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ABSTRACT

Unsupervised representation learning, particularly sequential disentanglement,
aims to separate static and dynamic factors of variation in data without relying
on labels. This remains a challenging problem, as existing approaches based on
variational autoencoders and generative adversarial networks often rely on multiple
loss terms, complicating the optimization process. Furthermore, sequential disen-
tanglement methods face challenges when applied to real-world data, and there is
currently no established evaluation protocol for assessing their performance in such
settings. Recently, diffusion models have emerged as state-of-the-art generative
models, but no theoretical formalization exists for their application to sequential
disentanglement. In this work, we introduce the Diffusion Sequential Disentan-
glement Autoencoder (DiffSDA), a novel, modal-agnostic framework effective
across diverse real-world data modalities, including time series, video, and audio.
DiffSDA leverages a new probabilistic modeling, latent diffusion, and efficient
samplers, while incorporating a challenging evaluation protocol for rigorous test-
ing. Our experiments on diverse real-world benchmarks demonstrate that DiffSDA
outperforms recent state-of-the-art methods in sequential disentanglement.

1 INTRODUCTION

Unconditional generation (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022), and more
broadly, unsupervised learning (Bengio et al., 2012), play a central role in todays machine learning
research, as it enables leveraging large-scale data without requiring expensive annotations. Within
unsupervised learning, disentangled representation learning has become particularly significant (Ben-
gio et al., 2013). This approach seeks to decompose latent representations into distinct factors, where
each factor captures a specific variation in the data. Such representations improve interpretability (Liu
et al., 2020), mitigate biases (Creager et al., 2019), and improve generalization (Zhang et al., 2022).
A prominent challenge is to develop a modal-agnostic approach for sequential data such as video,
audio, and time series. In particular, the goal is to decompose the sequential signal into separate static
and dynamic latent components in an unsupervised manner. For example, in a video of a person
speaking, the static factors could represent the person’s facial appearance, while the dynamic factors
encode facial movements. In audio recordings, static factors may correspond to the speaker’s identity,
while dynamic factors capture content of the speech.

Despite recent advancements, most sequential disentanglement methods (Tulyakov et al., 2018;
Yingzhen & Mandt, 2018; Bai et al., 2021; Han et al., 2021; Naiman et al., 2023; Berman et al., 2024)
rely on VAEs and GANs, which often require complex optimization with extensive hyperparameter
tuning. For instance, C-DSVAE (Bai et al., 2021) requires five hyperparameters solely to balance its
various loss terms. Moreover, these models are often evaluated on toy datasets and struggle to produce
high-quality samples in real-world scenarios. The reliance on VAEs and GANs is directly related to
the absence of a modeling framework for sequential disentanglement within diffusion-based modeling.
Further, existing diffusion architectures do not produce disentangled representations (Preechakul
et al., 2022; Wang et al., 2023). We hypothesize that a diffusion-based framework can reduce
hyperparameter tuning and improve sample quality, paving the way for more robust and scalable
approaches to unsupervised sequential disentanglement.

In this work, we introduce Diffusion Sequential Disentanglement Autoencoder (DiffSDA), a novel
probabilistic framework for sequential disentanglement. Unlike prior tools (Bai et al., 2021; Naiman
et al., 2023), our method models static and dynamic factors as interdependent, enhancing the
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expressivity of their marginal distributions. Notably, our approach is based on a single standard
diffusion loss term, while producing high-quality results. Furthermore, DiffSDA is modal-agnostic,
allowing it to disentangle data across diverse modalities, such as video, audio, and time series, with
only minor adjustments to the network. This stands in contrast to modal-dependent methods, such as
animation-based approaches for video, which rely on temporal and spatial consistency properties
inherent to visual data (Siarohin et al., 2019), or methods designed specifically for audio that depend
on spectral or temporal cues (Xu et al., 2024a).

Practically, we implement a sequential semantic encoder and adopt the efficient sampling framework
EDM (Karras et al., 2022). Moreover, we incorporate a latent diffusion module (LDM) (Rombach
et al., 2022) into our architecture, which enables robust handling of high-dimensional, real-world data,
outperforming prior sequential disentanglement methods. Finally, using our method, we demonstrate
that applying principal component analysis (PCA) to the latent static and dynamic representations
reveals a further disentanglement into multiple interpretable factors, showcasing the richness of the
learned representations.

We perform a comprehensive evaluation of our model on standard benchmarks for sequential disen-
tanglement (Naiman et al., 2023) across three diverse data domains: audio, time series, and video. To
further advance the field, we introduce a novel evaluation protocol for high-quality visual sequential
disentanglement, incorporating three high-resolution video datasets and multiple quantitative metrics.
Additionally, we propose a new post-training approach for disentangling representations into multiple
factors. For the first time, our work presents a zero-shot task to demonstrate the generalizability of
the factorization framework. Through these extensive evaluations, we show that DiffSDA not only
effectively disentangles real-world data but also outperforms recent state-of-the-art methods. Our key
contributions are summarized as follows:

1. We propose a novel modal-agnostic probabilistic framework for sequential disentanglement
grounded in diffusion processes. Unlike most existing approaches, our formulation accom-
modates dependent static and dynamic factors of variation. The model is optimized using a
single, unified score estimation loss.

2. Our design enables the effective disentanglement of high-dimensional, real-world data and
supports zero-shot disentanglement tasks. Moreover, we demonstrate DiffSDA’s capability
to disentangle static and dynamic information into multiple interpretable factors.

3. We provide a comprehensive evaluation demonstrating our model’s superiority in both
qualitative and quantitative tasks, outperforming state-of-the-art methods. Additionally, we
introduce a novel evaluation protocol specifically designed for video-based disentanglement.

2 RELATED WORK

Generative modeling is a fundamental methodology for effectively sampling from numerical
approximations of data distributions. Prominent approaches include variational autoencoders (VAEs)
and generative adversarial networks (GANs) (Kingma, 2013; Goodfellow et al., 2014). More recently,
diffusion models (Sohl-Dickstein et al., 2015) and score matching (Hyvärinen & Dayan, 2005;
Vincent, 2011) have emerged as powerful alternatives, outperforming VAEs and GANs in generating
high-quality samples through iterative denoising of latent variables (Ho et al., 2020; Dhariwal &
Nichol, 2021). These methods are unified under a score-based modeling framework (Song et al.,
2021). A critical challenge in generative modeling lies in representation learning, where semantic
encodings of inputs are derived in an unsupervised manner. A related topic, center to this work,
is the study of modal-agnostic disentangled representations, aiming to decompose data of various
modalities into distinct factors of variation (Bengio et al., 2013).

Disentangled Representation Learning. Most existing works on disentangled learning leverage
VAEs and GANs to decompose non-sequential (Higgins et al., 2017; Chen et al., 2018; Kim & Mnih,
2018; Tran et al., 2017; Karras et al., 2020; Ren et al., 2021) and sequential (Hsu et al., 2017; Yingzhen
& Mandt, 2018; Zhu et al., 2020; Bai et al., 2021; Han et al., 2021; Naiman et al., 2023; Berman
et al., 2024; Simon et al., 2025; Villegas et al., 2017; Tulyakov et al., 2018) data. A key limitation of
these approaches lies in their reliance on complex loss formulations, which typically involve multiple
regularizers alongside the standard VAEs and GANs losses. While significant progress has been made
in enhancing the generative capabilities of VAEs and GANs (Vahdat & Kautz, 2020; Karras et al.,
2020), state-of-the-art methods for sequential disentanglement largely focus on simple datasets, far
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from real-world scenarios, with few exceptions like SPYL’s preliminary results (Naiman et al., 2023).
In contrast, works in animation (Siarohin et al., 2019; Hu, 2024; Xu et al., 2024b) have shown strong
results on real-world data by leveraging video priors for disentangling objects and motion. However,
these modal-dependent approaches can exploit relaxed assumptions and specialized tools, whereas
our modal-agnostic method can adapt to diverse modalities, including video, audio, and time series.

Table 1: A comparison between animation, diffusion, and sequential disentanglement methods.

Method Modal Agnostic Efficient Real-World Latent Factorization Latents Prior Loss Terms

an
i-

m
at

io
n FOM Siarohin et al. (2019) ✗ ✓ ✓ ✗ N/A 2

AA Hu (2024) ✗ ✓ ✓ ✗ N/A 1
MA Xu et al. (2024b) ✗ ✓ ✓ ✗ N/A 2

no
n

se
q. DiffAE Preechakul et al. (2022) ✗ ✗ ✓ ✗ N/A 1

InfoDiff Wang et al. (2021) ✗ ✗ ✓ ✗ N/A 2

se
qu

en
-

tia
l SPYL Naiman et al. (2023) ✓ ✓ ✗ ✓ independent 5

DBSE Berman et al. (2024) ✓ ✓ ✗ ✓ independent 2
Ours ✓ ✓ ✓ ✓ dependent 1

Diffusion-Based Disentanglement. The emergence of diffusion models has recently enabled novel
approaches for non-sequential disentanglement (Kwon et al., 2022; Yang et al., 2023; Wang et al.,
2023; Yang et al., 2024; Zhu et al., 2024; Baumann et al., 2024), achieving high-resolution image
generation with disentangled factors. Moreover, other efforts have concentrated on structuring their
latent representations. For instance, DiffAE (Preechakul et al., 2022) introduces an autoencoder
to facilitate the manipulation of visual features, while InfoDiffusion (Wang et al., 2023) adds a
loss regularizer to enhance disentanglement. Despite these advances, to the best of our knowledge,
no theoretical formalization, and specifically, probabilistic modeling, has yet been proposed for
diffusion-based disentanglement in sequential settings. Furthermore, practical approaches for this
domain remain unexplored.

To contextualize our work within the landscape of existing tools, we present a comparative summary
in Tab. 1, highlighting how our approach either advances or maintains all key aspects of representation
learning. Specifically, while animation methods (FOM, AA, MA) and non-sequential diffusion tools
(DiffAE, InfoDiff) handle real-world data, they are modal-dependent and do not provide a latent
factorization. Within sequential disentanglement approaches (SPYL, DBSE), only our work supports
real-world data via a single loss optimization.

3 METHOD

In this section, we introduce a novel probabilistic framework for unsupervised sequential disentangle-
ment based on diffusion models. Currently, none of the existing approaches leverage diffusion models
for unsupervised sequential disentanglement, leaving a significant gap in the field. Our framework
addresses this gap by establishing a probabilistic modeling formalization and providing an efficient
implementation for disentangling static and dynamic factors in sequential data. Background on
diffusion models, diffusion autoencoders, and additional details about the method can be found in
App. A and App. B. Throughout this section, and the subsequent ones, the subscripts represent time
in the diffusion process, and superscripts indicate time in the sequence, e.g., a sequence state of the
diffusion process is denoted by xτ

t , t ∈ [0, T ] and τ ∈ {1, . . . , V }. T and V represent the maximum
diffusion and sequence times, respectively. We consider discrete time sequences of continuous time
diffusion processes; however, our modeling can be extended to additional settings.

3.1 PROBABILISTIC MODELING

Existing frameworks for sequential disentanglement lack a probabilistic modeling foundation for
diffusion-based modeling. To address this gap, we propose a novel probabilistic approach based on
two diffusion models. The first model details the latent-independent distribution density of the static
(time-invariant) and dynamic (time-variant) factors, s0 and d1:V

0 , respectively. The second model
specifies the observed distribution and its dependence on the disentangled factors. Formally, the joint
distribution is given by

p(x1:V
0 ,x1:V

T , s0, sT ,d
1:V
0 ,d1:V

T ) = pT0(s0,d
1:V
0 | sT ,d1:V

T )

V∏
τ=1

pT0(x
τ
0 | xτ

T , s0,d
τ
0) (1)
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Figure 1: DiffSDA processes sequences x1:V
0 via semantic and stochastic encoders (top and bottom).

Their outputs (s0,d1:V
0 ,x1:V

t ) are fed to a stochastic decoder yielding a denoised x̃1:V
0 (right).

where pT0(s0,d
1:V
0 | sT ,d1:V

T ) is a standard diffusion process with pT0(·) being the transition
distribution from time T to time 0. The state distribution of pT0(x

τ
0 | xτ

T , s0,d
τ
0) is conditioned on

the latent xτ
T and the factors s0 and dτ

0 .

Importantly, our probabilistic approach differs from existing work (Bai et al., 2021; Naiman et al.,
2023) in that our static and dynamic factors are interdependent. We motivate our model by three
main reasons: i) expressiveness—the overall dependence facilitates learning of different state tra-
jectories, leading to higher expressivity in the marginals pt0(·); and ii) efficiency—our sampler is
not autoregressive, allowing for fast and parallelized sampling; and iii) causality—our model has the
ability to learn intricate relationships between the static and dynamic factors, if needed. We evaluate
both the dependent and independent approaches on our model to highlight the effectiveness of our
approach. In summary, adopting dependent modeling improves generation quality by 13%. Further
details can be found in App. G.1.

Given a sequence x1:V
0 ∼ p0(x

1:V
0 ), the posterior distribution of the latent variables x1:V

t and
latent factors s0 and d1:V

0 is composed of three independent distributions. Further, unlike the
non-autoregressive prior in Eq. 1, here, we explicitly assume temporal dependence. The posterior
distribution reads

p(x1:V
t , s0,d

1:V
0 | x1:V

0 ) = p0t(x
1:V
t | x1:V

0 )p(s0 | x1:V
0 )

V∏
τ=1

p(dτ
0 | d<τ

0 ,x≤τ
0 ) (2)

where x1:V
t and s0 are conditioned on the entire input x1:V

0 , and the dynamic factors only depend on
previous dynamic factors and current and previous data elements. We employ score matching (Hyväri-
nen & Dayan, 2005; Song et al., 2021), to optimize for the denoising parametric map Dθ. The
map Dθ takes the noisy latent xτ

t , time t, and disentangled factors zτ0 := (s0,d
τ
0), and it returns an

estimate of the score function ∇x log p0t(x
τ
t | xτ

0). Overall, the optimization objective reads

θ∗ = argminθ Et

{
λtE

[
∥Dθ −∇x log p0t∥22

]}
, (3)

where λt ∈ R+ is a positive weight, t ∼ U [0, T ] is uniformly sampled over [0, T ], the variables
xτ
t , x

τ
0 are sampled from their respective distributions, p0t(·), p0(·), and zτ0 via the densities in Eq. 2.

The inner expectation is taken over xτ
t , z

τ
0 , and xτ

0 . Importantly, pT0 of s0,d1:V
0 is not used in Eq. 3,

and thus its optimization can be separated.

Notably, we make no assumptions about the given data x1:V
0 , ensuring that our framework remains

modal-free and independent of specific properties of video, audio, or time series data. This theoretical
compatibility with any type of sequence makes it highly adaptable to diverse applications.

3.2 DIFFUSION SEQUENTIAL DISENTANGLEMENT AUTOENCODER

Our architecture, shown in Fig. 1, comprises three main components: (1) a sequential semantic
encoder, (2) a stochastic encoder, and (3) a stochastic decoder. At a high level, the sequential
semantic encoder factorizes data into separate static and dynamic components, while the stochastic
decoder denoises the noisy latent representation produced by the stochastic encoder, conditioned on
the disentangled factors. Notably, unlike prior works, our implementation achieves disentanglement
with a single, simple loss term.
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Encoders. Inspired by prior work in sequential disentanglement (Yingzhen & Mandt, 2018), we
design a novel sequential semantic encoder to extract s0 and d1:V

0 . Particularly, it consists of a
U-Net (Ronneberger et al., 2015) for video data and an MLP for other modalities, coupled with
linear layers that independently process each sequence element. Then, an LSTM module summarizes
the sequence into a latent representation h1:V . The last hidden, hV , is passed to a linear layer to
produce s0, whereas h1:V are processed with another LSTM and a linear layer to produce d1:V

0 . Our
stochastic encoder follows the EDM framework (Karras et al., 2022), adding noise ϵ ∼ N (0, σ2

t I) to
each element xτ

0 , yielding xτ
t = xτ

0 + ϵ. These encoders realize in practice the posterior in Eq. 2.
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Figure 2: We present swap (left), zero-shot (middle), and multifactor disentanglement (right) results
on multiple real-world and high-resolution visual datasets. See Sec. 4 for further details.

Decoder. To efficiently handle real-world sequential information, we follow the decoding in
EDM (Karras et al., 2022), featuring only 63 neural function evaluations (NFEs) during inference.
Our decoder Dθ takes as inputs the noisy input xτ

t and disentangled factors zτ0 := (s0,d
τ
0), and

it returns a denoised version of xτ
t , denoted by x̃τ

0 . Given any t ∈ [0, T ] and τ ∈ {1, . . . , V }, the
decoder is parameterized independently from other times t′, τ ′ as follows

x̃τ
0 := Dθ(x

τ
t , t, z

τ
0) = cskip

t xτ
t + cout

t Fθ

(
cin
t x

τ
t , z

τ
0 , c

noise
t

)
, (4)

where cskip
t modulates the skip connection, cin

t , c
out
t scale the input/output magnitudes, and cnoise

t maps
noise at time t into a conditioning input for the neural network Fθ, conditioned on zτ0 through AdaGN.

Loss. While prior sequential disentanglement works depend on intricate prior modeling, regular-
ization terms, and mutual information losses, leading to many hyper-parameters and challenging
training, we opt for a simpler objective containing a single loss term that is based on Eq. 3,

Et,xτ
t ,z

τ
0 ,x

τ
0

[
λt(c

out
t )2∥Fθ −

1

cout
t

(xτ
0 − cskip

t · xτ
t )∥22

]
, (5)

where Fθ takes as inputs cin
t x

τ
t , z

τ
0 , and cnoise

t . While our loss in Eq. 5 does not include auxiliary terms,
it promotes disentanglement due to two main reasons: i) the static factor s0 is shared across τ , and
thus it will not hold dynamic information, and ii) the dynamic factors dτ

0 ∈ Rk are low-dimensional
(i.e., k is small), making it difficult for dτ

0 to store static features. We empirically validate these
assumptions through experiments presented in App. G.2. Finally, we briefly mention that to support
high-resolution sequences, we incorporate latent diffusion models (LDM) (Rombach et al., 2022),
using a pre-trained VQ-VAE autoencoder to reduce the high-dimensionality of input frames. Instead
of factorizing all the equations above with new symbols for the features VQ-VAE produces, we
denote by x1:V0 the input sequence, and we abuse the notation x1:V

0 to denote the latent features,
i.e., x1:V

0 = E(x1:V0 ) and x1:V0 = D(x1:V
0 ), where E and D are the VQ-VAE encoder and decoder,

respectively.

4 RESULTS

Below, we empirically evaluate the modeling capabilities of DiffSDA in comparison to recent modal-
agnostic state-of-the-art methods (see Tab. 1), SPYL (Naiman et al., 2023) and DBSE (Berman
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Figure 3: We present dynamic swap results of our approach (third row) and SPYL (fourth row) on
CelebV-HQ (left), VoxCeleb (middle), and TaiChi-HD (right).

et al., 2024). In general, we consider quantitative and qualitative experiments. For video, we include
three high-resolution, real-world visual datasets that have not been previously used for sequential
disentanglement: VoxCeleb (Nagrani et al., 2017), CelebV-HQ (Zhu et al., 2022), and TaiChi-
HD (Siarohin et al., 2019), along with the popular MUG dataset (Aifanti et al., 2010). For audio, we
consider TIMIT Garofolo (1993) and a new dataset, Libri Speech Panayotov et al. (2015). The time
series datasets are PhysioNet, ETTh1, and Air Quality Tonekaboni et al. (2022). Detailed descriptions
of the datasets and their pre-processing can be found in App. D, while extended baseline comparisons
are provided in App. H.1. For brevity, we omit below the subscript indicating the diffusion step for
clean samples (corresponding to time step 0).

4.1 CONDITIONAL SWAP IN VIDEOS

We begin our tests with the conditional swap task (Yingzhen & Mandt, 2018). Given two sample
videos x, x̂ ∼ p0, the goal in this experiment is to create a new sample x̄, conditioned on the static
factor of x and dynamic features of x̂. This is done by extracting the latent factors z = (s,d1:V )

and ẑ = (ŝ, d̂1:V ) for x and x̂, respectively. The new sample x̄ is defined to be the reconstruction of
z̄ = (s, d̂1:V ) through sampling, see Alg. 1. In an ideal swap, x̄ preserves the static characteristics
of x while presenting the dynamics of x̂, thus demonstrating strong disentanglement capabilities of
the swapping method. We show in Fig. 2 (left) a swap example of DiffSDA, where the top two rows
are real videos, and the third row shows the new sample obtained by preserving the static features
of the first row and using the dynamics of the second row. Remarkably, while the people in these
sequences are very different, many fine details are transferred, including head angle and orientation,
as well as mouth and eyes orientation and openness. In Fig. 3, we present additional swap results on
CelebV-HQ (left), VoxCeleb (middle), and TaiChi-HD (right), comparing DiffSDA (third row) to
SPYL (fourth row). Our approach produces high-quality samples, while swapping the dynamics of
the second row into the first row, whereas SPYL struggles both with the reconstruction and swap.
Additional conditional and unconditional swap results appear in App. H.3 and App. H.4, respectively.

In addition to the above qualitative evaluation, we also want to quantitatively assess DiffSDA’s
effectiveness. We report in App. F results from the traditional quantitative benchmark, where a
pre-trained judge (classifier) is used to determine if swapped content is correct (Bai et al., 2021).
However, there are two main issues with the benchmark: i) it depends on labeled data, making
it relevant to only a small number of datasets; and ii) results are sensitive to the expressivity and
generalizability of the judge. For instance, swapping a smiling expression from person A to person B,
may result in person B having a smile, different from the one in the data. In these cases, the judge
may wrongly classify a different expression to the smiling person B, see App. F for further discussion.

Towards addressing these issues, we propose new unsupervised swapping metrics to quantitatively
measure the model’s disentanglement abilities. We adopt estimators commonly used in animation
for assessing if objects and motions are preserved (Siarohin et al., 2019). Specifically, we utilize the
average Euclidean distance (AED) that is based on the distances between the latent representations of
images. Further, we also employ the average keypoint distance (AKD) which computes the distances
between selected keypoints in images. Intuitively, AED and AKD have been designed to identify the
preservation of objects and motions in images, respectively. See App. E for definitions.
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Figure 4: Zero-shot swap results, training on VoxCeleb and tested on CelebV-HQ or MUG.

Equipped with these new metrics, we perform conditional swapping over a pre-defined random list
of sample pairs, x, x̂. Particularly, we reconstruct new samples of the form zs := (s, d̂1:V ) and
zd := (ŝ,d1:V ), encoding dynamic and static swaps, respectively. We compute the AED of zs
with respect to z (arising from x), expecting their static features to be similar. Following the same
logic, we compute the AKD of xd (reconstructed from zd) and x, as they share the dynamic factors.
Our findings are presented in Tab. 2, where DiffSDA outperforms SOTA previous (SPYL, DBSE)
approaches across all datasets, except for AED on TaiChi-HD, where we attain the second best error.
Notably, our AKD errors are significantly lower than SPYL and DBSE. Further, we apply these
metrics to assess reconstruction performance, as well as the mean squared error (MSE), with the
results shown in Tab. 3. Again, DiffSDA is superior to current SOTA methods. Additionally, we
include a generative evaluation in App. G.4, comparing our approach to previous methods.

4.2 ZERO-SHOT VIDEO DISENTANGLEMENT

In the previous sub-section, the conditional swap was performed on the held-out test set of each
dataset on which we trained on. In contrast to previous work, for the first time, we perform the same
task on a dataset unseen during training. We show an example in Fig. 2 (middle) of zero-shot swap,
where our model was trained on the VoxCeleb dataset (1st row) and the inferred sequence was taken
from MUG (2nd row). Particularly, we froze the static features of the MUG sample and swapped
the dynamic factors with those of VoxCeleb (3rd row). Remarkably, in addition to changing the
facial expression of the person, DiffSDA also adds the necessary details to mimic the body pose.
We emphasize that the MUG dataset does not include sequences similar to the third row in Fig. 2,
but rather zoomed-in facial videos as shown in the second row, thus, our zero-shot results present
a significant adaptation to the new data. Additionally, we include in Fig. 4 zero-shot examples
where DiffSDA is trained on VoxCeleb and evaluated on CelebV-HQ or MUG. These results further
highlight the effectivity of our approach in transferring dynamic features across different datasets.
Finally, we provide more zero-shot examples in App. H.5.

4.3 TOWARD MULTIFACTOR VIDEO DISENTANGLEMENT

Multifactor sequential disentanglement is a challenging problem, where the objective is to produce
several static factors and several dynamic factors per frame (Berman et al., 2023). Here, we show
that our model has the potential to further disentangle the static and dynamic features into additional
factors of variation. Inspired by DiffAE (Preechakul et al., 2022), we explore the learned latent space
in an unsupervised linear fashion, particularly, using principal component analysis (PCA). Namely,

Table 2: Preservation of objects (AED) and motions (AKD) is estimated across several datasets and
methods. The labels ‘static frozen’ and ‘dynamics frozen’ correspond to samples zs and zd.

AED↓ (static frozen) AKD↓ (dynamics frozen)
SPYL DBSE Ours SPYL DBSE Ours

MUG (64× 64) 0.766 0.773 0.751 1.132 1.118 0.802
VoxCeleb (256× 256) 1.058 1.026 0.846 4.705 10.96 2.793
CelebV-HQ (256× 256) 0.631 0.751 0.540 39.16 28.69 6.932
TaiChi-HD (64× 64) 0.443 0.325 0.326 7.681 6.312 2.143
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to obtain fine-grained semantic static factors of variation, we sample a large batch of static vectors
ŝj ∈ Rh, with h the static latent size, j = 1, . . . , b = 215. Then, we compute PCA on the matrix
formed by arranging {ŝj} in its columns, yielding the principal components {vi}hi=1, given that
b ≥ h. We can utilize the latter pool of static variability by exploring the latent space from a static
code s of a real example x in the test set, i.e.,

s̄ =

(
s− µŝ

σŝ
+ αvi ·

√
h

)
· σŝ + µŝ , (6)

where µŝ and σ2
ŝ are the mean and variance of the sampled static features, {ŝj}bj=1, and α ∈ [−κ, κ],

notice that α = 0 recovers the original sequence. The new sample x̄ is obtained by reconstructing the
new static features s̄ with the original dynamic factors d1:V of x.

We demonstrate a static PCA exploration in Fig. 2 (right) on VoxCeleb. The middle row is the real
video, whereas the top and bottom rows use positive and negative α values, respectively. Our results
show that traversing in the positive direction yields more masculine appearances, and in contrast,
going in the negative direction produces more feminine characters. Importantly, we highlight that
other static features and the dynamics are fully preserved across the sequence. In App. H.6, we
present further results on full sequences using multiple α values to demonstrate the gradual transition
in the latent space. Notably, we find in our exploration principal components that control other
features such as skin tone, image blurriness, and more.

4.4 SPEAKER IDENTIFICATION IN AUDIO

Our approach is inherently modal-agnostic and extends beyond the video domain. Unlike methods
tailored specifically for video or audio, which often require extensive modifications when applied to
new modalities, our method is versatile and can adapt to different modalities with minimal adjustments
to the backbone architecture. For example, to process audio data, we simply replace the U-Net with
an MLP. In Tab. 4, we demonstrate the adaptability of our model by successfully disentangling
audio data from the TIMIT dataset and Libri Speech, where TIMIT is a widely used benchmark for
speech-related tasks and Libri Speech is an additional dataset we add for this benchmark. Following
the speaker identification benchmarks Yingzhen & Mandt (2018), we evaluate disentanglement
quality using the Equal Error Rate (EER), a standard metric in speech tasks. Specifically, the
Static EER measures how effectively the static latent representations capture speaker identity, and
similarly, the Dynamic EER assesses the dynamic latent representations. Notably, a well-disentangled
model should yield a low Static EER (capturing speaker identity in static representations) and a
high Dynamic EER (capturing content-related dynamics without speaker identity). The overall goal
is to maximize the gap between these two metrics (Dis. Gap). Our model, achieves in TIMIT a
disentanglement gap improvement of over 11%, with a 42.29% compared to 31.11% achieved by
DBSE, thereby surpassing current state-of-the-art methods. Similar strong performance is achieved
on Libri Speech as well. These results highlight the efficacy of our approach in the audio domain.
Additional details regarding the dataset, evaluation metrics, and implementation are provided in the
appendix. Furthermore, we report speech quality and reconstruction results in App. G.3, further
validating our model’s effectiveness in the audio domain.

Table 3: Reconstruction errors are measured in terms of AED, AKD, and MSE across several datasets
and models. We find DiffSDA to be orders-of-magnitude better than other methods.

AED↓ AKD↓ MSE↓
SPYL DBSE Ours SPYL DBSE Ours SPYL DBSE Ours

MUG 0.49 0.49 0.11 0.47 0.48 0.06 0.001 0.001 3e−7
VoxCeleb 0.99 1.03 0.37 2.27 2.43 1.09 0.005 0.003 5e−4
CelebV-HQ 0.70 0.78 0.29 15.0 13.8 1.26 0.012 0.006 6e−4
TaiChi-HD 0.32 0.29 0.001 4.31 3.83 0.10 0.018 0.007 2e−7
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Table 4: Disentanglement metrics on TIMIT and LibriSpeech

Method TIMIT LibriSpeech
Static EER↓ Dynamic EER↑ Dis. Gap↑ Static EER↓ Dynamic EER↑ Dis. Gap↑

DSVAE 5.64% 19.20% 13.56% 15.06% 28.94% 13.87%
SPYL 3.41% 33.22% 29.81% 24.87% 49.76% 24.89%
DBSE 3.50% 34.62% 31.11% 16.75% 22.61% 5.58%
Ours 4.43% 46.72% 42.29% 11.02% 45.94% 34.93%

4.5 DOWNSTREAM PREDICTION AND CLASSIFICATION TASKS ON TIME SERIES INFORMATION

Finally, we evaluate our approach on time series data, following the evaluation protocol in Berman
et al. (2024). The evaluation is carried out in two main independent setups: 1) We assess the quality
of the learned latent representations using a predictive task. The model is trained on a dataset, and at
test time, the static and dynamic factors are extracted and used as input features for a predictive model.
Two tasks are considered: (i) predicting mortality risk with the PhysioNet dataset (Goldberger et al.,
2000), and (ii) predicting oil temperature using the ETTh1 dataset (Zhang et al., 2017). Performance
is evaluated using AUPRC and AUROC for PhysioNet, and Mean Absolute Error (MAE) for ETTh1.
2) We investigate the model’s ability to capture global patterns within its disentangled static latent
representations, which have been shown to enhance performance Trivedi et al. (2015). Following a
similar procedure, the model is trained, and now only the static representations are extracted. These
representations are then used as input features for a classifier. For the PhysioNet dataset, Intensive
Care Unit (ICU) unit types are used as global labels, while for the Air Quality dataset, the month of
the year serves as the target variable. Further details regarding datasets, metrics, and implementation
can be found in App. D and App. E. We compare our method vs. state-of-the-art baselines, including
DBSE, SPYL, and GLR Tonekaboni et al. (2022). Results for predictive and classification tasks are
given in Tab. 5. Notably, our model outperforms across all tasks.

Table 5: Time series prediction and classification benchmarks.

Task GLR SPYL DBSE Supervised Ours

pr
ed

. AUPRC↑ 0.37± 0.09 0.37± 0.02 0.47± 0.02 0.44± 0.02 0.50± 0.006
AUROC↑ 0.75± 0.01 0.76± 0.04 0.86± 0.01 0.80± 0.04 0.87± 0.004
MAE↓ (ETTh1) 12.3± 0.03 12.2± 0.03 11.2± 0.01 10.19± 0.20 9.89± 0.280

cl
s. PhysioNet↑ 38.9± 2.48 47.0± 3.04 56.9± 0.34 62.00± 2.10 64.6± 0.35

Air Quality↑ 50.3± 3.87 57.9± 3.53 65.9± 0.01 62.43± 0.54 69.2± 1.50

5 CONCLUSIONS

The analysis and results of this study underscore the potential of the proposed DiffSDA model to
address key limitations in sequential disentanglement, specifically in the context of complex real-
world visual data, speech audio, and time series. By leveraging a novel probabilistic framework,
diffusion autoencoders, efficient samplers, and latent diffusion models, DiffSDA provides a robust
solution for disentangling both static and dynamic factors in sequences, outperforming existing
state-of-the-art methods. Moreover, the introduction of a new real-world visual evaluation protocol
marks a significant step towards standardizing the assessment of sequential disentanglement models.
Nevertheless, while DiffSDA shows promise in handling high-resolution videos and varied datasets,
future research should focus on optimizing its computational efficiency and extending its applicability
to more diverse sequence modalities, such as sensor data. Such modalities present unique challenges,
as varying temporal characteristics and distinct data patterns, which may require adapting the model
architecture and training strategies. In addition, given that our current video generation process
operates frame-by-frame, potentially limiting spatio-temporal coherence, an interesting direction
for future work is to integrate DiffSDA with latent video diffusion models (e.g., LVDM) or related
architectures to further strengthen its generative fidelity. Finally, a key challenge ahead lies in fully
extending our multifactor exploration procedure to effectively disentangle and represent multiple
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interacting factors (Berman et al., 2023). We leave these considerations and further explorations for
future work.
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A BACKGROUND

A.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015) are a family of SOTA generative models, that were
recently described using stochastic differential equations (SDEs), diffusion processes, and score-based
modeling (Song et al., 2021). We will use diffusion models and score-based models interchangeably.
These models include two processes: the forward process and the reverse process. The forward
process (often not learnable) is an iterative procedure that corrupts the data by progressively adding
noise to it. Specifically, the change to the state xt can be formally described by

dxt = f(xt, t)dt+ g(t)dw , (7)

where w is the standard Wiener process, f(·, t) is a vector-valued function called the drift coefficient,
and g(·) is a scalar function known as the diffusion coefficient. From a probabilistic viewpoint,
Eq. 7 is associated with modeling the transition from the given data distribution, x0 ∼ p0, to pt,
the probability density of xt, t ∈ [0, T ]. Typically, the prior distribution pT is a simple Gaussian
distribution with fixed mean and variance that contains no information of p0. The reverse process,
which is learnable, de-noises the data iteratively. The reverse of a diffusion process is also a diffusion
process, depending on the score function ∇x log pt(x) and operating in reverse time (Anderson,
1982). In our approach, we utilize the conditioned reverse process

dxt = [f(xt, t)− g(t)2∇x log pt(xt | u)]dt̄+ g(t)dw̄, (8)

where w̄ is a standard Wiener process as time progresses backward from T to 0, dt̄ is an negative
timestep, and u is a condition variable. Diffusion models are generative by sampling from pT and
use ∇x log pt(xt | u) to iteratively solve Eq. 8 until samples from p0 are recovered.

A.2 DIFFUSION AUTOENCODERS

Although diffusion models are powerful generative tools, they are not inherently designed to learn
meaningful representations of the data. To address this limitation, several works (Preechakul et al.,
2022; Wang et al., 2023) have adapted diffusion models into autoencoders, resulting in diffusion
autoencoders (DiffAEs). These models have demonstrated the ability to learn semantic representations
of the data, allowing certain modifications of the resulting samples by altering their latent vectors. To
this end, DiffAEs introduce a semantic encoder, taking a data sample x0 and returning its semantic
latent encoding zsem. Then, the latter vector conditions the reverse process, enhancing the model’s
ability to reconstruct and manipulate data samples. In practice, the denoiser is also conditioned
on a feature map h and the time t, combined using an adaptive group normalization (AdaGN)
layer (Dhariwal & Nichol, 2021). The AdaGN block is defined as

AdaGN(h, t, zsem) = zs (ts GroupNorm(h) + tb) , (9)

where zs is the output of a linear layer applied to zsem, ts and tb are the outputs of a multi-layer
perceptron (MLP) applied to the time t, and multiplications are done element-wise.

B DIFFSDA MODELING

B.1 UNSUPERVISED SEQUENTIAL DISENTANGLEMENT

Unsupervised sequential disentanglement is a challenging problem in representation learning, aiming
to decompose a given dataset to its static (time-independent) and dynamic (time-dependent) factors of
variation. Let D = {x1:Vj }Nj=1 be a dataset with N sequences x1:Vj := {x1

j , . . . , xVj }, where xτj ∈ Rd.
We omit the subscript j for brevity, unless noted otherwise. The goal of sequential disentanglement
is to extract an alternative representation of x1:V via a single static factor s and multiple dynamic
factors d1:V . Note that s is shared across the sequence.

We can formalize the sequential disentanglement problem as a generative task, where every sequence
x1:V from the data space X is conditioned on some z1:V from a latent space Z . We aim to maximize
the probability of each sequence under the entire generative process

p(x1:V ) =
∫
Z
p(x1:V | z1:V )p(z1:V ) d z1:V , (10)
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where z1:V := (s,d1:V ). One of the main challenges with directly maximizing Eq. (10) is that the
latent space Z is too large to practically integrate over. Instead, a separate distribution, denoted here
as q(z1:V | x1:V ), is used to narrow search to be only over z1:V associated with sequences from the
dataset D. Importantly, the distributions p(x1:V | z1:V ) and q(z1:V | x1:V ) take the form of a decoder
and an encoder in practice, suggesting the development of autoencoder sequential disentanglement
models (Yingzhen & Mandt, 2018). The above p(x1:V | z1:V ) and q(z1:V | x1:V ) are denoted by
pT0(xτ0 | xτT , s0,dτ

0) and p(x1:V
t , s0,d1:V

0 | x1:V0 ), respectively, in Eq. 1 and Eq. 2.

B.2 HIGH-RESOLUTION DISENTANGLED SEQUENTIAL DIFFUSION AUTOENCODER

In addition to transitioning to real-world data, our goal is to manage high-resolution data for unsuper-
vised sequential disentanglement, for the first time. Drawing inspiration from Rombach et al. (2022),
we incorporate perceptual image compression, which combines an autoencoder with a perceptual loss
(Zhang et al., 2018) and a patch-based adversarial objective (Dosovitskiy & Brox, 2016; Esser et al.,
2021; Isola et al., 2017). Specifically, we explore two main variants of the autoencoder. The first
variant applies a small Kullback–Leibler penalty to encourage the learned latent space to approximate
a standard normal distribution, similar to a VAE (Kingma, 2013; Rezende et al., 2014). The second
variant integrates a vector quantization layer (Van Den Oord et al., 2017; Razavi et al., 2019) within
the decoder. Empirically, we find that the VQ-VAE-based model performs better when combined
with our method. Given a pre-trained encoder E and decoder D, we can extract xτ

0 = E(xτ0), which
represents a low-dimensional latent space where high-frequency, imperceptible details are abstracted
away. Finally, xτ0 can be reconstructed from the latent xτ

0 by applying the decoder xτ0 = D(xτ
0). The

EDM formulation in Eq. 4 makes relatively strong assumptions about the mean and standard deviation
of the training data. To meet these assumptions, we opt to normalize the training data globally rather
than adjusting the value of σdata, which could significantly affect other hyperparameters (Karras et al.,
2024). Therefore, we keep σdata at its default value of 0.5 and ensure that the latents have a zero mean
during dataset preprocessing. When generating sequence elements, we reverse this normalization
before applying D.

B.3 PRIOR MODELING

We model the prior static and dynamic distribution with pT0(s0,d
1:V
0 | sT ,d1:V

T ). To sample static
and dynamic factors, we train a separate latent DDIM model (Song et al., 2020). Then, we can extract
the factors by sampling noise, and reversing the trained model. Specifically, we learn p∆t(z

1:V
t−1 | z1:Vt )

where z0 = (s0,d
1:V
0 ) are the outputs of our sequential semantic encoder. The training is done by

simply optimizing the Llatent with respect to DDIM’s output εϕ(·):

Llatent =

T∑
t=1

Ez1:V ,εt

[
∥εϕ(z1:Vt , t)− εt∥

]
(11)

where εt ∈ Rd V+s ∼ N
(
0, I

)
, V is the sequence length, s, d are the static and dynamic factors

dimensions respectively. Additionally, z1:Vt is the noise version of zt as described in Song et al.
(2020). For designing the architecture of our latent model, we follow Preechakul et al. (2022) and it
is based on 10 MLP layers. Our network architecture and hyperparamters are provided in Tab. 8.

B.4 REVERSE PROCESSES

The detailed reverse sampling algorithm is provided in Alg. 1. We follow Karras et al. (2022)
sampling techniques, however, each step in our reverse process is conditioned on the latent static and
dynamic factors extracted by our sequential semantic encoder. As in Preechakul et al. (2022), we
observe that auto-encoding is improved significantly when using the stochastic encoding technique.
Since we have a different reverse process, we provide the algorithm for stochastic encoding for our
modeling in Alg. 2. Finally, when performing conditional swapping, we observe that performing
stochastic encoding on the sample from which we borrow the dynamics and using it as an input to
Alg. 1, improves the results empirically. That is, given two sample videos x, x̂ ∼ p0, to create a
new sample x̄, conditioned on the static factor of x and dynamic features of x̂, we use the stochastic
encoding of x̂ in Alg. 1.
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Algorithm 1 Conditioned Stochastic Sampler with σ(t) = t and s(t) = 1.
1: procedure CONDITIONEDSTOCHASTICSAMPLER(Dθ, ti∈{0,...,N}, γi∈{0,...,N−1}, z

1:V
0 ,x1:V

0 , S2
noise)

2: if x1:V
0 ̸= None then

3: x1:V
N ← Algorithm 2 output

4: else
5: sample x1:V

N ∼ N
(
0, t2N I

)
6: for i ∈ {N, . . . , 1} do ▷ γi =

{
min

(
Schurn
N

,
√
2−1

)
if ti∈[Stmin,Stmax]

0 otherwise7: sample ϵi ∼ N
(
0, S2

noise I
)

8: t̂i ← ti + γiti ▷ Select temporarily increased noise level t̂i
9: x̂τ

i ← xτ
i +

√
t̂2i − t2i ϵi ▷ Add new noise to move from ti to ti

10: di ←
(
xτ
i −Dθ(x

τ
i , z

τ
0 ; t̂i)

)
/t̂i ▷ Evaluate dx/dt at ti

11: xτ
i−1 ← xτ

i + (ti−1 − t̂i)di ▷ Take Euler step from ti to ti−1

12: if ti−1 ̸= 0 then
13: d ′

i ←
(
xτ
i−1 −Dθ(x

τ
i−1, z

τ
0 ; ti−1)

)
/ti−1 ▷ Apply 2nd order correction

14: xτ
i−1 ← x̂τ

i + (ti−1 − t̂i)
(
1
2
di +

1
2
d ′
i

)
15: return x0

Algorithm 2 Stochastic Encoding with σ(t) = t and s(t) = 1.
1: procedure STOCHASTICENCODER(Dθ, ti∈{0,...,N}, γi∈{0,...,N−1}, x

1:V
0 , z1:V0 )

2: sample x0 ∼ N
(
0, t20 I

)
3: for i ∈ {0, . . . , N − 1} do ▷ γi =

{
min

(
Schurn
N

,
√
2−1

)
if ti∈[Stmin,Stmax]

0 otherwise4: sample ϵi ∼ N
(
0, S2

noise I
)

5: t̂i ← ti + γiti ▷ Select temporarily increased noise level t̂i
6: x̂i ← xi +

√
t̂2i − t2i ϵi ▷ Add new noise to move from ti to ti

7: di ←
(
xτ
i −Dθ(x

τ
i , z

τ
0 ; ti)

)
/ti ▷ Evaluate dxτ/dt at ti

8: xτ
i+1 ← xτ

i + (ti+1 − ti)di ▷ Take Euler step from ti to ti+1

9: if ti+1 ̸= σmax then
10: d ′

i ←
(
xτ
i+1 −Dθ(x

τ
i+1, z

τ
0 ; ti+1)

)
/ti+1 ▷ Apply 2nd order correction

11: xτ
i+1 ← xτ

i + (ti+1 − ti)
(
1
2
di +

1
2
d ′
i

)
12: return x1:V

N

C HYPER-PARAMETERS

The hyperparameters used in our autoencoder are listed in Tab. 6 and Tab. 7, detailing the configura-
tions for each dataset: MUG, TaiChi-HD, VoxCeleb, CelebV-HQ, TIMIT, LibriSpeech, PhysioNet,
Air Quality and ETTh1. We provide the values of essential parameters such as sequence lengths,
batch sizes, learning rates, and the use of Pmean and Pstd to manage noise disturbance during training.
In addition, the table specifies whether VQ-VAE was employed. Tab. 8 outlines the architecture of
our latent DDIM model, including batch size, number of epochs, MLP layers, hidden sizes, and
the β scheduler. These details are essential for understanding the model’s structure and its training
process. For the VQ-VAE model, we utilized the pre-trained model from (Rombach et al., 2022) with
hyperparameters f = 8, Z = 256, and d = 4, which encodes a frame of size 3× 256× 256 into a
latent representation of size 4× 32× 32.

D DATASETS

MUG. The MUG facial expression dataset, introduced by Aifanti et al. (2010), contains image
sequences from 52 subjects, each displaying six distinct facial expressions: anger, fear, disgust,
happiness, sadness, and surprise. Each video sequence in the dataset ranges from 50 to 160 frames.
To create sequences of length 15, as done in prior work (Bai et al., 2021), we randomly select 15
frames from the original sequences. We then apply Haar Cascade face detection to crop the faces and
resize them to 64×64 pixels, resulting in sequences of x ∈ R15×3×64×64. The final dataset comprises
3,429 samples. In the case of of the zero shot experiments we resize the images to 256× 256 pixels.
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Table 6: Hyperparameters for Video datasets.

Dataset MUG TaiChi-HD VoxCeleb CelebV-HQ
Pmaen −1.2 −1.2 −0.4 −0.4
Pstd 1.2 1.2 1.0 1.0
NFE 71 63 63 63
lr 1e−4 1e−4 1e−4 1e−4
bsz 8 16 16 16
#Epoch 1600 40 100 450
Dataset repeats 1 150 1 1
s dim 256 512 512 1024
d dim 64 64 12 16
hidden dim 128 1024 1024 1024
Base channels 64 64 192 192
Channel multipliers [1, 2, 2, 2]
Attention placement [2]
Encoder base ch 64 64 192 192
Encoder ch. mult. [1, 2, 2, 2]
Enc. attn. placement [2]
Input size 3× 64× 64 3× 64× 64 3× 256× 256 3× 256× 256
Seq len 15 10 10 10
Optimizer AdamW (weight decay= 1e−5)
Backbone Unet
GPU 1 RTX 4090 3 RTX 4090

Table 7: Hyperparameters for audio and TS.

Dataset TIMIT LibriSpeech Physionet Airq ETTH
Pmaen −0.4 −0.4 −0.4 −0.4 −0.4
Pstd 1.0 1.0 1.0 1.0 1.0
NFE 63 63 63 63 63
lr 1e−4 1e−3 5e−5 1e−4 1e−4
bsz 128 128 30 10 10
#Epoch 750 200 200 200 200
s dim 32 32 24 16 16
d dim 4 2 2 4 4
hidden dim 128 256 96 512 512
Base channels 256 64 256 256 128
Channel multipliers [4, 4, 4, 4]
Attention placement None
Encoder base ch 128 128 96 128 256
Encoder ch. mult. [4, 4, 4, 4]
Enc. attn. placement None
Input size 80 80 10 10 6
Seq len 68 68 80 672 672
Optimizer AdamW (weight decay= 1e−5)
Backbone MLP
GPU 1 RTX 4090

TaiChi-HD. The TaiChi-HD dataset, introduced by Siarohin et al. (2019), contains videos of
full human bodies performing Tai Chi actions. We follow the original preprocessing steps from
FOMM (Siarohin et al., 2019) and use a 64× 64 version of the dataset. The dataset comprises 3,081
video chunks with varying lengths, ranging from 128 to 1,024 frames. We split the data into 90% for
training and 10% for testing. To create sequences of length 10, similar to the approach used for the
MUG dataset, we randomly select 10 frames from the original sequences. The resulting sequences
are resized to 64× 64 pixels, forming x ∈ R10×3×64×64.
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Table 8: Network architecture of our latent DDIM.

Parameter MUG TaiChi-HD VoxCeleb Celebv-HQ
Batch size 128 128 128 128
#Epoch 500 500 200 1000
MLP layers (N ) 10
MLP hidden size 1216 5008 2528 4736
β scheduler Linear
Learning rate 1e−4
Optimizer AdamW (weight decay= 1e−5)
Train Diff T 1000
Diffusion loss L2 loss with noise prediction ϵ
GPU 1 RTX 4090

VoxCeleb. The VoxCeleb dataset (Nagrani et al., 2017) is a collection of face videos extracted from
YouTube. We used the preprocessing steps from Albanie et al. (2018), where faces are extracted, and
the videos are processed at 25/6 fps. The dataset comprises 22,496 videos and 153,516 video chunks.
We used the verification split, which includes 1,211 speakers in the training set and 40 different
speakers in the test set, resulting in 148,642 video chunks for training and 4,874 for testing. To create
sequences of length 10, we randomly select 10 frames from the original sequences. The videos are
processed at a resolution of 256× 256 resulting in sequences represented as x ∈ R10×3×256×256.

CelebV-HQ. The CelebV-HQ dataset (Zhu et al., 2022) is a large-scale collection of high-quality
video clips featuring faces, extracted from various online sources. The dataset consists of 35,666 video
clips involving 15,653 identities, with each clip manually labeled with 83 facial attributes, including
40 appearance attributes, 35 action attributes, and 8 emotion attributes. The videos were initially
processed at a resolution of 512× 512. We then used Wang et al. (2021) to crop the facial regions,
resulting in videos at a 256× 256 resolution. To create sequences of length 10, we randomly selected
10 frames from the original sequences, producing sequences represented as x ∈ R10×3×256×256.

TIMIT. The TIMIT dataset, introduced by Garofolo (1993), is a collection of read speech designed
for acoustic-phonetic research and other speech-related tasks. It contains 6300 utterances, totaling
approximately 5.4 hours of audio recordings, from 630 speakers (both men and women). Each
speaker contributes 10 sentences, providing a diverse and comprehensive pool of speech data. To
pre-process the data we use mel-spectogram feature extraction with 8.5ms frame shift applied to the
audio. Subsequently, segments of 580ms duration, equivalent to 68 frames, are sampled from the
audio and treated as independent samples.

LibriSpeech. The LibriSpeech dataset Panayotov et al. (2015) is a corpus of read English speech
derived from audiobooks, containing 1,000 hours of speech sampled at 16 kHz. For our training, we
used the train-clean-360 subset, which consists of 363.6 hours of speech from 921 speakers.
As validation and test sets, we use dev-clean and test-clean, each containing 5.4 hours of
speech from 40 unique speakers, where there is no identity overlap across all subsets. For pre-
processing, we extract mel-spectrogram features with an 8.5 ms frame shift applied to the audio. We
then sample segments of 580 ms duration (equivalent to 68 frames) from the audio, treating them as
independent samples.

PhysioNet. The PhysioNet ICU dataset (Goldberger et al., 2000) consists of medical time series
data collected from 12,000 adult patients admitted to the Intensive Care Unit (ICU). This dataset
includes time-dependent measurements such as physiological signals, laboratory results, and relevant
patient demographics like age and reasons for ICU admission. Additionally, labels indicating in-
hospital mortality events are included. Our preprocessing procedures follow the guidelines provided
in (Tonekaboni et al., 2022).

Air Quality. The UCI Beijing Multi-site Air Quality dataset (Zhang et al., 2017) comprises hourly
records of air pollution levels, collected over a four-year period from March 1, 2013, to February 28,
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2017, across 12 monitoring sites in Beijing. Meteorological data from nearby weather stations of
the China Meteorological Administration is also included. Our approach to data preprocessing, as
described in (Tonekaboni et al., 2022), involves segmenting the data based on different monitoring
locations and months of the year.

ETTh1. The ETTh1 dataset is a subset of the Electricity Transformer Temperature (ETT) dataset,
containing hourly data over a two-year period from two counties in China. The dataset is focused
on Long Sequence time series Forecasting (LSTF) of transformer oil temperatures. Each data point
consists of the target value (oil temperature) and six power load features. The dataset is divided into
training, validation, and test sets, with a 12/4/4-month split.

E METRICS

Average Keypoint Distance (AKD). To evaluate whether the motion in the reconstructed video
is preserved, we utilize pre-trained third-party keypoint detectors on the TaiChi-HD, VoxCeleb,
CelebV-HQ, and MUG datasets. For the VoxCeleb, CelebV-HQ and MUG datasets, we employ the
facial landmark detector from Bulat & Tzimiropoulos (2017), whereas for the TaiChi-HD dataset,
we use the human-pose estimator from Cao et al. (2017). Keypoints are computed independently
for each frame. AKD is calculated by averaging the L1 distance between the detected keypoints
in the ground truth and the generated video. The TaiChi-HD and MUG datasets are evaluated at a
resolution of 64× 64 pixels, and the VoxCeleb and CelebV-HQ datasets at 256× 256 pixels. If the
model output is at a lower resolution, it is interpolated to 256× 256 pixels for evaluation.

Average Euclidean Distance (AED). To assess whether the identity in the reconstructed video is
preserved, we use the Average Euclidean Distance (AED) metric. AED is calculated by measuring
the Euclidean distance between the feature representations of the ground truth and the generated
video frames. We selected the feature embedding following the example set in Siarohin et al. (2019).
For the VoxCeleb, CelebV-HQ, and MUG datasets, we use a VGG-FACE for facial identification
using the framework of Serengil & Ozpinar (2020), whereas for TaiChi-HD, we use a network trained
for person re-identification (Hermans et al., 2017). TaiChi-HD and MUG are evaluated at a resolution
of 64× 64 pixels, and VoxCeleb and CelebV-HQ at 256× 256 pixels.

To ensure fairness when measuring AED and AKD, we created a predefined dataset of example pairs,
ensuring that all models are evaluated on the exact same set of pairs. This is important because when
measuring quantitative metrics, the results may vary depending on the dynamics swapped between
two subjects, as e.g., the key points in AKD in the original video are influenced by the identity of the
person. To address this issue, we establish a fixed set of pairs for a consistent comparison across all
methods.

Accuracy (Acc). As in Naiman et al. (2023), we used this metric for the MUG dataset to evaluate a
model’s ability to preserve fixed features while generating others. For example, dynamic features are
frozen while static features are sampled. Accuracy is computed using a pre-trained classifier, referred
to as the “judge”, which is trained on the same training set as the model and tested on the same test
set. For the MUG dataset, the classifier checks that the facial expression remains unchanged during
the sampling of static features.

Inception Score (IS). The Inception Score is a metric used to evaluate the performance of the model
generation. First, we apply the judge, to all generated videos x1:V

0 , obtaining the conditional predicted
label distribution p

(
y|x1:V

)
. Next, we compute p(y), the marginal predicted label distribution, and

calculate the KL-divergence KL
[
p
(
y|x1:V

0

)
∥p(y)

]
. Finally, the Inception Score is computed as

IS = exp
(
ExKL

[
p
(
y|x1:V

0

)
∥p(y)

])
. We use this metric evaluate our results on MUG dataset.

Inter-Entropy (H(y|x1:V
0 )). This metric reflects the confidence of the judge in its label predic-

tions, with lower inter-entropy indicating higher confidence. It is calculated by passing k generated
sequences {x1:V

0 }1:k into the judge and computing the average entropy of the predicted label distribu-
tions: 1

k

∑k
i=1 H(p(y|{x1:V

0 }i)). We use this metric evaluate our results on MUG dataset.
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Intra-Entropy (H(y)). This metric measures the diversity of the generated sequences, where a
higher intra-entropy score indicates greater diversity. It is computed by sampling from the learned
prior distribution p(y) and then applying the judge to the predicted labels y. We use this metric to
evaluate our results on the MUG dataset.

EER. Equal Error Rate (EER) metric is widely employed in speaker verification tasks. The EER
represents the point at which the false positive rate equals the false negative rate, offering a balanced
measure of performance in speaker recognition. This metric, commonly applied to the TIMIT dataset,
provides a robust evaluation of the model’s ability to disentangle features relevant to speaker identity.

AUPRC. The Area Under the Precision-Recall Curve (AUPRC) is a metric that evaluates the
balance between precision and recall by measuring the area beneath their curve. A higher AUPRC
reflects superior model performance, with values nearing 1 being optimal, indicating both high
precision and recall.

AUROC. The Area Under the Receiver Operating Characteristic Curve (AUROC) measures the
trade-off between true positive rate (TPR) and false positive rate (FPR), quantifying the area under
the curve of these rates. A higher AUROC signifies better performance, with values close to 1 being
desirable, representing a model that distinguishes well between positive and negative classes.

MAE. Mean Absolute Error (MAE) calculates the average magnitude of errors between predicted
and observed values, offering a simple and intuitive measure of model accuracy. As it computes the
average absolute difference between predicted and actual values, MAE is resistant to outliers and
provides a clear indication of the model’s prediction precision.

DNSMOS. Deep Noise Suppression Mean Opinion Score (DNSMOS (Reddy et al., 2021)) is a
neural network-based metric introduced to estimate the perceptual quality of speech processed by
noise suppression algorithms. Trained to predict human Mean Opinion Scores (MOS), DNSMOS
provides a no-reference quality assessment that correlates strongly with subjective human judgments.
It evaluates both the speech quality and the effectiveness of noise reduction, offering a comprehensive
measure of audio clarity and intelligibility. This metric is especially useful in evaluating real-world
performance of speech enhancement systems without the need for costly and time-consuming human
listening tests.

A

B

C

D

E

Figure 5: Rows A and B are two inputs from the test set. Row C shows a dynamic swap example,
using the static of A and dynamics of B. In row D we extract the same person from A, but with the
dynamics as labeled in B. Finally, in row E, we extract the same person from A with the dynamics
that are predicted by the classifier.

F MUG AND JUDGE METRIC ANALYSIS

While our results show significant improvement over previous methods on VoxCeleb (Nagrani et al.,
2017), CelebV-HQ (Zhu et al., 2022), and TaiChi-HD (Siarohin et al., 2019), both in terms of
disentanglement and reconstruction, our performance on MUG (Aifanti et al., 2010) is only on par
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Figure 6: Rows A and B are two inputs from the test set. Row C shows a dynamic swap example,
using the static of A and dynamics of B. In row D we extract the same person from A, but with the
dynamics as labeled in B. Finally, in row E, we extract the same person from A with the dynamics
that are predicted by the classifier.

Table 9: Judge benchmark disentanglement metrics on MUG.

MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Reconstruction (MSE) ↓
MoCoGAN 63.12% 4.332 0.183 1.721 –
DSVAE 54.29% 3.608 0.374 1.657 –
R-WAE 71.25% 5.149 0.131 1.771 –
S3VAE 70.51% 5.136 0.135 1.760 –
SKD 77.45% 5.569 0.052 1.769 –
C-DSVAE 81.16% 5.341 0.092 1.775 –
SPYL 85.71% 5.548 0.066 1.779 1.311e−3
DBSE 86.90% 5.598 0.041 1.782 1.286e−3
Ours 81.15% 5.382 0.090 1.773 2.669e−7

with the state-of-the-art methods. Since MUG is a labeled dataset, the traditional evaluation task
involves the unconditional generation of static factors while freezing the dynamics, resulting in
altering the appearance of the person. The generated samples are then evaluated using an off-the-shelf
judge model (See App. E), which is a neural network trained to classify both static and dynamic
factors. If the disentanglement method disentangles these factors effectively, we expect the judge to
correctly identify the dynamics while outputting different predictions for the static features, since the
latter were randomly sampled and should differ from the original static factor.

Surprised by our results on MUG, we investigated the failure cases to understand the limitations
of our model. In particular, we examined scenarios where we freeze the dynamics and swap the
static features between two samples, and then we generate the corresponding output. In Fig. 5, we
show an example where the static features of the second row are swapped with those of the first
row, and the resulting generation is displayed in the third row. We observe that while the dynamics
from the second row are well-preserved, the generated person retains the identity of the first row.
However, the classifier incorrectly predicts the dynamics for the sequence. To further investigate this,
we extracted a ground-truth example of the person from the first row in the dataset expressing the
expected emotion and the predicted one. In the last two rows of Fig. 5, we show the same person with
predicted dynamics (fourth row) and the same person with the dynamics that the classifier predicted
(fifth row). We provide another example of the same phenomenon in Fig. 6.

We observe that while the judge predicts the wrong label for our generated samples in rows C,
the facial expressions of the people there align better with the actual dynamics in rows B. This
suggests that the classifier is biased towards the identity when predicting dynamics, potentially
forming a discrete latent space where generalization to nearby related expressions is not possible.
Importantly, the judge attains > 99% accuracy on the test set. We conclude that utilizing a judge can
be problematic for measuring new and unseen variations in the data. This analysis motivates us to
present the AKD and AED, as detailed above in App. E.
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G ADDITIONAL EXPERIMENTS

G.1 DEPENDENT VS. INDEPENDENT PRIOR MODELING

In Sec. 3, we describe our approach to prior modeling, highlighting our decision to generate latent
factors dependently rather than independently, as done in previous state-of-the-art methods. Beyond
being a parameter- and time-efficient choice, we empirically validate the advantages of our approach
in the following experiment.

In this experiment, we compare two setups: (1) dependent generation of static and dynamic latent
vectors, and (2) independent generation of these latent vectors using two latent DDIM models: one
for the static vector and another for the dynamic vectors. To quantitatively assess the effectiveness of
both approaches, we measure the Fréchet Video Distance (FVD) Blattmann et al. (2023), a metric
derived from the well-established FID score for videos. This metric evaluates how well a generative
model captures the observed data distribution, where lower scores indicate better performance.

We conduct our evaluation on the VoxCeleb dataset, training two latent models. The independent
model achieves an FVD score of 75.03, whereas our dependent approach achieves a significantly
lower score of 65.23, representing a ≈ 13% improvement. This result underscores the expressive
advantage of modeling latent factors dependently.

G.2 ADDITIONAL ANALYSIS OF DIFFSDA DISENTANGLEMENT COMPONENTS

This section explores the impact of two key components of our method on disentanglement quality: i)
the static latent factor s0 shared across all time steps τ , and ii) the dimensionality of the dynamic
latent factor dτ

0 .

To analyze these effects, we trained four models on the VoxCeleb dataset for 100 epochs, maintaining
a static latent dimension of 128 while varying the size of the dynamic latent factor and whether the
static latent factor was shared or not. The models were evaluated using our conditional swapping
protocol and a verification metric based on the VGG-FACE framework proposed in Serengil &
Ozpinar (2020). Specifically, we assessed identity consistency by freezing the static factor and
swapping the dynamic factor, with the verification score representing the percentage of cases where
identity was correctly preserved across frames.

As shown in Tab.10, our results indicate that the optimal performance (first row of the table) is
achieved when dτ

0 has a smaller dimensionality, and the static factor is shared. Other configurations
reveal significant trade-offs: increasing dτ

0 dimensionality results in higher AED scores but reduced
verification accuracy, indicating weaker disentanglement of the static factor. Similarly, when s0 is not
shared, the AKD score degrades significantly, suggesting ineffective disentanglement of the dynamic
factor. These findings underscore the importance of both (i) and (ii) in achieving robust sequential
disentanglement.

Table 10: Disentanglement effect of VoxCeleb dataset

dτ
0 size s shared? Verification ACC ↑ (Static Frozen) AED ↓ (static frozen) AKD ↓ (dynamics frozen)
16 ✓ 64.36% 0.925 2.882
128 ✓ 18.03% 1.054 2.077
16 ✗ 56.75% 0.898 12.64
128 ✗ 48.41% 0.980 12.28

To strengthen these observations, we repeated the study on MUG, where ground-truth static (identity)
and dynamic (action) labels allow a clean swap-task evaluation (Tab. 11). The trends mirror VoxCeleb:
(i) sharing the static representation s is critical when s is not shared, the dynamic pathway collapses.
In this case, identity remains stably preserved under static swap (as it should), but dynamic recognition
deteriorates toward chance because temporal variation is absorbed into or suppressed by the static
channel, indicating failed sequential disentanglement; and (ii) constraining the dimensionality of
the dynamic latent dτ

0 provides a helpful bottleneck that limits identity leakage and sharpens the
separation between static and dynamic factors. Although the absolute gaps on MUG are more modest
than in Tab. 10, the qualitative agreement across datasets reinforces that both sharing s and limiting
the capacity of dτ

0 are key for robust sequential disentanglement.
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Table 11: Disentanglement effect of MUG dataset

dτ
0 size s shared? Verification ACC ↑ (Static Frozen) Action ACC ↓ (dynamics frozen)
64 ✓ 95.59% 80.08%

256 ✓ 92.12% 81.28%
64 ✗ 99.69% 16.71%

256 ✗ 99.83% 18.18%

G.3 SPEECH QUALITY AND RECONSTRUCTION COMPARISON

This section discusses the results of speech reconstruction and quality evaluation presented in table 12
on the LibriSpeech dataset. We compare the reconstruction performance using the Mean Squared
Error (MSE) on the spectrograms and assess speech quality using the Deep Noise Suppression Mean
Opinion Score (DNSMOS) (Reddy et al., 2021). The DNSMOS metric has a maximum score of 5,
but the original (reference) dataset achieves a score of 3.9, as shown in the REF row of the table. As
can be seen in the table, our model outperforms all comparable methods, achieving the lowest MSE
and the highest DNSMOS among the evaluated approaches.

Table 12: Disentanglement and generation quality metrics on Libri Speech. For generation quality,
we report MSE on the spectogram and Deep Noise Suppression Mean Opinion Score (DNSMOS).

Method MSE↓ DNSMOS↑

L
ib

ri
Sp

ee
ch

REF −− 3.9

DSVAE 5.53e−2 3.13
SPYL 4.40e−1 2.21
DBSE 6.72e−3 2.88

Ours 1.83e−4 3.41

G.4 GENERATIVE QUALITY COMPRESSION

This section discusses the generative quality results shown in Table 13, evaluated using the Fréchet
Video Distance (FVD) on the VoxCeleb dataset. We generated the same number of samples as in
the test set and computed the FVD score against the test set. This process was repeated five times
for each model using different five diffrent seeds to obtain a robust estimate. We report the mean
FVD along with the standard deviation. The results demonstrate that our model outperforms existing
state-of-the-art sequential disentanglement models in the video generation task.

Table 13: Fréchet Video Distance (FVD) results on VoxCeleb dataset to assess video generation
quality. All experiments were conducted across five different random seeds to ensure robustness and
account for variability in generation.

Model FVD↓
SPYL 582.28± 1.15
DBSE 1076.44± 2.22

Ours 65.23± 0.81

G.5 EFFECT OF VQ-VAE ON ZERO-SHOT SWAPS

In this subsection, we provide further details regarding the experiment aimed at evaluating the role
of the VQ-VAE in zero-shot cross-dataset transfer. The experiment was designed to isolate the
contribution of the VQ-VAE by removing it entirely and training DiffSDA directly in pixel space on
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downsampled VoxCeleb. This setup allows us to examine how well the model maintains disentan-
glement when the unified latent space provided by VQ-VAE is absent. The observed deterioration
in generalization, particularly in the stability and consistency of identity and expression transfer,
indicates that the VQ-VAE plays a crucial role in producing coherent cross-dataset representations
that support strong zero-shot disentanglement as seen in the examples of Fig. 7.
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Figure 7: Each panel shows, in the first and second rows, real video pairs from the VoxCeleb and
MUG datasets, respectively. We perform conditional swapping using two models: one trained on
VoxCeleb with VQ-VAE and another trained on VoxCeleb without VQ-VAE at a resolution of 64×64.
The resulting swaps are shown in the final two rows. In the first two examples, the dynamics are taken
from the VoxCeleb video, while in the last two examples, the dynamics come from the MUG video..
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H ADDITIONAL RESULTS

H.1 EXTENDED BENCHMARK RESULTS

In this section, we expand the comparisons from the main paper by adding results for additional
baselines on the same tasks and datasets. Specifically, we include time-series prediction on PhysioNet
and ETTh1 (Tab. 14), time-series classification on PhysioNet and Air Quality using only the static
latents (Tab. 15), and disentanglement on TIMIT reported as Static EER, Dynamic EER, and Disen-
tanglement Gap (Tab. 16). Across these additions, our method remains competitive or superior to the
added baselines. We also add CDSVAE results on MUG and provide a MUG-only summary (Tab. 17):
under swaps, our model better preserves identity (with zs frozen) and motion (with zd frozen), and in
reconstruction achieves uniformly lower AED/AKD/MSE—supporting stronger disentanglement and
higher-fidelity reconstructions.

Table 14: Time series prediction benchmark.

PhysioNet ETTh1
Method AUPRC ↑ AUROC ↑ MAE ↓
VAE 0.157± 0.05 0.564± 0.04 13.66± 0.20
GP-VAE 0.282± 0.09 0.699± 0.02 14.98± 0.41
C-DSVAE 0.158± 0.01 0.565± 0.01 12.53± 0.88
GLR 0.365± 0.09 0.752± 0.01 12.27± 0.03
SPYL 0.367± 0.02 0.764± 0.04 12.22± 0.03
DBSE 0.473 ± 0.02 0.858 ± 0.01 11.21 ± 0.01

Ours 0.50± 0.006 0.87± 0.004 9.89± 0.280

RF 0.446± 0.04 0.802± 0.04 10.19± 0.20

Table 15: Time series classification benchmark.

Method PhysioNet ↑ Air Quality ↑
VAE 34.71± 0.23 27.17± 0.03
GP-VAE 42.47± 2.02 36.73± 1.40
C-DSVAE 32.54± 0.00 47.07± 1.20
GLR 38.93± 2.48 50.32± 3.87
SPYL 46.98± 3.04 57.93± 3.53
DBSE 56.87± 0.34 65.87± 0.01

OUR 64.6± 0.35 69.2± 1.50

RF 62.00± 2.10 62.43± 0.54

Table 16: Disentanglement metrics on TIMIT

Method Static EER↓ Dynamic EER↑ Dis. Gap↑
FHVAE 5.06% 22.77% 17.71%
DSVAE 5.64% 19.20% 13.56%
R-WAE 4.73% 23.41% 18.68%
S3VAE 5.02% 25.51% 20.49%
SKD 4.46% 26.78% 22.32%
C-DSVAE 4.03% 31.81% 27.78%
SPYL 3.41% 33.22% 29.81%
DBSE 3.50% 34.62% 31.11%

Ours 4.43% 46.72% 42.29%
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Table 17: MUG results only. Preservation of objects (AED) and motions (AKD) under conditional
swapping, and reconstruction errors (AED/AKD/MSE). Labels ‘static frozen’ and ‘dynamics frozen’
correspond to samples zs and zd.

CDSVAE SPYL DBSE Ours

Swap
AED ↓ (static frozen) 0.774 0.766 0.773 0.751
AKD ↓ (dynamics frozen) 1.170 1.132 1.118 0.802

Reconstruction
AED ↓ 0.56 0.49 0.49 0.11
AKD ↓ 0.50 0.47 0.48 0.06
MSE ↓ 0.001 0.001 0.001 3e−7

H.2 RECONSTRUCTION RESULTS

In Figs. 8 to 11, we present several qualitative reconstruction examples across all datasets.

Figure 8: Reconstruction results of CelebV-HQ (256×256). The first row for each pair is the original
video and the second row is its reconstruction.

H.3 ADDITIONAL RESULTS: CONDITIONAL SWAP

In what follows, we present more results for the conditional swapping experiment from the main text
(Sec. 4.1). In each figure, the first two rows show the original sequences (real videos). The third and
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Figure 9: Reconstruction results of VoxCeleb (256× 256). The first row for each pair is the original
video and the second row is its reconstruction.

fourth rows are the results of the conditional swap where we change the dynamic and static factors,
respectively. We show our results for all datasets in Figs. 12 to 15.

H.4 ADDITIONAL RESULTS: UNCONDITIONAL SWAP

In addition to the conditional and zero-shot shot tasks considered above, we can also perform such
tasks in an unconditional manner. Specifically, given a real sequence x1:V with its factors (s,d1:V ),
we can unconditionally sample new (ŝ, d̂1:V ) using our separate DDIM model (see Sec. 3). We then
reconstruct the static swap (ŝ,d1:V ) and the dynamic swap (s, d̂1:V ) similarly as described above.
In Fig. 16, we present unconditional swap results on CelebV-HQ (left), VoxCeleb (middle), and
TaiChi-HD (right). The middle rows represent the original sequences, whereas the top and bottom
rows demonstrate dynamic and static swaps, respectively. Across all datasets and swap settings, our
approach succeeds in modifying the swapped features while preserving the frozen factors, either in
the static or in the dynamic examples. In addition, we also present more results where each figure is
composed of separate panels. In each panel, the middle row represents the original sequence. In the
top row, we sample new dynamic factors and freeze the static factor. In the bottom row below, we
sample a new static factor and freeze the dynamics. We show our results on all datasets in Figs. 17
to 20.

H.5 ADDITIONAL RESULTS: ZERO-SHOT DISENTANGLEMENT

Here we extend the results from Sec. 4.2. We provide additional examples of conditional swapping
when the model is trained on one dataset and evaluated on another dataset, unseen during training.
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Figure 10: Reconstruction results of TaiChi-HD. The first row for each pair is the original video and
the second row is its reconstruction.

Specifically, in Fig. 21, we show examples where the model is trained on VoxCeleb and tested on
MUG. Additionally, in Fig. 22, the model is trained on VoxCeleb and tested on CelebV-HQ. Finally,
in Fig. 23, the model is trained on CelebV-HQ and tested on VoxCeleb.

H.6 ADDITIONAL RESULTS: MULTIFACTOR DISENTANGLEMENT

In this section, we present more examples for traversing the latent space, separately for the static and
dynamic factors. For static factors, we show in Figs. 25 to 36. There, we find different factors of
variation such as Male to Female, younger to older, brighter and darker hair color, and more. Each
row in the figure is a video, and the different columns represent the traversal in α values (see Eq. 6).
In addition, we present full examples of dynamic factor traversal in Figs. 37 to 48, demonstrating
various factors of variation. Among the factors are facial expressions, camera angles, head rotations,
eyes and mouth control, etc.
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Figure 11: Reconstruction results of MUG. The first row for each pair is the original video and the
second row is its reconstruction.
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Figure 12: Each panel contains a pair of original videos from CelebV-HQ (Real videos), and a pair of
conditional swapping of the dynamic and static factors (Swapped videos).
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Figure 13: Each panel contains a pair of original videos from VoxCeleb (Real videos), and a pair of
conditional swapping of the dynamic and static factors (Swapped videos).
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Figure 14: Each panel contains a pair of original videos from TaiChi-HD (Real videos), and a pair of
conditional swapping of the dynamic and static factors (Swapped videos).
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Figure 15: Each panel contains a pair of original videos from MUG (Real videos), and a pair of
conditional swapping of the dynamic and static factors (Swapped videos).
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Figure 16: Unconditional dynamic (top) and static (bottom) swap results on CelebV-HQ (left),
VoxCeleb (middle), and TaiChi-HD (right).
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Figure 17: CelebV-HQ unconditional swapping. The middle row represents the original video (real),
the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).
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Figure 18: VoxCeleb unconditional swapping. The middle row represents the original video (real),
the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).
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Figure 19: TaiChi-HD unconditional swapping. The middle row represents the original video (real),
the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).
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Figure 20: MUG unconditional swapping. The middle row represents the original video (real), the
row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).
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Figure 21: Each panel contains in its first and second rows a pair of real videos from VoxCeleb and
MUG, respectively. We perform conditional swapping using a model that was trained on VoxCeleb,
but we zero-shot swap the dynamic and static factors of a MUG example (Swapped videos).
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Figure 22: Each panel contains in its first and second rows a pair of real videos from VoxCeleb and
CelebV-HQ. We perform conditional swapping using a model that was trained on VoxCeleb, but we
zero-shot swap the dynamic and static factors of a CelebV-HQ example (Swapped videos).
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Figure 23: Each panel contains in its first and second rows a pair of real videos from CelebV-HQ and
VoxCeleb. We perform conditional swapping using a model that was trained on CelebV-HQ, but we
zero-shot swap the dynamic and static factors of a VoxCeleb example (Swapped videos).
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Figure 24: Traversing the latent space of DiffSDA via PCA reveals multiple dynamic variations on
CelebV-HQ, including surprised and serious expressions, and different head orientations.
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Figure 25: Traversing between Male appearances and Female appearances.
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Figure 26: Traversing over a darker hair factor.
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Figure 27: Traversing between sharper and blurry videos.
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Figure 28: Traversing over a brighter hair factor.
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Figure 29: Traversing between younger and older appearances.
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Figure 30: Traversing over skin color variations.
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Figure 31: Traversing between Male appearances and Female appearances.
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Figure 32: Traversing over a darker hair factor.
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Figure 33: Traversing between sharper and blurry videos.
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Figure 34: Traversing over a brighter hair factor.
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Figure 35: Traversing between younger and older appearances.
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Figure 36: Traversing over skin color variations.
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Figure 37: Traversing a head rotation factor.
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Figure 38: Traversing over head angles.
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Figure 39: Traversing over up and down rotations.
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Figure 40: Traversing over facial expressions.
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Figure 41: Traversing over mouth openness factor.
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Figure 42: Traversing over eyes openness factor.
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Figure 43: Traversing over a head rotation factor.
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Figure 44: Traversing over various head angles.
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Figure 45: Traversing over up and down head rotations.
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Figure 46: Traversing over facial expressions.
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Figure 47: Traversing over mouth openness factor.
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Figure 48: Traversing over eyes openness factor.
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