑖 ,𝐶𝑌
𝑖 )]

6: LSemantics = L(𝐼𝜙 (𝒙adv) [CLS] ,𝑇𝜂 (𝒕) [CLS] )
7: L = LFeature + LRelation + LSemantics
8: Gradient descent: 𝒙adv = 𝒙adv + 𝛼 · sign(∇𝒙adv (L))
9: Perturbation size constraint: 𝒙adv = Clip𝜖 (𝒙adv)
10: Grayscale constraint: 𝒙adv = Clip(𝒙adv, 0, 1)
11: end for
12: return 𝒙adv;

3.4 Global Semantics Attack
The feature and relation attacks introduced above directly com-
promise the visual token sequence of length 𝐿 generated by the
image encoder, resulting in disruptions at both the representation
and relationship levels. While the combination of these two attacks
can effectively disrupt the information of visual tokens, we are still
interested in attacks that change the semantics of images.

The information carried by the [CLS] token contains the most
direct content of an image, unlike the visual tokens that encode
specific visual features. We hypothesize that the disruptions of
both local image details (feature and relation attacks) and global se-
mantics are mutually reinforcing, contributing to a comprehensive
destruction of visual tokens.

Therefore, we incorporate the semantics attack as illustrated in
Figure 2, which reduces the semantic similarity between the visual
and text semantic information of the [CLS] token encoded by the
CLIP image/text encoder:

max L(𝐼𝜙 (𝒙adv) [CLS] ,𝑇𝜂 (𝒕) [CLS] ) (4)
s.t. ∥𝒙 − 𝒙adv∥𝑝 ≤ 𝜖

where𝑇𝜂 represents the CLIP text encoder corresponding to 𝐼𝜙 and 𝒕
refers to the caption of an image. We utilize cosine similarity to pre-
serve settings similar to contrastive learning [29]. We employ a vari-
ant of cosine similarity as the loss function L(· , ·) = 1

1 + cos_sim( · ,· )
to align with the loss space of the previous two methods.

3.5 Visual Tokens Attack (VT-Attack)
By integrating the aforementioned three sub-attack methods, we
introduce a unified attack approach named VT-Attack , as illus-
trated in Figure 2 (a). The proposed VT-Attack can comprehen-
sively disrupt the embedded visual features, disturb the inherent
relationships and weaken the semantic properties of visual tokens,
by solving the following optimization problem:

max LFeature + LRelation + LSemantics (5)
s.t. ∥𝒙 − 𝒙adv∥𝑝 ≤ 𝜖

The generation process of the adversarial image is illustrated in
Algorithm 1. After obtaining the adversarial image 𝒙adv through 𝐼𝜙 ,
we input it to various LVLMs that utilize 𝐼𝜙 as the image encoder,
as depicted in Figure 2 (b). Due to the models’ inability to perceive
meaningful visual information, they tend to generate incorrect
answers regardless of the types of questions concerning the image
content.

4 EXPERIMENTS
In this section, we present the experimental results of VT-Attack to
demonstrate the effectiveness of the proposed method. Addition-
ally, we provide experimental analysis of our approach for further
exploration.

4.1 Experimental Settings
Victim models. We conduct experiments on a series of prominent
baseline large vision-language models to validate the generality
of our proposed method. The victim models include LLaVA [23],
Otter [18], LLaMA-Adapter-v2 [14], and OpenFlamingo [3], which
utilize OpenAI CLIP [29] as their image encoder, as well as BLIP-
2 [21], MiniGPT-4 [42], and InstructBLIP [9], which employ EVA
CLIP [13] as their image encoder. We also involve models without
employing the pre-trained CLIP such as mPLUG-Owl-2 [37], uti-
lizing a further trained ViT. We generate adversarial images using
the ViT encoders and subsequently attack LVLMs that utilize the
same image encoder.
Dataset.We follow the typical dataset construction in [10, 26, 31] by
randomly sampling 1000 images from the validation set of ILSVRC
2012 for conducting adversarial attacks and evaluating robustness.
Evaluation metric. Following commonly used settings in [41], we
employ the CLIP score for evaluating attack performance, which
measures the similarity or alignment between images and texts.
Both clean images 𝒙 and adversarial images 𝒙adv are fed into LVLMs
to obtain clean and adversarial captions. Subsequently, we compute
the CLIP scores between each image 𝒙 and the clean caption 𝒛 /
the adversarial caption �̂�. The decrease in the CLIP score for the
adversarial caption reflects the effectiveness of the attack. We also
employ the attack success rate (ASR) used in [8] which represents
the ratio of attacks that successfully mislead the model’s output.
Basic setup.We follow the common setups in [8, 41], setting the
maximum perturbation size 𝜖 to 8/255 and employing the infinity
norm as the constraint [41]. Note that the images are normalized.
For the feature attack and relation attack, we utilize the KL diver-
gence or MSE to compute the losses LFeature and LRelation. The
PGD algorithm [25] with 1000 iterations is employed for optimiza-
tion. For the relation attack, we determine the optimal number of
clusters 𝑘 within a predefined interval using the silhouette coeffi-
cient [30].

4.2 Main Results
We conduct our evaluation primarily on the image captioning
task [31, 41], as it assesses the global comprehension ability of
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Table 1: The results of VT-Attack on LVLMs. The evaluation metric is CLIP score(↓) which measures the similarity between
images and clean captions or adversarial captions generated by LVLMs. The lower the score, the higher the degree of errors in
the model’s outputs, reflecting a better attack performance. "-" indicates that the attack cannot be executed due to the absence
of a pre-trained text encoder. The gray background represents the attack results of the sub-methods. The best results are
highlighted in bold. The best performance among the three sub-methods is highlighted in blue.

Image Encoder OpenAI CLIP ViT EVA CLIP ViT ViT (Trained)

Model LLaVA Otter-I LLaMA Open BLIP-2 MiniGPT-4 InstructBLIP mPLUG
Adapter-v2 Flamingo Owl-2

Clean 31.94 30.87 31.49 31.95 30.44 32.45 31.07 32.61
Random Tiny Noise 31.65 30.84 31.33 31.83 30.29 32.26 31.13 32.55

E2E [31] 24.87 26.52 22.14 24.38 24.33 26.53 24.61 21.12
CLIP-Based [8] 23.24 20.04 20.19 18.53 21.56 21.72 21.47 -

Semantics 22.81 19.26 19.92 19.10 21.14 21.50 20.52 -
Feature 20.83 18.58 19.54 17.98 21.01 21.11 20.45 17.30
Relation 20.58 17.78 19.32 17.84 20.76 21.09 20.82 17.58

VT-Attack (F+R) 20.55 17.51 18.63 17.41 20.41 21.10 20.31 17.11VT-Attack 20.33 16.76 18.18 17.48 20.32 20.64 20.47

LVLMs towards images. We query the LVLMs using the prompt
"Describe the image briefly in one sentence." with ad-
versarial images. The results are presented in Table 1. Note that
"VT-Attack" refers to the combination of feature, relation and se-
mantics attacks, while "VT-Attack (F+R)" refers to the combination
of feature and relation attacks.

Table 2: The attack successful rate across different tasks (ques-
tion types) by VT-Attack. Here we evaluate Otter [18] as an
example. Each task is evaluated using 10 prompts (Details
are provided in supplementary materials). The ASR(↑) refers
to the ratio of successful attacks that mislead the model’s
output. The best results are highlighted in bold.

Task Image General Detailed Avg.Caption VQA VQA

Tiny Noise 0.089 0.114 0.133 0.112

E2E [31] 0.812 0.137 0.174 0.374
CLIP-Based [8] 0.851 0.289 0.635 0.592

Semantics 0.860 0.315 0.657 0.611
Feature 0.884 0.698 0.784 0.789
Relation 0.892 0.711 0.772 0.792

VT-Attack (F+R) 0.898 0.723 0.806 0.809
VT-Attack 0.914 0.715 0.828 0.816

As demonstrated in the results presented in Table 1, our proposed
VT-Attack achieves the best attack performance. This indicates that
our method can more extensively disrupt visual features compared
to baseline methods, leading to a diminished comprehension of
images by language models. Among the three sub-methods, the
feature attack or relation attack typically achieves the best per-
formance among the sub-methods, particularly the relation attack.

LVLMs exhibit stronger robustness against semantics attack com-
pared to the other two methods. However, our analysis in Section
4.3 demonstrates the insensitivity of semantics attack to image
complexity.

One can also notice that, adversarial examples generated by
our proposed method exhibits transferability across the LVLMs
employing same image encoder, as shown in Table 1. Regardless of
the intermediate modules, the LVLMs exhibit vulnerability to visual
tokens that lack original image information. Various intermediate
modules fail to reconstruct the compromised visual content.

Table 3: Cases of attack results against LLaVA in different
methods.

Image Method LVLM-Output

No Attack a dog laying on the ground

E2E [31] a small puppy sitting on a fence

CLIP-Based [8] a cat and a dog playing together

VT-Attack a person holding a cellphone

No Attack a dessert on a plate

E2E [31] a pastry with chocolate sauce

CLIP-Based [8] a plate of food with ingredients

VT-Attack two people are standing together

To further validate the generality of our method across various
tasks or prompts, we conduct experiments using three different
tasks, each evaluated with 10 prompts. Examples of the general
VQA and the detailed VQA can be "Is there a pen in the
image?" and "Please provide a detailed description of
the image". More prompts are provided in supplementary mate-
rials. We employ ASR for manual evaluation and the results are
shown in Table 2. Compared to baseline methods and sub-methods,
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Figure 5: Original image and the reduced-dimensional distribution of attacked visual tokens. (a) Comparison of attacked visual
tokens between baseline methods and VT-Attack. (b) Comparison of attacked visual tokens among the three sub-methods of
VT-Attack.

VT-Attack achieves the highest ASR. We can observe that attacks
against image encoders exhibit cross-task generality in contrast
to end-to-end method [31]. This demonstrates the advantages of
prompt-agnostic non-targeted attacks.

Table 3 presents cases of attacks on LLaVA [23]. Compared to
the baseline methods, our attacks result in larger discrepancies
between the model’s outputs and the golden captions. More cases
are provided in supplementary materials. To compare the impact
of VT-Attack with baseline methods on the encoded visual tokens,
we employ two-dimensional t-SNE [35] for visualization, as shown
in Figure 5 (a). t-SNE is a dimensionality reduction technique that
visualizes data in a lower-dimensional space, while preserving the
local structure between data points. In contrast to the baseline meth-
ods, the visual tokens perturbed by VT-Attack exhibit a significant
deviation from the original distribution. Such visual tokens likely
have lost their original visual information, causing the language
models to generate incorrect responses based on the image content.
This demonstrates that VT-Attack targeting visual tokens can more
effectively break the visual perception of LVLMs.

4.3 Sub-Method Analysis
Visualization of visual tokens in three different sub-methods.
In order to explore the degree of visual token disruption in each sub-
method, we employ t-SNE [35] for visualization, as illustrated in
Figure 5 (b). The attacked visual tokens produced by the semantics
attack exhibit a distribution that remains relatively close to the
original visual tokens. Nevertheless, the attacked visual tokens
in the feature attack or relation attack have essentially deviated
completely from the original distribution. This observation further
explains why the performance of the single semantics attack is
slightly lower.

Image

Figure 6: Visualization of the original clusters and visual
tokens in the feature attack (F) and relation attack (R).

Comparison of visual tokens in feature and relation attack.
To identify the differences of attacked visual tokens between the
feature attack and relation attack, we conduct case visualization of
these two attacks in the same t-SNE space. An example is illustrated
in Figure 6. We can observe that the visual tokens affected by
the feature attack may still remain close to the original cluster
coverage. This indicates that the incorporation of the relation attack
may enhance the efficacy of disrupting the relationships between
visual tokens and the original cluster, thereby compensating for
the limitations of feature attack.
Semantics attack exhibit insensitivity to image complexity.
The image complexity refers to the richness exhibited by objects,
colors or entities within an image. Despite the obvious impact of
the feature attack and relation attack on visual tokens, their perfor-
mance is influenced by the image complexity, as we have observed
in our experiments. This is because the increasing image complexity
amplifies the intricacy of the information in visual tokens, leading
to a decreased performance. We conduct a statistical analysis of the
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Figure 7: Comparison of the responses generated by various LVLMs when queried with clean images and adversarial images.

relationship between performance (ASR) and image complexity for
the three sub-methods, as illustrated in Figure 8 (a). In contrast to
the other two attack, the semantics attack is not sensitive to image
complexity. A possible reason is that there is no direct correlation
between image semantics and complexity because an image can be
described concisely even if it exhibits complexity. Therefore, the
semantics attack that disrupts semantic properties is insensitive
to image complexity. The results demonstrates the advantage of
employing semantics attack in mitigating the limitations of feature
and relation attacks.

(a) (b)

Figure 8: The influence of different conditions on attack per-
formance against LLaVA. (a) ASR (↑) with respect to image
complexity computed by segments of SAM [16]. (b) CLIP
Score (↓) with respect to the perturbation size.

4.4 Further Analysis
The results of same adversarial image attacking different
LVLMs.We compare the answers generated by different LVLMs
given the same clean and adversarial images, as shown in Figure 7.
For the same clean image, the models produce similar answers.
However, the models generate completely unrelated answers for
the same adversarial image. The results indicate that adversarial im-
ages lack valid visual information that can be perceived by LVLMs.
This can be attributed to the complete destruction of visual tokens,

Table 4: Perplexity of output answers for different models
queried with adversarial images.

Model LLaVA BLIP-2 mPLUG-Owl-2

Clean 1.716 2.443 1.973

Semantics 2.165 3.261 -
Feature 4.287 2.999 2.362
Relation 4.580 3.026 2.376

VT-Attack 4.505 3.013 2.528

leading different models to rely on "guessing" in order to generate
responses.
The impact of perturbation size to the performance.As shown
in Figure 8 (b), the performance of the attack improves as the pertur-
bation size increases from 1/255 to 8/255. However, further enlarg-
ing the perturbation size does not necessarily lead to performance
improvement.
The impact of attacks on the perplexity of model outputs.
We are curious about the self-confidence level of LVLMs in generat-
ing responses when the visual tokens are disrupted. Therefore, we
compute the perplexity of the outputs from three models as shown
in Table 4. The perplexity of answers corresponding to adversarial
images is consistently higher than that of clean images. This indi-
cates that the models exhibit vulnerability to compromised visual
information, resulting in uncertain outputs.

5 CONCLUSION
In this paper, we focus on the robustness of LVLMs against non-
targeted attacks. Existing methods often overlook the impact of
compromised visual tokens on LVLMs. To this end, we propose a
new adversarial attack method called VT-Attack, which disrupts
the encoded visual tokens comprehensively from multiple perspec-
tives. Experimental results have demonstrated the superiority of
our approach over the baselines. This highlights the necessity for
enhancing the adversarial defense capability of LVLMs. We hope
our work can provide guidance for research on model defense,
particularly in the defense of the visual token space.
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