
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ELU-GCN: EFFECTIVELY LABEL-UTILIZING GRAPH
CONVOLUTIONAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The message-passing mechanism of graph convolutional networks (i.e., GCNs)
enables label information to be propagated to a broader range of neighbors, thereby
increasing the utilization of labels. However, the label information is not always
effectively utilized in the traditional GCN framework. To address this issue, we
propose a new two-step framework called ELU-GCN. In the first stage, ELU-GCN
conducts graph learning to learn a new graph structure (i.e., ELU-graph), which
enables GCNs to effectively utilize label information. In the second stage, we
design a new graph contrastive learning on the GCN framework for representation
learning by exploring the consistency and mutually exclusive information between
the learned ELU graph and the original graph. Moreover, we theoretically demon-
strate that the proposed method can ensure the generalization ability of GCNs.
Extensive experiments validate the superiority of the proposed method.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017; Gasteiger et al., 2018; Huang et al.,
2023a; Xu et al., 2018; Hamilton et al., 2017) have demonstrated remarkable capabilities, primarily
due to their ability to propagate label information. This capability has driven their widespread
applications in semi-supervised learning. To do this, GCN propagates the representations of unlabeled
neighbors to labeled nodes by message passing mechanism, thereby enabling label information to
supervise not only the labeled nodes but also their unlabeled neighbors (Ji et al., 2023; Dong et al.,
2021). Consequently, the framework of optimizing label utilization in GCNs (LU-GCN) has become
an increasingly prominent research topic (Wang et al., 2021; Yue et al., 2022; Yu et al., 2022).

Previous LU-GCN can be partitioned into three categories, i.e., self-training methods, combination
methods, and graph learning methods. self-training methods (Dong et al., 2021; Li et al., 2018;
Sun et al., 2020; Ji et al., 2023) select unlabeled nodes with the highest classification probability by
GCN as training data with pseudo-labels, and thus adding the number of labels to improve the GCN.
Combination methods (Wang et al., 2021; Yue et al., 2022; Shi et al., 2021) regard the labels as the
augment features so that labels can be used for both representation learning and classification tasks.
The feature propagation mechanism allows GCNs to use labels to supervise the representation of both
the node itself (i.e., traditional label utilization) and its unlabeled neighbors (i.e., neighboring label
utilization). However, the two LU-GCN methods mentioned above primarily focus on optimizing
traditional label utilization, neglecting the critical importance of neighboring label utilization in
semi-supervised scenarios. Yet, due to noise in the original graph structure, GCNs often struggle
to effectively utilize the neighboring labels. To address this issue, recent graph learning methods
(Zheng et al., 2020; Luo et al., 2021; Liu et al., 2022) are designed to improve the relationship of
every node and its neighbors by updating the graph structure, and thus may potentially improve the
neighboring label utilization. For example, Bi et al. (Bi et al., 2022) adopt the own and neighbors’
label similarity to rewire the graph, which can make features propagate on the same category nodes
as possible.

Although existing graph learning methods have achieved promising performance, there are still
some limitations that need to be addressed. First, previous methods have used heuristic approaches
or downstream tasks to learn the graph structure, but they have not explored what kind of graph
structures can make GCNs effectively utilize label information. As a result, the graph structures
in their methods cannot guarantee that the GCN effectively utilizes the label information. Second,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

existing graph learning methods fail to explore both the consistency information and the mutually
exclusive information between the new graph and the original graph, where they have consistent
information (i.e., consistency (Xu et al., 2024)), which helps recognize the node effectively, and every
graph contains unique and useful information different from another graph, i.e., mutually exclusive
information (Wang et al., 2017).

Based on the above observations, a possible solution to improving the effectiveness of GCNs is to
define a graph structure that can maximize label utilization during the message-passing process and
efficiently combine the original graph. To achieve this, two crucial challenges must be solved, i.e., (i)
it is difficult to evaluate whether a graph structure enables GCN to use labels effectively. (ii) it is
necessary to mine the consistency and mutually exclusive information between the original graph and
the new graph.

In this paper, to address the above issues, different from previous structure improvement methods,
we investigate a new framework, i.e., Effectively Label-Utilizing GCN (ELU-GCN for brevity), to
conduct effective GCN. To achieve this, we first explore the influence of each class provided by
labeled nodes on every unlabeled node. We then optimize the graph structure (i.e., ELU-graph) by
ensuring that the predictions of GCN align with the primary class information. This ensures that the
GCN with the ELU-graph can effectively utilize the label information, thereby addressing challenge
(i). Moreover, we address challenge (ii) by designing contrasting constraints to bring the consistency
information between two graph views (i.e., the original graph and the ELU-graph) closer and push
the mutually exclusive information further apart. Finally, we theoretically analyze that the proposed
ELU-graph can not only ensure GCN to effectively utilizes labels, but also improve the generalization
ability of the model. Compared with previous methods1, our main contributions can be summarized
as follows:

• To the best of our knowledge, we are the first attempt to study the limitation of GCNs that
cannot effectively utilize labels in the graph framework. Moreover, we provide a quantitative
framework to analyze which part of the nodes cannot effectively utilize the label information.

• We propose to adaptively construct the ELU-graph, which enables the GCN to utilize label
information effectively. Furthermore, we design a contrastive loss to leverage the consistency
and the mutually exclusive information between the ELU graph and the original graph.

• We theoretically prove that ELU-graph can ensure the generalization ability of GCN and
we experimentally manifest the effectiveness of the proposed method across a variety of
datasets, compared with numerous state-of-the-art methods.

2 METHOD

Notations. Given a graph G = (V,E,X,Y), where V is the node set and E is the edge set. Original
node representation is denoted by the feature matrix X ∈ Rn×d where n is the number of nodes
and d is the number of features for each node. The label matrix is denoted by Y ∈ Rn×c with
a total of c classes. The first m points xi(i ≤ m) are labeled as Yl, and the remaining u points
xi (m+ 1 ≤ i ≤ n) are unlabeled. The sparse matrix A ∈ Rn×n is the adjacency matrix of G. Let
D = diag(d1, d2, · · · , dn) be the degree matrix, where di =

∑
j∈Ni

aij is the degree of node i, the

symmetric normalized adjacency matrix is represented as Â = D̃− 1
2 ÃD̃− 1

2 where Ã = A+ I, I is
the identity matrix and D̃ is the degree matrix of Ã.

2.1 MOTIVATION

Given a classification function f : X → Rn×c, the cross entropy losses of Deep Neural Network
(DNN) and GCN are formulated by:

LDNN = CE(fθ(X),Y) = −
∑

i∈Vl,k∈C
yik(log fik)

LGCN = CE(Âfθ(X),Y) = −
∑

i∈Vl,k∈C
yik(log

∑
j∈Ni

âijfjk),
(1)

1Related works are summarized in Appendix C.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Label Influence (c) Predicted to Blue(b) Predicted to Orange

Class Influence I : Prediction of GCNPrediction of GCN

a aa

Figure 1: An illustration of effective label utilization. Sub-figure (a) wants to assign the label
information to node a (gray node) by one unlabeled node (gray node) and two labeled nodes with
different classes, i.e., one blue node and one orange node. Moreover, the LPA algorithm is employed
to obtain the probability of each labeled node to the node a, where the blue node has more influence
(or higher probability) than the orange node based on the histogram in the upper right of the sub-
figure (a). If the GCN predicts the node a as the orange color (as shown in sub-figure (b)), which
is inconsistent with the class with most label information (i.e., blue). It indicates that the label
information provided by the message passing of the GCN does not help classify the node a, and may
even hinder its correct classification. On the contrary, if GCN predicts the node a as the blue color,
i.e., sub-figure (c), it implies that the label information provided by the message passing of the GCN
helps to classify the node a.

where θ is the parameters of the function f . In Eq. (1), the cross entropy loss of DNN is a one-to-one
mapping between the feature space and the label space because every label yi (l = 1, ..., n) is only
used to supervise the representation learning of one node vi. The mapping f efficiently captures the
pattern and distribution of labeled nodes, but it overlooks unlabeled nodes so that the generalization
ability of unlabeled nodes is limited. In contrast, the cross entropy loss of the GCN is a one-to-many
mapping because its message-passing mechanism can propagate the information from labeled nodes
to their neighbors including labeled nodes and unlabeled nodes. As a result, every label yi is used
to supervise the representation learning of both labeled nodes and unlabeled nodes, as shown in the
second row of Eq. (1). Hence, unlabeled nodes in the GCN are able to use the label information
of labeled nodes to improve the learning of their representations. Obviously, it is very important
to guarantee that unlabeled nodes effectively utilize label information under the GCN framework.
However, to the best of our knowledge, no research has focused on this issue. To address this issue,
we first quantify the influence of every class on unlabeled nodes, and then make the class with the
highest influence (i.e., probability) on unlabeled nodes consistent with the prediction of the GCN to
effectively utilize the label information.

The recent study in (Xu et al., 2018) reveals that nodes follow the way of random walks to affect
other nodes on the graph. Therefore, in this paper, we extend it to obtain the influence of every class
of labeled nodes to the unlabeled node by Theorem 2.1, whose proof is provided in Appendix B.1.

Theorem 2.1. Given an unlabeled node vi (i = 1, ..., n), for an arbitrary category Cl (l = 1, ..., c),
the influence of labeled nodes belong to Cl on the i-th node vi is proportional to the probability that
node vi is classified as Cl by the Label Propagation Algorithm (LPA) in (Zhu, 2005), in the GCN
framework.

Based on Theorem 2.1, LPA can be utilized to calculate the probability of every class for unlabeled
nodes in the GCN framework. The class with the highest probability is considered the most important
for the unlabeled node, as it contributes the most label information. If the class that carries the most
label information to a node in the GCN framework is the same as the GCN prediction, it indicates that
the label information propagated by the message passing mechanism of the GCN positively influences
the classification result for that node. In this way, this node is regarded as effectively utilizing the
label information. We provide a case study to illustrate this in Figure 1 and give a formal definition
as follows.

Definition 2.2. (Effective label-utilization) The GCN effectively utilizes label information if the
prediction of GCN is consistent with the output of LPA, i.e.,

VELU = {V |LPA(G) = GCN(G)}, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ELU 60.4%

NELU39.6%

Cora

ELU 51.5% NELU48.5%

Citeseer

ELU
70.3%

NELU
29.7%

Pubmed

(a) Proportion

Cora Citeseer Pubmed0

20

40

60

80

Ac
cu

ra
cy

ELU
NELU

(b) Accuracy

Figure 2: Visualization of both ELU nodes and NELU nodes in three real datasets, i.e., Cora, Citerseer,
and Pubmed. (a) every dataset contains NELU nodes and (b) the classification comparison between
ELU nodes and NELU nodes, where ELU nodes have higher classification ability than NELU nodes.

where VELU and VNELU (i.e., VNELU = {V |LPA(G) ̸= GCN(G)}), respectively, represent the node
set which effectively utilizes the label information and the node set which does not effectively utilizes
the label information in the GCN framework.

In real applications, not all unlabeled nodes in GCN frameworks may effectively utilize the label
information due to all kinds of reasons, including noise and the distribution of labeled nodes in the
graph. Figure 2 shows that not all nodes effectively use label information in the GCN framework
(i.e., Figure 2 (a)) and the classification accuracy of VNELU is lower than that of VELU in the same
datasets (i.e., Figure 2 (b)). Obviously, NELU nodes influence the effectiveness of the GCN. To
address this issue, first, it is crucial to make unlabeled nodes effectively utilize label information.
Since label information is propagated through the graph structure. As a result, the graph structure will
be updated. Second, the original graph structures often contain noise to influence the message-passing
mechanism. Hence, graph learning is obviously a feasible solution.

2.2 ELU GRAPH

Previous graph learning methods generally use either heuristic methods or downstream tasks to
conduct graph learning, i.e., updating the graph structure. For example, Pro-GNN (Jin et al., 2020)
updates the graph structure through a heuristic approach to constrain the sparsity and smoothness of
the graph. PTD-Net (Luo et al., 2021) updates the graph structure by the downstream task, such as
the node classification task. However, heuristic methods rely on predefined rules, making it difficult
for unlabeled nodes to fully access label-related global information. Downstream task methods focus
too much on the performance of labeled nodes, neglecting the role of unlabeled nodes in the graph
structure. Therefore, these efforts cannot ensure unlabeled nodes effectively utilize label information.
To solve this issue, based on Definition 2.2, we investigate new graph learning methods that ensure
unlabeled nodes effectively utilize label information.

Specifically, denoting the adjacency matrix S as the ELU graph can ensure the GCN effectively uses
the label information, we use Theorem 2.1 to measure the influence of each class on every unlabeled
node by the LPA:

Q = SY, (3)
where the i-th row of Q ∈ Rn×c (i.e., Qi,:) represents the influence of each class on node i. It is
noteworthy that S in Eq. (3) can be the k-order of the graph structure. After that, the prediction of
GCN with ELU graph can be written as follows (Yang et al., 2023):

Ŷ = SH, s.t. H = MLP(X), (4)

where MLP(·) denotes a Multi-Layer Perceptron. Note that the MLP is pre-trained. Therefore, based
on Definition 2.2, the ELU graph (i.e., S) can be obtained by minimizing the following objective
function:

min
∥∥∥Q− Ŷ

∥∥∥2
F
= min

S
∥SY − SH∥2F . (5)

In Eq. (5), the prediction of GCN and the influence of each class are encouraged to be consistent for
every node. This item can make all nodes satisfy LPA(G) = GCN(G) in Eq. (2), i.e., this objective

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

function can ensure all nodes can effectively utilize label information by GCN. Therefore, we can
obtain the S through the optimization algorithm by minimizing the Eq. (5). However, there are some
problems with the above objective function. First, it is impracticable to solve the above problem
directly, as it has a trivial solution: si,j = 0,∀i,∀j. Second, LPA generates the prediction for every
labeled node to possibly revise the original labels, i.e., the ground truth, adding noisy labels for
representation learning. To overcome the above issues, We propose to iteratively update in two steps,
i.e., update labels by LPA and update the graph structure S.

In the first step, we calculate the result of LPA Q(i), i.e., Q(i) = S(i−1)Q(i−1), (i = 1, . . . , k), where
Q(0) = Y and we initialize S(0) = IN. As a result, Eq.(5) is changed as follows:

min
S

∥∥∥Q(i) − SH
∥∥∥2
F
+ β

∑
i,j=1

s2i,j , s.t. Q
(i)
l = Yl, (6)

where β is a non-negative parameter to trade off two terms, the second term can make the subsequent
matrix inversion more stable. Eq. (6) holds the closed-form solution to address the first issue. The
constraint term “s.t. Q

(i)
l = Yl” term solves the second issue.

In the second step, we can obtain its closed-form solution, which is listed as follows and its details
are in Appendix B.2:

S(i) = H(Q(i))T
(
HHT + βIN

)−1
, (7)

where IN ∈ Rn×n is the identity matrix.

Finally, we iteratively optimize Eq. (7) and Q(i) = S(i−1)Q(i−1) to obtain the ELU graph S∗.

However, the calculation of S(i) in Eq. (7) is with the time complexity of O(n3). In this paper, we
use the Woodbury identity (Woodbury, 1950) to avoid calculating S(i) during the iteration process by
Q(i) = S(i−1)Q(i−1), i.e.,

Q(i) = H(Q(i−1))T

(
1

β
IN −

1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
Q(i−1), s.t. Q

(i)
l = Yl, (8)

where Ic ∈ Rc×c is the identity matrix and the specific derivation process is listed in the Appendix
B.3. Based on the literature (Woodbury, 1950), we can obtain the time complexity of Eq. (8) is
O(nc2 + c3), where c3 ≪ n. The details are provided in Appendix A.1.

Based on Eq. (8), we obtain Q(i) (i = 1, . . . , k) from Q(i−1). After obtaining Q(k), we obtain the
ELU graph S∗ by calculating Eq. (7) only one time. To achieve efficiency, we employ the Woodbury
identity to reduce the time complexity of calculating from cubic to quadratic, i.e.,

S∗ = H(
1

β
(Q(k))T − 1

β2
(Q(k))TH

(
Ic +

1

β
HTH

)−1

HT). (9)

The details of Eq. (9) are listed in Appendix A.2. The pseudocode of calculating Eq. (8) and S∗ is
presented in Algorithm 1. In the implementation, we make S∗ sparse by assigning its element less
than a threshold as zero, for achieving efficiency. We also use the pseudo labels of ELU nodes to
expand the initial Y, for avoiding the issue of limited labels in semi-supervised learning.

2.3 GRAPH CONTRASTIVE LEARNING

Given the ELU graph S∗ and the original graph Â, previous graph learning methods often conduct
a weighted fusion. For instance, SimP-GCN (Jin et al., 2021) employs a hyperparameter as a
weight to fuse the node representation from the original graph with those from the feature similarity
graph. However, only performing the weighted sum method may result in incorporating undesirable
information from the original graph into the ELU graph. For example, the representation of a NELU
node from the original graph might interfere with the learned representation of the corresponding
node in the ELU graph. To solve this issue, in this paper, we propose a new contrastive learning
paradigm to capture the consistency and mutually exclusive information between these two graphs.

In the ELU graph S∗, all nodes are theoretically ELU nodes. However, the original graph Â includes
ELU nodes and NELU nodes. Obviously, in representation learning, the representations of ELU

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

nodes in both S∗ and Â should be consistent for keeping common information related to the class,
the representations of NELU nodes in Â should be different from their representation in S∗. To do
this, we first propose to learn a projection head pθ to map both the ELU graph representations and the
original graph representations into the same latent space, i.e., P = pθ(H) and P̃ = pθ(H̃), where
H is the representation of the output layer of the GCN dominated by the original graph, and H̃ is
the representation of the output layer of the GCN dominated by the ELU graph. We then design a
contrastive loss as follows:

Lcon =− log

1
|VELU|

∑VELU

i=0 exp(d(Pi, P̃i)/τ)

1
|VELU|

∑VELU

i=0 exp(d(Pi, P̃i)/τ) +
1

|VNELU|
∑VNELU

j=0 exp(d(Pj , P̃j)/τ)

+ γ log

 d∑
i,j=1

eP
T
P+P̃T P̃

 (10)

where d(·) is distance function, τ denotes the temperature parameter and γ is a hyper-parameter.

In Eq. (10), the first term encourages minimizing the distance between every ELU node in the ELU
graph and its corresponding node in the original graph, while maximizing the distance between
every NELU node in the original graph and its corresponding node in the ELU graph. The second
term ensures that different dimensions of the representation matrices (i.e., P and P̃) are uniformly
distributed over the latent space, thereby avoiding the issue of feature collapse. As a result, Eq. (10)
is available to extract the consistency and mutually exclusive information between the representations
dominated by the ELU graph and the original graph.

Finally, the final objective function of our proposed method is obtained by integrating the contrastive
loss with the supervised loss (i.e., cross entropy) as follows:

L = CE((1− η)Softmax(H) + (η)Softmax(H̃),Y) + λLcon (11)
where η, λ ∈ [0, 1] are hyper-parameters to fuse the predicted results of two views and two objective
functions, respectively.

2.4 THEORETICAL ANALYSIS

The ELU graph has been shown to effectively utilize the label information in Section 2.1. In this
section, we theoretically analyze that the generalization ability of the GCN is related to the graph
structure and the training labels by Theorem 2.3 (The proof can be found in Appendix B.4):
Theorem 2.3. Given a graph G with its adjacency matrix A, the label matrix in the training set Y
and the label matrix of the ground truth Ytrue, for any unlabeled nodes, if a graph structure makes
the labels in training set be consistent to the ground truth, i.e., Ytrue = AY, then the upper bound
of the generalization ability of the GCN is optimal.

Based on Theorem 2.3, the graph structure A maximizes the generalization ability of the GCN if the
following equation holds, i.e., minA ∥AY −Ytrue∥2F . Therefore, the graph structure can be used to
measure if it is suitable for GCN. However, the true labels Ytrue are fixed and unknown. Moreover,
the original graph is also fixed so that it is difficult to achieve minA ∥AY −Ytrue∥2F . Hence, the
original graph should be updated. We then present the following theorem. The proof is listed in
Appendix B.5.
Theorem 2.4. The optimization Eq. (5) is equivalent to an approximate optimization of minA ∥AY−
Ytrue∥2F .

Theorem 2.4 indicates that the ELU graph can ensure the generalization ability of the GCN.

3 EXPERIMENTS

In this section, we conduct experiments on eleven public datasets to evaluate the proposed method
(including citation networks, Amazon networks, social networks, and web page networks), com-
pared to structure improvement methods2. Detailed settings are shown in Appendix F. Additional
experimental results are shown in Appendix G.

2The code is released at https://anonymous.4open.science/r/ELU-GCN-8CAE

6

https://anonymous.4open.science/r/ELU-GCN-8CAE

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on node classification task. The highest results are highlighted in bold. "OOM"
denotes out of memory.

Method Cora Citeseer pubmed Computers Photo Chameleon squirrel
GCN 81.61±0.42 70.35±0.45 79.01±0.62 81.62±2.43 90.44±1.23 60.82±2.24 43.43±2.18

GAT 83.03±0.71 71.54±1.12 79.17±0.38 78.01±19.1 85.71±20.3 40.72±1.55 30.26±2.50

APPNP 83.33±0.62 71.80±0.84 80.10±0.21 82.12±3.13 88.63±3.73 56.36±1.53 46.53±2.18

GPRGNN 80.55±1.05 68.57±1.22 77.02±2.59 81.71±2.84 91.23±2.59 46.85±1.71 31.61±1.24

PCNet 82.81±0.50 69.92±0.70 80.01±0.88 81.82±2.31 89.63±2.41 59.74±1.43 48.53±1.12

GCN-LPA 83.13±0.51 72.60±0.80 78.64±1.32 83.54±1.41 90.13±1.53 50.26±1.38 42.78±2.36

N.S.-GCN 82.12±0.14 71.55±0.14 79.14±0.12 81.16±1.53 89.86±1.86 55.37±1.64 46.86±2.02

PTDNet-GCN 82.81±0.23 72.73±0.18 78.81±0.24 82.21±2.13 90.23±2.84 53.26±1.44 41.96±2.16

CoGSL 81.76±0.24 72.79±0.42 OOM OOM 89.63±2.24 52.23±2.03 39.96±3.31

NodeFormer 80.28±0.82 71.31±0.98 78.21±1.43 80.35±2.75 89.37±2.03 34.71±4.12 38.54±1.51

GSR 83.08±0.48 72.10±0.25 78.09±0.53 81.63±1.35 90.02±1.32 62.28±1.63 50.53±1.93

BAGCN 83.70±0.21 72.96±0.75 78.54±0.72 79.63±2.52 91.25±0.96 52.63±1.78 42.36±1.53

ELU-GCN 84.04±0.39 73.17±0.62 80.51±0.21 83.72±2.31 90.80±1.33 70.59±1.76 60.91±1.81

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

The used datasets include three benchmark citation datasets (Sen et al., 2008) (i.e., Cora, Citeseer,
and Pubmed), two co-purchase networks (Shchur et al., 2018) (i.e., Computers and Photo), two web
page networks (Pei et al.) (i.e., Chameleon and Squirrel), which are heterophilic graph data), and
four social network datasets (Traud et al., 2012) (i.e., Caltech, UF, Hamilton, and Tulane).

3.1.2 COMPARISON METHODS

The comparison methods include three traditional GNN methods, two advanced GNN methods, and
seven structure improvement-based GCN methods. Traditional GNN methods include GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), and APPNP (Gasteiger et al., 2018). The advanced
GNN methods include GPRGNN (Chien et al., 2021) and PCNet (Li et al., 2024). The structure
improvement-based GCN methods include GCN-LPA (Wang & Leskovec, 2021), NeuralSparse-GCN
(Zheng et al., 2020), PTDNet-GCN (Luo et al., 2021), CoGSL (Liu et al., 2022), NodeFormer (Wu
et al., 2022), GSR (Zhao et al., 2023) and BAGCN (Zhang et al., 2024).

3.1.3 EVALUATION PROTOCOL

To evaluate the effectiveness of the proposed method, we follow the commonly used setting. Specifi-
cally, for the citation network (i.e., Cora, Citeseer, and Pubmed), we use the public split recommended
by (Kipf & Welling, 2017) with fixed 20 nodes per class for training, 500 nodes for validation, and
1000 nodes for testing. For Social networks (i.e., Caltech, UF, Hamilton, and Tulane), we randomly
generate different data splits with an average train/val/test split ratio of 60%/20%/20%. For the
Webpage network (i.e., Chameleon, Squirrel) and co-purchase networks (i.e., Computers, Photo), we
all use the public splits recommended in the original papers.

3.2 RSULTS ANALYSIS

3.2.1 EFFECTIVENESS ANALYSIS

We first evaluate the effectiveness of the proposed method by reporting the results of node classi-
fication in Table 1 and Appendix G, respectively. Obviously, the proposed method obtains better
performance on seven datasets than comparison methods.

First, compared with traditional GNN methods and advanced GNN methods. the proposed ELU-GCN
outperforms them by large margins on most datasets. For example, the proposed ELU-GCN on
average improves by 4.05 %, compared to GCN, and improves by 3.26 % compared to the best
advanced GCN method (i.e., PCNet), on all datasets. This demonstrates the superiority of graph

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation study.

Method Cora Citeseer pubmed Computers Photo Chameleon squirrel
GCN 81.61±0.42 70.35±0.45 79.01±0.62 81.62±2.43 90.44±1.23 60.82±2.24 43.43±2.18

+ELU graph 83.49±0.55 72.02±0.36 80.25±0.79 82.56±1.23 90.52±1.33 65.12±1.43 54.12±1.32

+Lcon 84.04±0.39 73.17±0.62 80.51±0.21 83.72±2.31 90.80±1.33 70.59±1.76 60.91±1.81

structure learning methods, as the label information cannot be effectively utilized for many nodes
in the original graph. Second, compared to the improvement methods, the proposed ELU-GCN
achieves the best results, followed by GSR, GCN-LPA, CoGSL, PTDNet-GCN, NeuralSparse-GCN,
and NodeFormer. For example, our method on average improves by 2.21% compared to the best
comparison method GSR on all seven datasets. This can be attributed to the fact that the proposed
ELU-GCN, which can obtain a graph structure (i.e., the ELU graph) that is more suitable for the
GCN model to effectively utilize the label information and efficiently mine the consistency and
mutually exclusive information between the original graph and the newly obtained graph. In addition,
the Webpage networks (i.e., Chameleon and Squirrel) are heterophilic graphs. As mentioned in the
theoretical analysis section, the original graph is difficult to guarantee the generalization ability of
GCN, especially for heterophilic graphs. Experimental results show that the proposed ELU-GCN
outperforms the GCN using the original heterophilic graph by an average of 9.5%, confirming the
results of our theoretical analysis. Consequently, the effectiveness of the proposed method is verified
in node classification tasks.

We further evaluate the effectiveness of the proposed method on social network datasets and report
the results of node classification in Appendix G.1. We can observe that the proposed method also
achieves competitive results on the social network datasets compared to other baselines. For example,
the proposed method outperforms the best baseline (i.e., GSR), on almost all datasets.

3.2.2 ABLATION STUDY

The proposed ELU-GCN framework investigates the ELU graph to enable the GCN to utilize label
information effectively. Additionally, a contrastive loss function (i.e., , Lcon) is introduced to
efficiently minimize consistency and mutually exclusive information between the original graph and
the ELU graph. To verify the effectiveness of each component of the proposed method and the results
are reported in Table 2.

According to Table 2, we can draw the following conclusions. First, our proposed method achieves the
best performance when each component is present, indicating that each is essential. This demonstrates
the importance of both learning the ELU graph and extracting information from the original graph, as
they not only enable GCN to effectively utilize labels but also retain important information in the
original graph. Second, the ELU graph component provided the biggest improvement. For example,
the ELU graph improves performance by an average of 2.9% compared to not considering it, and
the Lcon term improves performance by an average of 1.3% compared to not considering it. This
illustrates the importance of enabling nodes to effectively utilize the label information.

3.2.3 VISUALIZATION

To verify the effectiveness of the learned ELU graph, we visualize the adjacency matrix of the ELU
graph in the heatmap on the Cora, Computers, Photo, and Chameleon datasets and report the results
in Figure 3.

Specifically, the rows and columns of heatmaps are reordered by node labels. In the heatmaps, the
lighter a pixel, the larger the value of the ELU graph matrix weight. From Figure 3, we observe that
the heatmaps exhibit a clear block diagonal structure, with each block corresponding to a category.
This indicates that the obtained ELU graph tends to increase the weight connections between nodes
of the same category and avoid noisy connections from different classes. As a result, the training
labels will be transferred to nodes of the same category under the GCN framework with a high
probability, thereby reducing intra-class variance and increasing inter-class distance. Especially on
the Chameleon dataset, where the original graph tends to connect nodes with different labels with a
high probability (i.e., heterophily). Fortunately, our method can still obtain a graph structure where

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(a) Cora

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

(b) Computers

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

(c) Photo

0 500 1000 1500 2000

0

500

1000

1500

2000

(d) Chameleon

Figure 3: Visualization of the adjacency matrix of the ELU graph on Cora, Computers, Photo, and
Chameleon datasets.

nodes are connected with the same category, as shown by the experimental results, demonstrating the
universality of our method.

3.2.4 GENERALIZATION GAP ANALYSIS

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
os

s

GCN_train_loss
GCN_val_loss

(a) G.G. of GCN on Cora

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
os

s

ours_train_loss
ours_val_loss

(b) G.G. of ours on Cora

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
os

s
GCN_train_loss
GCN_val_loss

(c) G.G. of GCN on Citeseer

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
os

s

ours_train_loss
ours_val_loss

(d) G.G. of ours on Citeseer

Figure 4: Visualization of the generalization gap (i.e., G.G) of our model (i.e., ELU-GCN) and GCN
on Cora and Citeseer datasets.

As Theorem 2.4 mentioned the proposed ELU-GCN can ensure the generalization ability but GCN
using the original graph cannot (i.e., traditional GCN). Therefore, to verify the generalization ability,
we introduce the generalization gap (Keskar et al., 2016), which is the gap between the training loss
and validating loss. A small gap between the two losses indicates a model with good generalization.
We visualize the generalization gap of ELU-GCN and GCN on Cora and Citeseer datasets, the results
are shown in Figure 4.

Specifically, the proposed ELU-GCN shows a small generalization gap, compared to GCN. For
example, the proposed method’s generalization gap on the Cora and Citeseer datasets is approximately
63.6% and 26.7% lower than that of GCN, respectively. This is consistent with the observation in
Theorem 2.4 and further verifies the effectiveness of the proposed ELU-GCN.

4 CONCLUSION

In this paper, we study the label utilization of GCN and reveal that a considerable number of unlabeled
nodes cannot effectively utilize label information in the GCN framework. Furthermore, we propose a
standard for determining which unlabeled nodes can effectively utilize label information in the GCN
framework. To make more nodes to effectively utilize label information. We propose an effective
label-utilizing graph convolutional network framework. To do this, we optimize the graph structure by
constraining every node effectively using label information. Moreover, we design a novel contrastive
loss to minimize consistency or mutually exclusive information between the original graph and the
ELU graph. Our theoretical analysis demonstrates that ELU-GCN provides superior generalization
capabilities compared to conventional GCNs. Extensive experimental results further validate that our
method consistently outperforms state-of-the-art methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations(ICLR), 2021.

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophily
graphs better fit gnn: A graph rewiring approach. arXiv preprint arXiv:2209.08264, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning(ICML), pp. 1725–1735.
PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pager-
ank graph neural network. In International Conference on Learning Representations, (ICLR).
OpenReview.net, 2021.

Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting a graph to vector data. In
Proceedings of the 26th annual international conference on machine learning (ICML), pp. 201–208,
2009.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence(TPAMI), (2):224–227, 1979.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information processing
systems(NeurIPS), volume 29, pp. 3837–3845, 2016.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In Proceedings of
the Web Conference(WWW), pp. 3651–3662, 2021.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, (ICLR), 2018.

Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the trade-
off between over-smoothing and over-squashing in deep graph neural networks. In Proceedings of
the 32nd ACM International Conference on Information and Knowledge Management(CIKM), pp.
566–576, 2023.

Shengbo Gong, Jiajun Zhou, Chenxuan Xie, and Qi Xuan. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM), pp. 3908–3912,
2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems(Neurips), pp. 1025–1035, 2017.

Jincheng Huang, Lun Du, Xu Chen, Qiang Fu, Shi Han, and Dongmei Zhang. Robust mid-pass
filtering graph convolutional networks. In Proceedings of the Web Conference(WWW), pp. 328–338,
2023a.

Jincheng Huang, Ping Li, Rui Huang, Na Chen, and Acong Zhang. Revisiting the role of heterophily
in graph representation learning: An edge classification perspective. ACM Transactions on
Knowledge Discovery from Data(TKDD), 18:13:1–13:17, 2023b.

Jincheng Huang, Jialie Shen, Xiaoshuang Shi, and Xiaofeng Zhu. On which nodes does GCN fail?
enhancing GCN from the node perspective. In Forty-first International Conference on Machine
Learning (ICML), 2024.

Feng Ji, See Hian Lee, Hanyang Meng, Kai Zhao, Jielong Yang, and Wee Peng Tay. Leveraging label
non-uniformity for node classification in graph neural networks. In International Conference on
Machine Learning(ICML), pp. 14869–14885, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
learning-convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11313–11320, 2019.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining (SIGKDD), pp. 66–74, 2020.

Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity preserving
graph convolutional networks. In Proceedings of the 14th ACM international conference on web
search and data mining (WSDM), pp. 148–156, 2021.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations(ICLR), 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, (ICLR), 2017.

Bingheng Li, Erlin Pan, and Zhao Kang. Pc-conv: Unifying homophily and heterophily with two-
fold filtering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
13437–13445, 2024.

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. GΘ2 cn: Graph gaussian
convolution networks with concentrated graph filters. In International Conference on Machine
Learning(ICML), pp. 12782–12796. PMLR, 2022.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data mining(SIGKDD),
pp. 338–348, 2020.

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM Web Conference (WWW)),
pp. 1601–1610, 2022.

Songtao Liu, Jinghui Chen, Tianfan Fu, Lu Lin, Marinka Zitnik, and Dinghao Wu. Graph adversarial
diffusion convolution. In Forty-first International Conference on Machine Learning (ICML), 2024.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM international conference on web search and data mining(WSDM), pp. 779–787, 2021.

Parth Natekar and Manik Sharma. Representation based complexity measures for predicting general-
ization in deep learning. arXiv preprint arXiv:2012.02775, 2020.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring gener-
alization in deep learning. Advances in neural information processing systems(NeurIPS), 30:
5947–5956, 2017.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International
Conference on Machine Learning(ICML), volume 202, pp. 25956–25979, 2023.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations
(ICLR), year = 2020,.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI), pp. 1548–1554.
ijcai.org, 2021.

Ke Sun, Zhouchen Lin, and Zhanxing Zhu. Multi-stage self-supervised learning for graph convo-
lutional networks on graphs with few labeled nodes. In Proceedings of the AAAI conference on
artificial intelligence (AAAI), volume 34, pp. 5892–5899, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations(ICLR), 2022.

Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
(ICLR). OpenReview.net, 2018.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Proceedings of
the 23rd International Conference on Machine Learning (ICML), pp. 985–992, 2006.

Hongwei Wang and Jure Leskovec. Combining graph convolutional neural networks and label
propagation. ACM Transactions on Information Systems (TOIS), 40(4):1–27, 2021.

Xiaobo Wang, Xiaojie Guo, Zhen Lei, Changqing Zhang, and Stan Z Li. Exclusivity-consistency
regularized multi-view subspace clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 923–931, 2017.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for
node classification with graph neural networks. arXiv preprint arXiv:2103.13355, 2021.

Max A Woodbury. Inverting modified matrices. Department of Statistics, Princeton University, 1950.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems (NeurIPS), 35:27387–27401, 2022.

Zhihao Wu, Zhao Zhang, and Jicong Fan. Graph convolutional kernel machine versus graph
convolutional networks. Advances in neural information processing systems (NeurIPS), 36, 2024.

Jie Xu, Yazhou Ren, Xiaolong Wang, Lei Feng, Zheng Zhang, Gang Niu, and Xiaofeng Zhu.
Investigating and mitigating the side effects of noisy views for self-supervised clustering algorithms
in practical multi-view scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 22957–22966, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning(ICML), pp. 5453–5462. PMLR, 2018.

Cheng Yang, Chengdong Yang, Chuan Shi, Yawen Li, Zhiqiang Zhang, and Jun Zhou. Calibrating
graph neural networks from a data-centric perspective. In Proceedings of the ACM on Web
Conference (WWW), pp. 745–755, 2024.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In International Conference on Learning
Representations(ICLR), 2023.

Le Yu, Leilei Sun, Bowen Du, Tongyu Zhu, and Weifeng Lv. Label-enhanced graph neural network
for semi-supervised node classification. IEEE Transactions on Knowledge and Data Engineering,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for semi-
supervised graph classification. In Advances in Neural Information Processing Systems (Neurips),
volume 35, pp. 29350–29361, 2022.

Acong Zhang, Jincheng Huang, Ping Li, and Kai Zhang. Building shortcuts between distant nodes
with biaffine mapping for graph convolutional networks. ACM Transactions on Knowledge
Discovery from Data (TKDD), 18(6):1–21, 2024.

Jianan Zhao, Qianlong Wen, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. Self-supervised graph
structure refinement for graph neural networks. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining (WSDM), pp. 159–167, 2023.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

A COMPLEXITY

A.1 COMPLEXITY OF EQ. 8

As mentioned above, by changing the order of matrix multiplication, the time complexity can be
reduced, the Eq. 8 is as follows:

Q(i) = H(Q(i−1))T

(
1

β
IN −

1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
Q(i−1)

= H(Q(i−1))T

(
1

β
Y − 1

β2
H

(
Ic +

1

β
HTH

)−1

HTQ(i−1)

)
.

(12)

We first let B = 1
β2H

(
Ic +

1
βH

TH
)−1

HTQ(i−1) and compute it from right to left. Specifically,

the matrix inversion operation on a c × c matrix is O(c3). Therefore, the overall time complexity
of S ∈ Rn×c is O(nc2 + c3), where c ≪ n. Then we can compute H(Q(i−1))TB, likewise, we
calculate it from right to left, this can reduce the time complexity from O(n2c) to O(nc2). Therefore
the overall time complexity of calculating Eq. 8 is O(nc2 + c3). This significantly improves the
model efficiency.

A.2 COMPLEXITY OF EQ. 9

Calculating S∗ by eq.(7) will result in O(n3) computational cost, which leads to significant memory
overhead on large datasets. Thus, we first use the Woodbury identity matrix transformation by
Appendix B.3, then the Eq. 7 can be transformed as:

S∗ = H(Q(i))T
(
HHT + βIN

)−1
= H(Q(i))T

(
1

β
I− 1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
. (13)

Then, we can transform the calculation order to reduce memory and time overhead as follows:

S∗ = H(Q(i))T

(
1

β
I− 1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)

= H(
1

β
(Q(i))T − 1

β2
(Q(i))TH

(
Ic +

1

β
HTH

)−1

HT)

(14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We first let P = 1
β2 (Q

(i))TH
(
Ic +

1
βH

TH
)−1

HT and calculate (Q(i))TH, wich time complexity

is O(nc2), then we can get a c× c matrix (Q(i))TH, the time complexity of
(
Ic +

1
βH

TH
)−1

is

O(c3), thus the overall complexity of P is O(nc2 + c3). Finally, the complexity of HP is O(n2c),
since c is the number of classes, it have c≪ n. Therefore, the complexity grows quadratically with
the number of samples i.e., O(n2).

B THEORETICAL PROOF

B.1 PROOF FOR THEOREM 2.1

Proof. To prove Theorem 2.1, we first introduce a lemma to describe the influence of a node on the
other node:

Lemma B.1. (Xu et al., 2018) Assume that the activation function of GCN is ReLU. Let P a→b
k be a

path [v(k), v(k−1), · · · , v(0)] of length k from node va to node vb, where v(k) = va, v
(0) = vb, and

v(i−1) ∈ Nv(i) for i = k, · · · , 1. Then we have the influence of node va on vb is:

I (vb, va; k) =
∑
P b→a

k

1∏
i=k

ãv(i−1),v(i) , (15)

where ãv(i−1),v(i) is the weight of the edge (v(i), v(i−1)).

The total influence is to sum over all lengths path. From Lemma B.1, we can easily obtain the
influence of all labeled nodes with label y1 on va is

I ({vb : yv = y1}, va) =
∑

vb:yb=y1

k∑
j=1

∑
P b→a

j

1∏
i=j

ãv(i−1),v(i) . (16)

For LPA, is a random walk algorithm starting from the label node, we denote the classified probability
of node va in the y1 dimension (i.e., y1 category) as ya[y1]. It is clear that

ya [y1] =
ya [y1]

′∑
yi∈y ya [yi]

s.t., ya [y1]
′
=

∑
vb:yb=y1

k∑
j=1

∑
P b→a

j

1∏
i=j

ãv(i−1),v(i) . (17)

Thus, we can get ya [y1] ∝ I ({vb : yv = y1}, va).

B.2 CLOSED-FORM SOLUTION

Given the objective function in Eq. 6, we let

L =
∥∥∥Q(i) − SH

∥∥∥2
F
+ β

∑
i,j=1

s2i,j

= Tr((Q(i) − SH)T (Q(i) − SH)) + 2βS

(18)

where Tr(·) indicates the trace of matrix. Then we have

∂L
∂S

= −2(Q(i))TH+ 2SHHT + 2βS (19)

Let Eq. 19 equal to 0, we can obtain the closed-form solution S(i) i.e.,

S(i) = H(Q(i))T
(
HHT + βIN

)−1
. (20)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 THE WOODBURY IDENTITY

Given four matrices i.e., A ∈ Rn×n, U ∈ Rn×k, B ∈ Rk×k, V ∈ Rk×n. We adopt a variation
commonly used by the Woodbury identity (Woodbury, 1950) is as follows:

(A+UBV)−1 = A−1 −A−1U
(
B−1 +VA−1U

)−1
VA−1 (21)

Without loss of generality, the matrix A and B can be replaced with the identity matrix, therefore,
we further have

(I+UV)−1 = I−U(I+VU)−1V (22)
We can replace the matrices U,V with the matrix H in Eq. 22, thus, we have:(

HHT + βIN
)−1

=
1

β
I− 1

β2
H

(
Ic +

1

β
HTH

)−1

HT . (23)

Therefore, based on Eq. 23, we can transform Q(i) = S(i−1)Q(i−1) as:

Q(i) = S(i−1)Q(i−1)

= H(Q(i−1))T

(
1

β
IN −

1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
Q(i−1).

(24)

B.4 PROOF FOR THEOREM 2.3

Theorem B.2. Given a graph G with adjacency matrix A, training set node label Y and ground
truth label Ytrue. For any unknown-label nodes, if Ytrue = LPA(A,Y), then the upper bound of
the GCN’s generalization ability reaches optimal on graph G.

Proof. To prove the Theorem 2.3, We first introduce the Complexity Measure to help us understand
the generalization ability of GCN. It is the current mainstream method to measure the generalization
ability of the model (Neyshabur et al., 2017), which describes the a lower complexity measure
means a better generalization ability. We follow (Natekar & Sharma, 2020) to adopt Consistency
of Representations as our Complexity Measure, which is designed based on the Davies-Bouldin
Index (Davies & Bouldin, 1979). Formally, for a given dataset and a given layer of a model, the
Davies-Bouldin Index can be written as follows:

Sa =

(
1

na

na∑
τ

∣∣∣O(i)
a − µOa

∣∣∣p)1/p

for a = 1 · · · k (25)

Ma,b = ∥µOa − µOb
∥p for a, b = 1 · · · k, (26)

where a, b are two different classes, O(i)
a is the GCN smoothed feature of node i belonging to class a,

µOa
is the cluster centroid of the representations of class a, here we set p = 2, thus Sa measures the

intra-class distance of class a and Ma,b is a measure of inter-class distance between class a and b.
Then, we can define complexity measure based on the Davies-Bouldin Index as follows:

C =
1

k

k−1∑
i=0

max
a ̸=b

Sa + Sb

Ma,b
. (27)

We define P0 as the probability that a node’s neighbor belongs to the ’0-th’ class, and I0 as the
probability that the node itself belongs to the ’0-th’ class. Thus, we can calculate the cluster centroid
after GCN smoothed features:

µO0
= E[Oi

0] = E[W
∑
j∈Ni

1

di
Xj]

= W(I0P0µX0
+ I0(1− P0)µX1

),

(28)

where Xj is the ’j-th’ node feature and µXi
is the cluster centroid of the node features of class i.

Likewise, we have:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

µO1
= W(I1P1µX1

+ I1(1− P1)µX0
). (29)

Then, the M0,1 can be computed by:

M0,1 = ∥µOa
− µOb

∥
= ∥W(I0P0µX0 + I0(1− P0)µX1 − (I1P1µX1 + I1(1− P1)µX0))∥
= ∥W(I0P0µX0

+ I0µX1
− I0P0µX1

− I1P1µX1
− I1µX0

+ I1P1µX0
)∥

= (I0P0 + I1P1) ∥W(µX0
− µX1

)∥+ ∥I0µX1
− I1µX0

∥
≤ (I0P0 + I1P1) ∥W(µX0

− µX1
)∥+ ∥µX1

∥+ ∥µX0
∥ .

(30)

Then S2
0 is calculated by:

S2
0 = E

[∥∥∥O(i)
0 − µO0

∥∥∥2] = E
[
< O

(i)
0 − µO0 , O

(i)
0 − µO0 >

]
= E[(I0P0)(I0P0(X0 − µX0

)TWTW(X0 − µX0
))]

+ E[I0(1− P0)I0(1− P0)(X1 − µX1
)TWTW(X1 − µX1

))]

= I20P
2
0E[∥W(X0 − µX0)∥] + I20 (1− P0)

2E[∥W(X1 − µX1)∥].

(31)

Similarly, we have:

S2
1 = E

[∥∥∥O(i)
1 − µO1

∥∥∥2] = E
[
< O

(i)
1 − µO1

, O
(i)
1 − µO1

>
]

= E[(I1P1)(I1P1(X1 − µX1
)TWTW(X1 − µX1

))]

+ E[I1(1− P1)I1(1− P1)(X0 − µX0)
TWTW(X0 − µX0))]

= I21P
2
1E[∥W(X1 − µX1

)∥] + I21 (1− P1)
2E[∥W(X0 − µX0

)∥],

(32)

where < ·, · > is inner production. For simplicity, let σ2
0 = E[∥W(X0 − µX0)∥] and σ2

1 =
E[∥W(X1 − µX1

)∥], then the above equation can then be simplified to:

S2
0 = (I0P0)

2σ2
0 + (I0(1− P0))

2σ2
1 ≥ I20

σ2
0σ

2
1

σ2
0 + σ2

1

. (33)

Similarly, we have:

S2
1 = (I1P1)

2σ2
1 + (I1(1− P1))

2σ2
1 ≥ I21

σ2
0σ

2
1

σ2
0 + σ2

1

. (34)

Then the complexity measure can be represented as:

C =

√
S2
0 + S2

1 + 2S0 · S1

M0,1
≥ 2σ0σ1(I0 + I1)

2√
σ2
0 + σ2

1 · ((I0P0 + I1P1) ∥W(µX0
− µX1

)∥+ ∥µX1
∥+ ∥µX0

∥)
.

(35)
Thus, we obtain a lower bound of complexity measure. Also this is the upper bound of the gen-
eralization ability. Notice that σ0 and σ1 could not be zero, otherwise, the classification problem
is meaningless. We observe the above equation for nodes with unknown labels and analysis the
relationship between the distribution of label I0, I1 and the lower bound of complexity measure, we
find that the probability of their own label (i.e., I0 or I1) and the probability of their neighbors’ labels
(i.e., P0 or P1) affect the upper bound on their generalization ability. Since I0 + I1 = 1, we analyze
term (I0P0 + I1P1),

(I0P0 + I1P1) =
1

n

n∑
i

I0,iP0,i + I1,iP1,i (36)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where I0,i ∈ {0, 1} is the binary probability that the ’i-th’ node label belongs to class 0 where
I1,i = 1− I0,i and P0,i is the probability that the ’i-th’ node whose neighbor belongs to class 0. In
order to minimize the lower bound of complexity measure, i.e., to maximize the upper bound of
generalization ability, it is necessary to maximize (I0P0 + I1P1) here. Obviously, the maximum
(I0P0 + I1P1) is obtained at I0,i = argmax(P1,iP0,i).

Let’s look at the Label Propagation Algorithm(LPA). For nodes with unknown labels,

ŷi =
1

di

∑
j∈Ni

yj . (37)

Then the probability that the LPA predicts that the ’i-th’ node belongs to class 0 can be obtained:

Î0,i = argmax(
1

di

∑
j∈Ni

yi == 1,
1

di

∑
j∈Ni

yi == 0) = argmax(P1,iP0,i). (38)

Similarly, the probability of predicting the ’i-th’ node to belong to class 1 is:

Î1,i = argmax(
1

di

∑
j∈Ni

yi == 0,
1

di

∑
j∈Ni

yi == 1) = argmax(P0,iP1,i). (39)

Thus, the upper bound on the generalization ability is maximized when the labels of the unknown
label set are distributed as LPA-generated labels.

B.5 PROOF FOR THEOREM 2.4

Theorem B.3. The ELU graph can ensure the generalization ability of the GCN, potentially bringing
it closer to optimal performance.

Proof. Recall our objective function (i.e., Eq. (5)) minS ∥SY − SH∥2F , and we first pre-training a
GCN (i.e., SH, where H = MLP (X) is trained in advance) to predict labels for all nodes (i.e., Ŷ),

thus our objective function can be rewritten as minS

∥∥∥SY − Ŷ
∥∥∥2
F

, which align with the form of

minA ∥AY −Ytrue∥2F and Ŷ is often used to estimate Ytrue (Yang et al., 2024; Gong et al., 2023).
Therefore, the ELU graph (i.e., S) can ensure the GCN’s generalization ability to a certain extent.
Moreover, a better adjacency matrix S can further improve the GCN’s predictions (i.e., Ŷ), making
Ŷ increasingly closer to ground truth (i.e., Ytrue). Ultimately, we can obtain a graph structure to
ensure the GCN’s generalization ability is closer to optimal performance.

C RELATED WORKS

This section briefly reviews the topics related to this work, including graph convolutional networks
and graph structure learning.

C.1 GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks (GCNs) are the most popular and commonly used model in the field of
graph deep learning. Early work attempted to apply the successful convolutional neural network to
graph structures. For example, CheybNet (Defferrard et al., 2016) first propose that transform the
graph signal from the spatial domain to the spectral domain through discrete Fourier transform, and
then use polynomials to fit the filter shape (i.e., convolution). CheybNet laid the foundation for the
development of spectral domain graph neural networks. The popular GCN was proposed by Kipf et
al. (Kipf & Welling, 2017), which is a simplified version of ChebyNet and has demonstrated strong
efficiency and effectiveness, thereby promoting the development of the graph deep learning field.

Based on the traditional GCN, many advanced GCNs have been proposed. For example, numerous
works are focused on increasing the number of GCN layers. APPNP (Gasteiger et al., 2018) combines

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

personalized random walks to expand the range of neighbors aggregated by GCN and reduce training
time. JK-Net (Xu et al., 2018) integrates information from each GCN layer to enable better structure-
aware representation. Additionally, there are many advanced GCNs have been proposed to increase
the number of GCN layers (Chen et al., 2020; Liu et al., 2020; Wu et al., 2024). Recently, Li et al.
(Li et al., 2022) developed a new framework i.e., concentration analysis, proposing a linear feature
smooth method with flexible concentration properties. Huang et al. (Huang et al., 2024) found
that GCN would fail on some nodes, which are often far away from the label nodes and have few
neighbors, so they designed a powerful GCN model for these nodes. Liu et al. (Liu et al., 2024)
proposed the graph adversarial diffusion convolution that can make GCN more robust. The core of
current GCN methods is feature propagation, which allows label information to supervise the features
of more nodes. However, to the best of our knowledge, no work has explored whether the label
information effectively influences the features of the neighboring nodes within the GCN framework.

C.2 GRAPH STRUCTURE LEARNING

Before the recent rise of Graph Neural Networks, graph structure learning had already been extensively
explored from various perspectives within the field of traditional machine learning.

Graph structure learning is an important technology in the graph field. It can improve the graph
structure and infer new relationships between samples, thereby promoting the development of graph
representation learning or other fields. Existing Graph structure learning methods can be classified
into three categories, i.e., traditional unsupervised graph structure learning methods, supervised graph
structure learning methods, and graph rewiring methods. Traditional unsupervised graph structure
learning methods aim to directly learn a graph structure from a set of data points in an unsuper-
vised manner. Early works (Wang & Zhang, 2006; Daitch et al., 2009) exploit the neighborhood
information of each data point for graph construction by assuming that each data point can be opti-
mally reconstructed using a linear combination of its neighbors (i.e., minA ∥AX−X∥2F). Similarly,

(Daitch et al., 2009) introduce the weight (i.e., min
∑

i

∥∥∥Di,iXi −
∑

j Ai,jXj

∥∥∥2). Smoothness
Jiang et al. (2019) is another widely adopted assumption on natural graph signals, the smoothness of
the graph signals is usually measured by the Dirichlet energy (i.e., minA

1
2

∑
i,j Ai,j ∥Xi −Xj∥2 =

minL tr
(
X⊤LX

)
). Until now, there have been a lot of works based on the above objective function

to learn graph structure. Supervised graph structure learning methods aim to use the downstream task
to supervise the structure learning, which can learn a suitable structure for the downstream task. For
example, NeuralSparse (Zheng et al., 2020) and PTDNet (Luo et al., 2021) directly use the adjacency
matrix of the graph as a parameter and update the adjacency matrix through the downstream task.
SA-SGC (Huang et al., 2023b) learns a binary classifier by distinguishing the edges connecting nodes
with the same label and the edges connecting nodes with different labels in the training set, thereby
deleting the edges between nodes belonging to different categories in the test set. BAGCN (Zhang
et al., 2024) uses metric learning to obtain new graph structures and learns suitable metric spaces
through downstream tasks. The goal of graph rewiring methods is to prevent the over-squashing
(Alon & Yahav, 2021) problem. For example, FA (Alon & Yahav, 2021) proposed to use a fully
connected graph as the last layer of GCN to overcome over-squashing. SDRF (Topping et al., 2022),
SJLR (Giraldo et al., 2023), and BORF (Nguyen et al., 2023) aim to enhance the curvature of the
neighborhood by rewiring connecting edges with small curvature. They increase local connectivity in
the graph topology indirectly expanding the influence range of labels. However, the graph structure
obtained by the current graph structure learning methods can not guarantee that the GNN model can
effectively utilize the supervisory information transmitted in the graph.

D MODEL DETAIL

D.1 PRETAINING MLP

As mentioned in the method section MLP has been trained in advance. Specifically, we employ the
two-layer MLP and crosse-entropy to pre-train the MLP:

Lmlp : min
Θ1,Θ2

CE(XΘ(1)Θ(2),Y) (40)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where Θ(1) and Θ(2) are learnable parameters. After the above objective function converges by
gradient descent algorithm, we can get H as follows:

H = XΘ(1)Θ(2). (41)

D.2 DETAILS OF SPARSE S∗ AND INITIALIZE Y

Sparse S∗. S∗ is a fully-connected adjacency matrix. It will bring computationally expensive
overhead in message passing, especially for large-scale graph datasets. To mitigate this, we set the
elements with small absolute values to 0; Specifically, ∀i, j where |S∗

i,j | < η, we set |S∗
i,j | = 0, while

elements with |S∗
i,j | > η remain unchanged, where η is a non-negative parameter that we usually set

to correspond to the top 10 percent of element values. The graph described by S∗ is referred to as the
effectively label-utilizing graph (ELU-graph) in this paper.

Initialize Y. Since the number of initial label information is very limited in a semi-supervised
scenario, having too many rows of all zeros in Y can cause the algorithm to be unstable. Thus, we
propose a label initialization strategy to expand the initial labels with high quality. Specifically, since
ELU nodes can effectively utilize the label information and demonstrate high accuracy as shown in
Figure 2 (b), we use the pseudo labels of ELU nodes to expand the initial Y.

E PSEUDO CODE

Algorithm 1 Pseudo code of calculating S∗.

Input: Feature matrix X, label matrix Y, normalized adjacency matrix Â, and index of ELU nodes
VELU;

Output: ELU graph S∗;
1: H = MLP (X);
2: Expand initial labels by pseudo labels of ELU nodes;
3: for i← 1, 2, · · · , k do
4: Calculate Q(i) by Eq. (8);
5: Q

(i)
l = Yl in Eq. (8);

6: end for
7: Calculate S∗ Eq. (9);
8: return S∗.

F EXPERIMENTS DETAILS

F.1 DATASETS

Table 3: The statistics of the datasets

Datasets Nodes Edges Train/Valid/Test Nodes Features Classes
Cora 2,708 5,429 140/500/1000 1,433 7

Citeseer 3,327 4,732 120/500/1,000 3,703 6
Pubmed 19,717 44,338 60/500/1,000 500 3

Amazon Computers 13,381 245,778 200/300/12,881 767 10
Amazon Photo 7,487 119,043 160/240/7,084 745 8

Chameleon 2,277 36,101 1,093/729/455 2,325 5
Squirrel 5,201 217,073 2,496/1,665/1,040 2,089 5
Caltech 13,882 763,868 8,240/2,776/2,776 6 6

UF 35,123 2,931,320 21,074/7,024/7,024 6 6
Hamilton 2,314 192,788 1,388/463/463 6 6

Tulane 7,752 567,836 4,652/1,550/1,550 6 6

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The used datasets include three benchmark citation datasets (Sen et al., 2008) (i.e., Cora, Citeseer,
Pubmed), two co-purchase networks (Shchur et al., 2018) (i.e., Computers, Photo), two web page
networks (Pei et al.) (i.e., Chameleon and Squirrel, note that these two datasets are heterophilic graph
data), and four social network datasets (Traud et al., 2012) (i.e., Caltech, UF, Hamilton, and Tulane).
Table 3 summarizes the data statistics. We list the details of the datasets as follows.

• Citation networks include Cora, Citeseer, and Pubmed. They are composed of papers as
nodes and their relationships such as citation relationships, and common authoring. Node
feature is a one-hot vector that indicates whether a word is present in that paper. Words with
a frequency of less than 10 are removed.

• Co-purchase networks include Photo and Computers, containing 7,487 and 13,752 prod-
ucts, respectively. Edges in each dataset indicate that two products are frequently bought
together. The feature of each product is bag-of-words encoded product reviews. Products
are categorized into several classes by the product category.

• Webpage networks include Squirrel and Chameleon, which are two subgraphs of web
pages in Wikipedia. Our task is to classify nodes into five categories based on their average
amounts of monthly traffic.

• Social networks include Caltech, UF, Hamilton, and Tulane, each graph describes the
social relationship in a university. Each graph has categorical node attributes with practical
meaning (e.g., gender, major, class year.). Moreover, nodes in each dataset belong to six
different classes (a student/teacher status flag).

G ADDITIONAL EXPERIMENTS

G.1 NODE CLASSIFICATION ON SOCIAL NETWORKS

Model Caltech UF Hamilton Tulane

GCN 88.47±1.91 83.94±0.61 92.26±0.35 87.93±0.97

GAT 81.17±2.15 81.68±0.59 91.43±1.25 84.45±1.45

APPNP 90.76±2.38 83.07±0.54 93.29±0.47 88.52±0.44

GCN-LPA 89.12±2.11 83.78±0.69 92.56±0.87 88.32±1.02

GSR 90.23±2.41 84.01±0.63 92.45±0.84 88.75±1.01

Ours 91.93±0.69 85.62±0.53 93.65±0.78 89.30±0.77

We further evaluate the effectiveness of the proposed method on the social network datasets by
reporting the results of node classification. Obviously, our method achieves the best effectiveness on
node classification tasks.

Specifically, the proposed method achieves competitive results on the social network datasets com-
pared to other baselines. For example, the proposed method on average improves by 1.27%, compared
to the best baseline (i.e., GSR), on almost all datasets. This demonstrates the universality of our
method, which can achieve excellent results in most datasets.

G.2 PARAMETER ANALYSIS

In the proposed method, we employ the non-negative parameters (i.e., λ) to achieve a trade-off
between the supervised loss and the consistency loss, and τ to achieve the temperature control. To
investigate the impact of λ and τ with different settings, we conduct the node classification on the
Cora and Citeseer datasets by varying the value of λ in the range of [0.1, 1.0] and τ in the range of
[0.1, 1.0]. Note that the smaller the τ , the closer the model brings the positive samples and the further
apart the negative samples. The results are reported in Figure 5.

From Figure 5, we have the following observations: First, the proposed method achieves significant
performance when the parameter λ or τ is in the range of [0.1, 0.2]. if λ values are too large (e.g.,
>0.2) or too small (e.g., =0, the results shown in the Table 2), the performance degrades. This indicates
that the proposed contrastive loss is necessary for the model. For τ , setting it to 1 is equivalent to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

not using the temperature coefficient. The lower the temperature coefficient, the stronger the effect,
indicating that τ is essential for the proposed method. Note that τ cannot be set to 0 because it is the
denominator.

λ
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0.9

1.0

τ

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

Test acc (%
)

82.0

82.5

83.0

83.5

84.0

84.5

85.0

(a) Cora

λ

0.1
0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

τ

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

Test acc (%
)

71.0

71.5

72.0

72.5

73.0

73.5

74.0

(b) Citeseer

Figure 5: The classification performance of the proposed method at different parameter settings
(i.e., τ , λ) on the Cora and Citeseer datasets.

G.3 ANALYSIS THE IMPROVE ON VNELU

To better examine the effectiveness of the proposed ELU-GCN on VNELU, we further evaluate the
model’s improvement over GCN on VNELU on Cora, Citeseer, and Pubmed datasets. The results are
shown in Figure 6.

Specifically, the proposed ELU-GCN shows a particularly significant improvement on VNELU across
the three datasets. For example, our method on average improves by 3.7 % on VNELU and 2.1% on
all test nodes compared to GCN on these three datasets. This can be attributed to the fact that the
proposed ELU-GCN provides the ELU graph that can make VNELU utilize the label information
more effectively under the GCN framework, and this also indicates that the main improvement of the
proposed ELU-GCN is on VNELU.

H RUNNING TIME V.S. ACCURACY

The biggest limitation of graph structure learning methods is the need to query in O(n2) space when
learning graph structures. Although we have previously analyzed that the complexity of the proposed
algorithm in graph construction is O(nc3) (c3 ≪ n), plus the final graph structure is O(n2) (only
one calculation is required), we further test the overall actual running time of the proposed ELU-GCN
and compared with the commonly used baseline (i.e., GCN and GAT). The results are in Figure 7.

From Figure 7, we have the observations as follows. First, the overall running time of the proposed
method is slightly inferior to GCN, but significantly ahead of GAT. Second, the proposed method
achieves the best classification performance. Combining the above two points, the proposed method
achieves the optimal trade-off between running time and model performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Cora Citeseer Pubmed50

55

60

65

70

75

Ac
cu

ra
cy

GCN

Ours

GCN
Ours GCN

Ours

Figure 6: The accuracy of ELU-GCN and GCN of VNELU on Cora, Citeseer, and Pubmed datasets.

10 15 20 25 30 35 40 45
Total training time (seconds)

72

74

76

78

80

82

84

A
cc

ur
ac

y

Cora-GCN
Cora-GAT
Cora-Ours
Citeseer-GCN
Citeseer-GAT
Citeseer-Ours
Pubmed-GCN
Pubmed-GAT
Pubmed-Ours

Figure 7: Running time V.S. accuracy.

22

	Introduction
	Method
	Motivation
	ELU Graph
	Graph Contrastive Learning
	Theoretical Analysis

	Experiments
	Experimental Setup
	Datasets
	Comparison Methods
	Evaluation Protocol

	Rsults Analysis
	Effectiveness Analysis
	Ablation Study
	Visualization
	Generalization Gap Analysis

	Conclusion
	Complexity
	Complexity of Eq. 8
	Complexity of Eq. 9

	Theoretical Proof
	Proof for Theorem 2.1
	Closed-Form Solution
	The Woodbury identity
	Proof for Theorem 2.3
	Proof for Theorem 2.4

	Related Works
	Graph Convolutional Networks
	Graph Structure Learning

	Model Detail
	Pretaining MLP
	Details of Sparse S* and Initialize Y

	Pseudo Code
	Experiments Details
	Datasets

	Additional Experiments
	Node Classification on Social Networks
	Parameter Analysis
	Analysis the Improve on VNELU

	Running Time V.S. Accuracy

