

DIFFSSDA: UNSUPERVISED DIFFUSION SEQUENTIAL DISENTANGLEMENT ACROSS MODALITIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Unsupervised representation learning, particularly sequential disentanglement, aims to separate static and dynamic factors of variation in data without relying on labels. This remains a challenging problem, as existing approaches based on variational autoencoders and generative adversarial networks often rely on multiple loss terms, complicating the optimization process. Furthermore, sequential disentanglement methods face challenges when applied to real-world data, and there is currently no established evaluation protocol for assessing their performance in such settings. Recently, diffusion models have emerged as state-of-the-art generative models, but no theoretical formalization exists for their application to sequential disentanglement. In this work, we introduce the Diffusion Sequential Disentanglement Autoencoder (DiffSDA), a novel, modal-agnostic framework effective across diverse real-world data modalities, including time series, video, and audio. DiffSDA leverages a new probabilistic modeling, latent diffusion, and efficient samplers, while incorporating a challenging evaluation protocol for rigorous testing. Our experiments on diverse real-world benchmarks demonstrate that DiffSDA outperforms recent state-of-the-art methods in sequential disentanglement.

1 INTRODUCTION

Unconditional generation (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022), and more broadly, unsupervised learning (Bengio et al., 2012), play a central role in today’s machine learning research, as it enables leveraging large-scale data without requiring expensive annotations. Within unsupervised learning, *disentangled representation learning* has become particularly significant (Bengio et al., 2013). This approach seeks to decompose latent representations into distinct factors, where each factor captures a specific variation in the data. Such representations improve interpretability (Liu et al., 2020), mitigate biases (Creager et al., 2019), and improve generalization (Zhang et al., 2022). A prominent challenge is to develop a modal-agnostic approach for *sequential* data such as video, audio, and time series. In particular, the goal is to decompose the sequential signal into separate static and dynamic latent components in an unsupervised manner. For example, in a video of a person speaking, the static factors could represent the person’s facial appearance, while the dynamic factors encode facial movements. In audio recordings, static factors may correspond to the speaker’s identity, while dynamic factors capture content of the speech.

Despite recent advancements, most sequential disentanglement methods (Tulyakov et al., 2018; Yingzhen & Mandt, 2018; Bai et al., 2021; Han et al., 2021; Naiman et al., 2023; Berman et al., 2024) rely on VAEs and GANs, which often require complex optimization with extensive hyperparameter tuning. For instance, C-DSVAE (Bai et al., 2021) requires *five* hyperparameters solely to balance its various loss terms. Moreover, these models are often evaluated on toy datasets and struggle to produce high-quality samples in real-world scenarios. The reliance on VAEs and GANs is directly related to the absence of a modeling framework for sequential disentanglement within diffusion-based modeling. Further, existing diffusion architectures do not produce disentangled representations (Preechakul et al., 2022; Wang et al., 2023). We hypothesize that a diffusion-based framework can reduce hyperparameter tuning and improve sample quality, paving the way for more robust and scalable approaches to unsupervised sequential disentanglement.

In this work, we introduce *Diffusion Sequential Disentanglement Autoencoder (DiffSDA)*, a novel probabilistic framework for sequential disentanglement. Unlike prior tools (Bai et al., 2021; Naiman et al., 2023), our method models static and dynamic factors as interdependent, enhancing the

054 expressivity of their marginal distributions. Notably, our approach is based on **a single** standard
055 diffusion loss term, while producing high-quality results. Furthermore, DiffSDA is **modal-agnostic**,
056 allowing it to disentangle data across diverse modalities, such as video, audio, and time series, with
057 only minor adjustments to the network. This stands in contrast to modal-dependent methods, such as
058 animation-based approaches for video, which rely on temporal and spatial consistency properties
059 inherent to visual data (Siarohin et al., 2019), or methods designed specifically for audio that depend
060 on spectral or temporal cues (Xu et al., 2024a).

061 Practically, we implement a **sequential semantic encoder** and adopt the efficient sampling framework
062 EDM (Karras et al., 2022). Moreover, we incorporate a latent diffusion module (LDM) (Rombach
063 et al., 2022) into our architecture, which enables robust handling of high-dimensional, real-world data,
064 outperforming prior sequential disentanglement methods. Finally, using our method, we demonstrate
065 that applying principal component analysis (PCA) to the latent static and dynamic representations
066 reveals a further disentanglement into multiple interpretable factors, showcasing the richness of the
067 learned representations.

068 We perform a comprehensive evaluation of our model on standard benchmarks for sequential disen-
069 tanglement (Naiman et al., 2023) across three diverse data domains: audio, time series, and video. To
070 further advance the field, we introduce a novel *evaluation protocol for high-quality visual sequential*
071 *disentanglement*, incorporating three high-resolution video datasets and multiple quantitative metrics.
072 Additionally, we propose a new post-training approach for disentangling representations into multiple
073 factors. For the first time, our work presents a zero-shot task to demonstrate the generalizability of
074 the factorization framework. Through these extensive evaluations, we show that DiffSDA not only
075 effectively disentangles real-world data but also outperforms recent state-of-the-art methods. Our key
076 contributions are summarized as follows:

- 077 1. We propose a novel modal-agnostic probabilistic framework for sequential disentanglement
078 grounded in diffusion processes. Unlike most existing approaches, our formulation accom-
079 modates dependent static and dynamic factors of variation. The model is optimized using a
080 single, unified score estimation loss.
- 081 2. Our design enables the effective disentanglement of high-dimensional, real-world data and
082 supports zero-shot disentanglement tasks. Moreover, we demonstrate DiffSDA’s capability
083 to disentangle static and dynamic information into multiple interpretable factors.
- 084 3. We provide a comprehensive evaluation demonstrating our model’s superiority in both
085 qualitative and quantitative tasks, outperforming state-of-the-art methods. Additionally, we
086 introduce a novel evaluation protocol specifically designed for video-based disentanglement.

088 2 RELATED WORK

089 **Generative modeling** is a fundamental methodology for effectively sampling from numerical
090 approximations of data distributions. Prominent approaches include variational autoencoders (VAEs)
091 and generative adversarial networks (GANs) (Kingma, 2013; Goodfellow et al., 2014). More recently,
092 diffusion models (Sohl-Dickstein et al., 2015) and score matching (Hyvärinen & Dayan, 2005;
093 Vincent, 2011) have emerged as powerful alternatives, outperforming VAEs and GANs in generating
094 high-quality samples through iterative denoising of latent variables (Ho et al., 2020; Dhariwal &
095 Nichol, 2021). These methods are unified under a score-based modeling framework (Song et al.,
096 2021). A critical challenge in generative modeling lies in representation learning, where semantic
097 encodings of inputs are derived in an unsupervised manner. A related topic, center to this work,
098 is the study of modal-agnostic disentangled representations, aiming to decompose data of various
099 modalities into distinct factors of variation (Bengio et al., 2013).

100 **Disentangled Representation Learning.** Most existing works on disentangled learning leverage
101 VAEs and GANs to decompose non-sequential (Higgins et al., 2017; Chen et al., 2018; Kim & Mnih,
102 2018; Tran et al., 2017; Karras et al., 2020; Ren et al., 2021) and sequential (Hsu et al., 2017; Yingzhen
103 & Mandt, 2018; Zhu et al., 2020; Bai et al., 2021; Han et al., 2021; Naiman et al., 2023; Berman
104 et al., 2024; Simon et al., 2025; Villegas et al., 2017; Tulyakov et al., 2018) data. A key limitation of
105 these approaches lies in their reliance on complex loss formulations, which typically involve multiple
106 regularizers alongside the standard VAEs and GANs losses. While significant progress has been made
107 in enhancing the generative capabilities of VAEs and GANs (Vahdat & Kautz, 2020; Karras et al.,
2020), state-of-the-art methods for sequential disentanglement largely focus on simple datasets, far

from real-world scenarios, with few exceptions like SPYL’s preliminary results (Naiman et al., 2023). In contrast, works in animation (Siarohin et al., 2019; Hu, 2024; Xu et al., 2024b) have shown strong results on real-world data by leveraging video priors for disentangling objects and motion. However, these modal-dependent approaches can exploit relaxed assumptions and specialized tools, whereas our modal-agnostic method can adapt to diverse modalities, including video, audio, and time series.

Table 1: A comparison between animation, diffusion, and sequential disentanglement methods.

	Method	Modal Agnostic	Efficient	Real-World	Latent Factorization	Latents Prior	Loss Terms
ani- mation	FOM Siarohin et al. (2019)	✗	✓	✓	✗	N/A	2
	AA Hu (2024)	✗	✓	✓	✗	N/A	1
	MA Xu et al. (2024b)	✗	✓	✓	✗	N/A	2
non- seq	DiffAE Preechakul et al. (2022)	✗	✗	✓	✗	N/A	1
	InfoDiff Wang et al. (2021)	✗	✗	✓	✗	N/A	2
sequen- tial	SPYL Naiman et al. (2023)	✓	✓	✗	✓	independent	5
	DBSE Berman et al. (2024)	✓	✓	✗	✓	independent	2
	Ours	✓	✓	✓	✓	dependent	1

Diffusion-Based Disentanglement. The emergence of diffusion models has recently enabled novel approaches for non-sequential disentanglement (Kwon et al., 2022; Yang et al., 2023; Wang et al., 2023; Yang et al., 2024; Zhu et al., 2024; Baumann et al., 2024), achieving high-resolution image generation with disentangled factors. Moreover, other efforts have concentrated on structuring their latent representations. For instance, DiffAE (Preechakul et al., 2022) introduces an autoencoder to facilitate the manipulation of visual features, while InfoDiffusion (Wang et al., 2023) adds a loss regularizer to enhance disentanglement. Despite these advances, to the best of our knowledge, no theoretical formalization, and specifically, probabilistic modeling, has yet been proposed for diffusion-based disentanglement in sequential settings. Furthermore, practical approaches for this domain remain unexplored.

To contextualize our work within the landscape of existing tools, we present a comparative summary in Tab. 1, highlighting how our approach either advances or maintains all key aspects of representation learning. Specifically, while animation methods (FOM, AA, MA) and non-sequential diffusion tools (DiffAE, InfoDiff) handle real-world data, they are modal-dependent and do not provide a latent factorization. Within sequential disentanglement approaches (SPYL, DBSE), only our work supports real-world data via a single loss optimization.

3 METHOD

In this section, we introduce a novel probabilistic framework for unsupervised sequential disentanglement based on diffusion models. Currently, none of the existing approaches leverage diffusion models for unsupervised sequential disentanglement, leaving a significant gap in the field. Our framework addresses this gap by establishing a probabilistic modeling formalization and providing an efficient implementation for disentangling static and dynamic factors in sequential data. Background on diffusion models, diffusion autoencoders, and additional details about the method can be found in App. A and App. B. Throughout this section, and the subsequent ones, the subscripts represent time in the diffusion process, and superscripts indicate time in the sequence, e.g., a sequence state of the diffusion process is denoted by \mathbf{x}_t^τ , $t \in [0, T]$ and $\tau \in \{1, \dots, V\}$. T and V represent the maximum diffusion and sequence times, respectively. We consider discrete time sequences of continuous time diffusion processes; however, our modeling can be extended to additional settings.

3.1 PROBABILISTIC MODELING

Existing frameworks for sequential disentanglement lack a probabilistic modeling foundation for diffusion-based modeling. To address this gap, we propose a novel probabilistic approach based on two diffusion models. The first model details the latent-independent distribution density of the static (time-invariant) and dynamic (time-variant) factors, \mathbf{s}_0 and $\mathbf{d}_0^{1:V}$, respectively. The second model specifies the observed distribution and its dependence on the disentangled factors. Formally, the joint distribution is given by

$$p(\mathbf{x}_0^{1:V}, \mathbf{x}_T^{1:V}, \mathbf{s}_0, \mathbf{s}_T, \mathbf{d}_0^{1:V}, \mathbf{d}_T^{1:V}) = p_{T0}(\mathbf{s}_0, \mathbf{d}_0^{1:V} | \mathbf{s}_T, \mathbf{d}_T^{1:V}) \prod_{\tau=1}^V p_{T0}(\mathbf{x}_0^\tau | \mathbf{x}_T^\tau, \mathbf{s}_0, \mathbf{d}_0^\tau) \quad (1)$$

Figure 1: *DiffSDA* processes sequences $\mathbf{x}_0^{1:V}$ via semantic and stochastic encoders (top and bottom). Their outputs ($\mathbf{s}_0, \mathbf{d}_0^{1:V}, \mathbf{x}_t^{1:V}$) are fed to a stochastic decoder yielding a denoised $\tilde{\mathbf{x}}_0^{1:V}$ (right).

where $p_{T0}(\mathbf{s}_0, \mathbf{d}_0^{1:V} \mid \mathbf{s}_T, \mathbf{d}_T^{1:V})$ is a standard diffusion process with $p_{T0}(\cdot)$ being the transition distribution from time T to time 0. The state distribution of $p_{T0}(\mathbf{x}_0^\tau \mid \mathbf{x}_T^\tau, \mathbf{s}_0, \mathbf{d}_0^\tau)$ is conditioned on the latent \mathbf{x}_T^τ and the factors \mathbf{s}_0 and \mathbf{d}_0^τ .

Importantly, our probabilistic approach differs from existing work (Bai et al., 2021; Naiman et al., 2023) in that our static and dynamic factors are interdependent. We motivate our model by three main reasons: i) expressiveness—the overall dependence facilitates learning of different state trajectories, leading to higher expressivity in the marginals $p_{t0}(\cdot)$; and ii) efficiency—our sampler is not autoregressive, allowing for fast and parallelized sampling; and iii) causality—our model has the ability to learn intricate relationships between the static and dynamic factors, if needed. We evaluate both the dependent and independent approaches on our model to highlight the effectiveness of our approach. In summary, adopting dependent modeling improves generation quality by 13%. Further details can be found in App. G.1.

Given a sequence $\mathbf{x}_0^{1:V} \sim p_0(\mathbf{x}_0^{1:V})$, the posterior distribution of the latent variables $\mathbf{x}_t^{1:V}$ and latent factors \mathbf{s}_0 and $\mathbf{d}_0^{1:V}$ is composed of three independent distributions. Further, unlike the non-autoregressive prior in Eq. 1, here, we explicitly assume temporal dependence. The posterior distribution reads

$$p(\mathbf{x}_t^{1:V}, \mathbf{s}_0, \mathbf{d}_0^{1:V} \mid \mathbf{x}_0^{1:V}) = p_{0t}(\mathbf{x}_t^{1:V} \mid \mathbf{x}_0^{1:V})p(\mathbf{s}_0 \mid \mathbf{x}_0^{1:V}) \prod_{\tau=1}^V p(\mathbf{d}_0^\tau \mid \mathbf{d}_0^{<\tau}, \mathbf{x}_0^{<\tau}) \quad (2)$$

where $\mathbf{x}_t^{1:V}$ and \mathbf{s}_0 are conditioned on the entire input $\mathbf{x}_0^{1:V}$, and the dynamic factors only depend on previous dynamic factors and current and previous data elements. We employ score matching (Hyvärinen & Dayan, 2005; Song et al., 2021), to optimize for the denoising parametric map \mathbf{D}_θ . The map \mathbf{D}_θ takes the noisy latent \mathbf{x}_t^τ , time t , and disentangled factors $\mathbf{z}_0^\tau := (\mathbf{s}_0, \mathbf{d}_0^\tau)$, and it returns an estimate of the score function $\nabla_{\mathbf{x}} \log p_{0t}(\mathbf{x}_t^\tau \mid \mathbf{x}_0^\tau)$. Overall, the optimization objective reads

$$\theta^* = \arg \min_{\theta} \mathbb{E}_t \left\{ \lambda_t \mathbb{E} \left[\|\mathbf{D}_\theta - \nabla_{\mathbf{x}} \log p_{0t}(\cdot)\|_2^2 \right] \right\}, \quad (3)$$

where $\lambda_t \in \mathbb{R}^+$ is a positive weight, $t \sim \mathcal{U}[0, T]$ is uniformly sampled over $[0, T]$, the variables $\mathbf{x}_t^\tau, \mathbf{x}_0^\tau$ are sampled from their respective distributions, $p_{0t}(\cdot), p_0(\cdot)$, and \mathbf{z}_0^τ via the densities in Eq. 2. The inner expectation is taken over $\mathbf{x}_t^\tau, \mathbf{z}_0^\tau$, and \mathbf{x}_0^τ . Importantly, p_{T0} of $\mathbf{s}_0, \mathbf{d}_0^{1:V}$ is not used in Eq. 3, and thus its optimization can be separated.

Notably, we make no assumptions about the given data $\mathbf{x}_0^{1:V}$, ensuring that our framework remains modal-free and independent of specific properties of video, audio, or time series data. This theoretical compatibility with any type of sequence makes it highly adaptable to diverse applications.

3.2 DIFFUSION SEQUENTIAL DISENTANGLEMENT AUTOENCODER

Our architecture, shown in Fig. 1, comprises three main components: (1) a sequential semantic encoder, (2) a stochastic encoder, and (3) a stochastic decoder. At a high level, the sequential semantic encoder factorizes data into separate static and dynamic components, while the stochastic decoder denoises the noisy latent representation produced by the stochastic encoder, conditioned on the disentangled factors. Notably, unlike prior works, our implementation achieves disentanglement with a single, simple loss term.

216 **Encoders.** Inspired by prior work in sequential disentanglement (Yingzhen & Mandt, 2018), we
 217 design a novel *sequential semantic encoder* to extract s_0 and $d_0^{1:V}$. Particularly, it consists of a
 218 U-Net (Ronneberger et al., 2015) for video data and an MLP for other modalities, coupled with
 219 linear layers that independently process each sequence element. Then, an LSTM module summarizes
 220 the sequence into a latent representation $h^{1:V}$. The last hidden, h^V , is passed to a linear layer to
 221 produce s_0 , whereas $h^{1:V}$ are processed with another LSTM and a linear layer to produce $d_0^{1:V}$. Our
 222 stochastic encoder follows the EDM framework (Karras et al., 2022), adding noise $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ to
 223 each element x_0^τ , yielding $x_t^\tau = x_0^\tau + \epsilon$. These encoders realize in practice the posterior in Eq. 2.

236 Figure 2: We present swap (left), zero-shot (middle), and multifactor disentanglement (right) results
 237 on multiple real-world and high-resolution visual datasets. See Sec. 4 for further details.
 238

239 **Decoder.** To efficiently handle real-world sequential information, we follow the decoding in
 240 EDM (Karras et al., 2022), featuring only 63 neural function evaluations (NFEs) during inference.
 241 Our decoder D_θ takes as inputs the noisy input x_t^τ and disentangled factors $z_0^\tau := (s_0, d_0^\tau)$, and
 242 it returns a denoised version of x_t^τ , denoted by \tilde{x}_0^τ . Given any $t \in [0, T]$ and $\tau \in \{1, \dots, V\}$, the
 243 decoder is parameterized independently from other times t', τ' as follows

$$244 \quad \tilde{x}_0^\tau := D_\theta(x_t^\tau, t, z_0^\tau) = c_t^{\text{skip}} x_t^\tau + c_t^{\text{out}} \mathbf{F}_\theta(c_t^{\text{in}} x_t^\tau, z_0^\tau, c_t^{\text{noise}}), \quad (4)$$

246 where c_t^{skip} modulates the skip connection, $c_t^{\text{in}}, c_t^{\text{out}}$ scale the input/output magnitudes, and c_t^{noise} maps
 247 noise at time t into a conditioning input for the neural network \mathbf{F}_θ , conditioned on z_0^τ through AdaGN.
 248

249 **Loss.** While prior sequential disentanglement works depend on intricate prior modeling, regular-
 250 ization terms, and mutual information losses, leading to many hyper-parameters and challenging
 251 training, we opt for a simpler objective containing a single loss term that is based on Eq. 3,

$$253 \quad \mathbb{E}_{t, x_t^\tau, z_0^\tau, x_0^\tau} \left[\lambda_t (c_t^{\text{out}})^2 \|\mathbf{F}_\theta - \frac{1}{c_t^{\text{out}}} (x_0^\tau - c_t^{\text{skip}} \cdot x_t^\tau)\|_2^2 \right], \quad (5)$$

255 where \mathbf{F}_θ takes as inputs $c_t^{\text{in}} x_t^\tau, z_0^\tau$, and c_t^{noise} . While our loss in Eq. 5 does not include auxiliary terms,
 256 it promotes disentanglement due to two main reasons: i) the static factor s_0 is shared across τ , and
 257 thus it will not hold dynamic information, and ii) the dynamic factors $d_0^\tau \in \mathbb{R}^k$ are low-dimensional
 258 (i.e., k is small), making it difficult for d_0^τ to store static features. We empirically validate these
 259 assumptions through experiments presented in App. G.2. Finally, we briefly mention that to support
 260 high-resolution sequences, we incorporate latent diffusion models (LDM) (Rombach et al., 2022),
 261 using a pre-trained VQ-VAE autoencoder to reduce the high-dimensionality of input frames. Instead
 262 of factorizing all the equations above with new symbols for the features VQ-VAE produces, we
 263 denote by $x_0^{1:V}$ the input sequence, and we abuse the notation $x_0^{1:V}$ to denote the latent features,
 264 i.e., $x_0^{1:V} = \mathcal{E}(x_0^{1:V})$ and $x_0^{1:V} = \mathcal{D}(x_0^{1:V})$, where \mathcal{E} and \mathcal{D} are the VQ-VAE encoder and decoder,
 265 respectively.

266 4 RESULTS

268 Below, we empirically evaluate the modeling capabilities of DiffSDA in comparison to recent *modal-*
 269 *agnostic* state-of-the-art methods (see Tab. 1), SPYL (Naiman et al., 2023) and DBSE (Berman

270
271
272
273
274
275
276
277
278
279
280
281
282 Figure 3: We present dynamic swap results of our approach (third row) and SPYL (fourth row) on
283 CelebV-HQ (left), VoxCeleb (middle), and TaiChi-HD (right).

284
285 et al., 2024). In general, we consider quantitative and qualitative experiments. For video, we include
286 three high-resolution, real-world visual datasets that have not been previously used for sequential
287 disentanglement: VoxCeleb (Nagrani et al., 2017), CelebV-HQ (Zhu et al., 2022), and TaiChi-
288 HD (Siarohin et al., 2019), along with the popular MUG dataset (Aifanti et al., 2010). For audio, we
289 consider TIMIT Garofolo (1993) and a new dataset, Libri Speech Panayotov et al. (2015). The time
290 series datasets are PhysioNet, ETTh1, and Air Quality Tonekaboni et al. (2022). Detailed descriptions
291 of the datasets and their pre-processing can be found in App. D, while extended baseline comparisons
292 are provided in App. H.1. For brevity, we omit below the subscript indicating the diffusion step for
293 clean samples (corresponding to time step 0).

294 4.1 CONDITIONAL SWAP IN VIDEOS 295

296 We begin our tests with the conditional swap task (Yingzhen & Mandt, 2018). Given two sample
297 videos $\mathbf{x}, \hat{\mathbf{x}} \sim p_0$, the goal in this experiment is to create a new sample $\bar{\mathbf{x}}$, conditioned on the static
298 factor of \mathbf{x} and dynamic features of $\hat{\mathbf{x}}$. This is done by extracting the latent factors $\mathbf{z} = (\mathbf{s}, \mathbf{d}^{1:V})$
299 and $\hat{\mathbf{z}} = (\hat{\mathbf{s}}, \hat{\mathbf{d}}^{1:V})$ for \mathbf{x} and $\hat{\mathbf{x}}$, respectively. The new sample $\bar{\mathbf{x}}$ is defined to be the reconstruction of
300 $\bar{\mathbf{z}} = (\mathbf{s}, \hat{\mathbf{d}}^{1:V})$ through sampling, see Alg. 1. In an ideal swap, $\bar{\mathbf{x}}$ preserves the static characteristics
301 of \mathbf{x} while presenting the dynamics of $\hat{\mathbf{x}}$, thus demonstrating strong disentanglement capabilities of
302 the swapping method. We show in Fig. 2 (left) a swap example of DiffSDA, where the top two rows
303 are real videos, and the third row shows the new sample obtained by preserving the static features
304 of the first row and using the dynamics of the second row. Remarkably, while the people in these
305 sequences are very different, many fine details are transferred, including head angle and orientation,
306 as well as mouth and eyes orientation and openness. In Fig. 3, we present additional swap results on
307 CelebV-HQ (left), VoxCeleb (middle), and TaiChi-HD (right), comparing DiffSDA (third row) to
308 SPYL (fourth row). Our approach produces high-quality samples, while swapping the dynamics of
309 the second row into the first row, whereas SPYL struggles both with the reconstruction and swap.
310 Additional conditional and unconditional swap results appear in App. H.3 and App. H.4, respectively.

311 In addition to the above qualitative evaluation, we also want to quantitatively assess DiffSDA’s
312 effectiveness. We report in App. F results from the traditional quantitative benchmark, where a
313 pre-trained judge (classifier) is used to determine if swapped content is correct (Bai et al., 2021).
314 However, there are two main issues with the benchmark: i) it depends on labeled data, making
315 it relevant to only a small number of datasets; and ii) results are sensitive to the expressivity and
316 generalizability of the judge. For instance, swapping a smiling expression from person A to person B,
317 may result in person B having a smile, different from the one in the data. In these cases, the judge
318 may wrongly classify a different expression to the smiling person B, see App. F for further discussion.

319 Towards addressing these issues, we propose new *unsupervised* swapping metrics to quantitatively
320 measure the model’s disentanglement abilities. We adopt estimators commonly used in animation
321 for assessing if objects and motions are preserved (Siarohin et al., 2019). Specifically, we utilize the
322 *average Euclidean distance* (AED) that is based on the distances between the latent representations of
323 images. Further, we also employ the *average keypoint distance* (AKD) which computes the distances
324 between selected keypoints in images. Intuitively, AED and AKD have been designed to identify the
325 preservation of objects and motions in images, respectively. See App. E for definitions.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Figure 4: Zero-shot swap results, training on VoxCeleb and tested on CelebV-HQ or MUG.

Equipped with these new metrics, we perform conditional swapping over a pre-defined random list of sample pairs, $\mathbf{x}, \hat{\mathbf{x}}$. Particularly, we reconstruct new samples of the form $\mathbf{z}^s := (s, \hat{\mathbf{d}}^{1:V})$ and $\mathbf{z}^d := (\hat{s}, \mathbf{d}^{1:V})$, encoding dynamic and static swaps, respectively. We compute the AED of \mathbf{z}^s with respect to \mathbf{z} (arising from \mathbf{x}), expecting their static features to be similar. Following the same logic, we compute the AKD of \mathbf{x}^d (reconstructed from \mathbf{z}^d) and \mathbf{x} , as they share the dynamic factors. Our findings are presented in Tab. 2, where DiffSDA outperforms SOTA previous (SPYL, DBSE) approaches across all datasets, except for AED on TaiChi-HD, where we attain the second best error. Notably, our AKD errors are significantly lower than SPYL and DBSE. Further, we apply these metrics to assess reconstruction performance, as well as the mean squared error (MSE), with the results shown in Tab. 3. Again, DiffSDA is superior to current SOTA methods. Additionally, we include a generative evaluation in App. G.4, comparing our approach to previous methods.

4.2 ZERO-SHOT VIDEO DISENTANGLEMENT

In the previous sub-section, the conditional swap was performed on the held-out test set of each dataset on which we trained on. In contrast to previous work, for the first time, we perform the same task on a dataset unseen during training. We show an example in Fig. 2 (middle) of zero-shot swap, where our model was trained on the VoxCeleb dataset (1st row) and the inferred sequence was taken from MUG (2nd row). Particularly, we froze the static features of the MUG sample and swapped the dynamic factors with those of VoxCeleb (3rd row). Remarkably, in addition to changing the facial expression of the person, DiffSDA also adds the necessary details to mimic the body pose. We emphasize that the MUG dataset does not include sequences similar to the third row in Fig. 2, but rather zoomed-in facial videos as shown in the second row, thus, our zero-shot results present a significant adaptation to the new data. Additionally, we include in Fig. 4 zero-shot examples where DiffSDA is trained on VoxCeleb and evaluated on CelebV-HQ or MUG. These results further highlight the effectiveness of our approach in transferring dynamic features across different datasets. Finally, we provide more zero-shot examples in App. H.5.

4.3 TOWARD MULTIFACTOR VIDEO DISENTANGLEMENT

Multifactor sequential disentanglement is a challenging problem, where the objective is to produce several static factors and several dynamic factors per frame (Berman et al., 2023). Here, we show that our model has the potential to further disentangle the static and dynamic features into additional factors of variation. Inspired by DiffAE (Preechakul et al., 2022), we explore the learned latent space in an unsupervised linear fashion, particularly, using principal component analysis (PCA). Namely,

Table 2: Preservation of objects (AED) and motions (AKD) is estimated across several datasets and methods. The labels ‘static frozen’ and ‘dynamics frozen’ correspond to samples \mathbf{z}^s and \mathbf{z}^d .

	AED \downarrow (static frozen)			AKD \downarrow (dynamics frozen)		
	SPYL	DBSE	Ours	SPYL	DBSE	Ours
MUG (64 \times 64)	0.766	0.773	0.751	1.132	1.118	0.802
VoxCeleb (256 \times 256)	1.058	1.026	0.846	4.705	10.96	2.793
CelebV-HQ (256 \times 256)	0.631	0.751	0.540	39.16	28.69	6.932
TaiChi-HD (64 \times 64)	0.443	0.325	0.326	7.681	6.312	2.143

378 to obtain fine-grained semantic static factors of variation, we sample a large batch of static vectors
 379 $\hat{s}_j \in \mathbb{R}^h$, with h the static latent size, $j = 1, \dots, b = 2^{15}$. Then, we compute PCA on the matrix
 380 formed by arranging $\{\hat{s}_j\}$ in its columns, yielding the principal components $\{v_i\}_{i=1}^h$, given that
 381 $b \geq h$. We can utilize the latter pool of static variability by exploring the latent space from a static
 382 code s of a real example x in the test set, i.e.,
 383

$$\bar{s} = \left(\frac{s - \mu_{\hat{s}}}{\sigma_{\hat{s}}} + \alpha v_i \cdot \sqrt{h} \right) \cdot \sigma_{\hat{s}} + \mu_{\hat{s}}, \quad (6)$$

388 where $\mu_{\hat{s}}$ and $\sigma_{\hat{s}}^2$ are the mean and variance of the sampled static features, $\{\hat{s}_j\}_{j=1}^b$, and $\alpha \in [-\kappa, \kappa]$,
 389 notice that $\alpha = 0$ recovers the original sequence. The new sample \bar{x} is obtained by reconstructing the
 390 new static features \bar{s} with the original dynamic factors $d^{1:V}$ of x .
 391

392 We demonstrate a static PCA exploration in Fig. 2 (right) on VoxCeleb. The middle row is the real
 393 video, whereas the top and bottom rows use positive and negative α values, respectively. Our results
 394 show that traversing in the positive direction yields more masculine appearances, and in contrast,
 395 going in the negative direction produces more feminine characters. Importantly, we highlight that
 396 other static features and the dynamics are fully preserved across the sequence. In App. H.6, we
 397 present further results on full sequences using multiple α values to demonstrate the gradual transition
 398 in the latent space. Notably, we find in our exploration principal components that control other
 399 features such as skin tone, image blurriness, and more.
 400

401 4.4 SPEAKER IDENTIFICATION IN AUDIO

402 Our approach is inherently modal-agnostic and extends beyond the video domain. Unlike methods
 403 tailored specifically for video or audio, which often require extensive modifications when applied to
 404 new modalities, our method is versatile and can adapt to different modalities with minimal adjustments
 405 to the backbone architecture. For example, to process audio data, we simply replace the U-Net with
 406 an MLP. In Tab. 4, we demonstrate the adaptability of our model by successfully disentangling
 407 audio data from the TIMIT dataset and Libri Speech, where TIMIT is a widely used benchmark for
 408 speech-related tasks and Libri Speech is an additional dataset we add for this benchmark. Following
 409 the speaker identification benchmarks Yingzhen & Mandt (2018), we evaluate disentanglement
 410 quality using the Equal Error Rate (EER), a standard metric in speech tasks. Specifically, the
 411 Static EER measures how effectively the static latent representations capture speaker identity, and
 412 similarly, the Dynamic EER assesses the dynamic latent representations. Notably, a well-disentangled
 413 model should yield a low Static EER (capturing speaker identity in static representations) and a
 414 high Dynamic EER (capturing content-related dynamics without speaker identity). The overall goal
 415 is to maximize the gap between these two metrics (Dis. Gap). Our model, achieves in TIMIT a
 416 disentanglement gap improvement of over 11%, with a 42.29% compared to 31.11% achieved by
 417 DBSE, thereby surpassing current state-of-the-art methods. Similar strong performance is achieved
 418 on Libri Speech as well. These results highlight the efficacy of our approach in the audio domain.
 419 Additional details regarding the dataset, evaluation metrics, and implementation are provided in the
 420 appendix. Furthermore, we report speech quality and reconstruction results in App. G.3, further
 421 validating our model’s effectiveness in the audio domain.
 422

423 Table 3: Reconstruction errors are measured in terms of AED, AKD, and MSE across several datasets
 424 and models. We find DiffSSDA to be orders-of-magnitude better than other methods.
 425

	AED \downarrow			AKD \downarrow			MSE \downarrow		
	SPYL	DBSE	Ours	SPYL	DBSE	Ours	SPYL	DBSE	Ours
MUG	0.49	0.49	0.11	0.47	0.48	0.06	0.001	0.001	3e-7
VoxCeleb	0.99	1.03	0.37	2.27	2.43	1.09	0.005	0.003	5e-4
CelebV-HQ	0.70	0.78	0.29	15.0	13.8	1.26	0.012	0.006	6e-4
TaiChi-HD	0.32	0.29	0.001	4.31	3.83	0.10	0.018	0.007	2e-7

Table 4: Disentanglement metrics on TIMIT and LibriSpeech

Method	TIMIT			LibriSpeech		
	Static EER↓	Dynamic EER↑	Dis. Gap↑	Static EER↓	Dynamic EER↑	Dis. Gap↑
DSVAE	5.64%	19.20%	13.56%	15.06%	28.94%	13.87%
SPYL	3.41%	33.22%	29.81%	24.87%	49.76%	24.89%
DBSE	3.50%	34.62%	31.11%	16.75%	22.61%	5.58%
Ours	4.43%	46.72%	42.29%	11.02%	45.94%	34.93%

4.5 DOWNSTREAM PREDICTION AND CLASSIFICATION TASKS ON TIME SERIES INFORMATION

Finally, we evaluate our approach on time series data, following the evaluation protocol in Berman et al. (2024). The evaluation is carried out in two main independent setups: 1) We assess the quality of the learned latent representations using a predictive task. The model is trained on a dataset, and at test time, the static and dynamic factors are extracted and used as input features for a predictive model. Two tasks are considered: (i) predicting mortality risk with the PhysioNet dataset (Goldberger et al., 2000), and (ii) predicting oil temperature using the ETTh1 dataset (Zhang et al., 2017). Performance is evaluated using AUPRC and AUROC for PhysioNet, and Mean Absolute Error (MAE) for ETTh1. 2) We investigate the model’s ability to capture global patterns within its disentangled static latent representations, which have been shown to enhance performance Trivedi et al. (2015). Following a similar procedure, the model is trained, and now only the static representations are extracted. These representations are then used as input features for a classifier. For the PhysioNet dataset, Intensive Care Unit (ICU) unit types are used as global labels, while for the Air Quality dataset, the month of the year serves as the target variable. Further details regarding datasets, metrics, and implementation can be found in App. D and App. E. We compare our method vs. state-of-the-art baselines, including DBSE, SPYL, and GLR Tonekaboni et al. (2022). Results for predictive and classification tasks are given in Tab. 5. Notably, our model outperforms across all tasks.

Table 5: Time series prediction and classification benchmarks.

Task		GLR	SPYL	DBSE	Supervised	Ours
pred.	AUPRC↑	0.37 ± 0.09	0.37 ± 0.02	0.47 ± 0.02	0.44 ± 0.02	0.50 ± 0.006
	AUROC↑	0.75 ± 0.01	0.76 ± 0.04	0.86 ± 0.01	0.80 ± 0.04	0.87 ± 0.004
	MAE↓ (ETTh1)	12.3 ± 0.03	12.2 ± 0.03	11.2 ± 0.01	10.19 ± 0.20	9.89 ± 0.280
cls.	PhysioNet↑	38.9 ± 2.48	47.0 ± 3.04	56.9 ± 0.34	62.00 ± 2.10	64.6 ± 0.35
	Air Quality↑	50.3 ± 3.87	57.9 ± 3.53	65.9 ± 0.01	62.43 ± 0.54	69.2 ± 1.50

5 CONCLUSIONS

The analysis and results of this study underscore the potential of the proposed DiffSDA model to address key limitations in sequential disentanglement, specifically in the context of complex real-world visual data, speech audio, and time series. By leveraging a novel probabilistic framework, diffusion autoencoders, efficient samplers, and latent diffusion models, DiffSDA provides a robust solution for disentangling both static and dynamic factors in sequences, outperforming existing state-of-the-art methods. Moreover, the introduction of a new real-world visual evaluation protocol marks a significant step towards standardizing the assessment of sequential disentanglement models. Nevertheless, while DiffSDA shows promise in handling high-resolution videos and varied datasets, future research should focus on optimizing its computational efficiency and extending its applicability to more diverse sequence modalities, such as sensor data. Such modalities present unique challenges, as varying temporal characteristics and distinct data patterns, which may require adapting the model architecture and training strategies. In addition, given that our current video generation process operates frame-by-frame, potentially limiting spatio-temporal coherence, an interesting direction for future work is to integrate DiffSDA with latent video diffusion models (e.g., LVDM) or related architectures to further strengthen its generative fidelity. Finally, a key challenge ahead lies in fully extending our multifactor exploration procedure to effectively disentangle and represent multiple

486 interacting factors (Berman et al., 2023). We leave these considerations and further explorations for
487 future work.

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES

541

542 Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. The MUG facial expression database.
543 In *11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS*
544 10, pp. 1–4, 2010.

545 Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Emotion recognition in
546 speech using cross-modal transfer in the wild. In *Proceedings of the 26th ACM international*
547 *conference on Multimedia*, pp. 292–301, 2018.

548 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
549 *Applications*, 12(3):313–326, 1982.

550 Junwen Bai, Weiran Wang, and Carla P Gomes. Contrastively disentangled sequential variational
551 autoencoder. *Advances in Neural Information Processing Systems*, 34:10105–10118, 2021.

552 Stefan Andreas Baumann, Felix Krause, Michael Neumayr, Nick Stracke, Vincent Tao Hu, and Björn
553 Ommer. Continuous, subject-specific attribute control in T2I models by identifying semantic
554 directions. *arXiv preprint arXiv:2403.17064*, 2024.

555 Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised feature learning and deep
556 learning: A review and new perspectives. *CoRR, abs/1206.5538*, 1(2665):2012, 2012.

557 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
558 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
559 2013.

560 Nimrod Berman, Ilan Naiman, and Omri Azencot. Multifactor sequential disentanglement via
561 structured Koopman autoencoders. In *The Eleventh International Conference on Learning Repre-*
562 *sentations*, 2023.

563 Nimrod Berman, Ilan Naiman, Idan Arbiv, Gal Fadlon, and Omri Azencot. Sequential disentanglement
564 by extracting static information from a single sequence element. In *Forty-first International*
565 *Conference on Machine Learning*, 2024.

566 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
567 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
568 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
569 22563–22575, 2023.

570 Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment
571 problem? (and a dataset of 230,000 3d facial landmarks). In *Proceedings of the IEEE International*
572 *Conference on Computer Vision (ICCV)*, Oct 2017.

573 Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation
574 using part affinity fields. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
575 *Recognition (CVPR)*, July 2017.

576 Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
577 disentanglement in variational autoencoders. *Advances in neural information processing systems*,
578 31, 2018.

579 Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Tonianne Pitassi,
580 and Richard Zemel. Flexibly fair representation learning by disentanglement. In *International*
581 *conference on machine learning*, pp. 1436–1445. PMLR, 2019.

582 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. *Advances*
583 *in neural information processing systems*, 34:8780–8794, 2021.

584 Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
585 on deep networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances*
586 *in Neural Information Processing Systems*, volume 29, 2016.

594 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
595 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
596 pp. 12873–12883, 2021.

597 John S Garofolo. TIMIT acoustic phonetic continuous speech corpus. *Linguistic Data Consortium*,
598 1993, 1993.

599 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
600 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. PhysioBank,
601 PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic
602 signals. *circulation*, 101(23):e215–e220, 2000.

603 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
604 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
605 processing systems*, 27, 2014.

606 Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, and Xuan Zhang. Disentangled recurrent
607 wasserstein autoencoder. In *9th International Conference on Learning Representations, ICLR*,
608 2021.

609 Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
610 re-identification. *arXiv preprint arXiv:1703.07737*, 2017.

611 Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
612 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
613 constrained variational framework. *ICLR (Poster)*, 3, 2017.

614 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
615 neural information processing systems*, 33:6840–6851, 2020.

616 Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled and interpretable
617 representations from sequential data. *Advances in neural information processing systems*, 30,
618 2017.

619 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
620 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
621 8153–8163, 2024.

622 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
623 *Journal of Machine Learning Research*, 6(4), 2005.

624 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
625 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and
626 pattern recognition*, pp. 1125–1134, 2017.

627 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
628 and improving the image quality of styleGAN. In *Proceedings of the IEEE/CVF conference on
629 computer vision and pattern recognition*, pp. 8110–8119, 2020.

630 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
631 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
632 2022.

633 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
634 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF
635 Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.

636 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International conference on machine
637 learning*, pp. 2649–2658. PMLR, 2018.

638 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

639 Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
640 space. *arXiv preprint arXiv:2210.10960*, 2022.

648 Wenqian Liu, Runze Li, Meng Zheng, Srikrishna Karanam, Ziyan Wu, Bir Bhanu, Richard J Radke,
649 and Octavia I Camps. Towards visually explaining variational autoencoders. In 2020 ieee. In *CVF*
650 *Conference on Computer Vision and Pattern Recognition, CVPR*, pp. 13–19, 2020.

651

652 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A large-scale speaker identifica-
653 tion dataset. In *18th Annual Conference of the International Speech Communication Association, Inter-*
654 *speech*, pp. 2616–2620. ISCA, 2017.

655 Ilan Naiman, Nimrod Berman, and Omri Azencot. Sample and predict your latent: Modality-free
656 sequential disentanglement via contrastive estimation. In *International Conference on Machine*
657 *Learning*, pp. 25694–25717. PMLR, 2023.

658

659 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
660 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech*
661 *and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

662 Konpat Preechakul, Nattanan Chatthee, Suttisak Wizadwongs, and Supasorn Suwajanakorn. Dif-
663 fusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the*
664 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10619–10629, 2022.

665 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
666 VQ-VAE-2. *Advances in neural information processing systems*, 32, 2019.

667

668 Chandan KA Reddy, Vishak Gopal, and Ross Cutler. Dnsmos: A non-intrusive perceptual objective
669 speech quality metric. In *ICASSP*, 2021.

670 Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Learning disentangled representa-
671 tion by exploiting pretrained generative models: A contrastive learning view. *arXiv preprint*
672 *arXiv:2102.10543*, 2021.

673

674 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
675 approximate inference in deep generative models. In *International conference on machine learning*,
676 pp. 1278–1286. PMLR, 2014.

677

678 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
679 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
680 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

681

682 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
683 image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI*
684 *2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III*
685 *18*, pp. 234–241. Springer, 2015.

686

687 Sefik Ilkin Serengil and Alper Ozpinar. Lightface: A hybrid deep face recognition framework. In
688 *2020 Iovations in Intelligent Systems and Applications Conference (ASYU)*, pp. 23–27. IEEE, 2020.

689

690 Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First order
691 motion model for image animation. In *Conference on Neural Information Processing Systems*
692 (*NeurIPS*), December 2019.

693

694 Mathieu Cyrille Simon, Pascal Frossard, and Christophe De Vleeschouwer. Sequential representation
695 learning via static-dynamic conditional disentanglement. In *European Conference on Computer*
696 *Vision*, pp. 110–126. Springer, 2025.

697

698 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
699 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
700 pp. 2256–2265. PMLR, 2015.

701

702 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
703 *preprint arXiv:2010.02502*, 2020.

704

705 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
706 Poole. Score-based generative modeling through stochastic differential equations. In *International*
707 *Conference on Learning Representations*, 2021.

702 Sana Tonekaboni, Chun-Liang Li, Sercan O Arik, Anna Goldenberg, and Tomas Pfister. Decoupling
703 local and global representations of time series. In *International Conference on Artificial Intelligence
704 and Statistics*, pp. 8700–8714. PMLR, 2022.

705 Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning GAN for pose-invariant
706 face recognition. In *Proceedings of the IEEE conference on computer vision and pattern recogni-
707 tion*, pp. 1415–1424, 2017.

708 Shubhendu Trivedi, Zachary A Pardos, and Neil T Heffernan. The utility of clustering in prediction
709 tasks. *arXiv preprint arXiv:1509.06163*, 2015.

710 Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN: Decomposing motion
711 and content for video generation. In *Proceedings of the IEEE conference on computer vision and
712 pattern recognition*, pp. 1526–1535, 2018.

713 Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. *Advances in neural
714 information processing systems*, 33:19667–19679, 2020.

715 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
716 neural information processing systems*, 30, 2017.

717 Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion
718 and content for natural video sequence prediction. *arXiv preprint arXiv:1706.08033*, 2017.

719 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-
720 tion*, 23(7):1661–1674, 2011.

721 Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, and Tao Mei. Facex-zoo: A pytorch toolbox for
722 face recognition. In *Proceedings of the 29th ACM international conference on Multimedia*, pp.
723 3779–3782, 2021.

724 Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
725 Volodymyr Kuleshov. InfoDiffusion: Representation learning using information maximizing
726 diffusion models. In *International Conference on Machine Learning*, pp. 36336–36354. PMLR,
727 2023.

728 Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang,
729 Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time.
730 *arXiv preprint arXiv:2404.10667*, 2024a.

731 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
732 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation using
733 diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
734 Recognition*, pp. 1481–1490, 2024b.

735 Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. DisDiff: Unsupervised disentanglement of
736 diffusion probabilistic models. In *Thirty-seventh Conference on Neural Information Processing
737 Systems*, 2023.

738 Tao Yang, Cuiling Lan, Yan Lu, et al. Diffusion model with cross attention as an inductive bias for
739 disentanglement. *arXiv preprint arXiv:2402.09712*, 2024.

740 Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In Jeifer Dy and Andreas
741 Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80
742 of *Proceedings of Machine Learning Research*, pp. 5670–5679. PMLR, 10–15 Jul 2018.

743 Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard Schölkopf, and Eric P Xing.
744 Towards principled disentanglement for domain generalization. In *Proceedings of the IEEE/CVF
745 conference on computer vision and pattern recognition*, pp. 8024–8034, 2022.

746 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
747 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
748 computer vision and pattern recognition*, pp. 586–595, 2018.

756 Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary tales on
757 air-quality improvement in Beijing. *Proceedings of the Royal Society A: Mathematical, Physical
758 and Engineering Sciences*, 473(2205):20170457, 2017.

759

760 Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and Chen Change
761 Loy. CelebV-HQ: A large-scale video facial attributes dataset. In *ECCV*, 2022.

762

763 Ye Zhu, Yu Wu, Zhiwei Deng, Olga Russakovsky, and Yan Yan. Boundary guided learning-free
764 semantic control with diffusion models. *Advances in Neural Information Processing Systems*, 36,
765 2024.

766

767 Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3VAE: self-supervised
768 sequential VAE for representation disentanglement and data generation. In *Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6538–6547, 2020.

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

A BACKGROUND

811

812

A.1 DIFFUSION MODELS

813

814 Diffusion models (Sohl-Dickstein et al., 2015) are a family of SOTA generative models, that were
815 recently described using stochastic differential equations (SDEs), diffusion processes, and score-based
816 modeling (Song et al., 2021). We will use diffusion models and score-based models interchangeably.
817 These models include two processes: the forward process and the reverse process. The forward
818 process (often not learnable) is an iterative procedure that corrupts the data by progressively adding
819 noise to it. Specifically, the change to the state \mathbf{x}_t can be formally described by

820
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}, \quad (7)$$

821 where \mathbf{w} is the standard Wiener process, $\mathbf{f}(\cdot, t)$ is a vector-valued function called the drift coefficient,
822 and $g(\cdot)$ is a scalar function known as the diffusion coefficient. From a probabilistic viewpoint,
823 Eq. 7 is associated with modeling the transition from the given data distribution, $\mathbf{x}_0 \sim p_0$, to p_t ,
824 the probability density of \mathbf{x}_t , $t \in [0, T]$. Typically, the prior distribution p_T is a simple Gaussian
825 distribution with fixed mean and variance that contains no information of p_0 . The reverse process,
826 which is learnable, de-noises the data iteratively. The reverse of a diffusion process is also a diffusion
827 process, depending on the score function $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ and operating in reverse time (Anderson,
828 1982). In our approach, we utilize the conditioned reverse process

829
$$d\mathbf{x}_t = [\mathbf{f}(\mathbf{x}_t, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t | \mathbf{u})]d\bar{t} + g(t)d\bar{\mathbf{w}}, \quad (8)$$

830 where $\bar{\mathbf{w}}$ is a standard Wiener process as time progresses backward from T to 0, $d\bar{t}$ is an negative
831 timestep, and \mathbf{u} is a condition variable. Diffusion models are generative by sampling from p_T and
832 use $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t | \mathbf{u})$ to iteratively solve Eq. 8 until samples from p_0 are recovered.

834

A.2 DIFFUSION AUTOENCODERS

835

836 Although diffusion models are powerful generative tools, they are not inherently designed to learn
837 meaningful representations of the data. To address this limitation, several works (Preechakul et al.,
838 2022; Wang et al., 2023) have adapted diffusion models into autoencoders, resulting in diffusion
839 autoencoders (DiffAEs). These models have demonstrated the ability to learn semantic representations
840 of the data, allowing certain modifications of the resulting samples by altering their latent vectors. To
841 this end, DiffAEs introduce a semantic encoder, taking a data sample x_0 and returning its semantic
842 latent encoding z_{sem} . Then, the latter vector conditions the reverse process, enhancing the model's
843 ability to reconstruct and manipulate data samples. In practice, the denoiser is also conditioned
844 on a feature map h and the time t , combined using an adaptive group normalization (AdaGN)
845 layer (Dhariwal & Nichol, 2021). The AdaGN block is defined as

846
$$\text{AdaGN}(h, t, z_{\text{sem}}) = z_s (t_s \text{GroupNorm}(h) + t_b), \quad (9)$$

847 where z_s is the output of a linear layer applied to z_{sem} , t_s and t_b are the outputs of a multi-layer
848 perceptron (MLP) applied to the time t , and multiplications are done element-wise.

849

B DIFFSDA MODELING

850

851

B.1 UNSUPERVISED SEQUENTIAL DISENTANGLEMENT

852

853 Unsupervised sequential disentanglement is a challenging problem in representation learning, aiming
854 to decompose a given dataset to its static (time-independent) and dynamic (time-dependent) factors of
855 variation. Let $\mathcal{D} = \{\mathbf{x}_j^{1:V}\}_{j=1}^N$ be a dataset with N sequences $\mathbf{x}_j^{1:V} := \{\mathbf{x}_j^1, \dots, \mathbf{x}_j^V\}$, where $\mathbf{x}_j^{\tau} \in \mathbb{R}^d$.
856 We omit the subscript j for brevity, unless noted otherwise. The goal of sequential disentanglement
857 is to extract an alternative representation of $\mathbf{x}^{1:V}$ via a single static factor \mathbf{s} and multiple dynamic
858 factors $\mathbf{d}^{1:V}$. Note that \mathbf{s} is shared across the sequence.

859 We can formalize the sequential disentanglement problem as a *generative task*, where every sequence
860 $\mathbf{x}^{1:V}$ from the data space \mathcal{X} is conditioned on some $\mathbf{z}^{1:V}$ from a latent space \mathcal{Z} . We aim to maximize
861 the probability of each sequence under the entire generative process

863
$$p(\mathbf{x}^{1:V}) = \int_{\mathcal{Z}} p(\mathbf{x}^{1:V} | \mathbf{z}^{1:V}) p(\mathbf{z}^{1:V}) d\mathbf{z}^{1:V}, \quad (10)$$

864 where $\mathbf{z}^{1:V} := (\mathbf{s}, \mathbf{d}^{1:V})$. One of the main challenges with directly maximizing Eq. (10) is that the
 865 latent space \mathcal{Z} is too large to practically integrate over. Instead, a separate distribution, denoted here
 866 as $q(\mathbf{z}^{1:V} | \mathbf{x}^{1:V})$, is used to narrow search to be only over $\mathbf{z}^{1:V}$ associated with sequences from the
 867 dataset \mathcal{D} . Importantly, the distributions $p(\mathbf{x}^{1:V} | \mathbf{z}^{1:V})$ and $q(\mathbf{z}^{1:V} | \mathbf{x}^{1:V})$ take the form of a decoder
 868 and an encoder in practice, suggesting the development of *autoencoder* sequential disentanglement
 869 models (Yingzhen & Mandt, 2018). The above $p(\mathbf{x}^{1:V} | \mathbf{z}^{1:V})$ and $q(\mathbf{z}^{1:V} | \mathbf{x}^{1:V})$ are denoted by
 870 $p_{T0}(\mathbf{x}_0^\tau | \mathbf{x}_T^\tau, \mathbf{s}_0, \mathbf{d}_0^\tau)$ and $p(\mathbf{x}_t^{1:V}, \mathbf{s}_0, \mathbf{d}_0^{1:V} | \mathbf{x}_0^{1:V})$, respectively, in Eq. 1 and Eq. 2.
 871

872 B.2 HIGH-RESOLUTION DISENTANGLING SEQUENTIAL DIFFUSION AUTOENCODER 873

874 In addition to transitioning to real-world data, our goal is to manage high-resolution data for unsuper-
 875 vised sequential disentanglement, for the first time. Drawing inspiration from Rombach et al. (2022),
 876 we incorporate perceptual image compression, which combines an autoencoder with a perceptual loss
 877 (Zhang et al., 2018) and a patch-based adversarial objective (Dosovitskiy & Brox, 2016; Esser et al.,
 878 2021; Isola et al., 2017). Specifically, we explore two main variants of the autoencoder. The first
 879 variant applies a small Kullback–Leibler penalty to encourage the learned latent space to approximate
 880 a standard normal distribution, similar to a VAE (Kingma, 2013; Rezende et al., 2014). The second
 881 variant integrates a vector quantization layer (Van Den Oord et al., 2017; Razavi et al., 2019) within
 882 the decoder. Empirically, we find that the VQ-VAE-based model performs better when combined
 883 with our method. Given a pre-trained encoder \mathcal{E} and decoder \mathcal{D} , we can extract $\mathbf{x}_0^\tau = \mathcal{E}(\mathbf{x}_0^\tau)$, which
 884 represents a low-dimensional latent space where high-frequency, imperceptible details are abstracted
 885 away. Finally, \mathbf{x}_0^τ can be reconstructed from the latent \mathbf{x}_0^τ by applying the decoder $\mathbf{x}_0^\tau = \mathcal{D}(\mathbf{x}_0^\tau)$. The
 886 EDM formulation in Eq. 4 makes relatively strong assumptions about the mean and standard deviation
 887 of the training data. To meet these assumptions, we opt to normalize the training data globally rather
 888 than adjusting the value of σ_{data} , which could significantly affect other hyperparameters (Karras et al.,
 889 2024). Therefore, we keep σ_{data} at its default value of 0.5 and ensure that the latents have a zero mean
 890 during dataset preprocessing. When generating sequence elements, we reverse this normalization
 891 before applying \mathcal{D} .
 892

893 B.3 PRIOR MODELING 894

895 We model the prior static and dynamic distribution with $p_{T0}(\mathbf{s}_0, \mathbf{d}_0^{1:V} | \mathbf{s}_T, \mathbf{d}_T^{1:V})$. To sample static
 896 and dynamic factors, we train a separate latent DDIM model (Song et al., 2020). Then, we can extract
 897 the factors by sampling noise, and reversing the trained model. Specifically, we learn $p_{\Delta t}(\mathbf{z}_{t-1}^{1:V} | \mathbf{z}_t^{1:V})$
 898 where $\mathbf{z}_0 = (\mathbf{s}_0, \mathbf{d}_0^{1:V})$ are the outputs of our sequential semantic encoder. The training is done by
 899 simply optimizing the $\mathcal{L}_{\text{latent}}$ with respect to DDIM’s output $\varepsilon_\phi(\cdot)$:
 900

$$\mathcal{L}_{\text{latent}} = \sum_{t=1}^T \mathbb{E}_{\mathbf{z}^{1:V}, \varepsilon_t} [\|\varepsilon_\phi(\mathbf{z}_t^{1:V}, t) - \varepsilon_t\|] \quad (11)$$

901 where $\varepsilon_t \in \mathbb{R}^{dV+s} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, V is the sequence length, s, d are the static and dynamic factors
 902 dimensions respectively. Additionally, $\mathbf{z}_t^{1:V}$ is the noise version of \mathbf{z}_t as described in Song et al.
 903 (2020). For designing the architecture of our latent model, we follow Preechakul et al. (2022) and it
 904 is based on 10 MLP layers. Our network architecture and hyperparamters are provided in Tab. 8.
 905

906 B.4 REVERSE PROCESSES 907

908 The detailed reverse sampling algorithm is provided in Alg. 1. We follow Karras et al. (2022)
 909 sampling techniques, however, each step in our reverse process is conditioned on the latent static and
 910 dynamic factors extracted by our sequential semantic encoder. As in Preechakul et al. (2022), we
 911 observe that auto-encoding is improved significantly when using the stochastic encoding technique.
 912 Since we have a different reverse process, we provide the algorithm for stochastic encoding for our
 913 modeling in Alg. 2. Finally, when performing conditional swapping, we observe that performing
 914 stochastic encoding on the sample from which we borrow the dynamics and using it as an input to
 915 Alg. 1, improves the results empirically. That is, given two sample videos $\mathbf{x}, \hat{\mathbf{x}} \sim p_0$, to create a
 916 new sample $\tilde{\mathbf{x}}$, conditioned on the static factor of \mathbf{x} and dynamic features of $\hat{\mathbf{x}}$, we use the stochastic
 917 encoding of $\hat{\mathbf{x}}$ in Alg. 1.

918
919

Algorithm 1 Conditioned Stochastic Sampler with $\sigma(t) = t$ and $s(t) = 1$.

```

920 1: procedure CONDITIONEDSTOCHASTICSAMPLER( $D_\theta$ ,  $t_{i \in \{0, \dots, N\}}$ ,  $\gamma_{i \in \{0, \dots, N-1\}}$ ,  $\mathbf{z}_0^{1:V}$ ,  $\mathbf{x}_0^{1:V}$ ,  $S_{\text{noise}}^2$ )
921 2:   if  $\mathbf{x}_0^{1:V} \neq \text{None}$  then
922 3:      $\mathbf{x}_N^{1:V} \leftarrow \text{Algorithm 2 output}$ 
923 4:   else
924 5:     sample  $\mathbf{x}_N^{1:V} \sim \mathcal{N}(\mathbf{0}, t_N^2 \mathbf{I})$ 
925 6:     for  $i \in \{N, \dots, 1\}$  do
926 7:       sample  $\mathbf{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, S_{\text{noise}}^2 \mathbf{I})$ 
927 8:        $\hat{t}_i \leftarrow t_i + \gamma_i t_i$ 
928 9:        $\hat{\mathbf{x}}_i^\tau \leftarrow \mathbf{x}_i^\tau + \sqrt{\hat{t}_i^2 - t_i^2} \mathbf{\epsilon}_i$ 
929 10:       $\mathbf{d}_i \leftarrow (\mathbf{x}_i^\tau - D_\theta(\mathbf{x}_i^\tau, \mathbf{z}_0^\tau; \hat{t}_i)) / \hat{t}_i$ 
930 11:       $\mathbf{x}_{i-1}^\tau \leftarrow \mathbf{x}_i^\tau + (t_{i-1} - \hat{t}_i) \mathbf{d}_i$ 
931 12:      if  $t_{i-1} \neq 0$  then
932 13:         $\mathbf{d}'_i \leftarrow (\mathbf{x}_{i-1}^\tau - D_\theta(\mathbf{x}_{i-1}^\tau, \mathbf{z}_0^\tau; t_{i-1})) / t_{i-1}$ 
933 14:         $\mathbf{x}_{i-1}^\tau \leftarrow \hat{\mathbf{x}}_i^\tau + (t_{i-1} - \hat{t}_i) (\frac{1}{2} \mathbf{d}_i + \frac{1}{2} \mathbf{d}'_i)$ 
934 15:    return  $\mathbf{x}_0$ 

```

934

935

Algorithm 2 Stochastic Encoding with $\sigma(t) = t$ and $s(t) = 1$.

```

936 1: procedure STOCHASTICENCODER( $D_\theta$ ,  $t_{i \in \{0, \dots, N\}}$ ,  $\gamma_{i \in \{0, \dots, N-1\}}$ ,  $\mathbf{x}_0^{1:V}$ ,  $\mathbf{z}_0^{1:V}$ )
937 2:   sample  $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, t_0^2 \mathbf{I})$ 
938 3:   for  $i \in \{0, \dots, N-1\}$  do
939 4:     sample  $\mathbf{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, S_{\text{noise}}^2 \mathbf{I})$ 
940 5:      $\hat{t}_i \leftarrow t_i + \gamma_i t_i$ 
941 6:      $\hat{\mathbf{x}}_i \leftarrow \mathbf{x}_i + \sqrt{\hat{t}_i^2 - t_i^2} \mathbf{\epsilon}_i$ 
942 7:      $\mathbf{d}_i \leftarrow (\mathbf{x}_i^\tau - D_\theta(\mathbf{x}_i^\tau, \mathbf{z}_0^\tau; t_i)) / t_i$ 
943 8:      $\mathbf{x}_{i+1}^\tau \leftarrow \mathbf{x}_i^\tau + (t_{i+1} - t_i) \mathbf{d}_i$ 
944 9:     if  $t_{i+1} \neq \sigma_{\text{max}}$  then
945 10:       $\mathbf{d}'_i \leftarrow (\mathbf{x}_{i+1}^\tau - D_\theta(\mathbf{x}_{i+1}^\tau, \mathbf{z}_0^\tau; t_{i+1})) / t_{i+1}$ 
946 11:       $\mathbf{x}_{i+1}^\tau \leftarrow \mathbf{x}_i^\tau + (t_{i+1} - t_i) (\frac{1}{2} \mathbf{d}_i + \frac{1}{2} \mathbf{d}'_i)$ 
947 12:    return  $\mathbf{x}_N^{1:V}$ 

```

948

949

950

C HYPER-PARAMETERS

951

952

The hyperparameters used in our autoencoder are listed in Tab. 6 and Tab. 7, detailing the configurations for each dataset: MUG, TaiChi-HD, VoxCeleb, CelebV-HQ, TIMIT, LibriSpeech, PhysioNet, Air Quality and ETTh1. We provide the values of essential parameters such as sequence lengths, batch sizes, learning rates, and the use of P_{mean} and P_{std} to manage noise disturbance during training. In addition, the table specifies whether VQ-VAE was employed. Tab. 8 outlines the architecture of our latent DDIM model, including batch size, number of epochs, MLP layers, hidden sizes, and the β scheduler. These details are essential for understanding the model's structure and its training process. For the VQ-VAE model, we utilized the pre-trained model from (Rombach et al., 2022) with hyperparameters $f = 8$, $Z = 256$, and $d = 4$, which encodes a frame of size $3 \times 256 \times 256$ into a latent representation of size $4 \times 32 \times 32$.

953

954

955

D DATASETS

956

957

958

MUG. The MUG facial expression dataset, introduced by Aifanti et al. (2010), contains image sequences from 52 subjects, each displaying six distinct facial expressions: anger, fear, disgust, happiness, sadness, and surprise. Each video sequence in the dataset ranges from 50 to 160 frames. To create sequences of length 15, as done in prior work (Bai et al., 2021), we randomly select 15 frames from the original sequences. We then apply Haar Cascade face detection to crop the faces and resize them to 64×64 pixels, resulting in sequences of $x \in \mathbb{R}^{15 \times 3 \times 64 \times 64}$. The final dataset comprises 3,429 samples. In the case of the zero shot experiments we resize the images to 256×256 pixels.

$$\triangleright \gamma_i = \begin{cases} \min\left(\frac{S_{\text{churn}}}{N}, \sqrt{2}-1\right) & \text{if } t_i \in [S_{\text{tmin}}, S_{\text{tmax}}] \\ 0 & \text{otherwise} \end{cases}$$

\triangleright Select temporarily increased noise level \hat{t}_i

\triangleright Add new noise to move from t_i to \hat{t}_i

\triangleright Evaluate $d\mathbf{x}/dt$ at t_i

\triangleright Take Euler step from t_i to t_{i-1}

\triangleright Apply 2nd order correction

$$\triangleright \gamma_i = \begin{cases} \min\left(\frac{S_{\text{churn}}}{N}, \sqrt{2}-1\right) & \text{if } t_i \in [S_{\text{tmin}}, S_{\text{tmax}}] \\ 0 & \text{otherwise} \end{cases}$$

\triangleright Select temporarily increased noise level \hat{t}_i

\triangleright Add new noise to move from t_i to \hat{t}_i

\triangleright Evaluate $d\mathbf{x}^\tau/dt$ at t_i

\triangleright Take Euler step from t_i to t_{i+1}

\triangleright Apply 2nd order correction

972 Table 6: Hyperparameters for Video datasets.
973

974 Dataset	975 MUG	976 TaiChi-HD	977 VoxCeleb	978 CelebV-HQ
979 P_{maen}	980 -1.2	981 -1.2	982 -0.4	983 -0.4
984 P_{std}	985 1.2	986 1.2	987 1.0	988 1.0
989 NFE	990 71	991 63	992 63	993 63
994 lr	995 $1\text{e-}4$	996 $1\text{e-}4$	997 $1\text{e-}4$	998 $1\text{e-}4$
999 bsz	1000 8	1001 16	1002 16	1003 16
1004 $\#\text{Epoch}$	1005 1600	1006 40	1007 100	1008 450
1009 Dataset repeats	1010 1	1011 150	1012 1	1013 1
1014 $s \text{ dim}$	1015 256	1016 512	1017 512	1018 1024
1019 $d \text{ dim}$	1020 64	1021 64	1022 12	1023 16
1024 hidden dim	1025 128	1026 1024	1027 1024	1028 1024
1029 Base channels	1030 64	1031 64	1032 192	1033 192
1034 $\text{Channel multipliers}$	1035	1036 $[1, 2, 2, 2]$	1037	1038
1039 $\text{Attention placement}$	1040	1041 $[2]$	1042	1043
1044 Encoder base ch	1045 64	1046 64	1047 192	1048 192
1049 Encoder ch. mult.	1050	1051 $[1, 2, 2, 2]$	1052	1053
1054 $\text{Enc. attn. placement}$	1055	1056 $[2]$	1057	1058
1059 Input size	1060 $3 \times 64 \times 64$	1061 $3 \times 64 \times 64$	1062 $3 \times 256 \times 256$	1063 $3 \times 256 \times 256$
1064 Seq len	1065 15	1066 10	1067 10	1068 10
1069 Optimizer	1070	1071 $\text{AdamW (weight decay= 1e-5)}$	1072	1073
1074 Backbone	1075	1076 Unet	1077	1078
1079 GPU	1080	1081 1 RTX 4090	1082	1083 3 RTX 4090

995 Table 7: Hyperparameters for audio and TS.
996

998 Dataset	999 TIMIT	1000 LibriSpeech	1001 Physionet	1002 Airq	1003 ETTH
1004 P_{maen}	1005 -0.4	1006 -0.4	1007 -0.4	1008 -0.4	1009 -0.4
1010 P_{std}	1011 1.0	1012 1.0	1013 1.0	1014 1.0	1015 1.0
1016 NFE	1017 63	1018 63	1019 63	1020 63	1021 63
1022 lr	1023 $1\text{e-}4$	1024 $1\text{e-}3$	1025 $5\text{e-}5$	1026 $1\text{e-}4$	1027 $1\text{e-}4$
1028 bsz	1029 128	1030 128	1031 30	1032 10	1033 10
1034 $\#\text{Epoch}$	1035 750	1036 200	1037 200	1038 200	1039 200
1040 $s \text{ dim}$	1041 32	1042 32	1043 24	1044 16	1045 16
1046 $d \text{ dim}$	1047 4	1048 2	1049 2	1050 4	1051 4
1052 hidden dim	1053 128	1054 256	1055 96	1056 512	1057 512
1058 Base channels	1059 256	1060 64	1061 256	1062 256	1063 128
1064 $\text{Channel multipliers}$	1065	1066 $[4, 4, 4, 4]$	1067	1068	1069
1070 $\text{Attention placement}$	1071	1072 None	1073	1074	1075
1076 Encoder base ch	1077 128	1078 128	1079 96	1080 128	1081 256
1082 Encoder ch. mult.	1083	1084 $[4, 4, 4, 4]$	1085	1086	1087
1088 $\text{Enc. attn. placement}$	1089	1090 None	1091	1092	1093
1094 Input size	1095 80	1096 80	1097 10	1098 10	1099 6
1100 Seq len	1101 68	1102 68	1103 80	1104 672	1105 672
1106 Optimizer	1107	1108 $\text{AdamW (weight decay= 1e-5)}$	1109	1110	1111
1112 Backbone	1113	1114 MLP	1115	1116	1117
1118 GPU	1119	1120 1 RTX 4090	1121	1122	1123

1020 **TaiChi-HD.** The TaiChi-HD dataset, introduced by Siarohin et al. (2019), contains videos of
1021 full human bodies performing Tai Chi actions. We follow the original preprocessing steps from
1022 FOMM (Siarohin et al., 2019) and use a 64×64 version of the dataset. The dataset comprises 3,081
1023 video chunks with varying lengths, ranging from 128 to 1,024 frames. We split the data into 90% for
1024 training and 10% for testing. To create sequences of length 10, similar to the approach used for the
1025 MUG dataset, we randomly select 10 frames from the original sequences. The resulting sequences
1026 are resized to 64×64 pixels, forming $x \in \mathbb{R}^{10 \times 3 \times 64 \times 64}$.

1026
1027

Table 8: Network architecture of our latent DDIM.

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

Parameter	MUG	TaiChi-HD	VoxCeleb	Celebv-HQ
Batch size	128	128	128	128
#Epoch	500	500	200	1000
MLP layers (N)			10	
MLP hidden size	1216	5008	2528	4736
β scheduler			Linear	
Learning rate			1e-4	
Optimizer			AdamW (weight decay= 1e-5)	
Train Diff T			1000	
Diffusion loss			L2 loss with noise prediction ϵ	
GPU			1 RTX 4090	

1039
1040
1041
1042
1043
1044
1045
1046
1047

VoxCeleb. The VoxCeleb dataset (Nagrani et al., 2017) is a collection of face videos extracted from YouTube. We used the preprocessing steps from Albanie et al. (2018), where faces are extracted, and the videos are processed at 25/6 fps. The dataset comprises 22,496 videos and 153,516 video chunks. We used the verification split, which includes 1,211 speakers in the training set and 40 different speakers in the test set, resulting in 148,642 video chunks for training and 4,874 for testing. To create sequences of length 10, we randomly select 10 frames from the original sequences. The videos are processed at a resolution of 256×256 resulting in sequences represented as $x \in \mathbb{R}^{10 \times 3 \times 256 \times 256}$.

1048
1049
1050
1051
1052
1053
1054
1055

CelebV-HQ. The CelebV-HQ dataset (Zhu et al., 2022) is a large-scale collection of high-quality video clips featuring faces, extracted from various online sources. The dataset consists of 35,666 video clips involving 15,653 identities, with each clip manually labeled with 83 facial attributes, including 40 appearance attributes, 35 action attributes, and 8 emotion attributes. The videos were initially processed at a resolution of 512×512 . We then used Wang et al. (2021) to crop the facial regions, resulting in videos at a 256×256 resolution. To create sequences of length 10, we randomly selected 10 frames from the original sequences, producing sequences represented as $x \in \mathbb{R}^{10 \times 3 \times 256 \times 256}$.

1056
1057
1058
1059
1060
1061
1062

TIMIT. The TIMIT dataset, introduced by Garofolo (1993), is a collection of read speech designed for acoustic-phonetic research and other speech-related tasks. It contains 6300 utterances, totaling approximately 5.4 hours of audio recordings, from 630 speakers (both men and women). Each speaker contributes 10 sentences, providing a diverse and comprehensive pool of speech data. To pre-process the data we use mel-spectrogram feature extraction with 8.5ms frame shift applied to the audio. Subsequently, segments of 580ms duration, equivalent to 68 frames, are sampled from the audio and treated as independent samples.

1063
1064
1065
1066
1067
1068
1069
1070
1071

LibriSpeech. The LibriSpeech dataset Panayotov et al. (2015) is a corpus of read English speech derived from audiobooks, containing 1,000 hours of speech sampled at 16 kHz. For our training, we used the `train-clean-360` subset, which consists of 363.6 hours of speech from 921 speakers. As validation and test sets, we use `dev-clean` and `test-clean`, each containing 5.4 hours of speech from 40 unique speakers, where there is no identity overlap across all subsets. For pre-processing, we extract mel-spectrogram features with an 8.5 ms frame shift applied to the audio. We then sample segments of 580 ms duration (equivalent to 68 frames) from the audio, treating them as independent samples.

1072
1073
1074
1075
1076
1077

PhysioNet. The PhysioNet ICU dataset (Goldberger et al., 2000) consists of medical time series data collected from 12,000 adult patients admitted to the Intensive Care Unit (ICU). This dataset includes time-dependent measurements such as physiological signals, laboratory results, and relevant patient demographics like age and reasons for ICU admission. Additionally, labels indicating in-hospital mortality events are included. Our preprocessing procedures follow the guidelines provided in (Tonekaboni et al., 2022).

1078
1079

Air Quality. The UCI Beijing Multi-site Air Quality dataset (Zhang et al., 2017) comprises hourly records of air pollution levels, collected over a four-year period from March 1, 2013, to February 28,

1080 2017, across 12 monitoring sites in Beijing. Meteorological data from nearby weather stations of
1081 the China Meteorological Administration is also included. Our approach to data preprocessing, as
1082 described in (Tonekaboni et al., 2022), involves segmenting the data based on different monitoring
1083 locations and months of the year.

1084

1085 **ETTh1.** The ETTh1 dataset is a subset of the Electricity Transformer Temperature (ETT) dataset,
1086 containing hourly data over a two-year period from two counties in China. The dataset is focused
1087 on Long Sequence time series Forecasting (LSTF) of transformer oil temperatures. Each data point
1088 consists of the target value (oil temperature) and six power load features. The dataset is divided into
1089 training, validation, and test sets, with a 12/4/4-month split.

1090

1091 E METRICS

1092

1093 **Average Keypoint Distance (AKD).** To evaluate whether the motion in the reconstructed video
1094 is preserved, we utilize pre-trained third-party keypoint detectors on the TaiChi-HD, VoxCeleb,
1095 CelebV-HQ, and MUG datasets. For the VoxCeleb, CelebV-HQ and MUG datasets, we employ the
1096 facial landmark detector from Bulat & Tzimiropoulos (2017), whereas for the TaiChi-HD dataset,
1097 we use the human-pose estimator from Cao et al. (2017). Keypoints are computed independently
1098 for each frame. AKD is calculated by averaging the L_1 distance between the detected keypoints
1099 in the ground truth and the generated video. The TaiChi-HD and MUG datasets are evaluated at a
1100 resolution of 64×64 pixels, and the VoxCeleb and CelebV-HQ datasets at 256×256 pixels. If the
1101 model output is at a lower resolution, it is interpolated to 256×256 pixels for evaluation.

1102

1103 **Average Euclidean Distance (AED).** To assess whether the identity in the reconstructed video is
1104 preserved, we use the Average Euclidean Distance (AED) metric. AED is calculated by measuring
1105 the Euclidean distance between the feature representations of the ground truth and the generated
1106 video frames. We selected the feature embedding following the example set in Siarohin et al. (2019).
1107 For the VoxCeleb, CelebV-HQ, and MUG datasets, we use a VGG-FACE for facial identification
1108 using the framework of Serengil & Ozpinar (2020), whereas for TaiChi-HD, we use a network trained
1109 for person re-identification (Hermans et al., 2017). TaiChi-HD and MUG are evaluated at a resolution
1110 of 64×64 pixels, and VoxCeleb and CelebV-HQ at 256×256 pixels.

1111

1112 To ensure fairness when measuring AED and AKD, we created a predefined dataset of example pairs,
1113 ensuring that all models are evaluated on the exact same set of pairs. This is important because when
1114 measuring quantitative metrics, the results may vary depending on the dynamics swapped between
1115 two subjects, as e.g., the key points in AKD in the original video are influenced by the identity of the
1116 person. To address this issue, we establish a fixed set of pairs for a consistent comparison across all
1117 methods.

1118

1119 **Accuracy (Acc).** As in Naiman et al. (2023), we used this metric for the MUG dataset to evaluate a
1120 model’s ability to preserve fixed features while generating others. For example, dynamic features are
1121 frozen while static features are sampled. Accuracy is computed using a pre-trained classifier, referred
1122 to as the “judge”, which is trained on the same training set as the model and tested on the same test
1123 set. For the MUG dataset, the classifier checks that the facial expression remains unchanged during
1124 the sampling of static features.

1125

1126 **Inception Score (IS).** The Inception Score is a metric used to evaluate the performance of the model
1127 generation. First, we apply the judge, to all generated videos $x_0^{1:V}$, obtaining the conditional predicted
1128 label distribution $p(y|x_0^{1:V})$. Next, we compute $p(y)$, the marginal predicted label distribution, and
1129 calculate the KL-divergence $\text{KL}[p(y|x_0^{1:V}) \| p(y)]$. Finally, the Inception Score is computed as
1130 $\text{IS} = \exp(\mathbb{E}_x \text{KL}[p(y|x_0^{1:V}) \| p(y)])$. We use this metric evaluate our results on MUG dataset.

1131

1132 **Inter-Entropy ($H(y|x_0^{1:V})$).** This metric reflects the confidence of the judge in its label predictions,
1133 with lower inter-entropy indicating higher confidence. It is calculated by passing k generated
1134 sequences $\{x_0^{1:V}\}_{1:k}$ into the judge and computing the average entropy of the predicted label distributions:
1135 $\frac{1}{k} \sum_{i=1}^k H(p(y|\{x_0^{1:V}\}^i))$. We use this metric evaluate our results on MUG dataset.

1134 **Intra-Entropy** ($H(y)$). This metric measures the diversity of the generated sequences, where a
1135 higher intra-entropy score indicates greater diversity. It is computed by sampling from the learned
1136 prior distribution $p(y)$ and then applying the judge to the predicted labels y . We use this metric to
1137 evaluate our results on the MUG dataset.

1138

1139 **EER.** Equal Error Rate (EER) metric is widely employed in speaker verification tasks. The EER
1140 represents the point at which the false positive rate equals the false negative rate, offering a balanced
1141 measure of performance in speaker recognition. This metric, commonly applied to the TIMIT dataset,
1142 provides a robust evaluation of the model’s ability to disentangle features relevant to speaker identity.

1143

1144 **AUPRC.** The Area Under the Precision-Recall Curve (AUPRC) is a metric that evaluates the
1145 balance between precision and recall by measuring the area beneath their curve. A higher AUPRC
1146 reflects superior model performance, with values nearing 1 being optimal, indicating both high
1147 precision and recall.

1148

1149 **AUROC.** The Area Under the Receiver Operating Characteristic Curve (AUROC) measures the
1150 trade-off between true positive rate (TPR) and false positive rate (FPR), quantifying the area under
1151 the curve of these rates. A higher AUROC signifies better performance, with values close to 1 being
1152 desirable, representing a model that distinguishes well between positive and negative classes.

1153

1154 **MAE.** Mean Absolute Error (MAE) calculates the average magnitude of errors between predicted
1155 and observed values, offering a simple and intuitive measure of model accuracy. As it computes the
1156 average absolute difference between predicted and actual values, MAE is resistant to outliers and
1157 provides a clear indication of the model’s prediction precision.

1158

1159 **DNSMOS.** Deep Noise Suppression Mean Opinion Score (DNSMOS (Reddy et al., 2021)) is a
1160 neural network-based metric introduced to estimate the perceptual quality of speech processed by
1161 noise suppression algorithms. Trained to predict human Mean Opinion Scores (MOS), DNSMOS
1162 provides a no-reference quality assessment that correlates strongly with subjective human judgments.
1163 It evaluates both the speech quality and the effectiveness of noise reduction, offering a comprehensive
1164 measure of audio clarity and intelligibility. This metric is especially useful in evaluating real-world
1165 performance of speech enhancement systems without the need for costly and time-consuming human
1166 listening tests.

1167

1168 Figure 5: Rows A and B are two inputs from the test set. Row C shows a dynamic swap example,
1169 using the static of A and dynamics of B. In row D we extract the same person from A, but with the
1170 dynamics as labeled in B. Finally, in row E, we extract the same person from A with the dynamics
1171 that are predicted by the classifier.

1172

1173

1174 F MUG AND JUDGE METRIC ANALYSIS

1175

1176 While our results show significant improvement over previous methods on VoxCeleb (Nagrani et al.,
1177 2017), CelebV-HQ (Zhu et al., 2022), and TaiChi-HD (Siarohin et al., 2019), both in terms of
1178 disentanglement and reconstruction, our performance on MUG (Aifanti et al., 2010) is only on par

Figure 6: Rows A and B are two inputs from the test set. Row C shows a dynamic swap example, using the static of A and dynamics of B. In row D we extract the same person from A, but with the dynamics as labeled in B. Finally, in row E, we extract the same person from A with the dynamics that are predicted by the classifier.

Table 9: Judge benchmark disentanglement metrics on MUG.

Method	MUG				
	Acc↑	IS↑	$H(y x)\downarrow$	$H(y)\uparrow$	Reconstruction (MSE) ↓
MoCoGAN	63.12%	4.332	0.183	1.721	–
DSVAE	54.29%	3.608	0.374	1.657	–
R-WAE	71.25%	5.149	0.131	1.771	–
S3VAE	70.51%	5.136	0.135	1.760	–
SKD	77.45%	5.569	0.052	1.769	–
C-DSVAE	81.16%	5.341	0.092	1.775	–
SPYL	85.71%	5.548	0.066	1.779	1.311e–3
DBSE	86.90%	5.598	0.041	1.782	1.286e–3
Ours	81.15%	5.382	0.090	1.773	2.669e–7

with the state-of-the-art methods. Since MUG is a labeled dataset, the traditional evaluation task involves the unconditional generation of static factors while freezing the dynamics, resulting in altering the appearance of the person. The generated samples are then evaluated using an off-the-shelf judge model (See App. E), which is a neural network trained to classify both static and dynamic factors. If the disentanglement method disentangles these factors effectively, we expect the judge to correctly identify the dynamics while outputting different predictions for the static features, since the latter were randomly sampled and should differ from the original static factor.

Surprised by our results on MUG, we investigated the failure cases to understand the limitations of our model. In particular, we examined scenarios where we freeze the dynamics and swap the static features between two samples, and then we generate the corresponding output. In Fig. 5, we show an example where the static features of the second row are swapped with those of the first row, and the resulting generation is displayed in the third row. We observe that while the dynamics from the second row are well-preserved, the generated person retains the identity of the first row. However, the classifier incorrectly predicts the dynamics for the sequence. To further investigate this, we extracted a ground-truth example of the person from the first row in the dataset expressing the expected emotion and the predicted one. In the last two rows of Fig. 5, we show the same person with predicted dynamics (fourth row) and the same person with the dynamics that the classifier predicted (fifth row). We provide another example of the same phenomenon in Fig. 6.

We observe that while the judge predicts the wrong label for our generated samples in rows C, the facial expressions of the people there align better with the actual dynamics in rows B. This suggests that the classifier is biased towards the identity when predicting dynamics, potentially forming a discrete latent space where generalization to nearby related expressions is not possible. Importantly, the judge attains $> 99\%$ accuracy on the test set. We conclude that utilizing a judge can be problematic for measuring new and unseen variations in the data. This analysis motivates us to present the AKD and AED, as detailed above in App. E.

1242 **G ADDITIONAL EXPERIMENTS**
1243

1244 **G.1 DEPENDENT VS. INDEPENDENT PRIOR MODELING**
1245

1246 In Sec. 3, we describe our approach to prior modeling, highlighting our decision to generate latent
1247 factors dependently rather than independently, as done in previous state-of-the-art methods. Beyond
1248 being a parameter- and time-efficient choice, we empirically validate the advantages of our approach
1249 in the following experiment.

1250 In this experiment, we compare two setups: (1) dependent generation of static and dynamic latent
1251 vectors, and (2) independent generation of these latent vectors using two latent DDIM models: one
1252 for the static vector and another for the dynamic vectors. To quantitatively assess the effectiveness of
1253 both approaches, we measure the Fréchet Video Distance (FVD) Blattmann et al. (2023), a metric
1254 derived from the well-established FID score for videos. This metric evaluates how well a generative
1255 model captures the observed data distribution, where lower scores indicate better performance.

1256 We conduct our evaluation on the VoxCeleb dataset, training two latent models. The independent
1257 model achieves an FVD score of 75.03, whereas our dependent approach achieves a significantly
1258 lower score of **65.23**, representing a $\approx 13\%$ improvement. This result underscores the expressive
1259 advantage of modeling latent factors dependently.

1260 **G.2 ADDITIONAL ANALYSIS OF DIFFSDA DISENTANGLEMENT COMPONENTS**
1261

1262 This section explores the impact of two key components of our method on disentanglement quality: i)
1263 the static latent factor s_0 shared across all time steps τ , and ii) the dimensionality of the dynamic
1264 latent factor d_0^τ .

1266 To analyze these effects, we trained four models on the VoxCeleb dataset for 100 epochs, maintaining
1267 a static latent dimension of 128 while varying the size of the dynamic latent factor and whether the
1268 static latent factor was shared or not. The models were evaluated using our conditional swapping
1269 protocol and a verification metric based on the VGG-FACE framework proposed in Serengil &
1270 Ozpinar (2020). Specifically, we assessed identity consistency by freezing the static factor and
1271 swapping the dynamic factor, with the verification score representing the percentage of cases where
1272 identity was correctly preserved across frames.

1273 As shown in Tab.10, our results indicate that the optimal performance (first row of the table) is
1274 achieved when d_0^τ has a smaller dimensionality, and the static factor is shared. Other configurations
1275 reveal significant trade-offs: increasing d_0^τ dimensionality results in higher AED scores but reduced
1276 verification accuracy, indicating weaker disentanglement of the static factor. Similarly, when s_0 is not
1277 shared, the AKD score degrades significantly, suggesting ineffective disentanglement of the dynamic
1278 factor. These findings underscore the importance of both (i) and (ii) in achieving robust sequential
1279 disentanglement.

1280 **Table 10: Disentanglement effect of VoxCeleb dataset**
1281

d_0^τ size	s shared?	Verification ACC \uparrow (Static Frozen)	AED \downarrow (static frozen)	AKD \downarrow (dynamics frozen)
16	✓	64.36%	0.925	2.882
128	✓	18.03%	1.054	2.077
16	✗	56.75%	0.898	12.64
128	✗	48.41%	0.980	12.28

1287 To strengthen these observations, we repeated the study on MUG, where ground-truth static (identity)
1288 and dynamic (action) labels allow a clean swap-task evaluation (Tab. 11). The trends mirror VoxCeleb:
1289 (i) sharing the static representation s is critical when s is not shared, the dynamic pathway collapses.
1290 In this case, identity remains stably preserved under static swap (as it should), but dynamic recognition
1291 deteriorates toward chance because temporal variation is absorbed into or suppressed by the static
1292 channel, indicating failed sequential disentanglement; and (ii) constraining the dimensionality of
1293 the dynamic latent d_0^τ provides a helpful bottleneck that limits identity leakage and sharpens the
1294 separation between static and dynamic factors. Although the absolute gaps on MUG are more modest
1295 than in Tab. 10, the qualitative agreement across datasets reinforces that both sharing s and limiting
the capacity of d_0^τ are key for robust sequential disentanglement.

Table 11: Disentanglement effect of MUG dataset

d_0^T size	s shared?	Verification ACC \uparrow (Static Frozen)	Action ACC \downarrow (dynamics frozen)
64	✓	95.59%	80.08%
256	✓	92.12%	81.28%
64	✗	99.69%	16.71%
256	✗	99.83%	18.18%

G.3 SPEECH QUALITY AND RECONSTRUCTION COMPARISON

This section discusses the results of speech reconstruction and quality evaluation presented in table 12 on the LibriSpeech dataset. We compare the reconstruction performance using the Mean Squared Error (MSE) on the spectrograms and assess speech quality using the Deep Noise Suppression Mean Opinion Score (DNSMOS) (Reddy et al., 2021). The DNSMOS metric has a maximum score of 5, but the original (reference) dataset achieves a score of 3.9, as shown in the REF row of the table. As can be seen in the table, our model outperforms all comparable methods, achieving the lowest MSE and the highest DNSMOS among the evaluated approaches.

Table 12: Disentanglement and generation quality metrics on Libri Speech. For generation quality, we report MSE on the spectrogram and Deep Noise Suppression Mean Opinion Score (DNSMOS).

	Method	MSE \downarrow	DNSMOS \uparrow
Libri Speech	REF	---	3.9
	DSVAE	5.53e $\text{--}2$	3.13
	SPYL	4.40e $\text{--}1$	2.21
	DBSE	6.72e $\text{--}3$	2.88
	Ours	1.83e$\text{--}4$	3.41

G.4 GENERATIVE QUALITY COMPRESSION

This section discusses the generative quality results shown in Table 13, evaluated using the Fréchet Video Distance (FVD) on the VoxCeleb dataset. We generated the same number of samples as in the test set and computed the FVD score against the test set. This process was repeated five times for each model using different five different seeds to obtain a robust estimate. We report the mean FVD along with the standard deviation. The results demonstrate that our model outperforms existing state-of-the-art sequential disentanglement models in the video generation task.

Table 13: Fréchet Video Distance (FVD) results on VoxCeleb dataset to assess video generation quality. All experiments were conducted across five different random seeds to ensure robustness and account for variability in generation.

Model	FVD \downarrow
SPYL	582.28 ± 1.15
DBSE	1076.44 ± 2.22
Ours	65.23 ± 0.81

G.5 EFFECT OF VO-VAE ON ZERO-SHOT SWAPS

In this subsection, we provide further details regarding the experiment aimed at evaluating the role of the VQ-VAE in zero-shot cross-dataset transfer. The experiment was designed to isolate the contribution of the VQ-VAE by removing it entirely and training DiffSDA directly in pixel space on

1350
1351 downsampled VoxCeleb. This setup allows us to examine how well the model maintains disentan-
1352 glement when the unified latent space provided by VQ-VAE is absent. The observed deterioration
1353 in generalization, particularly in the stability and consistency of identity and expression transfer,
1354 indicates that the VQ-VAE plays a crucial role in producing coherent cross-dataset representations
1355 that support strong zero-shot disentanglement as seen in the examples of Fig. 7.
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448

Figure 7: Each panel shows, in the first and second rows, real video pairs from the VoxCeleb and MUG datasets, respectively. We perform conditional swapping using two models: one trained on VoxCeleb with VQ-VAE and another trained on VoxCeleb without VQ-VAE at a resolution of 64x64. The resulting swaps are shown in the final two rows. In the first two examples, the dynamics are taken from the VoxCeleb video, while in the last two examples, the dynamics come from the MUG video..

1453
1454
1455
1456
1457

1458

H ADDITIONAL RESULTS

1459

1460

H.1 EXTENDED BENCHMARK RESULTS

1461

1462 In this section, we expand the comparisons from the main paper by adding results for additional
1463 baselines on the same tasks and datasets. Specifically, we include time-series prediction on PhysioNet
1464 and ETTh1 (Tab. 14), time-series classification on PhysioNet and Air Quality using only the static
1465 latents (Tab. 15), and disentanglement on TIMIT reported as Static EER, Dynamic EER, and Disen-
1466 tanglement Gap (Tab. 16). Across these additions, our method remains competitive or superior to the
1467 added baselines. We also add CDSVAE results on MUG and provide a MUG-only summary (Tab. 17):
1468 under swaps, our model better preserves identity (with z^s frozen) and motion (with z^d frozen), and in
1469 reconstruction achieves uniformly lower AED/AKD/MSE—supporting stronger disentanglement and
1470 higher-fidelity reconstructions.

1471 Table 14: Time series prediction benchmark.

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Method	PhysioNet		ETTh1
	AUPRC \uparrow	AUROC \uparrow	MAE \downarrow
VAE	0.157 \pm 0.05	0.564 \pm 0.04	13.66 \pm 0.20
GP-VAE	0.282 \pm 0.09	0.699 \pm 0.02	14.98 \pm 0.41
C-DSVAE	0.158 \pm 0.01	0.565 \pm 0.01	12.53 \pm 0.88
GLR	0.365 \pm 0.09	0.752 \pm 0.01	12.27 \pm 0.03
SPYLL	0.367 \pm 0.02	0.764 \pm 0.04	12.22 \pm 0.03
DBSE	0.473 \pm 0.02	0.858 \pm 0.01	11.21 \pm 0.01
Ours	0.50 \pm 0.006	0.87 \pm 0.004	9.89 \pm 0.280
RF	0.446 \pm 0.04	0.802 \pm 0.04	10.19 \pm 0.20

1485 Table 15: Time series classification benchmark.

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

Method	PhysioNet \uparrow	Air Quality \uparrow
VAE	34.71 \pm 0.23	27.17 \pm 0.03
GP-VAE	42.47 \pm 2.02	36.73 \pm 1.40
C-DSVAE	32.54 \pm 0.00	47.07 \pm 1.20
GLR	38.93 \pm 2.48	50.32 \pm 3.87
SPYLL	46.98 \pm 3.04	57.93 \pm 3.53
DBSE	56.87 \pm 0.34	65.87 \pm 0.01
OUR	64.6 \pm 0.35	69.2 \pm 1.50
RF	62.00 \pm 2.10	62.43 \pm 0.54

1500 Table 16: Disentanglement metrics on TIMIT

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Method	Static EER \downarrow	Dynamic EER \uparrow	Dis. Gap \uparrow
FHVAE	5.06%	22.77%	17.71%
DSVAE	5.64%	19.20%	13.56%
R-WAE	4.73%	23.41%	18.68%
S3VAE	5.02%	25.51%	20.49%
SKD	4.46%	26.78%	22.32%
C-DSVAE	4.03%	31.81%	27.78%
SPYLL	3.41%	33.22%	29.81%
DBSE	3.50%	34.62%	31.11%
Ours	4.43%	46.72%	42.29%

1512 Table 17: MUG results only. Preservation of objects (AED) and motions (AKD) under conditional
 1513 swapping, and reconstruction errors (AED/AKD/MSE). Labels ‘static frozen’ and ‘dynamics frozen’
 1514 correspond to samples \mathbf{z}^s and \mathbf{z}^d .

		CDSVAE	SPYL	DBSE	Ours
Swap					
AED ↓ (static frozen)		0.774	0.766	0.773	0.751
AKD ↓ (dynamics frozen)		1.170	1.132	1.118	0.802
Reconstruction					
AED ↓		0.56	0.49	0.49	0.11
AKD ↓		0.50	0.47	0.48	0.06
MSE ↓		0.001	0.001	0.001	3e-7

H.2 RECONSTRUCTION RESULTS

In Figs. 8 to 11, we present several qualitative reconstruction examples across all datasets.

1559 Figure 8: Reconstruction results of CelebV-HQ (256 \times 256). The first row for each pair is the original
 1560 video and the second row is its reconstruction.

H.3 ADDITIONAL RESULTS: CONDITIONAL SWAP

In what follows, we present more results for the conditional swapping experiment from the main text (Sec. 4.1). In each figure, the first two rows show the original sequences (real videos). The third and

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 9: Reconstruction results of VoxCeleb (256 \times 256). The first row for each pair is the original video and the second row is its reconstruction.

fourth rows are the results of the conditional swap where we change the dynamic and static factors, respectively. We show our results for all datasets in Figs. 12 to 15.

H.4 ADDITIONAL RESULTS: UNCONDITIONAL SWAP

In addition to the conditional and zero-shot shot tasks considered above, we can also perform such tasks in an unconditional manner. Specifically, given a real sequence $\mathbf{x}^{1:V}$ with its factors $(\mathbf{s}, \mathbf{d}^{1:V})$, we can unconditionally sample new $(\hat{\mathbf{s}}, \hat{\mathbf{d}}^{1:V})$ using our separate DDIM model (see Sec. 3). We then reconstruct the static swap $(\hat{\mathbf{s}}, \mathbf{d}^{1:V})$ and the dynamic swap $(\mathbf{s}, \hat{\mathbf{d}}^{1:V})$ similarly as described above. In Fig. 16, we present unconditional swap results on CelebV-HQ (left), VoxCeleb (middle), and TaiChi-HD (right). The middle rows represent the original sequences, whereas the top and bottom rows demonstrate dynamic and static swaps, respectively. Across all datasets and swap settings, our approach succeeds in modifying the swapped features while preserving the frozen factors, either in the static or in the dynamic examples. In addition, we also present more results where each figure is composed of separate panels. In each panel, the middle row represents the original sequence. In the top row, we sample new dynamic factors and freeze the static factor. In the bottom row below, we sample a new static factor and freeze the dynamics. We show our results on all datasets in Figs. 17 to 20.

H.5 ADDITIONAL RESULTS: ZERO-SHOT DISENTANGLEMENT

Here we extend the results from Sec. 4.2. We provide additional examples of conditional swapping when the model is trained on one dataset and evaluated on another dataset, unseen during training.

1649 Figure 10: Reconstruction results of TaiChi-HD. The first row for each pair is the original video and
1650 the second row is its reconstruction.

1651

1652

1653 Specifically, in Fig. 21, we show examples where the model is trained on VoxCeleb and tested on
1654 MUG. Additionally, in Fig. 22, the model is trained on VoxCeleb and tested on CelebV-HQ. Finally,
1655 in Fig. 23, the model is trained on CelebV-HQ and tested on VoxCeleb.

1656

1657

H.6 ADDITIONAL RESULTS: MULTIFACTOR DISENTANGLEMENT

1658

1659

1660 In this section, we present more examples for traversing the latent space, separately for the static and
1661 dynamic factors. For static factors, we show in Figs. 25 to 36. There, we find different factors of
1662 variation such as Male to Female, younger to older, brighter and darker hair color, and more. Each
1663 row in the figure is a video, and the different columns represent the traversal in α values (see Eq. 6).
1664 In addition, we present full examples of dynamic factor traversal in Figs. 37 to 48, demonstrating
1665 various factors of variation. Among the factors are facial expressions, camera angles, head rotations,
1666 eyes and mouth control, etc.

1667

1668

1669

1670

1671

1672

1673

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709

1710 Figure 11: Reconstruction results of MUG. The first row for each pair is the original video and the
1711 second row is its reconstruction.

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 12: Each panel contains a pair of original videos from CelebV-HQ (Real videos), and a pair of conditional swapping of the dynamic and static factors (Swapped videos).

Figure 13: Each panel contains a pair of original videos from VoxCeleb (Real videos), and a pair of conditional swapping of the dynamic and static factors (Swapped videos).

1929 Figure 15: Each panel contains a pair of original videos from MUG (Real videos), and a pair of
 1930 conditional swapping of the dynamic and static factors (Swapped videos).

1942 Figure 16: Unconditional dynamic (top) and static (bottom) swap results on CelebV-HQ (left),
 1943 VoxCeleb (middle), and TaiChi-HD (right).

Figure 17: CelebV-HQ unconditional swapping. The middle row represents the original video (real), the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).

Figure 18: VoxCeleb unconditional swapping. The middle row represents the original video (real), the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).

2047
2048
2049
2050
2051

Figure 19: TaiChi-HD unconditional swapping. The middle row represents the original video (real), the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).

2147 Figure 20: MUG unconditional swapping. The middle row represents the original video (real),
2148 the row above shows a dynamic swap (dynamics), and the row below shows a static swap (static).

2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2160
2161
2162
2163
2164
2165

2206
2207
2208
2209
2210
2211
2212
2213
Figure 21: Each panel contains in its first and second rows a pair of real videos from VoxCeleb and MUG, respectively. We perform conditional swapping using a model that was trained on VoxCeleb, but we zero-shot swap the dynamic and static factors of a MUG example (Swapped videos).

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263
2264
2265
2266
2267

Figure 22: Each panel contains in its first and second rows a pair of real videos from VoxCeleb and CelebV-HQ. We perform conditional swapping using a model that was trained on VoxCeleb, but we zero-shot swap the dynamic and static factors of a CelebV-HQ example (Swapped videos).

2268
2269
2270
2271
2272
2273

2274
2275
2276
2277
2278
2279
2280
2281
2282
2283

2284
2285
2286
2287
2288
2289
2290
2291
2292
2293

2294
2295
2296
2297
2298
2299
2300

2300
2301
2302
2303
2304
2305
2306

2307
2308
2309
2310
2311
2312
2313

2314
2315
2316

2317
2318
2319
2320
2321

Figure 23: Each panel contains in its first and second rows a pair of real videos from CelebV-HQ and VoxCeleb. We perform conditional swapping using a model that was trained on CelebV-HQ, but we zero-shot swap the dynamic and static factors of a VoxCeleb example (Swapped videos).

2334 Figure 24: Traversing the latent space of DiffSDA via PCA reveals multiple dynamic variations on
2335 CelebV-HQ, including surprised and serious expressions, and different head orientations.

2360 Figure 25: Traversing between Male appearances and Female appearances.

2375 Figure 26: Traversing over a darker hair factor.

Figure 27: Traversing between sharper and blurry videos.

Figure 28: Traversing over a brighter hair factor.

Figure 29: Traversing between younger and older appearances.

Figure 30: Traversing over skin color variations.

2480
2481
2482
2483

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510

2511 Figure 31: Traversing between Male appearances and Female appearances.
2512

2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2534 Figure 32: Traversing over a darker hair factor.
2535
2536
2537

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

Figure 33: Traversing between sharper and blurry videos.

2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Figure 34: Traversing over a brighter hair factor.

Figure 35: Traversing between younger and older appearances.

Figure 36: Traversing over skin color variations.

2644
2645

Figure 37: Traversing a head rotation factor.

Figure 38: Traversing over head angles.

2698
2699

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724

Figure 39: Traversing over up and down rotations.

2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751

Figure 40: Traversing over facial expressions.

2752
2753

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779

2780
2781

Figure 41: Traversing over mouth openness factor.

2782
2783
2784
2785
2786
2787

2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Figure 42: Traversing over eyes openness factor.

2860
2861

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886

Figure 45: Traversing over up and down head rotations.

2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Figure 46: Traversing over facial expressions.

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940

Figure 47: Traversing over mouth openness factor.

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967

Figure 48: Traversing over eyes openness factor.

2968
2969