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ABSTRACT

Understanding the function of individual units in a neural network is an important
building block for mechanistic interpretability. This is often done by generating a
simple text explanation of the behavior of individual neurons or units. However,
for these explanations to be useful, we must understand how reliable and truthful
they are. In this work we unify many existing explanation evaluation methods un-
der one mathematical framework. This allows us to compare and contrast existing
evaluation metrics and understand the evaluation pipeline with increased clarity.
We propose two simple sanity checks on the evaluation metrics and show that
many commonly used metrics fail these tests and do not change their score after
massive changes to the concept labels. Based on our experimental and theoretical
results, we propose guidelines that future evaluations should follow and identify
good evaluation metrics such as correlation.

1 INTRODUCTION

Deep learning models have achieved great success on a wide range of tasks, but they are very difficult
to understand and often perceived as black-boxes. To address this challenge, the field of mechanis-
tic interpretability has recently emerged, aiming to provide a clearer understanding of the internal
mechanism of deep neural networks.

Providing natural language explanations for small components of a neural network is an important
part of mechanistic interpretability. Classic work in this area includes Network Dissection [1] and
other works explaining individual neurons in deep vision models [2; 3; 4; 5; 6; 7; 8; 9]. Other
examples include automated neuron explanations [10; 11] for large language models, as well as
explaining features of sparse autoencoders [12; 13].

Despite the introduction of various approaches for generating neuron explanations, these methods
often use completely different metrics to evaluate how good their descriptions are, and it is not clear
how they compare to each other. In addition, many evaluation metrics used have problems, as shown
by [14] for example. To ensure that unit explanations are reliable and trustworthy, it is crucial to
establish a standardized framework for evaluation.

Motivated by the need for a standardized approach, in this work we unify many existing evaluation
methods under a single mathematical framework, which provides much needed conceptual clarity to
the topic of explanation evaluation. This framework allows us to clearly compare and contrast of cur-
rent evaluation techniques and provides a more transparent understanding of the evaluation pipeline.
Through the framework, we rigorously analyze and identify several failure modes in commonly-
used metrics. Additionally, we introduce two sanity tests to validate the metrics, revealing that most
commonly used evaluations fail at least one of these basic tests. This helps understand which metrics
are not suitable for reliable interpretation and should not be used.

In summary, in this paper we:

• Formalize the task of evaluating individual unit explanations.

• Unify existing evaluation methods under a single mathematical framework.

• Propose two sanity checks for evaluation metrics: Missing Labels test and Extra labels test,
and show that many commonly used metrics fail at least one of these basic tests

1
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• Experimentally compare different evaluation metrics, and identify good metrics to use,
such as Correlation.

• Discover that using biased top-and-random sampling makes a good evaluation metric such
as correlation fail the Extra Labels test, highligting the need for unbiased sampling.

2 DEFINITIONS

2.1 WHAT IS A INDIVIDUAL UNIT IN A NEURAL NETWORK?

In this paper we are focused on individual unit explanations. By a unit, we mean a smaller part of a
neural network that can have an independent meaning. The simplest form of such units is a single
neuron, or a single channel of a Convolutional Neural Network (CNN), but a unit can be any scalar
function of network inputs. Other interesting units that fit in our framework are linear combinations
of neurons (i.e. directions in activation space), which are considered to correspond to a specific
interpretable concept. These are used in studies such as TCAV [15], Concept Bottleneck Models
[16], Linear Probing [17] or steering vectors [18]. Finally, a unit could be a feature of a Sparse
Autoencoder [19; 12] trained to disentangle a layer’s activations into interpretable individual com-
ponents. While other, larger units such as entire layers or attention heads of a model are sometimes
of interest, we do not study these in this paper as they have complicated non-scalar activations and
require different methods to analyze than our units of interest.

Figure 1: An illustration of the difference between explanation generation and explanation evalua-
tion. Our paper is focused on explanation evaluation.

2.2 PROBLEM DESCRIPTION

When it comes to individual unit descriptions, there are two separate, but connected problems:
explanation generation and explanation evaluation, as illustrated in Figure 1. Our focus in this
paper is on the evaluation, which is a function E that we formally define below in (2).

(I) Generation (of Explanation tk):

G(D, f, k, l) → tk (1)

Here G is any function, or a process for generating explanations tk for neuron k. This could be a
human, an algorithm like Network Dissection [1], or a machine learning model such as MILAN [3].
D is a probing dataset, f is the network of interest, k is the target neuron and l is the layer of the
neuron, and tk is a text explanation.

(II) Evaluation (of Explanation t):

E(D, f, k, l, t) → s (2)

Here E is a function that takes a neuron and a text description t, and returns a scalar score s, where
a higher score s indicates the description is better i.e. more reliable/faithful.

(III) Connection between Evaluation and Generation:

2
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These two tasks are connected via argmax generation, a subset of generation methods that generate
the description by finding the concept with the highest evaluation score in the set of concepts C,
using a specific evaluation method.

tk = argmax
t∈C

E(D, f, k, l, t) (3)

For example, Network Dissection [1] generates an explanation by finding the concept that maximizes
the Intersection over Union metric on the Broden dataset.

We can see that evaluations E can be important in both generation and evaluation of explanations.
However, the community has not reached an agreement on which E to use and when. In fact,
currently different papers often use different E without theoretical justifications. Thus, the focus of
our paper is to rigorously investigate what are good evaluation metrics E .

2.3 WHAT ARE THE GOALS OF AN EXPLANATION?

Neuron explanations are typically generated to improve our understanding of the model, which can
then help for example improve safety and reliability of the models. However, this is vague and hard
to measure in a general way. We believe a more precise definition of the goals of an explanation is
essential for thinking clearly about how to evaluate them.

For clarify, it is useful to divide the neural network f(x) into two parts, f0:l and f l+1:L, where 0
corresponds to the input layer, f i:j represents the i through j’th layers of the neural network f(x),
l is the layer of the neuron we are interested in and L is the total number of layers in the network.
Here we assume the units are neurons for notational simplicity. Then:

f(x) = f l+1:L(f0:l
k (x), f0:l

¬k(x)), (4)

where f0:l
k (x) is the activation of neuron of interest k in layer l, while f0:l

¬k(x) is the activations of
all the other neurons in layer l.

Most unit explanations can be seen as a simple interpretable approximation of one (or both) of the
following functions:

• Function 1: Input → Unit Activation
This corresponds to explaining the function: x → f0:l

k (x). A good explanation should be
able to describe which inputs cause a high unit activation, and which do not.

• Function 2: Unit Activation → Output
This corresponds to explaining the function z → f l+1:L(z, f0:l

¬k(x)), where z is a real
number (e.g. intervened value). This function describes how changes in the unit activation
change the final network output.

As we can see from the above notations, these are different problems, and may require different
methods to solve and evaluate. While there is often a connection between these two problems,
they are often conflated in existing work, and we believe recognizing the difference can improve
our understanding. In particular, we should not expect a single text explanation to describe both
functions, especially if the neuron is used in an unexpected way. For example, we can imagine
a simple image classification model that was trained on biased data, where the cat class has only
images of black and grey cats, while the class table has several images of red cats laying on tables.
We could now find a neuron that only activates when there is a red cat in an image, and could be
described as a red cat neuron for Function 1. However, the activations of this neuron increase the
likelihood of the table class, while decreasing the likelihood of the cat class, requiring a different
description for its effects (Function 2). This can partially explain findings like [14] finding that
the neuron explanations of [10] have little to no effect on an intervention based evaluation, as the
intervention based evaluation corresponds to Function 2, while the explanations of [10] were created
to explain f0:l

k (x)(Function 1).

In our paper, we focus on evaluating explanations of Function 1 only, i.e. f0:l
k (x), as this is more

common in existing evaluations and can be applied more generally, for example to explain linear
combinations of neurons that don’t have a direct effect on the output such as TCAV [15]. While
evaluating Function 2 is also important, this requires different methods and is outside the scope of
this work.

3
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3 A UNIFIED EVALUATION FRAMEWORK

In this section, we propose a principled framework based on the following insight – Almost all
existing methods for evaluation E can be formalized as a function of two vectors: neuron activations
ak of neuron k and concept activations ct of concept t, where

• ak : denotes the activations of neuron k on probing data xi ∈ D. I.e. [ak]i = f0:l
k (xi)

• ct : denotes the presence of concept t on the inputs xi ∈ D. I.e. [ct]i = P (t|xi).

For notational convenience, we may use aki to denote [ak]i and cti for [ct]i in this paper. Within this
framework, the evaluation score s is a function M(ak, ct), i.e. s = E(D, f, k, l, t) = M(ak, ct),
where M is the metric chosen to measure similarity between these vectors. Concept activations
ct can be gathered from different sources such as existing labels, pseudo-labels from a model or a
crowdsourced human evaluation. The main focus of this paper is analyzing and comparing different
choices of metric M , and showing how many commonly used metrics have problematic properties.

3.1 METRIC DEFINITIONS

Binarization. Many similarity metrics used in literature require the inputs to be binary. Since
neuron activations, and concept values from some sources are continuous, we need to binarize these
vectors. We will denote this with the binarization function B : Rn → {0, 1}n.

In the below equations we don’t explicitly state which binarization function we use, but typically
for neuron activations ak we use B = topα, where we take top α fraction of activations to be 1, and
others to be 0. We formalize this as topα(z):

[topα(z)]i =
{
1 if zi ≥ bα;

0 otherwise
(5)

where bα satisfies
∑n

i=1
1[zi≥bα]

n = α, and z ∈ Rn. For example, if α = 0.05, then topα has 1’s for
inputs with activations in top-5%, and 0 for others. Note α is a hyperparameter needed for all binary
similarity functions. We typically select α independently for each metric by finding the value that
performs the best on a small validation split of neurons. For concept vectors ct, we usually binarize
by simply rounding, denoted as B = Br, where:

[Br]i =

{
1 if zi ≥ 0.5

0 if zi < 0.5
(6)

For metrics derived from binary classification, we define the concept value ct to be the “prediction”,
and neuron activation ak as the “ground truth” or observed variable. This corresponds to framing
the evaluation as simulation, i.e. trying to predict neuron activation based on concept value. Metrics
we label as Inverse use the opposite framing, i.e. concept value is the ground truth and neuron
activation is the prediction. See Appendix A.2 for more discussion on this. Given this, we can
express the terms in Confusion matrix (True Positive (TP), False Positive (FP), False Negative (FN)
and True Negative (TN)) in terms of the vectors ak and ct as:

TP = B(ak) ·B(ct), FP = B(ak) ·B(ct), FN = B(ak) ·B(ct), TN = B(ak) ·B(ct)

where B(·) represents element-wise NOT operation on the binary vector (equivalent to 1 − B(·))
and · is the vector dot product.

Below we express some of the most important and popular evaluation metrics in terms of the vectors
ak and ct, see Appendix C for the definitions of the remaining metrics we evaluated and additional
details on these metrics.

Binary Classification Metrics

1. Recall: Recall, also known as Sensitivity can be intuitively understood as measuring
P(concept|neuron active).

M(ak, ct) =
TP

TP + FN
=

B(ak) ·B(ct)

||B(ak)||1
(7)
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2. Precision: Precision, also known as Specificity can be intuitively understood as measuring
P(neuron active|concept).

M(ak, ct) =
TP

TP + FP
=

B(ak) ·B(ct)

||B(ct)||1
(8)

3. IoU: Intersection over Union, also known as Jaccard Index is a popular metric that measures
P(concept AND neuron active)/P(concept OR neuron active).

M(ak, ct) =
TP

TP + FP + FN
=

B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1 −B(ak) ·B(ct)
(9)

Other Metrics

4. AUC: Area under ROC curve, can be efficiently calculated as:

M(ak, ct) =

∑
i|B(ak)i=0

∑
j|B(ak)j=1 1[cti < ctj ] + 0.5 · 1[cti = ctj ]

||B(ak)||1||1−B(ak)||1
(10)

5. Correlation: Pearson’s correlation coefficient, a very popular metric for measuring similarity
between real valued variables.

M(ak, ct) =
1

n

(ak − µ(ak)) · (ct − µ(ct))

σ(ak)σ(ct)
(11)

Here n is the length of ak and ct, µ calculates the mean of the vector and σ its standard deviation.

3.2 EXISTING WORK AS SPECIAL CASES

As summarized in Table 1, we show how existing evaluation work fits into our evaluation framework.
We note that that existing evaluation methods differ from each other on four key ways:

(i) Evaluation metric M : This is the main focus of our paper, to analyze which evaluation
metrics are good choices.

(ii) How is the concept vector ct determined? There are many choices for the concept vector
ct. These include, but are not limited to: labels from a labeled dataset, using a model
to create pseudo-labels, using a human evaluator, or generating new inputs and using the
prompts as labels.

(iii) What is the granularity of the vectors? The simplest case is full input level activations,
i.e. |D| = |ak| = |ct| = n. These can also be more specific, for example pixel-level as
is the case in Network Dissection, or token level as is often the case for language model
explanations.

(iv) What is the probing dataset D used? This is an important choice and has a significant
effect on the outputs. Typical choices include the training/validation data the model was
trained on, a special labeled dataset designed for probing, or different datasets for different
concepts. Importantly, the dataset used for evaluation should be disjoint from the dataset
used for explanation generation to avoid overfitting.

4 SANITY CHECKS FOR EVALUATION METRICS

In this section, we start by analytically demonstrating that Precision and Recall metrics have clear
and important failure modes and provide an illustrating failure example in Figure 2. In Sec 4.2 we
propose two tests or sanity checks for evaluation metrics to further reveal which metrics discussed
in Sec 3.1 are unreliable and in Sec 4.3 we discuss the results of these tests.

5
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Metric M Study Concept Source ct Granularity Domain

∼Recall Highly Activating Inputs
Human Eval [1; 4; 20; 5] Crowdsourced Whole Input Vision

F1-score Observation based [14] Generative + Model Whole Input Language
Sparse probes [17] Labeled data Per-token Language

IoU IoU on Broden [1; 2; 9] Labeled data Per-pixel Vision

Accuracy CBM - concept Error [16] Labeled data Whole Input Vision

∼AUC Comparative Human Study [21] Crowdsourced Whole Input Vision

Inverse AUC INVERT [8] Labeled data Whole Input Vision
CoSy AUC [22] Generative Whole Input Vision

Correlation* Simulation - Correlation
Scoring [10] Model Per-token Language

Correlation Simulation - Correlation
Scoring [7] Model Whole Input Vision

Spearman
Correlation*

SAE Automated
Interpretability [12; 13] Model Per-token Language

Cosine cubed LF-CBM - Automated [20] Model Whole Input Vision

∼WPMI CLIP-Dissect -
Similarity Score [4] Model Whole Input Vision

MAD CoSy MAD [22] Generative Whole Input Vision

∼MAD MAIA [6] Generative Whole Input Vision
Explanation Score [23] Generative Whole Input Language

Table 1: Summary table comparing evaluations used in esisting work. ∼ indicates using a metric
with small differences from our definition, while ∗ indicates use of biased top-and-random sampling
to evaluate the metric with fewer samples. See Table 10 for an extended version of this table.

4.1 IDENTIFYING FAILURE CASES

(I) Failure Case of Recall. Recall corresponds to looking at the inputs that activate a neuron the
highest, and measuring what fraction of them contain concept ct. This is essentially how most
crowd-sourced evaluations are currently done. It is known that only measuring recall could be prob-
lematic in binary classification as it ignores performance on negative inputs. In our case, using this
metric for evaluation will favor explanations with more generic concepts. As an extreme example,
consider a very generic description where the concept ct = 1, where 1 ∈ Rn is a vector of all
ones. This could be a concept like “image” or “entity” which can be a valid description for almost
all images. Plugging these into equation (7), we get:

M(ak, ct) = M(ak,1) =
B(ak) · 1
||B(ak)||1

=
||B(ak)||1
||B(ak)||1

= 1, (12)

since B(ak)i ≥ 0, ∀ i. We see that with the maximally generic concept ct = 1, precision is always
1 regardless of the neuron. This is clearly not desirable or a helpful explanation for understanding
the neuron. In short, Recall is biased towards generic concepts (large ||ct||1).

(II) Failure case of Precision. Measuring only precision has the opposite problem, where it favors
concepts that are too specific. Imagine an extremely specific concept, that only activates on one
image on the entire dataset. We can write this as ct = ei, where ei is a unit vector with 1 on the i-th
element and 0’s elsewhere. The precision of this concept on neuron k is then:

M(ak, ct) = M(ak, ei) =
B(ak) · ei
||ei||1

= B(ak)i (13)

If the neuron activates on this input (B(ak)i = 1), the concept always reaches maximum precision
of 1, regardless of how the neuron activates on other inputs. This is undesirable as we should be
explaining all activations of a neuron, not just a small fraction of them. For example, explaining

6
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our hypothetical neuron in Figure 2 as white cat sitting on a couch would still achieve maximum
precision. In short, Precision is biased towards specific concepts (small ||ct||1).

Figure 2: A hypothetical neuron that only activates on pets (dogs or cats). When comparing different
evaluation metrics, we can see recall cannot distinguish between the correct concept (Pet) and a
concept that is too generic (Animal), while precision favors concepts that are too specific (Dog,
Cat). IoU can unambiguously determine the correct concept.

4.2 SANITY TEST DEFINITIONS

Inspired by our above analysis, we propose two general tests to measure whether a certain metric is
too biased towards generic or specific concepts.

Test (I): Missing Labels. In the missing labels test, we replace ct with c−t , where we randomly
replace half of the elements of ct with 0, i.e. we remove half of the concept labels for concept t.
E[||c−t ||1] = ||ct||1/2:

[c−t ]i =

{
[ct]i with probability 0.5

0 with probability 0.5
(14)

The assumption behind this test is that if concept t is a good description for neuron k, removing half
of the labels should decrease its similarity score. However, this does not happen with metrics such
as Precision that are too biased towards specific concepts, as can be seen in Table 2, causing them to
fail this test.

Test (II): Extra Labels. Essentially this is the opposite of missing labels test, in which we create
c+t by randomly doubling the size of ct, i.e. E[(||c+t ||1)] = 2||ct||1. That is

[c+t ]i =

{
1 if [ct]i = 1, else with probability ||ct||1

n−||ct||1
0 otherwise,

(15)

where n is the length of vector ct. If concept t is a good description for neuron k, giving positive
concept labels to random inputs should decrease its similarity score. But this is not the case for
methods that are too biased towards generic concepts – i.e. we expect the evaluation metrics such
as Recall to fail this test, which is validated in our Table 2. For simplicity we only apply these tests
with ground truth labels where ct is binary.

To perform the tests, we measure two metrics as follows:

Score Diff =
1

|K|
∑
k∈K

M(ak, c
±
tk
)−M(ak, ctk) (16)

Decrease Acc =
1

|K|
∑
k∈K

1[M(ak, c
±
tk
)−M(ak, ctk) < 0] (17)

Here K is the set of neurons looked at and tk is the best/correct concept for neuron k. Note that for
score diff we normalized the scores such that maximum of M is 1 and minimum value is 0 to allow
for equal comparison between metrics.

7
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Missing Labels Extra Labels Pass
Score Diff Decrease acc Score Diff Decrease acc Exp. Theor.

Recall -0.3378 99.00% 0.0032 0.00% × ×
Precision 0.0004 49.10% -0.2160 99.80% × ×
F1-score -0.1273 93.33% -0.1333 99.80% ✓ ✓
IoU -0.1216 93.33% -0.1262 99.80% ✓ ✓
Accuracy -0.0268 57.09% -0.0242 99.05% × ×
Balanced Accuracy -0.1530 98.96% -0.0308 89.53% × ×
Inverse Balanced Acc. -0.0128 66.86% -0.0961 99.99% × ×
AUC -0.1481 95.07% -0.0304 75.31% × ×
Inverse AUC -0.0195 75.65% -0.2440 99.99% × ×
Correlation -0.0902 99.94% -0.1010 99.99% ✓ ✓
Correlation
(top-and-random) -0.1274 93.35% -0.0405 65.41% × ×
Spearman Correlation -0.0303 79.26% -0.0222 64.16% × ×
Spearman Correlation
(top-and-random) -0.1083 85.31% -0.0384 63.18% × ×
Cosine -0.0851 99.95% -0.0704 99.27% ✓ ✓
Cosine cubed -0.0891 99.67% -0.1016 99.94% ✓ ✓
WPMI -0.2606 96.48% -0.0287 81.76% × ✓
MAD -0.0165 65.24% -0.1755 99.17% × ×
AUPRC -0.1210 97.17% -0.1306 99.80% ✓ ✓
Inverse AUPRC -0.2764 99.65% -0.1927 94.31% ✓ ×

Table 2: Combined experimental results of our missing labels and extra labels test. We can see most
evaluation metrics fail at least one of the tests. In the last report we report whether the metric passed
our theoretical missing and extra labels tests, showing close alignment with our experimental results.

4.3 TEST RESULTS

We experimentally evaluated these metrics on neurons from 6 different settings, covering final layer
neurons, hidden layer neurons, CBM neurons and linear probe outputs on 3 image datasets: Ima-
genet, Places365 and CUB200. See Appendix G for detailed description of the evaluation setting
and results on individual datasets.

In Table 2 we report the averaged results of this test across these two sets of neurons for all different
evaluation metrics. For simplicity, we say a metric passes the test if its Score Diff is < −0.05 and
Decrease Acc > 90%. In Table 2 we mark the methods that fail a test in terms of both Score Diff
and Accuracy in red color, while methods that only fail one of these are colored orange.

In addition, we run a theoretical version of the Missing/Extra labels test on hypothetical neurons
whose activations perfectly match a concept, which we discuss in detail in Appendix B. We find
that our theoretical results closely match our empirical observations, and that failure in these tests is
closely associated with concept imbalance, with failing metrics performing particularly poorly with
imbalanced data where concepts are only rarely positive.

Surprisingly, we can see that most metrics fail at least one of these tests:

• Accuracy and Spearman Correlation perform poorly in both directions as their score is
largely determined by the majority of inputs that neither activate the neuron nor have the
concept.

• Along with Recall, Balanced accuracy and AUC fail the Extra Labels test and are biased
towards generic concepts.

• Precision, Inverse Balanced Accuracy, Inverse AUC and MAD fail the Missing Labels Test
and are biased towards specific concepts.

The only methods that pass both tests are F1-Score/IoU, Correlation, Cosine, Cosine Cubed and
AUPRC. Since a good evaluation metric should be able to pass these tests, we believe metrics beside
these should not be relied on by themselves when evaluating unit explanations. This aligns with our
interpretation is caused by poor handling of imbalanced data, as metrics known to work worse for

8
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imbalanced data like accuracy and AUC fail the tests, and metrics designed for imbalanced data like
F1-score and AUPRC pass the tests. Finally we analytically studied the expected change in scores
for different binary metrics under missing and extra labels conditions in Appendix D, where our
results largely agree with the empirical findings.

Top-and-random sampling: In addition to metrics described in Section 3.1, we also tested a version
of correlation and Spearman correlation that uses top-and-random sampling, where the inputs are
evaluated on a random sample of consisting of 50% highly activating inputs and 50% randomly
sampled inputs as done by [10; 12]. This is in contrast to the default setting of evaluating on the
entire dataset or a uniform random sample. For our top-and-random experiments we sampled 25
inputs from the top 0.2% highest activating inputs and 25 random inputs. We can see that while
correlation passes both tests when evaluated on full data, top-and-random sampling makes it fail
the extra labels test. This makes sense, as greatly oversampling highly activating inputs makes the
method more similar to Recall that only focuses only highly activating inputs. This also explains
why [14] found explanations from [10] with very high correlation(top-and-random) scores to have
relatively low F1-scores.

Generative ct: Interestingly, when using generative models for ct it may sometimes be necessary to
use methods that fail the Missing Labels test, as the generative labels themselves are missing labels.
See Appendix A.4 for further discussion on this phenomenon.

5 EXPERIMENTAL COMPARISON OF SIMILARITY FUNCTIONS

Finally, we directly test how good different metrics are at evaluating explanations for final layer
neurons, where we know the ground truth concept for that neuron.

5.1 ARGMAX GENERATION ON FINAL LAYER

Our first way to meta-evaluate the quality of evaluation metrics is via argmax generation on final
layer neurons. Here, the neuron we are explaining is a final layer neuron (after softmax), which
has a ground truth explanation corresponding to a single classname in the dataset. We denote this
ground truth concept as t∗k. We then measure accuracy defined as:

Acc(M) =
1

|K|
∑
k∈K

1[argmax
t∈C

(M(ak, ct)) = t∗k] (18)

Here K is the set of neurons we evaluate and C is the set of concepts we consider. The idea behind
this test is that a good evaluation metric M should give the highest score to the correct concept and
therefore high accuracy.

5.2 AUC ON FINAL LAYER

Our second way to test is also based on final layer neurons, but testing evaluation directly. We use
AUC to measure whether the metric separates the scores of all correct (neuron, explanation) pairs
from the scores for incorrect (neuron, explanation) pairs, with high AUC indicating a good metric.

AUC(M) =

∑
k∈K,t∈C|t ̸=t∗k

∑
l 1[M(ak, ct) < M(al, ct∗l )]

(|C| − 1) · |K| · |K|
(19)

Here n is the number of neurons, and C is the concept set used to generate incorrect and correct
explanations.

Experimental Setup. Similar to section 4, we ran these test on 8 different setups, consisting of
4 separate models, 3 datasets and both gt labels and pseudo-labels as concept source for ct. See
Appendix G for detailed description of experimental setup and details on individual models.

For all experiments we split a random 5% of the neurons into validation set. For metrics that require
hyperparameters such as α, we use the hyperparameters that performed the best on the validation
split for each setting. We then report performance on the remaining 95% of neurons. In table 3 we
report the average scores and average ranks (i.e. the best metric for each setup gets 1, the worst gets
16) of the metrics across the four setups for both tasks.

9
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Average across settings

Metric Argmax acc Argmax Rank AUC AUC Rank Total Rank
Recall 63.92% 12.00 0.98081 13.00 12.50
Precision 80.82% 10.38 0.98252 11.25 10.81
F1-score/IoU 84.46% 8.13 0.98073 12.00 10.06
Accuracy 81.75% 10.25 0.98023 11.50 10.88
Balanced Accuracy 83.61% 8.25 0.99161 8.63 8.44
Inverse Balanced Acc. 81.62% 9.38 0.99367 8.13 8.75

AUC 82.91% 9.63 0.99196 10.88 10.25
Inverse AUC 84.79% 11.00 0.98733 9.13 10.06
Correlation 93.83% 1.38 0.99735 2.25 1.81
Correlation
(top-and-random) 79.03% 11.50 0.99370 7.75 9.63

Spearman Correlation 18.58% 17.25 0.83791 17.75 17.50
Spearman Correlation
(top-and-random) 54.08% 16.38 0.98381 13.75 15.06

Cosine 93.13% 1.75 0.99748 2.88 2.31
Cosine cubed 93.43% 2.88 0.99673 3.50 3.19
WPMI 83.95% 7.50 0.99484 7.00 7.25
MAD 86.16% 5.63 0.98694 9.13 7.38
AUPRC 85.19% 6.50 0.99266 7.00 6.75
Inverse AUPRC 60.45% 9.63 0.98127 10.50 10.06

Table 3: Comparison of different evaluation metrics, averaged across 8 settings. Lower rank means
better performance. Best performing metric in bold, and second best underlined for each metric.
Overall we can see Correlation, Cosine and Cosine cubed perform the best.

We can see that:

1. In general the metrics that passed our tests in Section 4 perform better than those that didn’t.
2. Continuous metrics generally perform better than binary ones. This is likely because bina-

rizing neuron activations loses valuable information, and it is hard to find one binarization
threshold α that works well for all neurons, i.e. for both single- and super-class neurons.

3. Overall the best performing metrics were correlation and related methods cosine and cosine
cubed. Spearman correlation performed clearly the worst.

6 CONCLUSIONS

In this paper, we have created a unified mathematical framework for different evaluation metrics
and clarified the definitions of around evaluating unit explanations. We have also performed several
sanity tests and experiments to answer the following question:

Which Evaluation Metric should you use to evaluate explanations? Considering all the evi-
dence from our experiments study, we lean towards Correlation (with uniform sampling) as the
best overall metric for evaluating neuron descriptions. While cosine similarity performed similarly
in Table 3, unlike other metrics its outputs depend on the mean of neuron activations, which can
cause significant errors when explaining neurons whose average activation is different from zero as
we show in Appendix F.2. Other good metrics include cosine cubed and AUPRC. F1-score or IoU
can also be a good choice, but requires choosing an activation cutoff α and it is unclear how to best
make this choice. Our most important recommendation is that evaluations should not rely on a
single metric that doesn’t pass our missing or extra labels test. Combinations of such metrics can
still be useful, and for example F1-score could be efficiently evaluated by combining a crowdsourced
Recall evaluation with evaluating Precision using a generative model.
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A ADDITIONAL DISCUSSION

A.1 LIMITATIONS

Framework Limitations:

First, not every evaluation of neuron descriptions can fit into our framework. Below we split these
into few separate cases and discuss whether each case represents a limitation of the framework or
not:

Evaluating Multiple Inputs at once: Our evaluation framework assumes that the presence of a
concept is estimated separately for each input. Many human study based evaluations (e.g. [1], [4])
instead evaluate a group of inputs at once, asking questions like ”How well does concept match this
group of images?”. However we believe this is simply a less precise/less objective way of asking
whether the concept matches each input separately and does not in general represent a significant
limitation for the framework.

Comparing similarity to ”correct” explanation: Another approach to evaluate neuron descrip-
tions is to compare how close they are to a ”correct” description, typically in a text-embedding
space. For example, this is the main evaluation used by MILAN [3], where they generate ”correct”
explanation by asking Mechanical Turk workers to describe neurons based on their most highly ac-
tivating inputs. We do not think this a very reliable way to evaluate explanations, because it relies on
the assumption that there exists a single ”correct” text-based explanation for each neuron (and that
we have some way of finding it), and we do not think this is the case for many real neurons because
of issues like polysemanticity and non-verbal concepts like specific graphical patterns. For these
hard-to-interpret neurons it is better to just measure how well our explanation matches the neuron
like the metrics in our framework do.

Non-text based explanations: While we focus on text based concepts t in our paper, the framework
works on non-textual concepts just as well, as long as we have some way of generating a concept
vector ct for that concept. For example, the evaluation of [21] uses a group of highly activating
inputs as the concept, and then asks workers whether a new input is similar to those inputs or not.
Despite this difference, it can be described neatly within our framework.

Function 2: Activation → Output: Probably the most significant limitations of our framework is
that it is focused on evaluating function 1 only (Input → Unit Activation) as discussed in Section
2.3, and we believe measure Function 2 is equally important. While currently our framework is
meant for function 1 only, we believe many of the ideas and metrics we discussed could be useful in
evaluating function 2. For example, in a generative model we could use the same metrics to measure
similarity between unit activation and the presence of a specific concept in the output. However in
function 2 there are additional considerations and thing like measuring difference in outputs when
changing the unit activation are likely more important. We believe extending this framework or
creating a similar one for function 2 evaluations is an important direction for future work.

Experimental Result Limitations:

Overall we are quite confident in the generality of our results on the missing/extra labels test (Table
2) as they are consistent across final/hidden layer neurons and different datasets, and more impor-
tantly we showed theoretically that they are caused by poor metric performance on imbalanced data.
Importantly this theoretical result is independent of the data domain, type of concepts or the type of
unit in question.

However, it is important to note that passing these sanity checks does not guarantee that the metric
is a good metric, but failing them does indicate a metric should not be relied on. This is similar to
sanity checks proposed by [24], which have been quite influential in the field of saliency maps/input
importance estimation.

On the other hand, our comparison results in Table 3 are mostly focused on final layer neurons or
other units where we have ground truth available such a concept neurons inside a CBM. While they
consistently prefer certain metrics, it is possible that these final layer neurons are systematically
different from other units we are interested in such as hidden layer neurons, and these results should
not be relied on too strongly.
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A.2 SIMULATION VS CLASSIFICATION

Simulation: In section 3.1 we define the neuron activation ak as the observed ground truth vari-
able, and ct as the predicted variable. This corresponds to seeing the explanation from a simulation
point of view, i.e. our goal is to predict how the neuron activates, based on the neurons explanation
and current inputs. This gives us binary classification metric definitions that are aligned with those
of [14].

Classification: However this is an arbitrary choice, and we could just as well define ct as the
observed ground truth variable and and ak as the prediction. This corresponds to a classification
view, where our goal is to use neuron k as a classifier for concept ct. In terms of metrics, this
doesn’t change the definitions for True Positive (TP) or True Negative (TN), but it switches the
places of False Positive and False Negative, i.e.

TPcls = B(ak) ·B(ct) = TPsim

FPcls = B(ak) ·B(ct) = FNsim

FNcls = B(ak) ·B(ct) = FPsim

TNcls = B(ak) ·B(ct) = TNsim

This change in framing also affects for metrics which are not symmetric in terms of False Posi-
tives and False Negatives. For example, Recall(simulation) = Precision(classification), and Preci-
sion(simulation) = Recall(classification).

Recall(simulation) =
TPsim

TPsim + FNsim
=

TPcls

TPcls + FPcls
= Precision(classification)

The other binary metric that is sensitive to this framing is balanced accuracy. The metric we called
Balanced Accuracy in Section 3.1 corresponds to the simulation version of Balanced Accuracy,
so for completeness sake we also included Inverse Balanced Accuracy, which is the classification
version.

Finally, the AUC we define in Section 3.1 is AUC(simulation), while we also include AUC in the
classification framing we called Inv AUC.

Some related works use the simulation framing, while others use the classification definition, which
sometimes causes conflicting definitions of metrics like Recall.

A.3 EQUIVALENCES

During our analysis we also notice that certain separate metrics are equivalent or very similar to each
other.

Correlation and Cosine similarity: Calculating correlation between two vectors is equal to nor-
malizing each vector to have mean 0 and then taking their cosine similarity, as shown below:

Let x̂ = x− µ(x) for any vector x. Then

Cosine(âk, ĉt) =
âk · ĉt

||âk||2||ĉt||2
=

(ak − µ(ak)) · (ct − µ(ct))√
nσ(ak)

√
nσ(ct)

=

1

n

(ak − µ(ak)) · (ct − µ(ct))

σ(ak)σ(ct)
= Correlation(ak, ct) (20)

This explains why the two perform very similarly in our evaluations.
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IoU and F1-score: Below we show that IoU and F1-score are very closely related. In fact, F1-
score can be written as a monotonously increasing function of IoU. This means that for any vectors
x1, y1, x2, y2, IoU(x1, y1) < IoU(x2, y2) → F1(x1, y1) < F1(x2, y2), so for the purposes of com-
paring similarites they behave identically, and the choice of which one to use doesn’t matter. As
their performance was exactly the same in all tasks, we report them in the same row in Table 3.

Intersection over Union (IoU) also known as Jaccard index is defined as

IoU =
TP

TP + FP + FN
(21)

while F1-score also known as Dice-score is defined as:

F1 =
2TP

2TP + FP + FN
(22)

Now

F1 =
2TP

2TP + FP + FN
=

2TP

TP + FP + FN
· TP + FP + FN

2TP + FP + FN
(23)

= 2IoU ·
(
2TP + FP + FN

TP + FP + FN

)−1

=
2 · IoU

IoU + 1
(24)

Which is monotonously increasing for 0 ≤ IoU ≤ 1. So using either metric gives the same compar-
ative results.

A.4 GENERATIVE MODELS AND MISSING LABELS TEST

ct from Generative Models: Evaluation methods that use generative models to generate new data
and the concept vector ct actually naturally have missing labels similar to our missing labels test.
This is because the generated inputs serve as positive labels for ct, but the negative inputs are often
taken to just be all the existing inputs, even though some of actually do have the concept t. So the ct
we get from generative models is actually randomly missing a potentially large portion of the labels.
Because of this, most evaluation methods using generative ct in tabel 1 use methods that fail the
missing labels test such as Inverse AUC and MAD. In fact, this is desirable as the missing labels
in ct do not affect the evaluation score for these metrics. However, these metrics alone should not
be relied for evaluation score, and instead the best way to use generative models in evaluation is to
combine them with a another evaluation that doesn’t fail the missing labels test, as is done by [14]
who measure Precision using generated data, and measure Recall on existing data with model based
pseudo-labels and combine these results into F1-score.
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B THEORETICAL MISSING/EXTRA LABELS TEST AND CONCEPT INBALANCE

In this section we analyze the effects of missing/extra labels test on a simpler toy setting, where
neuron k’s activations ak perfectly match the concept labels of concept tk, i.e. ak = ctk . In
this setting, we assume binary neuron and concept activations, i.e. the neuron’s activation is 1 if
concept is present on the input, and 0 if its not. Consequently, we do not need to perform additional
binarization of concept activations with top α like we did in previous sections.

In this simplified setting, our missing and extra labels tests correspond to being able to differentiate
between three concepts as defined in section 4:

1. ctk : The perfect predictor for neuron ak, with precision=1 and recall=1.

2. c−tk : (Missing labels) This concept has Precision=1 since whenever a concept is present, the
neuron is also active, and Recall of 0.5 since only half to inputs where the neuron activate
now have the concept.

3. c+tk : (Extra labels) Inverse from above, this concept has Precision=0.5 and Recall=1.

We then measure whether a metric passes the test by measuring the score difference across:

• Missing labels test: M(ak, c
−
tk
)−M(ak, ctk) < −ϵ

• Extra labels test: M(ak, c
+
tk
)−M(ak, ctk) < −ϵ

, where ϵ is a small positive number (0.01 in our case). A good metric should be able to reliably
differentiate between these concepts. Interestingly we find that the ability of most metrics to differ-
entiate greatly depends on whether the data is balanced or not.

Since the neuron activations perfectly align with concept t and are binary, the only parameter that
can effect the results of our missing and extra labels test is the activation frequency of concept t, i.e.
what fraction of inputs x ∈ D contain concept t. Following the notation in section D, we denote
this fraction as γ. Note technically it should be γ + η, but η = 0 in this case with perfect match
between concept and neuron. We then test whether a metric passes the test on different values of
γ, using simulated data on tables 4 and 5. Each number is the average result from 1000 evaluations
with 500,000 datapoints each. In addition, in Section D, we derived a closed form solution to the
binary metrics under missing or extra labels as a function of γ and other parameters. This simplifies
nicely when we consider an ideal neuron with ak = ct, and we can derive the expected result of
missing/extra labels test as a simple function of γ alone in Table 9. These theoretical results perfectly
agree with our simulated results.

Results: In tables 4 and 5 we ran the simulated results on a variety of different activation sparsi-
ties. We can see most metrics (expect from recall and precision) perform well on balanced data
(γ = 0.499 and γ = 0.1). However, their performance often starts to drop with score difference
approaching 0 as the data becomes more and more unbalanced. We can see that practically all the
metrics that failed our experimental missing/extra labels tests cannot differentiate between perfect
and inperfect concept, specifially on inbalanced data, highlighting that likely the root cause of the
failure on these test is that the metrics performs poorly on inbalanced data. This is also aligned with
conventional knowledge that metrics such as accuracy and AUC are a poor choice to rely on when
your data is heavily inbalanced. On the other hand, metrics that passed the tests are insensitive to
activation fequency γ and converge to a nonzero constant as γ decreases.

We defined a metric as passing the test as having a significant score diff < 0.01 on all the evaluated
activation frequencies. The results in terms of passing are almost identical to our experimental
results in section 4. The only differences were WPMI which passes the theoretical extra labels test
but fails the experimental one. We believe this has to do with hyperparameter(α, λ) choices and
that WPMI can in principle pass the test but with poor hyperparameters it will not, leading us to
overall recommend against using it in practice as hyperparamter choice is challenging in the real
world. An interesting case is AUPRC and particularly Inverse AUPRC. These metrics are known to
be preferable for inbalanced data and work well in that domain, but actually peform worse when the
data is balanced, in particular Inverse AUPRC fails the test when data is perfectly balanced. This
indicates caution should be used if relying on them, in case you have some neurons with extremely
common concepts.
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We argue that being able to pass these tests regardless of activation frequency is important for any
evaluation metric to be used, as we typically do not know what frequency each neuron will have in
advance, in many cases the interesting neurons/concept might activate very sparsely, for example in
Sparse autoencoders.

Missing Labels Test score diff: Pass
Activation Frequency γ: 0.499 0.1 0.01 0.001 limγ→0

Recall -0.500 -0.500 -0.500 -0.501 -0.500 ✓
Precision 0.000 0.000 0.000 0.000 0.000 ×
F1-score -0.333 -0.333 -0.334 -0.334 -0.333 ✓
IoU -0.500 -0.500 -0.500 -0.501 -0.500 ✓
Accuracy -0.250 -0.050 -0.005 -0.001 0.000 ×
Balanced Accuracy -0.250 -0.250 -0.250 -0.250 -0.250 ✓
Inverse Balanced Accuracy -0.166 -0.026 -0.003 0.000 0.000 ×
AUC -0.250 -0.250 -0.250 -0.249 - ✓
Inverse AUC -0.166 -0.026 -0.003 0.000 - ×
Correlation -0.211 -0.156 -0.147 -0.147 - ✓
Correlation(top-and-random) -0.497 -0.489 -0.465 -0.393 - ✓
Spearman Correlation -0.200 -0.069 -0.008 -0.001 - ×
Spearman Correlation(top-and-random) -0.101 -0.101 -0.107 -0.090 - ✓
Cosine -0.146 -0.147 -0.147 -0.146 - ✓
Cosine cubed -0.240 -0.147 -0.147 -0.147 - ✓
WPMI -0.359 -0.359 -0.359 -0.359 - ✓
MAD -0.221 -0.035 -0.003 0.000 - ×
AUPRC -0.251 -0.450 -0.495 -0.500 - ✓
Inverse AUPRC -0.500 -0.500 -0.500 -0.499 - ✓

Table 4: Simulation results missing labels test on idealized neuron with perfect correspondence to a
concept activation. We can see most metrics pass when the data is relatively balanced, but start to
struggle on inbalanced data (low γ). The limγ→0 column is calculated theoretically.
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Extra Labels Test score diff: Pass
Activation Frequency γ: 0.499 0.1 0.01 0.001 limγ→0

Recall 0.000 0.000 0.000 0.000 0.000 ×
Precision -0.500 -0.500 -0.500 -0.499 -0.500 ✓
F1-score -0.333 -0.333 -0.333 -0.334 -0.333 ✓
IoU -0.500 -0.500 -0.500 -0.500 -0.500 ✓
Accuracy -0.499 -0.100 -0.010 -0.001 0.000 ×
Balanced Accuracy -0.498 -0.056 -0.005 -0.001 0.000 ×
Inverse Balanced Accuracy -0.250 -0.250 -0.250 -0.250 -0.250 ✓

AUC -0.756 -0.084 -0.008 -0.001 - ×
Inverse AUC -0.250 -0.250 -0.250 -0.250 - ✓
Correlation -0.478 -0.167 -0.148 -0.147 - ✓
Correlation(top-and-random) -0.493 -0.029 -0.003 0.000 - ×
Spearman Correlation -0.567 -0.024 -0.001 0.000 - ×
Spearman Correlation(top-and-random) 0.000 0.000 -0.004 0.031 - ×
Cosine -0.146 -0.146 -0.146 -0.146 - ✓
Cosine cubed -0.478 -0.147 -0.146 -0.146 - ✓
WPMI -0.029 -0.029 -0.029 -0.029 - ✓
MAD -0.332 -0.332 -0.332 -0.332 - ✓
AUPRC -0.500 -0.500 -0.500 -0.500 - ✓
Inverse AUPRC -0.001 -0.400 -0.490 -0.498 - ×

Table 5: Simulated extra labels test on idealized neuron with perfect correspondence to a concept
activation. We can see most metrics pass when the data is relatively balanced, but start to struggle
on inbalanced data (low γ). The limγ→0 column is calculated theoretically.
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C ADDITIONAL METRIC DEFINITIONS

F1-score: F1-score is the harmonic mean of precision and recall, and can be expressed as:

M(ak, ct) =
2 ·B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1
(25)

Accuracy: Standard binary accuracy.

M(ak, ct) =
TP + TN

TP + FP + FN + TN
=

B(ak) ·B(ct) + (1−B(ak)) · (1−B(ct))

n
(26)

Balanced Accuracy: A version of accuracy designed for imbalanced datasets that averages the
accuracy on positive and negative inputs.

M(ak, ct) =
B(ak) ·B(ct)

2||B(ak)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ak))||1
(27)

Inverse Balanced Accuracy: Balanced accuracy but we consider ak to be the prediction and ct to
be the ground truth.

M(ak, ct) =
B(ak) ·B(ct)

2||B(ct)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ct))||1
(28)

Inverse AUC: Area under receiving-operating-characteristics(ROC) curve, where we consider ak
to be the prediction and ct to be the ground truth.

M(ak, ct) =

∑
i|B(ct)i=0

∑
j|B(ct)j=1 1[aki < akj ] + 0.5 · 1[aki = akj ]

||B(ct)||1||1−B(ct)||1
(29)

Spearman Correlation: The Pearson Correlation between the ranks of elements.

M(ak, ct) =
1

n

(R(ak)− µ(R(ak))) · (R(ct)− µ(R(ct)))

σ(R(ak))σ(R(ct))
(30)

Cosine similarity: The standard cosine similarity between two vectors.

M(ak, ct) =
ak · ct

||ak||2||ct||2
(31)

Cosine Cubed: A modification of cosine similarity/correlation introduced by [20] that cubes acti-
vation hoping to encourage more sensitivity to highest values.

M(ak, ct) =
[ak − µ(ak)]

3 · [ct − µ(ct)]
3

||[ak − µ(ak)]3||2||[ct − µ(ct)]3||2
(32)

WPMI: Weighted pointwise-mutual information. A version of this objective is used by [3] and [4]
to generate explanations, and by [4] to evaluate said explanations.

M(ak, ct) =
∑

i|B(ak)i=1

[log(cti)− λ log(µ(ct))] (33)

MAD: Mean activation difference. Calcualtes the average difference in neuron activations when
concept is present vs. when concept is missing.
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M(ak, ct) =

∑
i|B(ct)i=1 aki

||B(ct)||1
−

∑
j|B(ct)j=0 akj

||1−B(ct)||1
(34)

In the above equations n is the length of ak and ct, µ calculates the mean of the vector and σ its
standard deviation. λ is a hyperparameter and R is the rank operator, which transforms each element
to its rank, with smallest element becoming 1 and largest n.

AUPRC Area Under Precision-Recall Curve(AUPRC) is a popular metric for measuring classi-
fication performance, in particular for imbalanced data. While we are not aware of a closed form
solution, it can be calculated as:

1. Calculate precision and recall at each threshold τi, where threshold contains distinct values
of ct. Recall Ri =

B(ak)1(ct≥τi)
∥B(ak)∥1

, precision Pi =
B(ak)1(ct≥τi)
∥1(ct≥τi)∥1

.

2. Calculate area under precision-recall curve using numerical integral:

M(ak, ct) =
∑
n

(Ri −Ri−1)Pi

AUPRC outputs values in [0, 1] range.

Inverse AUPRC: Same as AUPRC, but with a differenct framing so we flip ct and ak in the
calculations.

See Tables 6 and 7 for additional details on our metrics.

Metric Definition Range

Recall TP / (TP + FN) [0, 1]

Precision TP / (TP + FP) [0, 1]

F1-score 2TP / (2TP + FP + FN) [0, 1]

IoU TP / (TP + FP + FN) [0, 1]

Accuracy (TP + TN) / (TP + FP + TN
+ FN) [0, 1]

Balanced accuracy [TP / (TP + FN) + TN / (TN
+ FP)] / 2 [0, 1]

Inverse balanced accuracy
(classification version of
balanced accuracy (see App.
A.2))

[TP / (TP + FP) + TN / (TN
+ FN)] [0, 1]

Table 6: Definition of commonly-used binary classification metrics. Here, TP, FP, TN, FN refer to
true positive, false positive, true negative and false negative, respectively.
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Metric Definition Range

AUC (swap x and y
to get inverse AUC)

∑
yi=1

∑
yj=0[1{xi > xj}+ 0.5 ∗ 1{xi = xj}]

|y = 1||y = 0|
[0, 1]

correlation
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

[−1, 1]

Spearman correlation Replace x, y to corresponding rank R(x), R(y) in
correlation [−1, 1]

cosine
∑

xiyi
∥x∥2∥y∥2

[−1, 1]

cosine cubed
∑

(xi − x̄)3(yi − ȳ)3

∥(x− x̄)3∥2∥(y − ȳ)3∥2
[−1, 1]

WPMI log p(x | y)− λ log(p(x)) (−∞,∞)

MAD
∑

yi=1 xi

|yi = 1|
−

∑
yi=0 xi

|yi = 0|
(−∞,∞)

Table 7: Definition of other commonly-used metrics. Here, x, y ∈ RN are two real vectors, x̄, ȳ
refer to the mean of x, y.
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D ANALYSIS ON MISSING LABELS/EXTRA LABELS

In this section, we provide a theoratical analysis for missing label and extra label test. For sim-
plicity of symbols, in this section we analyze the population statistics. Suppose we have following
confusion matrix:

c=1 c=0
a=1 γ b
a=0 η d

In missing labels test, consider a general case where randomly flip c = 1 into c = 0 with probability
p. Thus, the resulting confusion matrix is:

c=1 c=0
a=1 (1− p)γ b+ pγ
a=0 (1− p)η d+ pη

In extra labels test, similarly, we turn c = 0 into c = 1 with probability q = p(γ+η)
b+d , the resulting

confusion matrix is

c=1 c=0
a=1 γ + qb (1− q)b
a=0 η + qd (1− q)d

With these, we could plug in corresponding TP/FP/TN/FN into metrics to calculate metric value in
these two tests.

1. Recall:

M(ak, ct) =
B(ak) ·B(ct)

||B(ak)||1
=

γ

b+ γ
. (35)

In extra label test:

M(ak, c
+
t ) =

γ + qb

b+ γ
≥ M(ak, ct). (36)

In missing label test:

M(ak, c
−
t ) =

γ − pγ

b+ γ
≤ M(ak, ct). (37)

From the derivation above, we could see that increasing labels only raises recall metric
while reducing labels always leads to a drop in recall as we found in our experiments.

2. Precision:

M(ak, ct) =
B(ak) ·B(ct)

||B(ct)||1
=

γ

γ + η
(38)

In extra label test:

M(ak, c
+
t ) =

γ + qb

γ + qb+ η + qd
. (39)

Precision will increase if b
b+d > γ

γ+η .

In missing label test:

M(ak, c
−
t ) =

(1− p)γ

(1− p)γ + (1− p)η
= M(ak, ct). (40)

Thus, the precision does not change In missing label test.
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3. F1-score:
M(ak, ct) =

2γ

2γ + η + b
(41)

In extra label test:
M(ak, c

+
t ) =

2γ + 2qb

2γ + qb+ η + qd+ b
. (42)

F1-score increase if 2b
b+d > 2γ

2γ+η+b .
In missing label test:

M(ak, c
−
t ) =

2(1− p)γ

2(1− p)γ + (1− p)η + b+ pγ
=

2γ − 2pγ

2γ + (1− p)η + b− pγ
. (43)

F1-Score decreases in missing label test.
4. IoU:

M(ak, ct) =
B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1 −B(ak) ·B(ct)
=

γ

γ + η + b
. (44)

In extra label test:
M(ak, c

+
t ) =

γ + qb

γ + η + qd+ b
. (45)

IoU increases if b
d > γ

γ+η+b .
In missing label test:

M(ak, c
−
t ) =

(1− p)γ

(1− p)γ + (1− p)η + b+ pγ
=

γ − pγ

γ + (1− p)η + b
. (46)

Thus, IoU decreases in missing label test.
5. Accuracy:

M(ak, ct) =
B(ak) ·B(ct) + (1−B(ak)) · (1−B(ct))

n
= γ + d. (47)

In extra label test:
M(ak, c

+
t ) = γ + qb+ d− qd. (48)

accuracy increases if b > d.
In missing label test:

M(ak, c
−
t ) = γ − pγ + d+ pη. (49)

Accuracy increases if η > γ.
6. Balanced Accuracy:

M(ak, ct) =
B(ak) ·B(ct)

2||B(ak)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ak))||1
=

γ

2γ + 2b
+

d

2η + 2d
. (50)

In extra label test:
M(ak, c

+
t ) =

γ + qb

2γ + 2b
+

d− qd

2η + 2d
. (51)

balanced accuracy increases if b
2γ+2b > d

2η+2d .
In missing label test:

M(ak, c
−
t ) =

γ − pγ

2γ + 2b
+

d+ pη

2η + 2d
. (52)

balanced accuracy increases if γ
2γ+2b < η

2η+2d .

7. Inverse Balanced Accuracy:

M(ak, ct) =
B(ak) ·B(ct)

2||B(ct)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ct))||1
=

γ

2γ + 2η
+

d

2b+ 2d
. (53)

In extra label test:

M(ak, c
+
t ) =

γ + qb

2γ + 2η + 2qb+ 2qd
+

d− qd

2b+ 2d− 2qd− 2qb
. (54)

In missing label test:

M(ak, c
−
t ) =

γ − pγ

2γ + 2η − 2pγ − 2pη
+

d+ pη

2b+ 2d+ 2pγ + 2pη
. (55)
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Metric Missing label: M(ak, c
−
t ) Extra label: M(ak, c

+
t )

Recall 1− p 1
Precision 1 1

1+p

F1-score 2−2p
2−p

2
2+p

IoU 1− p 1
1+p

Accuracy 1− pγ 1− γp
Balanced Accuracy 1− p

2 1− pγ
2(1−γ)

Inverse Balanced Accuracy (1−γ)
2(1−γ)+2pγ + 1

2
2+p

2(1+p)

Table 8: The evaluation scores for different metrics under missing and extra label tests on an ideal
neuron whose activations perfectly match the presence of our concept.

Missing labels test(p = 0.5): Extra labels test(p = 1):
Metric M(ak, c

−
t )−M(ak, ct) M(ak, c

+
t )−M(ak, ct)

Recall −0.5 0
Precision 0 −0.5
F1-score − 1

3 − 1
3

IoU −0.5 −0.5
Accuracy −γ

2 −γ
Balanced Accuracy −0.25 − γ

2(1−γ)

Inverse Balanced Accuracy − γ
2(2−γ) −0.25

Table 9: Further simplifying from Table 8 by plugging in p values we typically use in our tests, and
M(ak, ct) = 1, we can calculate the theoretical score diff after running our tests for different binary
metrics on ideal neurons.

D.1 SPECIAL CASE

In this section, we consider a special case where the activation perfectly match the concept, i.e.
c ≡ a. In this case, we have η = b = 0, d = 1 − γ. Plugging in those variables, we can get the
following table, which shows how different metrics change after missing-label or extra-label test.
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E ADDITIONAL RELATED WORKS

Evaluation of individual neuron explanations. Table 10 shows an expanded version of our com-
parison table (Table 1 in the main text section 4) of existing evaluation methods. It can be seen in
Table 10 that prior work [1; 4; 20; 5; 14; 17; 2; 9; 16; 21; 8; 22; 10; 7; 12; 13; 20; 4; 6; 23] only use
1-2 metric for evaluation and did not discuss or justify why the metric should be used. Among all
the prior work in Table 10, we believe that the most similar work to ours is [14], which has focused
on evaluating individual neuron explanations in language models. In particular, they discover a dis-
crepancy between the evaluation metrics, i.e. neurons with very high correlation(top-and-random)
score can still have relatively low F1-scores. However, different from our work their scope is much
more specific and they do not provide analysis comparing different evaluation metrics or justifica-
tion on why they use F1-score specifically. Their finding are in line with ours, where they found that
Correlation(top-and-random) fails the extra labels test, while F1-score passes our sanity checks.

Overall we find many evaluations in previous works to be lacking, either due to using poor metrics
that fail our sanity checks, or using very small sample sizes. In addition, some popular methods like
TCAV [15] completely lack evaluation of whether the concept directions they learn are good. To
our best knowledge, no human-study has been conducted using metrics that pass our sanity checks,
instead most existing human-studies only measure recall or a similar metric, and running such a
study would be valuable for better understanding of unit interpreability and/or explanation methods.

Metric M Study Concept
Source ct

Granularity Probing
Dataset D Domain Target

∼Recall Human Eval [1] Crowdsourced ∼Whole Input Specific eval
dataset Vision Neurons

∼Recall Human Eval [4; 5] Crowdsourced Whole Input Validation data Vision Neurons
∼Recall Human Eval [20] Crowdsourced Whole Input Validation Data Vision CBM neurons

F1-score Observation
based [14]

Generative
+ model Whole Input Generated +

Training data Language Neurons

F1-score Sparse probes [17] Labeled data Per-token Specific eval
dataset Language Linear comb.

of neurons

IoU Broden IoU
[1; 2; 9] Labeled data Per-pixel Specific eval

dataset Vision Neurons

Accuracy CBM - concept
Error [16] Labeled data Whole Input Validation Data Vision CBM neurons

∼AUC Comparative
Human Study [21] Crowdsourced Whole Input Training data Vision Neurons

Inverse AUC INVERT [8] Labeled data Whole Input Validation data Vision Neurons

Inverse AUC CoSy AUC [22] Generative Whole Input Generated+
Validation data Vision Neurons

Correlation* Simulation -
Correlation Score [10] Model Per-token Training data Language Neurons

Correlation Simulation -
Correlation Score [7] Model Whole Input Validation data Vision Neurons

Spearman
Correlation*

SAE Auto
Interp [12; 13] Model Per-token Training data Language SAE features

Cosine cubed LF-CBM -
automated [20] Model Whole Input Validation data Vision CBM neurons

∼WPMI CLIP-Dissect -
Similarity [4] Model Whole Input Validation data Vision Neurons

MAD CoSy MAD [22] Generative Whole Input Generated+
Validation data Vision Neurons

∼MAD MAIA [6] Generative Whole Input Generated Vision Neurons

∼MAD Explanation
Score [23] Generative Whole Input Generated Language Transformer

factors

Table 10: Extended Table (of Table 1 in the main text section 4) comparing related work.

Sanity Checks. The sanity checks proposed in this paper (Missing and Extra Labels test) are
inspired by the sanity checks [24] proposed for saliency maps, which has had a large impact in
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guiding that field towards more faithful explanations. However the topic is very different, since [24]
focus on local input-importance instead of global neuron explanations in our paper. Besides, the
specific tests proposed in [24] are also very different than ours.

Concept extraction. Extracting interpretable concepts from a learned representation is a common
challenge and relevant for finding individual units to evaluate in our framework. This can either
be supervised as proposed by [15] where the concepts are specified by human and labels are pro-
vided. This approach is also used by linear probing based work such as [17]. Later, a series of
works[25; 26; 27] was proposed to automatically extract concepts from model activations, without
human supervision, i.e. unsupervised. [28] claimed that concept extraction could be regarded as a
dictionary learning problem. Recently Sparse Autoencoders [19; 13] have also gained popularity as
an unsupervised concept extraction method. Note that most unsupervised concept extraction meth-
ods are discovering ”units” defined in our work that are not directly understandable to humans, and
require an explanation method to provide human-understandable explanations. Our work focuses on
the evaluation of the explanations of those concepts.

Concept importance estimation. Another important task in understanding the behavior of mod-
els is estimating the importance of concepts in model decisions. [28] summarized this problem as a
general form of attribution methods. However this is typically a local explanation while our frame-
work is focused on global explanations and it is more related to Function 2 defined in Sec. 2.3, i.e.
how the unit affects the output.

Human-centered evaluation on concept-based models. Human-centered evaluation of model
explanation[29; 30] has drawn attention from the XAI community. Recently, [31] collected human
evaluation of XAI explanations as a benchmark for explanation methods. These works provide
important techniques and inspiration for evaluating explainability, but almost all existing work is
focus on local feature importance explanations, which is very different from our work on global
neuron-level explanations.
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F ABLATIONS AND EXTRA CHECKS

F.1 INCREASE/DECREASE FRACTION IN MISSING/EXTRA LABELS TEST

In our standard missing labels we reduce the fraction of positive labels by half, i.e.

r− =
||c−t ||1
||ct||

= 0.5

r+ =
||c+t ||1
||ct||1

= 2

In this section we run an ablation on the importance of these specific values by running the test on
two other combinations of values: r− = 0.75 and r+ = 1.33 (smaller change) and r− = 0.33 and
r+ = 3 (larger change). We report the results on final layer neurons (including superclasses) of
ViT-B-16 (trained on imagenet) in Tables 11 and 12. Overall we can see that these parameters do
not impact our qualitative observations, i.e. which metric passes vs which doesn’t. While Avg score
diff changes proportionally to r, it doesn’t affect which metrics are close to zero vs which are not,
and decrease acc remains relatively unchanged. Overall this shows our sanity test is not sensitive to
the specific parameter choice but instead reflects overall trends of the metric.

ViT-B-16 final layer neurons, including superclasses
Missing Labels Test: r− = 0.75 Extra Labels Test: r+ = 1.333

Metric Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.2367 73.83% 0.0000 0.00%
Precision -0.0009 51.73% -0.1628 99.92%
F1-score -0.0946 94.14% -0.1040 99.92%
IoU -0.1241 94.14% -0.1310 99.92%
Accuracy 0.0008 97.59% -0.0018 99.92%
Balanced Accuracy -0.1174 73.68% -0.0009 99.92%
Inverse Balanced Acc. 0.0002 49.92% -0.0198 99.92%

AUC -0.1160 79.25% -0.0008 75.71%
Inverse AUC -0.0014 87.37% -0.1248 99.92%
Correlation -0.0591 99.70% -0.0582 99.92%
Correlation
(top-and-random) -0.0798 90.45% -0.0001 48.42%

Spearman Correlation -0.0017 59.92% -0.0006 49.25%
Spearman Correlation
(top-and-random) -0.0658 80.60% -0.0020 51.20%

Cosine -0.0582 99.77% -0.0565 99.92%
Cosine cubed -0.0565 98.87% -0.0559 99.92%
WPMI -0.1604 93.23% -0.0110 99.92%
MAD -0.0020 55.56% -0.0911 99.70%
AUPRC -0.1418 99.17% -0.1386 99.92%
Inverse AUPRC -0.2044 99.77% -0.2088 99.70%

Table 11: Sanity check results with smaller change in labels.
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ViT-B-16 final layer neurons, including superclasses
Missing Labels Test: r− = 0.33 Extra Labels Test: r+ = 3

Metric Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.6297 99.40% 0.0000 0.00%
Precision 0.0002 47.44% -0.4404 99.92%
F1-score -0.3297 97.14% -0.3580 99.92%
IoU -0.3516 97.14% -0.3718 99.92%
Accuracy 0.002 97.67% -0.0098 99.92%
Balanced Accuracy -0.3122 99.10% -0.0050 99.92%
Inverse Balanced Acc. 0.001 52.86% -0.0535 99.92%

AUC -0.3102 98.50% -0.0050 90.98%
Inverse AUC -0.0022 78.87% -0.3363 99.92%
Correlation -0.1824 99.92% -0.1842 99.92%
Correlation
(top-and-random) -0.2166 99.40% -0.0049 52.11%

Spearman Correlation -0.0045 67.97% -0.0023 50.60%
Spearman Correlation
(top-and-random) -0.1793 97.14% -0.0058 53.08%

Cosine -0.1817 100.00% -0.1802 99.92%
Cosine cubed -0.1753 99.92% -0.1766 99.92%
WPMI -0.4169 100.00% -0.0430 99.77%
MAD -0.0034 53.23% -0.2450 99.70%
AUPRC -0.3715 99.85% -0.3750 99.92%
Inverse AUPRC -0.5387 100.00% -0.5599 99.32%

Table 12: Sanity check results with larger change in labels.

F.2 FAILURE CASE OF COSINE: ADDING A CONSTANT ACTIVATION

In this section we dicuss a failure case of cosine similarity as an evaluation metric. The main idea
is that cosine similarity outputs are not independent of the mean of the neuron’s activation, while all
other evaluation metrics are. This causes it to associate neurons with large average activation values
with very generic concepts that are almost always active. As an example, we added a constant (1) to
all activations of concept neurons in a Concept Bottleneck Model [16] trained on CUB200, and ran
our argmax generation test. All other evaluation metrics are invariant to this change, but the accuracy
of Cosine drops from 99.07% to 0.93% with this small change, as shown in Table 13. We believe
this is a flaw that points against using cosine similarity, as the average activation of a hidden layer
neuron is not functionally important, and could be absorbed into biases of the next layer. Instead
we recommend using Pearson correlation which is identical to cosine similarity after normalizing to
mean 0, as we show in Section A.3.
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CUB200 - CBM concept neurons

Original ak a
′

k = ak + 1

Metric Argmax acc Argmax acc ∆ acc
Recall 49.25% 49.25% 0.00%
Precision 84.11% 84.11% 0.00%
F1-score/IoU 77.57% 77.57% 0.00%
Accuracy 81.78% 81.78% 0.00%
Balanced Accuracy 77.57% 77.57% 0.00%
Inverse Balanced Accuracy 69.16% 69.16% 0.00%
AUC 81.31% 81.31% 0.00%
Inverse AUC 99.07% 99.07% 0.00%
Correlation(full) 99.07% 99.07% 0.00%
Correlation(top-and-random) 86.56% 86.56% 0.00%
Spearman Correlation(full) 54.21% 54.21% 0.00%
Spearman Correlation(top-and-random) 62.62% 62.62% 0.00%
Cosine 99.07% 0.93% -98.14%
Cosine cubed 99.07% 99.07% 0.00%
WPMI 80.37% 80.37% 0.00%
MAD 99.07% 99.07% 0.00%
AUPRC 71.03% 71.03% 0.00%
Inverse AUPRC 31.78% 31.78% 0.00%

Table 13: Adding a constant to the activation values of all neurons causes the cosine similarity to
perform very poorly, while other metrics are unchanged.
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G DETAILED RESULTS

G.1 EXPERIMENTAL SETUP DETAILS

Missing and Extra labels test: We evaluate our experimental results across 6 settings:

1. Dataset D=ImageNet, ViT-B-16 [32] trained on imagenet, final layer neurons(and super-
class neurons), Table 14

2. Dataset D=ImageNet, ResNet-50 trained on imagenet, layer4 neurons, Table 15
3. Dataset D=Places365, ResNet-18 trained on Places365, final layer neurons, Table 16
4. Dataset D=Places365, ResNet-18 trained on Places365, layer4 neurons, Table 17
5. Dataset D=CUB200, CBM trained on CUB200, concept neurons, Table 18
6. Dataset D=CUB200, CLIP ViT-B-32 image encoder, linear probe trained to detect CUB-

concepts, Table 19

For all settings we used the ground truth labels from the dataset as ct. The ImageNet [33] and Places
[34] models were pretrained. For CUB-CBM we trained our own model using the code released
by [16]. Our CBM reached 96.75% concept accuracy on the test set which is in line with their re-
ported results. For CLIP, we used the pretrained model from [35], and then learned a linear probe
on top of frozen image embeddings to minimize binary cross-entropy loss on the training split of
CUB200[36], with early stopping using validation data. Our linear probe reached 89.76% concept
accuracy. The CUB dataset is a small bird species classification dataset that contains detailed anno-
tations for lower level concepts, such as wing color. Following [16], we only used the 112 concepts
that are present on at least 5% of the inputs and our CLIP linear probe was trained to predict these
concepts, not the final class of inputs.

For the final layer neurons as well as CUB neurons we let ”correct” concept tk be the ground
truth concept for that neuron. We choose the hyperparameter α that maximizes AUC(Eq. 19)
performance on validation neurons, and run the tests on test neurons. For all evaluations we used
neuron activations after the activation function (i.e. softmax/sigmoid).

While for layer4(after avg pool) neurons we defined the ”correct” tk correct” concept tk as the
concept that maximizes IoU with α = 0.005 similar to [1]. For these layers we fixed α = 0.005 for
all metrics as that was used to determine the ”ground truth”.

Interestingly, we find that most methods pass the tests on the CUB dataset than the other datasets we
looked at, but the trends in terms of which metrics perform worse are still similar. We believe this is
caused by data imbalance, as the concepts in CUB are relatively balanced (following [16] we only
keep concepts that are present on at least 5% of the inputs), while for example ImageNet classes
are much more imbalanced (each class is positive on 0.1% of the inputs). This is confirmed by our
theoretical observations in Section B, which show that poor metrics are much more likely to fail the
test when the concepts are imbalanced.

Argmax generation and AUC We evaluate the argmax generation and AUC test on 8 different
settings:

1. Dataset D=ImageNet, ViT-B-16(ImageNet), final layer neurons, ground truth ct

2. Dataset D=ImageNet, ViT-B-16(ImageNet), final layer neurons, SigLIP ct

3. Dataset D=ImageNet, ViT-B-16(ImageNet), final layer neurons+superclass neurons,
ground truth ct

4. Dataset D=ImageNet, ViT-B-16(ImageNet), final layer neurons+superclass neurons,
SigLIP ct

5. Dataset D=Places365, ResNet-18(Places365), final layer neurons, ground truth ct

6. Dataset D=Places365, ResNet-18(Places365), final layer neurons, SigLIP ct

7. Dataset D=CUB200, CBM trained on CUB200, concept neurons, ground truth ct

8. Dataset D=CUB200, CLIP ViT-B-32 image encoder, linear probe trained to detect CUB-
concepts, ground truth ct
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SigLIP ct indicates we used Pseudo-labels generated from SigLIP (ViT-SO400M-14-SigLIP-384)
[37] as done by [7]. For all metrics evaluations we choose hyperparameters such as α by finding
the one with best performance on validation neurons (random subset of 5% of the neurons), and use
those hyperparameters to evaluate on test neurons.

Tables 20 and 21 show the detailed results of our argmax generation experiment, and Tables 22 and
23 show the detailed results of our AUC evaluation experiment. We can see that overall the AUC
numbers are quite high for most methods, as the dataset is very imbalanced with more examples of
incorrect pairs than correct pairs, and the task of telling a correct explanation apart from a random
one is quite easy. However we can still find meaningful differences between metrics by precisely
measuring how close they can get to perfect score of 1.

ViT-B-16 final layer neurons, including superclass
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.4772 96.02% 0.0000 0.00%
Precision 0.0019 46.92% -0.3287 99.92%
F1-score -0.2191 96.77% -0.2404 99.92%
IoU -0.2557 96.77% -0.2719 99.92%
Accuracy 0.0016 97.59% -0.0053 99.92%
Balanced Accuracy -0.2366 95.79% -0.0027 99.92%
Inverse Balanced Acc. 0.0014 50.08% -0.0392 99.92%

AUC -0.2378 95.11% -0.0026 88.05%
Inverse AUC -0.0021 80.83% -0.2495 99.92%
Correlation -0.1268 99.92% -0.1272 99.92%
Correlation
(top-and-random) -0.1563 98.12% -0.0023 50.23%

Spearman Correlation -0.0034 64.59% -0.0014 50.60%
Spearman Correlation
(top-and-random) -0.1355 93.61% -0.0039 51.88%

Cosine -0.1260 100.00% -0.1245 99.92%
Cosine cubed -0.1217 99.77% -0.1222 99.92%
WPMI -0.3158 99.85% -0.0271 99.92%
MAD -0.0016 51.28% -0.1839 99.70%
AUPRC -0.2791 99.85% -0.2797 99.92%
Inverse AUPRC -0.4041 100.00% -0.4200 99.62%

Table 14: Missing and Extra Labels test results on ViT-B-16(ImageNet) final layer neurons.
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Resnet-50 layer4 neurons
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.0814 100.00% 0.0021 0.00%
Precision 0.0027 47.94% -0.2122 100.00%
F1-score -0.0834 100.00% -0.0434 100.00%
IoU -0.0506 100.00% -0.0275 100.00%
Accuracy 0.0006 34.07% -0.0027 100.00%
Balanced Accuracy -0.0402 100.00% -0.0003 71.12%
Inverse Balanced Acc. 0.0012 49.74% -0.1061 100.00%

AUC -0.0401 88.23% -0.0004 50.72%
Inverse AUC -0.0002 52.67% -0.2214 100.00%
Correlation -0.0270 100.00% -0.0264 100.00%
Correlation
(top-and-random) -0.0648 85.61% -0.0030 51.80%

Spearman Correlation 0.0067 69.22% 0.0000 50.77%
Spearman Correlation
(top-and-random) -0.0443 67.83% 0.0012 49.28%

Cosine -0.0237 100.00% -0.0114 98.51%
Cosine cubed -0.0427 99.33% -0.0406 100.00%
WPMI -0.0384 88.03% -0.0320 100.00%
MAD 0.0003 50.77% -0.1163 100.00%
AUPRC -0.0325 99.49% -0.0325 100.00%
Inverse AUPRC -0.0809 98.30% -0.0809 98.30%

Table 15: Missing and Extra labels test results on ResNet-50(Imagenet) layer4 neurons.

Resnet-18(Places365) - Final layer neurons
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.4301 97.98% 0 0.00%
Precision -0.0039 53.03% -0.0324 98.85%
F1-score -0.0151 63.40% -0.0577 98.85%
IoU -0.0079 63.40% -0.0319 98.85%
Accuracy 0.0012 0.00% -0.0027 100.00%
Balanced Accuracy -0.2144 97.98% -0.0014 100.00%
Inverse Balanced Acc. -0.0020 55.33% -0.0162 100.00%

AUC -0.1976 98.56% -0.0021 61.96%
Inverse AUC -0.0008 66.57% -0.2435 100.00%
Correlation -0.0894 99.71% -0.0883 100.00%
Correlation
(top-and-random) -0.1249 95.39% -0.0026 50.43%

Spearman Correlation -0.0018 69.45% 0.0002 48.99%
Spearman Correlation
(top-and-random) -0.1267 90.78% 0.0004 51.30%

Cosine -0.0895 99.71% -0.0873 100.00%
Cosine cubed -0.0780 99.14% -0.0755 99.71%
WPMI -0.3084 99.42% 0.0013 0.00%
MAD -0.0009 48.99% -0.2264 100.00%
AUPRC -0.0270 85.30% -0.0282 98.85%
Inverse AUPRC -0.2578 100.00% -0.2621 99.71%

Table 16: Missing and Extra labels test results on ResNet-18(Places365) final layer neurons.
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Resnet-18(Places365) - layer4 neurons
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.0843 100.00% 0.0022 0.00%
Precision 0.0028 45.79% -0.1537 100.00%
F1-score -0.0855 99.79% -0.0552 100.00%
IoU -0.0540 99.79% -0.0358 100.00%
Accuracy 0.0005 10.88% -0.0027 100.00%
Balanced Accuracy -0.0417 100.00% -0.0003 66.12%
Inverse Balanced Acc. 0.0012 46.00% -0.0768 100.00%

AUC -0.0437 88.50% -0.0013 52.98%
Inverse AUC -0.0008 53.80% -0.2123 100.00%
Correlation -0.0266 100.00% -0.0267 100.00%
Correlation
(top-and-random) -0.0623 83.78% -0.0058 52.16%

Spearman Correlation -0.0020 72.28% -0.0005 54.21%
Spearman Correlation
(top-and-random) -0.0520 70.84% 0.0034 50.92%

Cosine -0.0251 100.00% -0.0131 100.00%
Cosine cubed -0.0395 99.79% -0.0377 100.00%
WPMI -0.0940 91.58% -0.0713 100.00%
MAD 0.0005 47.84% -0.1612 100.00%
AUPRC -0.0306 98.36% -0.0315 100.00%
Inverse AUPRC -0.0698 99.59% -0.0700 100.00%

Table 17: Missing and Extra labels test results on ResNet-18(Places365) layer4 neurons.

CBM(CUB200) - concept neurons
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.5002 100.00% 0.0012 0.00%
Precision -0.0003 48.60% -0.2993 100.00%
F1-score -0.1990 100.00% -0.2290 100.00%
IoU -0.2150 100.00% -0.2365 100.00%
Accuracy -0.0884 100.00% -0.0732 98.13%
Balanced Accuracy -0.2054 100.00% -0.0943 100.00%
Inverse Balanced Acc. -0.0424 100.00% -0.1770 100.00%

AUC -0.2042 100.00% -0.0926 100.00%
Inverse AUC -0.0610 100.00% -0.2850 100.00%
Correlation -0.1541 100.00% -0.1918 100.00%
Correlation
(top-and-random) -0.1936 99.07% -0.1245 93.46%

Spearman Correlation -0.0977 100.00% -0.0720 91.59%
Spearman Correlation
(top-and-random) -0.1534 93.46% -0.1229 90.65%

Cosine -0.1349 100.00% -0.1227 100.00%
Cosine cubed -0.1467 100.00% -0.1950 100.00%
WPMI -0.4273 100.00% -0.0228 100.00%
MAD -0.0593 95.33% -0.2300 99.07%
AUPRC -0.2172 100.00% -0.2527 100.00%
Inverse AUPRC -0.4749 100.00% -0.2212 93.46%

Table 18: Missing and Extra labels test results on CBM(CUB200) concept neurons.
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CLIP ViT-B-16 - Linear probe for CUB200 concepts
Missing Labels Test Extra Labels Test

Avg Score Diff Decrease acc Avg Score Diff Decreased acc
Recall -0.4534 100.00% 0.0138 0.00%
Precision -0.0008 52.34% -0.2698 100.00%
F1-score -0.1615 100.00% -0.1739 100.00%
IoU -0.1462 100.00% -0.1538 100.00%
Accuracy -0.0762 100.00% -0.0588 96.26%
Balanced Accuracy -0.1794 100.00% -0.0855 100.00%
Inverse Balanced Acc. -0.0361 100.00% -0.1610 100.00%

AUC -0.1651 100.00% -0.0831 98.13%
Inverse AUC -0.0519 100.00% -0.2524 100.00%
Correlation -0.1172 100.00% -0.1457 100.00%
Correlation
(top-and-random) -0.1622 98.13% -0.1050 94.39%

Spearman Correlation -0.0835 100.00% -0.0593 88.79%
Spearman Correlation
(top-and-random) -0.1379 95.33% -0.1086 85.05%

Cosine -0.1111 100.00% -0.0634 97.20%
Cosine cubed -0.1061 100.00% -0.1388 100.00%
WPMI -0.3796 100.00% -0.0202 90.65%
MAD -0.0379 97.20% -0.1354 96.26%
AUPRC -0.1394 100.00% -0.1592 100.00%
Inverse AUPRC -0.3711 100.00% -0.1020 74.77%

Table 19: Missing and Extra labels test results on linear probe for CUB concepts trained on CLIP
embeddings.

Setup 1: gt ct, Setup 2: SigLIP ct Setup 3: gt ct, Setup 4: SigLIP ct

original
K and C

original
K and C

original+superclass
K and C

original+superclass
K and C

Metric Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank
Recall 99.37% 6 94.42% 10 8.33% 16 67.43% 11
Precision 99.37% 6 93.90% 13 71.81% 13 65.75% 13
F1-score/IoU 99.37% 6 94.32% 11 88.90% 5 68.46% 10
Accuracy 99.37% 6 92.24% 14 82.59% 9 65.43% 15
Balanced Accuracy 99.37% 6 94.51% 9 83.53% 8 68.69% 8
Inverse Balanced Acc. 99.37% 6 93.98% 12 72.97% 11 65.75% 13

AUC 98.84% 14 96.79% 5 78.57% 10 75.30% 4
Inverse AUC 94.74% 16 85.68% 16 85.41% 6 57.56% 16
Correlation 99.58% 1 98.11% 1 99.25% 2 76.95% 2
Correlation
(top-and-random) 98.74% 15 87.79% 15 68.94% 14 68.50% 9

Spearman Correlation 0.74% 18 10.63% 18 2.48% 17 7.37% 18
Spearman Correlation
(top-and-random) 64.95% 17 71.84% 17 23.46% 15 49.44% 17

Cosine 99.58% 1 98.11% 1 99.32% 1 76.84% 3
Cosine cubed 99.47% 5 98.11% 1 98.65% 3 74.77% 5
WPMI 99.37% 6 96.74% 6 85.41% 6 77.11% 1
MAD 99.58% 1 96.11% 7 72.41% 12 66.95% 12
AUPRC 99.37% 6 96.95% 4 94.40% 4 72.29% 6
Inverse AUPRC 99.58% 1 94.63% 8 0.45% 18 69.62% 7

Table 20: Detailed results of our argmax evaluation experiment on final layer neurons of ViT-B-
16(ImageNet).
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Setup 5: gt ct, Setup 6: SigLIP ct Setup 7: gt ct, Setup 8: gt ct,
Resnet-18

(Places365)
Resnet-18

(Places365)
CBM

(CUB200)
CLIP linear probe

(CUB200)
Metric Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank
Recall 97.12% 6 84.08% 13 49.25% 17 11.33% 17
Precision 97.12% 6 85.31% 11 84.11% 7 49.22% 14
F1-score/IoU 97.12% 6 85.46% 9 77.57% 11 64.49% 7
Accuracy 97.12% 6 77.54% 14 81.78% 8 57.94% 10
Balanced Accuracy 97.12% 6 85.43% 10 77.57% 11 62.62% 8
Inverse Balanced Acc. 97.12% 6 85.47% 8 69.16% 14 69.16% 5

AUC 94.52% 16 85.59% 7 81.31% 9 52.34% 12
Inverse AUC 94.81% 15 76.95% 15 99.07% 1 84.11% 3
Correlation 98.27% 1 92.51% 2 99.07% 1 86.92% 1
Correlation
(top-and-random) 97.12% 6 70.03% 16 86.56% 6 54.55% 11

Spearman Correlation 4.32% 18 34.29% 18 54.21% 16 34.58% 15
Spearman Correlation
(top-and-random) 74.06% 17 61.96% 17 62.62% 15 24.30% 16

Cosine 98.27% 1 92.51% 2 99.07% 1 81.31% 4
Cosine cubed 97.98% 5 93.37% 1 99.07% 1 85.98% 2
WPMI 97.12% 6 85.01% 12 80.37% 10 50.47% 13
MAD 98.27% 1 89.63% 5 99.07% 1 67.29% 6
AUPRC 97.12% 6 91.93% 4 71.03% 13 58.41% 9
Inverse AUPRC 98.27% 1 86.46% 6 31.78% 18 2.80% 18

Table 21: Detailed results of our argmax evaluation experiment on final layer neurons of Places365
models and concept neurons on CUB200.

Setup 1: gt ct Setup 2: SigLIP ct Setup 3: gt ct Setup 4: SigLIP ct

original
K and C

original
K and C

original+superclass
K and C

original+superclass
K and C

Metric AUC Rank AUC Rank AUC Rank AUC Rank
Recall 0.9999993 6 0.9877944 15 0.9960657 14 0.9432574 16
Precision 0.9999993 6 0.9820718 17 0.9996042 5 0.9553497 12
F1-score/IoU 0.9999993 6 0.9820726 16 0.9996820 4 0.9435605 15
Accuracy 0.9999993 6 0.9991594 7 0.9765614 17 0.9893615 6
Balanced Accuracy 0.9999993 6 0.9976398 9 0.9994295 8 0.9858313 9
Inverse Balanced Acc. 0.9999993 6 0.9968502 11 0.9989645 10 0.9854770 10

AUC 0.9999915 15 0.9997286 6 0.9959190 15 0.9868359 7
Inverse AUC 0.9999157 16 0.9902301 13 0.9990078 9 0.9510220 13
Correlation 0.9999998 1 0.9999713 3 0.9999300 2 0.9905589 4
Correlation
(top-and-random) 0.9999993 6 0.9981871 8 0.9982840 11 0.9859906 8

Spearman Correlation 0.6809415 18 0.7629487 18 0.7471902 18 0.7794497 18
Spearman Correlation
(top-and-random) 0.9928371 17 0.9974837 10 0.9917333 16 0.9839782 11

Cosine 0.9999998 1 0.9999708 4 0.9999481 1 0.9974763 1
Cosine cubed 0.9999998 1 0.9999729 2 0.9995726 6 0.9915143 3
WPMI 0.9999954 14 0.9998929 5 0.9995661 7 0.9918070 2
MAD 0.9999994 5 0.9941177 12 0.9982341 12 0.9453136 14
AUPRC 0.9999993 6 0.9999745 1 0.9997836 3 0.9902171 5
Inverse AUPRC 0.9999998 1 0.9896386 14 0.9975076 13 0.9352833 17

Table 22: Detailed results of our AUC evaluation on Final layer neurons of ViT-B-16(ImageNet).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Setup 5: gt ct, Setup 6: SigLIP ct Setup 7: gt ct, Setup 8: gt ct,
Resnet-18

(Places365)
Resnet-18

(Places365)
CBM

(CUB200)
CLIP linear probe

(CUB200)
Method AUC Rank AUC Rank AUC Rank AUC Rank
Recall 0.9941722 12 0.9716787 17 0.9932254 10 0.9603242 14
Precision 0.9941722 12 0.9759407 13 0.9901683 12 0.9628336 13
F1-score/IoU 0.9941722 12 0.9719225 16 0.9832933 15 0.9711482 12
Accuracy 0.9942055 9 0.9870149 11 0.9574415 18 0.9380949 18
Balanced Accuracy 0.9942055 9 0.9882966 10 0.9906365 11 0.9768571 7
Inverse Balanced Acc. 0.9942055 9 0.9913224 9 0.9965389 8 0.9859675 2

AUC 0.9930562 16 0.9949677 6 0.9898162 13 0.9753796 9
Inverse AUC 0.9993843 2 0.9742231 15 0.9995459 1 0.9853412 4
Correlation 0.9993321 3 0.9989897 2 0.9995003 2 0.9905228 1
Correlation
(top-and-random) 0.9944704 8 0.9929705 8 0.9972774 7 0.9824368 6

Spearman Correlation 0.8586794 18 0.9522357 18 0.9711632 17 0.9506609 17
Spearman Correlation
(top-and-random) 0.9787217 17 0.9937719 7 0.9777333 16 0.9541921 16

Cosine 0.9993151 4 0.9988518 3 0.9993839 4 0.9848683 5
Cosine cubed 0.9989203 6 0.9986860 4 0.9994051 3 0.9857802 3
WPMI 0.9972885 7 0.9972979 5 0.9983350 6 0.9745443 10
MAD 0.9993024 5 0.9837090 12 0.9986686 5 0.9761528 8
AUPRC 0.9941390 15 0.9990008 1 0.9848855 14 0.9732409 11
Inverse AUPRC 0.9996026 1 0.9753107 14 0.9935138 9 0.9593002 15

Table 23: Detailed results of our AUC evaluation on Places365 and CUB.
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H OLD SUMMARY TABLES

In this section we show our summary tables from the original submission for easy comparison during
rebuttal. Will be removed from final version.

Missing Labels Extra Labels Pass
Score Diff Decrease Acc Score Diff Decrease Acc

Recall -0.2800 98.39% 0.0010 0.00% ×
Precision -0.0004 48.77% -0.2727 99.96% ×
F1-Score -0.1706 97.99% -0.1518 99.94% ✓
IoU -0.1765 97.99% -0.1620 99.94% ✓
Accuracy 0.0011 65.98% -0.0041 99.96% ×
Balanced Accuracy -0.1426 98.27% -0.0016 86.78% ×
Inverse Balanced Acc. -0.0003 51.50% -0.0864 99.96% ×
AUC -0.1396 92.03% -0.0018 69.77% ×
Inverse AUC -0.0015 69.08% -0.2360 99.96% ×
Correlation -0.0962 99.96% -0.0951 99.96% ✓
Correlation
(top-and-random) -0.1136 90.29% -0.0029 51.78% ×
Spearman Correlation -0.0050 68.05% -0.0013 52.63% ×
Spearman Correlation
(top-and-random) -0.1113 79.94% -0.0013 50.99% ×
Cosine -0.1538 100.00% -0.1372 99.14% ✓
Cosine cubed -0.1074 99.34% -0.1047 99.96% ✓
WPMI -0.1808 94.26% -0.0296 99.96% ✓
MAD -0.0016 52.63% -0.1502 99.85% ×

Table 24: Old: Combined results of our missing labels and extra labels test. We can see most
evaluation metrics fail at least one of the tests.

Average Rank
Method Argmax Generation AUC Average
Recall 9.5 11.25 10.375
Precision 9.5 9 9.25
F1-score/IoU 6.25 9 7.625
Accuracy 9 8 8.5
Balanced Accuracy 7.75 7.5 7.625
Inverse Balanced Accuracy 8.5 8.75 8.625
AUC 7.75 9.75 8.75
Inverse AUC 11.75 11.75 11.75

Correlation 1.75 2.25 2
Correlation (top-and-random) 11.25 7.75 9.5
Spearman Correlation 16 16 16
Spearman Correlation (top-and-random) 14.75 12.5 13.625
Cosine 1.5 1.5 1.5
Cosine cubed 2.75 2.5 2.625
WPMI 4.25 6 5.125
MAD 7.25 6.5 6.875

Table 25: Old: Comparison of different evaluation metrics. Lower rank means better performance.
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