DISTRIBUTIONAL DATASET DISTILLATION WITH SUB-
TASK DECOMPOSITION

Tian Qin * Zhiwei Deng David Alvarez-Melis

Harvard University Google DeepMind Harvard University & MSR

Cambridge, MA Mountain View, CA Cambridge, MA
ABSTRACT

What does a neural network learn when training from a task-specific dataset?
Synthesizing this knowledge is the central idea behind Dataset Distillation, which
recent work has shown can be used to compress a large dataset into a small set of
input-label pairs (prototypes) that capture essential aspects of the original dataset.
In this paper, we make the key observation that existing methods that distill into
explicit prototypes are often suboptimal, incurring in unexpected storage costs
from distilled labels. In response, we propose Distributional Dataset Distillation
(D3), which encodes the data using minimal sufficient per-class statistics paired
with a decoder, allowing for distillation into a compact distributional represen-
tation that is more memory-efficient than prototype-based methods. To scale up
the process of learning these representations, we propose Federated distillation,
which decomposes the dataset into subsets, distills them in parallel using sub-task
experts, and then re-aggregates them. We thoroughly evaluate our algorithm using
a multi-faceted metric, showing that our method achieves state-of-the-art results
on TinyImageNet and ImageNet-1K. Specifically, we outperform the prior art by
6.9% on ImageNet-1K under the equivalence of 2 images per class budget.

1 INTRODUCTION

Large datasets such as ImageNet (Deng et al.,2009) can be used for a variety of purposes, ranging from
image classification, single-object localization to generative tasks. If one only needs to accomplish
one of those tasks, say image classification, can we synthesize only relevant information in the
data and thus achieve compression? The goal of data distillation, first introduced by Wang et al.
(2018}, is to answer this question: how to ‘condense’ a dataset into a smaller (synthetic) counterpart,
such that training on this distilled dataset achieves performance comparable to training on the the
original dataset. Since its inception, this problem has garnered significant attention due to its obvious
implications for data storage efficiency, faster model training, and democratization of large-scale
model training. It also holds the promise of speeding up downstream applications such as neural
architecture search, approximate nearest neighbor retrieval, and knowledge distillation, all of which
often require data-hungry methods (Sachdeva & McAuley, [2023). Moreover, data distillation has
emerged as a promising approach for continual learning (Rosasco et al.l|2021) and differential privacy
(Dong et al., [2022), often outperforming bespoke differentially-private data generators both in terms
of performance and privacy, and allowing for private medical data sharing (L1 et al., [2022).

Most current state-of-the-art data distillation methods produce synthetic protoypes: a small subset
of learnt (input, label) pairs that capture the most ‘salient’ (in terms of their impact on classifier
performance) aspects of the original dataset. These prototypes are often defined in the original
input (e.g., image) space (Wang et al.| (2018;2022)). Recently, some work (Deng & Russakovskyl
2022;Zhao & Bilen, 2022} [Lee et al., [2022) propose to distill images into a latent space, and use a
decoder to map latent codes back to the input (image) space. Overall, dataset distillation methods
have achieved remarkable success in producing much smaller datasets —typically measured in terms
of Images (or Prototypes) Per Class (IPC)— with limited loss of downstream model performance.
While early methods suffered from limited scalability, recent ones have managed to scale to large
datasets like ImageNet-1K or even ImageNet-21K (Yin & Shen, 2023} |Yin et al., [2023}; [Liu et al.,

*Correspondence to: Tian Qin (tqin@g.harvard.edu).

ImageNet-1K Storage Cost v.s. Accuracy ImageNet-1K Training Efficiency v.s. Accuracy

—+- D3(Ours, ConvNet) —J- D3(Ours, R18)
< 40- D3(Ours, R18) 540- __}__ TESLA(R18)
1> —+— TESLA(ConvNet) S - 2
= TESLA(R18) oo =~ SRe2L(R18, original size)
3 :
®30- SRe2L(R18, original) § 30- SRe2L(R18, resized)
3 SRe2L(R18, resize) -]
o 7 o
© 20 | s /, 50 IPC ©
: i 5201 i
> -7 P q>J A4
o ez P 1) . P
§ 10 E {//" 101PC § 10 //},’/?/ TAE

t o 101PC e Q\Lc
O 1IPC O 1IPC
102 103 10 101 102
Storage Cost (MB) Downstream Training Cost (min)

Figure 1: Three-dimensional evaluation on methods that scale to ImageNet-1K. Left: Recovery
accuracy vs. storage trade-off comparison for our (D3) and other methods on resized (64 x 64 x 3)
ImageNet-1K. Our method achieves SOTA performance at small memory cost regime. Right:
Accuracy vs. downstream task training cost on resized ImagNet-1K.

2023)). For example, SRe2L (Liu et al., [2022) achieved a ~100x IPC reduction on ImageNet-1K and
recovered ~77% of the classification accurac

Although encouraging, we will show that these results tell an incomplete story. When considering the
total storage (e.g., disk space used to store all necessary distillation outputs) and the runtime needed
to train new models on the distilled data, the efficacy of these methods is much more subdued. Beyond
the prototypes, some of these methods output other artifacts that are necessary for downstream use but
whose memory footprint is rarely reported. These include soft labels (often multiple per prototype)
and augmentation parameters used (Zhou et al.,|2022b; [Yin & Shen| 2023} |Yin et al.,2023)). The use
of distilled labels are crucial (Figure[/]) but incur a storage cost that is not captured by IPC (Table
Appendix[A.T). Once we take into account the storage cost of these artifacts, the true compression
rate of such methods is much lower than implied by the IPC metric (Figure[I] left). On the other hand,
decoding/generation/augmentation procedures often translate into additional post-distillation training
time (Figure[T] right). In light of these observations, we argue that IPC as a metric of distillation is
incomplete, and that the methods that have been developed to optimize it should be revisited with a
more comprehensive set of evaluation metrics.

In response to the above observation, we propose a

new dataset distillation method with efficient com- | Federated Distillation | [Distributional Representation
pression properties, not in terms of dataset cardinality

(i.e., IPC), but directly in terms of storage size and

downstream model training time. Distilling into the Train |ﬁ| Distil m

latent space not only allows a more compact repre-

sentation of the data by sharing inter-class mutual Lk 'ﬁl o IA
information in decoder parameters, but also offers Train 'ﬁl istil m
finer-grained control on compression than working

directly with prototypes (e.g., by varying number of

latent codes per class, latent dimensions and the de- Figure 2: Illustration of Federated Distil-
coder size). We challenge the conventional approach lation and Distributional Representation
of distilling into a finite set of (latent) prototypes and We decompose large datasets into subtasks
propose to cast the problem into a distributional one: and distill each subset into distributions using
finding a synthetic probability distribution which can locally trained experts. Distributions distilled
be sampled to produce training data for downstream on subtasks generalize well to the full task.
tasks. This Distributional Dataset Distillation (D3)

approach yields an efficient representation of distilled data without incurring much additional compu-
tation costs on downstream tasks.

To scale our method efficiently to large datasets such as ImageNet-1K, we propose a simple-yet-
effective federated distillation scheme that parallelizes the distillation process (Figure[2). Instead

'SRe?L used ResNet18 as the teacher model, which achieved 69.8% classification accuracy from full
ImageNet-1K training. SRe2L’s distilled data with 10 IPC achieved 46.2% classification accuracy

of directly distilling the entire dataset, we divide the full classification tasks into subtasks, where
each task only classifies a subset of all classes. Data distillation is performed on subtasks, using local
experts trained on subtasks. We then aggregate the locally distilled datasets to form the distilled data
for the full task. We show that data distilled on subtasks generalize well to the full task, which ensures
the good performance of our federated distillation process. Using the distributional representation
and federated distillation, we achieve SOTA performance on ImageNet-1K as measured by storage
cost.

Our contributions can be summarized as follows:

. We show that state-of-the-art prototype-based data distillation methods yield unexpectedly
high storage costs and post-distillation training times, an under-reported phenomenon that
is not captured by commonly-used compression metrics (e.g., IPC, the number of distilled
items per class). The large storage cost and training time could hinder the usability of these
methods in practice.

. We propose a novel distillation framework with smaller memory footprint that distills
datasets into distributions, extending recent methods that distill into a latent space to now
operate on (latent) distributions. We show this method matches or outperforms state-
of-the-art distillation methods in terms of prediction accuracy on various datasets (e.g.,
TinyImageNet, ImageNet-1K), with smaller storage costs.

. We propose a simple-yet-effective federated distillation strategy that allows distillation
training process to be parallelized, and which has general applicability beyond our specific
method.

. In response to our observations above, we propose new evaluation protocols and metrics for

dataset distillation methods that more accurately characterize the extent of ‘distillation’, and
compare existing work and our work along these axes. E]

2 RELATED WORK

We focus our discussion of prior work on the lines that are most closely related to ours, but note that
methods with similar goals have been developed in the context of statistical sample compression
(Winter, 2002} Dwivedi & Mackey}, |2021) and core-set selection (Mirzasoleiman et al., | 2020; Zhou
et al., [2022a).

Optimization Methods|Wang et al.| (2018)) originally approached the distillation problem as a bi-level
optimization task, which is computationally intensive. To tackle the computation challenge, many
work has proposed proxy training objectives to simplify the distillation process. Nguyen et al.| (2020)
leveraged NTK-based algorithms to solve the inner optimization in closed form. [Zhao et al.| (2020)
proposed gradient matching to avoid the unrolling of the inner-loop and make the distillation process
more efficient. Further improvements on single-iteration gradient matching also include (Lee et al.,
2022} |Zhao & Bilen, [2021). Matching training trajectories (MTT) was proposed by (Cazenavette
et al.;|2023), claiming that matching long-range training dynamics provides further improvements
on single-iteration gradient matching. |Cui et al.| (2022) proposed TESLA as a scalable alternative to
the original MTT method. |Du et al.| (2022) proposed a variant that uses “flat” trajectory matching
to further improve trajectory-matching based methods. Distribution Matching (DM), proposed by
(Zhao & Bilen, 2023)), seek to minimize the Maximum Mean Discrepancy (MMD) between original
and distilled dataset samples. Further refinement on the method includes Wang et al.|(2022); Zhou
et al.| (2022b). Specifically, Neural Feature Regression with Pooling (FRePo) (Zhou et al., 2022b)
addressed the memory-concern with a pooling strategy for distribution matching based method.

Recently, SRe?L ((Yin et al., 2023)) proposed to decouple the expensive bi-level optimization and
used a three step procedure - first, produce feature mapping; second, generate distilled images; and
third generate soft labels. Follow-ups such as [Liu et al.|(2023) and [Yin & Shen| (2023) brought
further improvements on the method. This line of work has achieved impressive performance on
large datasets such ImageNet-1K and even ImageNet-21K.

2Code for all experiments is available here: https://github.com/sunnytqin/D3

https://github.com/sunnytqin/D3

Representing Distilled Dataset In contrast to all methods listed so far, a new line of work proposed
to distill data into the latent space (Deng & Russakovsky, 2022; |Liu et al., 2022} |Lee et al., [2022;
Cazenavette et al., 2023} Zhao & Bilen, 2022)). This line of work proposes to learn the latent code and
use decoder(s) to map the latent code back into training images. Zhao & Bilen| (2022); |Cazenavette
et al.| (2023)) leveraged pre-trained GANSs as the decoder such that only latent code needed to be
learned during distillation. (Deng & Russakovskyl, 2022} |Lee et al.,|2022; [Liu et al., 2022)) trained
both latent codes and decoders during the distillation process. Our work is mostly similar to IT-GAN
(Zhao & Bilen, |2022) in using a generative model to represent distilled data. However, we model the
prototypes themselves as distributions, allowing for e.g., unlimited sampling from them, and leading
to more diverse generation. IT-GAN (Zhao & Bilen,|2022) only showed the feasibility on CIFAR-10
while we scale the idea to TinylmageNet, and ImageNet-1K. Furthermore, we show that by using
a distributional framework and a generator trained from scratch, one can achieve a more compact
representation of data.

3 METHODOLOGY

3.1 THREE-DIMENSIONAL EVALUATION

The most important aspect of evaluating data distillation methods is the trade off between the memory
footprint (i.e., how large is the distilled dataset) and the recovery accuracy (i.e., can models trained
the compressed data achieve comparable performance compared to the original dataset). When it
was first proposed by Wang et al.|(2018)), the distillation task was restricted to finding a set of images
{s;}}_,. Same number of prototypes were used for each class along with hard labels. Since storing
the corresponding label incurred a trivial cost, IPC was sufficient to capture the distilled dataset size
in early works. However, two recent trends brought innovations to different ways to store information
in the distilled dataset. As a result, the IPC metric no longer reflects the trade-off between storage
and recovery accuracy.

Storage Cost Instead of distilling into pixels, many recent works (Deng & Russakovskyl 2022 [Lee
et al., [2022} |Liu et al.} 2022) distill data into a latent space Z and represent each prototype as a latent
code z € Z. One or multiple decoders are used to map the latent code into original space during
downstream training, by trading memory with compute. On the other hand, images are not the only
way one can store information in the distilled dataset. Many methods that scale to ImageNet-1K
leverage distilled labels as an additional way to store information. TESLA (Yin et al., |2023), and
FRePo (Zhou et al., 2022b) distill prototypes into pixel space and assign one unique soft label to each
prototype. Compared to hard labels, storing softmax values incurs a small but non-trivial storage
cost. On the other hand, SRe2L and its follow-up work (Yin et al., 2023; [Liu et al., |2023; Yin &
Shen, |2023) take a slightly different approach by assigning multiple distilled labels to each prototype.
For each prototype, different distilled labels correspond to variants of the prototype by applying
augmentations. As a result, these work (Yin et al.| [2023; [Liu et al.l 2023; Yin & Shen| 2023)) require
the augmentation parameters stored along with the corresponding to distilled labels.

Downstream Training Cost When training models on the distilled data, using soft labels instead
of hard labels, decoding latent codes on-the-fly, and applying augmentations to prototypes all bring
additional computation cost during downstream training. Therefore, in addition to storage cost,
we also propose to look at the the wall clock time to train models on the distilled data, which we
abbreviate as downstream training cost. This training cost can help us gain insights into the memory
versus compute trade-off between different distillation methods. However, the primary objective of
dataset distillation is to achieve information compression by saving only relevant features needed for
a certain task, storage cost should be the primary metric for evaluation and downstream training cost
should be a secondary metric. Despite being a secondary metric, downstream task training cost is
still relevant because if training models on the distilled data takes too long, the distilled dataset may
have limited usability on applications such as continual learning or neural architecture search.

We propose a more comprehensive evaluation process based on the following three metrics:

(i) Total storage cost: being distilled images, prototypes, latent codes, soft labels, augmentations,
and/or decoders

(i) Downstream training cost: wall clock time it takes to train models on the distilled data
(iii)) Recovery accuracy: accuracy achieved by model trained on the distilled data

Table 1: Tiny ImageNet distilled and evaluated on ConvNet Storage cost is measured in MB and
in parenthesis, we annotate the equivalence if storing only images (measured using IPC). In our most
compact setting, the storage cost to store the distilled distribution averages to storing less than 1 IPC.
N/A: indicates the distillation size is smaller than the minimum size the method can distill.

Storage Cost (MB) Random DM MTT LinBa KFS FrePo D3(ours)

4 (~0.51PC) N/A N/A N/A N/A N/A N/A 24.6 0.2
10 (~11pc) 1.6 01 3902 8803 16007 22702 15403 26.0 0.4
100 (~101pc) 6.2 02 12.9 04 23.202 27.8 02) 25.4 02 30.50.3)

Table 2: Tiny ImageNet distilled and evaluated on different architectures We use the distribution
distilled under the 100MB (~ 10 IPC) storage cost budget. Our method generalizes well to different
architectures.

ConvNet (self) AlexNet ResNetl8 VGGI11 ViT
30.5 03) 22.6 05 25705 27.002 15.10.7

We perform the comprehensive evaluation on TESLA (Cui et al., [2022), SRe?L (Yin et al.| [2023))
and D3 (ours) on ImageNet-1K (resized). TESLA (Cui et al., [2022) represents SOTA results among
existing methods that distill directly into image spaces along with soft labels. SRe?L (Yin et al.,
2023) represents results among existing methods that distill into images, augmentations and soft
labels. Finally, our work (D3) represents results that distill into latent (distributions). Using the
new metric, we observe a different landscape that is not captured by IPC, as shown in Figure [I]
Bi-level optimization-based methods (TESLA and ours) excel at small-scale, extremely efficient
dataset distillation while decoupled methods (SRe?L) achieves superior performance at the cost of a
larger storage footprint and longer downstream training time. In Appendix [A.T] we list further details
on the exact storage cost breakdown and a discussion on the storage cost is measured.

3.2 DISTILLING INTO DISTRIBUTIONS

The motivation behind distilling into the latent space is to achieve further compression in data storage
(Deng & Russakovsky, 2022; |Lee et al.,|[2022; [Liu et al., [2022)). Instead of images, the final distilled
dataset consists of one or multiple latent codes for each class, along with one or multiple decoder(s).
Decoders map those latent codes back into the pixel space. Formally, we denote the ¢-th latent code
for image class c as zi, and denote decoder(s) as gg, where 6 are parameters for the decoder. The
distilled dataset S can be expressed as:

8= {(hyl) : (g0(z1),)},

The above formulation indicates a one-fo-one correspondence between latent code and output image -
namely, a deterministic data generation process. In this work, we propose to achieve an even more
efficient way to represent dataset by generalizing the idea of latent codes into latent distributions.
Instead of a deterministic data generation process, we now have a probabilistic one where one can
repeatedly sample from the latent distribution and pass into the decoder to generate images.

To represent the latent distribution, we borrow ideas from Deep Latent Variable models (Kingma
& Welling, [2019; [2013) and assume the latent distribution to be Gaussian: p(z|c) ~ N (e, X¢).
During the data distillation process, we learn the parameters u. and Y. for those Gaussian priors, as
well as decoder parameters 6. During downstream training, sample data is generated in an “online”
fashion by sampling from the latent distribution N (p., 3.) at each epoch. See Appendix for a
detailed description on distributional representation.

3.3 FEDERATED DISTILLATION

The challenge to scale data distillation methods to ImageNet-1K comes from the significant memory
and computation costs (Zhou et al 2022bj [Yin et al 2023} (Cui et al., [2022)). Our method D3
also suffers from the same challenge. To resolve the scaling issue, we propose to use a federated
distillation strategy. First, we divide the datasets into k subsets in the class space. Each subset only
contains C/k classes, where C' denotes the total number of classes in the full set. Then, we perform
data distillation independently on each subset. Note that in this step, we train local experts for each

sub-task and optimize the distill data on those subtasks, which is simpler than the full classification
task. Finally, the distill subsets are aggregated to form the distilled dataset for the full task. For an
illustration of our federated distillation strategy, see Figure 2]

Since each subset has only been trained by local experts for each subtask (i.e, classify only C/k
classes as opposed to all C classes), one certainly would expect the federated strategy to yield
sub-optimal results compared to directly distilling on the full dataset. In section [f.3] we confirm such
intuition. However, we observe that dataset distilled on those simpler subtasks transfers relatively
well to the full task. This nice generalization property allows us to distill ImageNet-1K in a highly
parallelized fashion while achieving SOTA results.

4 EXPERIMENTS

In pursuit of impartial comparisons with existing data dis-
tillation methodologies, we align all our design choices
with existing work. We use ConvNet for data distillation
on all datasets. We evaluate the recovery accuracy on
five randomly initialized neural networks and report mean
and standard deviation. We provide a detailed descrip-
tion of datasets, experiment setup and hyper-parameters
in Appendix [C] We compare our methods on competi-
tive baselines that distill into pixel space, including MTT
(Cazenavette et al.}[2022), TESLA (Cui et al.| , con-
current work DataDAM (Sajedi et al | [2023), FRePo (Zhou
et al.l 2022b), FTD (Du et al., 2022), and DM (Zhao &
Bilen} [2023). We also compare our method on competitive Figure 3: Visualization of distilled
baselines that distill into latent space, including LinBa mean (col 1) and variations (col 2 on-

(Deng & Russakovsky} 2022) and KFS (Lee et al}, 2022). wards) for four ImageNet-1K classes

4.1 QUANTITATIVE RESULTS

We apply the federated distillation strategy on ImageNet-
1K by breaking down the dataset into 2 and 5 sub-tasks. To
scale up the distilled distributions, we use 1, 2 and 10 latent
priors per class and scale up decoder sizes accordingly. We
report results on both ConvNetD4 and ResNet18 (cross-
architecture generalization) with our three-dimensional
evaluation metric in Figure[I]and a tabular version can be
found in Appendix [AT} Our method outperforms TESLA
(Cui et all, 2022)), DataDAM (Sajedi et all, [2023) and
FRePo (Zhou et al., 2022b) on ConvNet under 100MB
and 500MB storage budget. Furthermore, our method can
also distill a distribution under 25MB (0.5IPC) storage
budget, which outperforms existing work under S0MB
(1PC) storage budget.

Figure 4: Visualization of the latent
Gaussian space by interpolating pri-
ors for four classes from ImageNet-1K

Our method distills a more compact dataset through dis-
tributional representation, however, when we evaluate on
the downstream task training cost, we can see that that
our compact representation comes at a (small) compute cost. On average, models trained on our
distilled distribution takes more training iterations to converge compared to fixed-output methods
and generating images on-the-fly costs additional small but non-negligible compute time. We report
TinyImageNet results in Table[T] and corresponding cross-architecture results in Table[2] We use
2, 5, and 10 latent priors for three storage costs and a larger decoder for the last one. Similar to
ImageNet-1K, our method can distill distribution that achieves SOTA performance with small storage
costs and generalize well to different architectures. Additionally, we report CIFAR-100, CIFAR-10
and the two ImageNet subsets in Appendix [D] In Appendix [C] we include a full list of decoder
hyper-parameters and exact storage cost for all the experiments listed above.

4.2 LATENT SPACE ANALYSIS

We impose a Gaussian structure to the latent distribution space, and the motivation behind distillation
is to save only relevant information from a dataset for a specific task (image classification, in our case).
Through the distilled distribution, we can visualize the Gaussian space to reach some qualitative
understanding on the ‘salient’ features that are essential for image classification task. In Figure 3]
we visualize the prototype distribution of distilled ImageNet-1K under S00MB (~ 10 IPC) storage
budget. Specifically, we visualize the average (first column) of four randomly chosen classes and their
corresponding variations (second column onwards). Qualitatively, we observe that the typical (i.e.,
mean) sample is more interpretable and higher quality compared to its variations. We also visualize
four randomly chosen classes (four corners) and the inter-class “distributions” by linearly interpolate
the Gaussian space between (the rest), shown in Figure]

4.3 FEDERATED DISTILLATION

Ability to task-generalize When we per-
form federated distillation, we are essen-
tially distilling datasets on simpler subtasks
(i.e., classification on fewer classes). To
understand the extent to which breaking
down distillation tasks can impact the over-

Table 3: Federated distillation compared to full task
distillation on TinyImageNet row indicates the dataset
being distilled on and column indicates the dataset being
evaluated on.

all performance on the distillation process, (Subset 1, Subset 2) Full
we conduct the following experiments on (Sybset 1, Subset2) (27.6 06), 27.2 05) 21.9 0.6
TinyImageNet. First, we perform federated Full (32.2 03), 33.4 04) 24.6 0.3

data distillation by dividing the dataset into
two subsets, first one containing the first
hundred classes and the second one containing the rest (second hundred classes). The full distilled
dataset distribution is obtained from aggregating the two distributions. To form a comparison, we
perform dataset distillation directly on the full dataset using the same-sized decoder, and the same
settings for the latent prior distributions (i.e., same dimension for the latent Gaussian distribution,
and same number of latent priors per class).

Experiment results are reported in Table[d Rows indicates the dataset that distillations are performed
on, and the column indicates the dataset that distilled distributions are evaluates on. First row
summarizes the federated distillation outcome: each subtask achieves ~ 27% recovery accuracy. We
then evaluate the aggregated distributions on the full task, which achieves 21.9% recovery accuracy
(row 1, col 2). In comparison, the second row summarizes results for the non-federated counterpart:
directly distilling on the full set achieved higher accuracy 24.6% than the federated outcome. In this
experiment, we observe that the federated distillation only slightly underperforms the non-federated
version. In addition, we notice that the data distribution distilled on the full dataset outperforms the
federated counterpart (row 2, col 1) when evaluated on the subtask.

Impact factors To understand whether the ability of distilled data to task generalize is sensitive to
the distillation training objective and/or the use of distributional outcome, we further experiment
on TinylmageNet using the same set-up as above. In this set of experiments, we perform data
distillation using different training objectives, using distributional or fixed outputs to distill each of
the TinyImageNet subsets, shown in Table 4]

In Section we perform a more Table 4: Federated distillation on TinyImageNet using
detailed ablation study on the im- different training objectives, and using distributional or
pact of training objectives and dis- fixed representation Subset I, Subset 2 is recovery accuracy
tributional representation on distilla- on the subtask and full is recovery accuracy by aggregating
tion outcomes. Here, we are only in- the two distill datasets and evaluating on the full set. Chg%
terested in examining whether those computed by full/avg (subset 1, subset 2).

factors impact the ability for the dis-
tilled data to task generalize. For fixed Loss Term Distributional Subset 1(%) Subset 2(%) Full(%) Chg%

outputs, we repurpose latent distribu- MTT Yes 12.7 ©2) 18404 13404 86%
tional priors as latent codes and sim- ~ MMD Yes 40 2610y 2040n 80%

Iv distilli Iv th Tabl Both Yes 27.6 03) 27205 21906 80%
ply distilling only thé mean. 1able Both No(5IPC) 102805 123802 7505 66%
A shows that the relative transfer per- ~ Both ~ No(10IPC) 195804 17.6805 13902 74%
formance is not sensitive to different Both No(20IPC) 27503 253204 20506 78%

training objectives. However, when we restrict ourselves to fixed outputs (i.e., without distributional
representation), the relative task transfer ability suffered by a non-trivial amount. The performance
drop is most evident when we allow fewer fixed latent codes per class. However, as we increased
the number of fixed images, the task transfer ability converge to the distributional version. This
observation indicates that our federated distillation scheme could potentially be generalized to other
data distillation methods.

Number of Subtasks To understand to what extent the
number of subtasks negatively impacts the federated dis- Typle 5: Performance of federated dis-
tillation strategy, we experiment three division sizes on tjllation with different subtask sizes
ImageNet-1K: 10 sub-tasks (100 classes for each task), 5 on ImageNet-1K.

sub-tasks (200 classes for each task) and 2 sub-tasks (500

classes for each task). Table[5]shows that the distillation gypser size 4 Tasks Decoder Size Accuracy
quality increase monotonically as we decrease the number 100 10

. . . . S 9.7 0.2)
of subtasks. This observation provides a straightforward 100 10 M 9.6 03
guideline for subtask selection in practice: one should di- 200 5 S 10.6 0.3
vide into as few tasks as memory and computation allows ggg ; I\L’[}iﬁ Eg;

to achieve the best distillation outcome. For fair compar-
isons, we use two different decoder sizes for the first two
and a large one for the laterEl For the same decoder size, we keep the hyper-parameters same for the
latent distribution (same latent dimension, and same number of priors per class).

5 ABLATION STUDY

5.1 DISTRIBUTIONAL OUTCOME

On training accuracy Using the same training objective and using the same decoder setting, we
experiment disabling the distributional outcome. By allowing a distributional representation, a more
diverse set of samples are generated on-the-fly. As a result, the distilled distribution reaches a higher
distillation quality compared to its non-distributional counterpart. We experiment on CIFAR-10 and
TinyImageNet, shown in Figure[6] On prototype quality We also visualize samples from distilled
TinyImageNet outcomes above (with and without distributional representation) in Figure 5] We
observe that the distributional objective makes the distilled data more interpretable.

MTT and MMD, no distribution (distilling only the mean)
- 3 e .

Figure 5: Visualization of distilled samples from five classes using different training objectives
and fixed or distributional representation on TinyImageNet. For distributional outcomes we
visualize the mean.

5.2 LossS TERM CONTRIBUTION

To study the effect of combing two objectives, we perform distillation on CIFAR-10 and TinyImageNet
with either loss terms while keeping the decoder hyper-parameters constant, results shown in Figure 6]

3smaller and medium sized decoder failed to converge on 500-class subtask

CIFAR10 (ConvNetD3) Tiny ImageNet (ConvNetD4)

0.25-

S0
o 0.20-

—

]

S /

(@] 0.15-

<

>

_

O 0.10- |

g |

S

@ 22 —— MMD, [.)ISt 0.05 - MMD, [?ISt
x —— MTT, Dist —— MTT, Dist

MTT + MMD, Dist
—— MTT + MMD, Non-dist 0.00 -

MTT + MMD, Dist
—— MTT+MMD, Non-dist

0 1k 2k 3k 4k 5k 0 2k 4k 6k 8k 10k

Step Step

Figure 6: Ablation study on dual training objective and distributional representation Both
distributional representation and dual training objective are essential for the performance of our
method.

The dual training objective yields superior performance than using either one stand alone. However,
using the MMD or MTT objective alone could already achieve good results, depending on the dataset.
While performing distillation, we observe that the dual objective consistently outperform using one
alone. From visualizations in Figure[5] the combined objective yields more interpretable results than
using either alone. While it might be possible that one can further simplify the training objective by
only using one of them, we keep the dual objective based on the above observations.

5.3 DISTILLED LABELS

Similar to prior works, we also find that the use ImageNet-1K Distilled Label / Hard Label
of distilled labels brings additional benefit to the 20.01

dataset distillation. We use softmax values gen- 17.5 =
erated by pretrained experts as distilled labels,
an intuitive strategy already used by |Cui et al.
(2022); Zhou et al.| (2022b)). However, since
we distill into distributions, we use the mean
of every latent prior to generate soft labels. In }

practice, we find that the distilled labels for each 25 ﬁ/

mean work well even for randomly generated 00 100 00

samples. Different from existing work, our dis- Storage Cost (MB)

tilled distribution is more robust against having

only hard labels - our method significantly out- Figure 7: ImageNet-1K recovery accuracy using
performs TESLA [Cui et al.| (2022) and FRePo distilled labels or hard labels Our method still
Zhou et al.| (2022b)) when only hard labels are performs well even without using distilled labels.
used, shown in Figure[7]

" —F— TESLA (Hard label)

12.5- D3 ours (Hard label)

g —}— FRePo (Hard label)

--{-- TESLA (Distilled label)

--{-- FRePo (Distilled label)
D3 ours (Distilled label)

Recovery Accuracy (%)
=
o

6 CONCLUSION

In this paper, we first made a key observation that existing work distilling into explicit prototypes and
distilled labels incurred unexpected storage cost and post-distillation training time, both of which
could not be captured the conventional metric used dataset distillation. We proposed to evaluate
distillation methods on a three-dimensional metric that captures the total storage cost and the test-time
runtime efficiency.

We also proposed Distributional Dataset Distillation, which encodes the data using minimal sufficient
per-class statistics and a decoder, resulting in a distileld data distribution that is a more memory-
efficient representation of the training data. To scale up the process of data distillation, we proposed a
federated distillation strategy, which can have broader applications on other data distillation methods.
For future work, we aim to scale our results to larger datasets and to higher distillation quality.

REFERENCES

Mikotaj Bintkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD
GANS. January 2018. arXiv:1801.01401.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. March 2022. arXiv:2203.11932.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. General-
izing dataset distillation via deep generative prior. pp. 3739-3748, May 2023. arXiv:2305.01649.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to ImageNet-1K
with constant memory. November 2022. arXiv:2211.10586.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. pp. 34391-34404, June 2022. arXiv:2206.02916.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? June 2022. arXiv:2206.00240.

Jiawei Du, Yidi Jiang, Vincent Y F Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. November 2022. arXiv:2211.11004.

Raaz Dwivedi and Lester Mackey. Kernel thinning. May 2021. arXiv:2105.05842v10.

Diederik P Kingma and Max Welling. Auto-Encoding variational bayes. December 2013.
arXiv:1312.6114v11.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders. June 2019.
arXiv:1906.02691.

Hae Beom Lee, Dong Bok Lee, and Sung Ju Hwang. Dataset condensation with latent space
knowledge factorization and sharing. August 2022. arXiv:2208.10494.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas P6czos. Mmd gan:
Towards deeper understanding of moment matching network. Adv. Neural Inf. Process. Syst., 30,
2017.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Compressed gastric image generation
based on soft-label dataset distillation for medical data sharing. Comput. Methods Programs
Biomed., 227:107189, December 2022.

Haoyang Liu, Tiancheng Xing, Luwei Li, Vibhu Dalal, Jingrui He, and Haohan Wang. Dataset
distillation via the wasserstein metric. November 2023. arXiv:2311.18531.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. pp. 1100-1113, October 2022.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In Hal Daumé lii and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 6950-6960. PMLR, 2020.

Timothy Nguyen, Zhourong Chen, and Jachoon Lee. Dataset Meta-Learning from kernel Ridge-
Regression. October 2020. arXiv:2011.0005.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open

source differentiable computer vision library for PyTorch. In 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 3674-3683. IEEE, March 2020.

10

Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, and Davide Bacciu. Distilled
replay: Overcoming forgetting through synthetic samples. March 2021. arXiv:2103.15851.

Noveen Sachdeva and Julian McAuley. Data distillation: A survey. January 2023. arXiv:2301.04272.

A Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Y Lawryshyn, and K Plataniotis. DataDAM:
Efficient dataset distillation with attention matching. ICCV, pp. 17051-17061, September 2023.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. CAFE: Learning to condense dataset by aligning FEatures. pp.
12196-12205, March 2022. arXiv:2203.01531.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. November
2018. arXiv:1811.10959.

Andreas Winter. Compression of sources of probability distributions and density operators. August
2002. arXiv:quant-ph/0208131.

Zeyuan Yin and Zhigiang Shen. Dataset distillation in large data era. November 2023.
arXiv:2311.18838.

Zeyuan Yin, Eric Xing, and Zhigiang Shen. Squeeze, recover and relabel: Dataset condensation at
ImageNet scale from a new perspective. June 2023. arXiv:2306.13092.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12674-12685. PMLR,
2021.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with GAN. April 2022.
arXiv:2204.07513.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In 2023 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 6514-6523. IEEE, January
2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
June 2020. arXiv:2006.05929.

Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, Zonghao Chen, and Tong Zhang. Probabilistic
bilevel coreset selection. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 27287-27302. PMLR,
2022a.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. June 2022b. arXiv:2206.00719.

11

A METHODOLOGY (EXTENDED)

A.1 FURTHER DETAILS ON FIGURE[]]

In this section, we provide details for Figure[I]in Tables [6]and[7] First, in Table[6]we compare our
method with SOTA distillation methods at various storage costs. All methods perform distillation on
a ConvNet architecture. Additionally, we evaluate our method and TESLA on ResNet18 to examine
cross-architecture generalization. We also annotate storage cost with the equivalence of storing
images as distilled dataset. Table[/|lists all the methods we used to generate Figure|l} We report [PC
whenever applicable.

Table 6: ImageNet-1K Performance comparison for SOTA methods aligned on storage budget
Storage cost is rounded (See Table[7] for exact storage breakdown). N/A: indicates the smallest size
the method can distill into is larger than the corresponding size.

ConvNetD4 ResNet18
Storage Cost (MB) Random FrePo DataDAM TESLA Ours Random TESLA Ours
25 (~051PC) N/A N/A N/A N/A 11.5 (0.5 N/A N/A 9.7 0.8
50 (~11pe) 0.6 01H 7503 2.0 0.1 7.7 0.2 0.5 .1 6.2 (0.5
100 (~21pc) 0.801n 9702 2.2 0.1 10.502 17407 0.6 0.1 9.1a5 16.0 0.7
500 (~101pc) 3.6 (0.5) 6.3 0.1 17.8 a3 20309 3.601n 15303 18.2 0.6
3000 (~s01pc) 12.5 .5 15.5 0.2 279 12 153 23 23.2 09

Table 7: Details on storage cost breakdown, downstream task training cost and recovery
accuracy distilled on ImageNet-1K and evaluated on ResNet18 Input Storage Cost refers to
distilled synthetic images for prototype-based methods, and refers to latent prior and decoder for D3
(ours). DTC stands for Downstream task training cost defined in Section@

Method Distill Arch IPC Input Storage (MB) Label Storage (MB) Accuracy (%) DTC (min)

TESLA ConvNet 1 58 4 6.2 (0.5) 8
TESLA ConvNet 2 116 8 9.1 .5 17
TESLA ConvNet 10 579 38 15.3 08 60

TESLA ConvNet 50 2897 238 23.2 0.9 -
SRe2L (orig) ResNetl8 1 583 1229 2.9 02 50
SRe2L (orig) ResNet18 10 5848 6145 21.3 (0.6 250
SRe2L (orig) ResNet18 50 29764 30725 46.8 02 600
SRe2L (resize) ResNetl8 2 116 1229 1.2 0.n 25
SRe2L (resize) ResNetl8 10 579 6145 10.7 0.5 40
SRe2L (resize) ResNetl8 50 2897 30725 29.0 (0.5) 175
D3(Ours) ConvNet N/A 17 4 9.7 08) 20
D3(Ours) ConvNet N/A 76 8 16.0 ©0.7) 40
D3(Ours) ConvNet N/A 440 38 18.2 (0.6) 60

TESLA |Cui et al.|(2022): We replicated results for 1/2/10 IPC settings to produce the results above.
For the 10 IPC setting, (Cui et al.|(2022)) reported much lower performance on ResNet18 (7.7%), and
we used our reproduced results with higher accuracy(15.3%). We failed to repliate results for 50
IPC and obtained results directly from authors and therefore do not have downstream training cost
estimate.

SRe?L Yin et al.| (2023): SRe?L was originally implemented on higher resolution ImageNet-1K
(224 x 224). We replicated SRe’L using hyperparameters provided by authors, which set of results
are denoted as “original” above. We also re-implemented the pipeline on resized ImageNet-1K
(64 x 64), which set of results are denoted as “resized” above. In the original implementation, the
image was saved in . jpeg format and the soft label and the augmentation parameter was saved in
fpl6 format. We recomputed the storage cost assuming both images, augmentation parameters and
soft labels were saved as floating point tensor format. In the default hyperparameter setting, SRe’L
generated 300 distilled labels for each prototype by applying augmentations to each prototype. As a
result, both the labels and augmentation parameters needed to be saved, causing a rather large storage
cost on label storageﬂ

450 IPC distilled dataset|Yin et al.[(2023): https://huggingface.co/datasets/zeyuanyin/SRe2L

12

https://huggingface.co/datasets/zeyuanyin/SRe2L/tree/main

Computing storage cost To facilitate a direct and meaningful comparison between methods that
use different distillation approaches, we quantify the total storage cost of each method, including
all generated artifacts that are needed to reproduce the distilled dataset (decoder weights, images
prototypes, soft labels, augmentations parameters etc). For prototypes and images, we measure
their memory footprint when saved in single-precision floating-point tensor format (fp32). For
our method, which distills into latent priors and decoder(s), we save all decoder and latent prior
parameters again in fp32 format (saving the entire state_dict for the decoder). Likewise, we
measure memory footprint for distilled soft labels and augmentation parameters in the same fp32
format. We report all computed storage cost in Megabytes (MB) rounded to closest integer value.
While one could potentially achieve better image compression rates saving images into alternative
formats (. jpeg for example), this would prevent an apples-to-apples comparison. Moreover, similar
improvements could be achieved for distilled model parameters via quantization or compressed
(e.g., . zip) storage. However, all these additional steps (if used) bring further complications to the
discussion without bringing useful insight into using storage cost as a metric for dataset distillation.
As a result, we decide the most natural and fair comparison is to assume floating point tensor format
as the unified way of storing distilled data.

Downstream training cost All test-time runtime experiments are run using two NVIDIA A100-
SXM4-40GB GPUs with data parallelism to ensure fair comparison. We use default parameters
or hyperparameters provided whenever available. For TESLA, we used learned learning rate for
Convnet, default learning rate for ResNet18, default learning rate scheduler, default training epochs
(1000 epoch) and default batch size (i.e., batch size = IPC). For SRe?L we used default learning
rate, default training epochs (300 epoch) and default batch size. For D3 (our method), we used
learned learning rate for Convnet, default learning rate for ResNet18, default batch size (i.e., batch
size = latent prior per class) and default training epochs (2000 training epochs). We allowed early
termination if all above methods converged earlier than the default epoch setting. However, for all
methods, using default parameters only provides a rough estimate for the downstream training cost,
and it may be possible to further optimize for downstream training cost with hyperparameter tuning.
While it should only be used as a secondary metric to evaluate data distillation methods, we hope
future work could provide more details on this metric when reporting results.

A.2 FURTHER DETAILS ON DISTRIBUTIONAL REPRESENTATION

Formulation Formally, for a class of models f(-,w) : X —) parameterized by their weights
w € RP, and a loss function £, the objective of distillation can be phrased as finding S such that

Eonpova [£ (f(@;w%),9)] = Banrp,., [£ (f(@;wP),y)] 4))

where w are the weights obtained by training (e.g., by empirical risk minimization) on either on the
full training dataset D or on the distilled dataset S:

wP —argmin > L(f(wi;w),y), w® =argmin Y L(f(miw),y) ()

(xi,y:)€D (xi,y:)ES

and P, is the target data distribution that models are evaluated on (typically validation or test set).
In the distributional representation, we consider the population counterparts of equation |2} i.e.,

w? =argmin E PL(f(:ci;w),yi), w® =argmin = B L(f(x;w),y).)

w o (®iyi)~ (zi,y:)~Q
Instead of finding the optimal distilled data set S, we need to find a synthetic distribution ¢ which,
as before, leads to comparable predictive performance for f on the target distribution Piy,. To
make the problem tractable, we use a family of distributions)¢ with parameter set £. The use of
parameterizable distributions in turn allows us to formulate the problem as an optimization over the
finite-dimensional parameter space rather than the infinite-dimensional space of distributions.

Concretely, we assume a Gaussian prior distribution in latent space Z, and a posterior distribution
Q¢ (x|z) that can be parameterized by a decoder. In this formulation, parameters £ include Gaussian
priors (u’s, and X°s) and decoder parameters 6. The distilled distribution can be represented in a
variational form:

Qe(x) = /Qg(a:|z)p(z) dz, where p(z) ~ N (1, X)), Qe(x|2) = go(2).

13

In Section 3.1} we propose to use total storage cost instead of IPC as an evaluation metric for data
distillation. Storage cost as a metric can be applied to our distributional representation as well.
Specifically, we argue that when we distill into distributions, “distillation” is satisfied if the storage
footprint as discussed is sufficiently small. Furthermore, we also argue that to achieve information
compression, the effective number of samples from) on which a model needs to be trained is
comparable, or lower, than that of training on the original dataset D.

In particular, we seek to avoid the two trivial corner-cases Q¢ = = Zfil g, i.e., the uniform
empirical measure associated with training set D, and Yy ~ Pp, i.e., learning the full distribution of
the original data — a much harder problem to solve. Using a Gaussian prior has the advantage of
encoding information into a latent (typically lower-dimensional) space and provide a framework to
ensure only relevant information is preserved in the distributional representation.

Scaling Up There are multiple ways to scale up the amount of information encoded in the distilled
distribution with a larger storage budget and more compute:

(i) We can use multiple Gaussian priors for each class. We refer to the number of Gaussian
priors as latent priors per class. By using multiple distributional priors, we are essentially
assuming that each class follows a multi-modal distribution. For simplicity, we assume that
of these prior distributions N (1, 33%) is equally likely (i.e., uniform distribution among all
Gaussian priors).

(i1)) We can increase the dimension of the latent Gaussian distribution to allow more information
to be encoded for each prior.

(iii)) 'We can increase the size of the decoder gy to allow more shared information to be stored for
the entire dataset.

Empirically, we find that the most effective way to scale up the size of distilled dataset and achieve
higher recovery accuracy is to first increase the number of latent priors per class. Once we exceed a
certain number of priors per class, we also need to use a larger decoder and higher latent dimension
to achieve higher distillation quality.

A.3 TRAINING OBJECTIVE

Building on the foundations of existing data distillation techniques, we introduce a learning objective
compromised of two distinct terms. The first term is derived from Matching Training Trajectories
(MTT) proposed by |Cazenavette et al.|(2022). The second term in our objective aims to minimize the
Maximum Mean Discrepancy (MMD) between the true dataset and our learned dataset distribution.
Different from the formulation used in DM (Zhao & Bilen, [2023)), we use a set of Reproducing
Hilbert Kernels (RHKS) for the MMD computation to fully leverage the power of MMD. We first
map the pixel space to latent feature space using trained experts. For model simplicity and training
efficiency purposes, we recycle the experts used in MTT to generate feature mappings. We then use a

mixture of Radial Basis Function (RBF) kernels k(x,2’) = Zéil ko, (x,x"), where k,, represents
a Gaussian kernel with bandwidth o,. We choose a mixture of K = 5 kernels with bandwidths
{1,2,4,8,16}. The hyperparameter choice is inspired by MMD GANs (Binkowski et al.,|[2018; |Li

et al.,[2017). See below for a full description of the training objective.

MTT Loss Expert trajectories are training trajectories generated from training neural networks
on the full training set. At each distillation step, we initialize a student network that has the same
architecture as the experts. The student network’s initialization weight w® is sampled from the
experts training trajectory by randomly selecting an expert and a random iteration ¢, such that
'th = wP. We perform N gradient updates on the student network using data drawn from the
distilled distribution:

forn =0..N —1:w, ., =w?, —aVL(Qw?,),Q~ Q%

We then collect expert parameters from M training updates after iteration ¢, which denote as 'wg M
The distance between the updated student parameters and the updated expert parameters is quantified

14

using normalized squared error:

Do — IIng - wBrM”%
MTT

||w? _th+MH%

MMD Loss We use a set of Reproducing Hilbert Kernels (RHKS) for the MMD computation to
fully leverage the power of MMD. Since we only have access to the distilled distribution Qg but
not the training data distribution P, we use the empirical MMD measure: In general, given random
variable X = {z1,...,z,} ~PandY = {y1,...,ym} ~ Q, the unbiased estimator of the MMD
measure is|Li et al.|(2017):

MMD Zk: Ti, ;) %ZZ (@i, y5) Zk YiYj) 4)

l#] i=1j=1 7#]

We also map the pixel space to latent feature space. For model simplicity and training efficiency
purposes, we recycle the experts used in MTT to generate feature mappings, and denote them as (+).
Inspired by MMD GAN:Ss (see L1 et al.|(2017); |[Binkowski et al.|(2018))), we use a mixture of Radial
Basis Function (RBF) kernels k(z, z’) = Zle ko, (x,x"), where k,_ represents a Gaussian kernel
with bandwidth ,. We choose a mixture of K = 5 kernels with bandwidths {1,2,4,8,16}.

To encourage distribution matching with the original dataset, we penalize large MMD:

C
Luo = S NMD (9(D0).0(S.)), 5)

c=1

2
where the MMD computation is defined in Eqn. 4} D, and S, simply refers to the subset of the
training data or distilled data with class label c.

B DECODER ARCHITECTURE

Our decoder is adopted from the decoder part of the VAE designed by [Kingma & Welling| (2019)),
with small modifications. First, we project the latent z in to a k dimension feature vector, which
is then fed into a sequence of 2D ConvTranspose blocks. Each of the decoder block contains a
ConvTranspose layer followed by a Bat chNorm layer and a LeakyReLU activation. For larger
decoder, we increase the latent dimension, and consequently the size of ConvTranspose blocks.
After the those blocks, there is a 2D convolutional layer followed by a t anh activation. The exact
dimension of the convolution layer differs by image output size. The original VAE was designed only
for images with size 32 x 32, and used only 3 blocks. We also increase the number of deconv blocks
for larger datasets.

Table 8: Architecture and hyperparameter details for the decoders we used Toral parameters are
counted in millions. #Blocks indicates the number of convolutional blocks.

Size # Blocks Latent Dimension Total Params Output Image Size

S 5 64 0.75M 32x32x3
S [§ 64 0.75M 64 x 64 x 3
M 5 1028 5. M 64 x 64 x 3
L 5 2048 6.3M 64 x 64 x 3

C DETAILS ON EXPERIMENT SETUP

In this section, we provide a detailed description on experiment setups for all experiment resuls
presented in the paper.

Dataset CIFAR-10 contains 50,000 training images from 10 classes, each with dimensions of
32 x 32 x 3. CIFAR-100 contains same number of images but more classes: 100 classes with 500
images each in the training data with dimension 32 x 32 x 3. TinyImageNet consists of 100,000
images distributed across 200 classes. The images within TinyImageNet are characterized by larger
dimensions, measuring 64 x 64 x 3. ImageNet-1K contains 1000 classes with around 1300 classes

15

each, totalling 1.2 million images. We resized the images to 64 x 64 x 3, aligning with prior works
(Cui et al., 20225 |Sachdeva & McAuley, [2023; Zhou et al., 2022b). Finally, we also include two
known ImageNet subsets: ImageNette and ImageWoof. In line with established practices from prior
work, we resize the images within both subsets of ImageNet to dimensions of 128 x 128 x 3. Each
subset comprises 10 classes in their respective training sets, at total size of around 10k images.

Dataset preprocessing For all three datasets, only a simple channel-based mean-variance scaling
is performed as the preprocessing step. For CIFAR-10 we perform ZCA whitening as done in all data
distillation work (Nguyen et al.,|2020) using Kornia implementation with default parameters ((Riba
et al.,[2020). To generate experts used in MTT, we also perform random simple augmentations to the
images, including rotations, flip, crop, and color changes. The preprocessing step is chosen to mirror
the baselines we make direct comparisons to.

Student network architecture The student network is a neural network consists of multiple
ConvNet blocks, and we call them ConvNet. The ConvNet configuration consists of multiple
convolutional blocks, each housing a convolutional layer, a normalization layer, Re LU activation, and
an average pooling layer. For larger datasets, we increase the number of convolutional blocks used in
the ConvNet. For CIFAR10 we use ConvNet with 3 convolutional blocks, and for TinyImageNet and
ImageNet-1K we use 4 convolution blocks. For ImageNet subsets, we use 5 convolutional blocks. In
our MMD objective, we use the features generated by those convolutional blocks to compute MMD.
Finally, a linear layer with Softmax activation is used to map the features generated by convolutional
blocks into class prediction.

Training The distillation time is not the primary concern for data distillation tasks since it only
needs to be done once for all downstream tasks. However, methods that are overly expensive to train
might become infeasible when distilling large datasets. Because we compute and back propagate
on both MTT and MMD losses, our compute time is comparable to both method combined. For
CIFAR-10, CIFAR-100, ImageNette and ImageWoof, our method converges in fewer than 10,000
steps, usually taking less than 10 GPU hours on NVIDIA A100-SXM4-40GB. For TinyImageNet,
our method converges around 10,000 steps, totalling around 20 GPU hours. Finally, for federated
distilation on ImageNet, since we decompose into distillation sizes comparable to TinyImageNet, the
training time is similar.

For evaluation, we use SGD optimizer with momentum 0.9 and weight decay 5 x 10~%. We only
allow hyper-parameter tuning on the learning rate, number of epochs and we train student networks
until convergence.

Decoder Hyperparameters In table[9] we list the hyper-parameters we used for each setting and
the exact storage costs to store the latent priors and decoders.

Table 9: Details on decoder hyper-parameters for all experiments Decoder: refer to Table (8] #
Decoders: more than one decoders for federated distillation when we aggregate from subtasks. LPC:
Latent Priors per Class refers to the number of Gaussian distributions we used to represent each class.

Dataset Decoder # Decoders LPC Total Storage (MB)

CIFAR10 S 1 10 34
CIFAR10 S 1 50 7.8
CIFAR100 S 1 2 42
CIFAR100 M 1 5 9.7
ImageNette S 1 5 39
ImageWoof S 1 5 3.9
TinyImageNet S 1 2 34
TinyImageNet M 1 2 10
TinyImageNet L 1 10 56
ImageNet-1K S 5 1 17
ImageNet-1K M 2 2 76
ImageNet-1K L 5 10 440

D ADDITIONAL RESULTS

Here we show additional results on CIFAR-100, CIFAR-10, ImageNette and ImageWoof, and
compare our methods to methods that distill into image space: MTT (Cazenavette et al.| [2022)
and FTD (Du et al.,|2022) as well as methods that distill into latent space HaBa (Liu et al.,|2022),

16

LinBa (Deng & Russakovskyl 2022) and GLaD (Cazenavette et al., [2023)). We report CIFAR-100
results in Table[T0} CIFAR-10 results in Table[T1] and ImageNette and ImageWoof results in Table

[I2] Additionally, we also report cross-architecture results for CIFAR-10 (see Table [T3)) and for
ImageNette and ImageWoof (See Table[T4] [15).

Table 10: CIFAR-100 distilled and evaluated on ConvNet

Storage Cost (MB) MTT FTD LinBa D3(Ours)

5 (~ 11PC) 243 03) 25202 34004 37307
10 (~ 101p0) 40.1 04 43.4 03 46.8 (0.4)
50 (~ s01pC) 47.7 03 50.7 0.2

Table 11: CIFAR-10 distilled and evaluated on ConvNet

Storage Cost (MB) MTT HaBa LinBa Ours

0.5 (~11p0) 46.3 08) 48.3 (08) 606.4 (0.4)
5 (~101PC) 65307 69904 72204 T1.8 02
25 (~501PC) 71.6 02 74002 73.605 74403

Table 12: ImageNette and ImageWoof distilled and evaluated on ConvNet N/A: indicates the
distillation size is smaller than the minimum size the method can distill.

Dataset Storage (MB) Method
MTT HaBa FTD Ours
ImageNette 5(~051PC) N/A N/A 71.04 0.71)

10¢~11p0) 477 09 51.92 165 52.201.0
100(~101pc) 63.0 13 64.72 1600 67.7 0.7
ImageWoof 5.51pC) N/A N/A 41.60 (1.15)
10¢~11pc) 28.6 08) 32.40 0670 35.8 (1.8)
100(~101pc) 35.8 18 38.60 126 38.8(1.9)

Table 13: CIFAR-10 cross-architecture generalization results we scaled down our distilled dataset

by reducing number of latent priors per class such that our performance on ConvNet aligns with
baseline (MTT)

Evaluation Model
Method Storage Cost (MB) ConvNet ResNetl§ VGGI1 AlexNet

MTT 5 (~10IPC) 65.3 (0.7 46.4 (0.6) 50.3 (0.8) 34.2 2.6)
D3(ours) 3 (~10IPC) 66.64 (0.26) 61.57 (0.48) 59.70 (0.48) 54.56 (0.74)

Table 14: ImageNette and ImageWoof cross-architecture generalization results Unseen architec-
ture results from averaging ResNet18, VGG11, AlexNet, Vision Transformer.

ImageNette ImageWoof
Method Storage Cost (MB) ConvNet Unseen ConvNet Unseen
MTT 10(~11pC) 479 09 24.1 18 28608 16.012
GLaD MTT 10(~11pC) 38716 30405 234an 17.1a.p
GLaD DC 10(~11PC) 354 a2 31006 223an 17.8a.n
GLaD DM 10 (~11p0) 323 a7 21.9an 21.1as 15209
D3(ours) 5 (~0.51PC) 71.04 0.7) 48.95 1.3) 41.60 (1.2) 28.82 (0.93)

Table 15: ImageNet Subset cross-architecture performances breakdown Per-architecture break-
down for the unseen average listed in Table

Evaluation Model
Dataset Storage Cost (MB) ConvNet ResNet VGGI11 AlexNet ViT

ImageNette 5(~051PC) 71.04 (0.71) 47.28 0.94) 64.80 (1.2) 49.20 (1.45) 34.5 (1.5)
ImageWoof 5(~0.51PC) 41.60 (1.15) 28.04 (0.51) 35.48 (1.07) 29.28 (1.4) 22.48 (0.73)

17

E SAMPLES FROM DISTILLED DISTRIBUTION

Figure 8: Samples from Distilled Distribution on TinyImageNet under 100MB storage cost. 1 latent
priors per class visualized

18

7%

@ .4 5, Aigin (3‘*"'“
Y~ B L
" ek 1)
- Ot v

"ﬂ%! “

Figure 9: Samples from Distilled Distribution on ImageNet-1K under 100MB storage cost. 2 latent
priors per class visualized

Figure 10: Samples from Distilled Distribution on ImageNet-1K under 100MB storage cost (contin-
ued). 2 latent priors per class visualized

20

	Introduction
	Related Work
	Methodology
	Three-Dimensional Evaluation
	Distilling into distributions
	Federated Distillation

	Experiments
	Quantitative Results
	Latent Space Analysis
	Federated Distillation

	Ablation Study
	Distributional Outcome
	Loss Term Contribution
	Distilled Labels

	Conclusion
	Methodology (Extended)
	Further details on Figure 1
	Further details on distributional representation
	Training Objective

	Decoder Architecture
	Details on experiment setup
	Additional Results
	Samples from distilled distribution

