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Abstract

Deep learning has been widely used for solving image reconstruction tasks but its deployability
has been held back due to the shortage of high-quality paired training data. Unsupervised
learning methods, e.g., deep image prior (DIP), naturally fill this gap, but bring a host of
new issues: the susceptibility to overfitting due to a lack of robust early stopping strategies
and unstable convergence. We present a novel approach to tackle these issues by restricting
DIP optimisation to a sparse linear subspace of its parameters, employing a synergy of
dimensionality reduction techniques and second order optimisation methods. The low-
dimensionality of the subspace reduces DIP’s tendency to fit noise and allows the use
of stable second order optimisation methods, e.g., natural gradient descent or L-BFGS.
Experiments across both image restoration and tomographic tasks of different geometry
and ill-posedness show that second order optimisation within a low-dimensional subspace is
favourable in terms of optimisation stability to reconstruction fidelity trade-off.

1 Introduction

Deep learning (DL) approaches have shown impressive results in a wide variety of linear inverse problems in
imaging, e.g., denoising (Tian et al., 2020), super-resolution (Ledig et al., 2017; Ulyanov et al., 2020), magnetic
resonance imaging (Zeng et al., 2021) and tomographic reconstruction (Wang et al., 2020). Mathematically, a
linear inverse problem of recovering an unknown image x ∈ Rdx from measurements y ∈ Rdy is formulated as

y = Ax + ϵ, (1)

for an (ill-conditioned) matrix A ∈ Rdy×dx and exogenous noise ϵ.
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However, conventional supervised DL approaches are not ideally suited for practical inverse problems. Large
quantities of clean paired data, typically needed for training, are not available in many problem domains, e.g.,
tomographic reconstruction. Moreover, the ill-posedness (due to the forward operator A and noise ϵ) and
high-dimensionality of the images x pose significant challenges, and can be computationally very demanding.
Whereas standard imaging tasks, e.g., denoising and deblurring, use high dimensional observations (dx ≈ dy),
tomographic imaging often requires reconstructing an image from observations that are of a much lower
dimensionality compared to the sought-after images. For example, reconstructing a CT of a walnut may
require reconstructing from observations that are only 3% of the size of the original image.

Unsupervised DL approaches do not require paired training data, and have received significant attention
in the imaging community. Among these approaches, DIP (Ulyanov et al., 2018) has garnered the most
traction. DIP parametrises the reconstructed image as the output of a convolutional neural network (CNN)
with a fixed input. The reconstruction process learns low-frequency components before high-frequency ones
(Chakrabarty & Maji, 2019; Shi et al., 2022), which can act as a form of regularisation.

Alas, the practicality of DIP is hindered by two key issues. Firstly, each DIP reconstruction requires training
the entire network anew. This can take from several minutes up to a couple of hours for high-resolution
images (Barbano et al., 2022b). Secondly, DIP requires careful early stopping (Wang et al., 2021) to avoid
overfitting, which is often based on case-by-case heuristics. However, validation-based stopping criteria are
often not viable in the unsupervised setting as they violate i.i.d. assumptions, see Wang et al. (2021).

This paper aims to address both of the existing issues inherent to DIP, and to illustrate the approach on
image restoration and reconstruction. Building upon recent body of evidence which shows that neural network
(NN) training often takes place in low-dimensional subspaces (Li et al., 2018; Frankle & Carbin, 2019; Li
et al., 2023), we restrict DIP’s optimisation to a sparse linear subspace of its parameters. This has a two-fold
beneficial effect. First, subspace optimisation trades off some flexibility in capturing fine image structure
details for robustness to overfitting. This is extraordinarily well suited in imaging problems belonging to
inherently lower dimensional structures, but it is also shown to be competitive in restoring natural images.
Moreover, it allows using stopping criteria based on the training loss, without sacrificing performance. Second,
the low dimensionality induced by the subspace allows using second order optimisation methods (Amari,
2013; Martens & Grosse, 2015a). This greatly stabilises the reconstruction process, facilitating the use of a
simple loss-based stopping criterion, and reduces the number of iterations to convergence.

Our contributions can be summarised as:

• We extract a principal subspace from DIP’s parameter trajectory during a synthetic pre-training
stage. To reduce the memory footprint of working with a non-axis-aligned subspace, we sparsify the
extracted basis vectors using top-k leverage scoring.

• We use second order methods: natural gradient descent (NGD) and limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS), to optimise DIP’s parameters in a low-dimensional
subspace.

• We provide thorough experimental results across several linear inverse problems, comprising image
restoration and tomographic tasks of different geometry and degree of ill-posedness, showing that
subspace methods are favourable in terms of optimisation stability to reconstruction fidelity trade-off.

2 Related Work

The present work lies at the intersection of overfitting in unsupervised methods, subspace learning and second
order optimisation. Below we discuss recent advances in the related fields.

Avoiding overfitting in DIP: Since the introduction of DIP (Ulyanov et al., 2018; 2020), stopping
optimisation before overfitting to noise has been a necessity. The analysis in Chakrabarty & Maji (2019)
and Shi et al. (2022) elucidates that U-Net is biased towards learning low-frequency components before
high-frequency ones. The authors suggest a sharpness-based stopping criterion, which however requires a
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modified architecture. Jo et al. (2021) propose a criterion based on the Stein’s unbiased risk estimate (Eldar,
2008) for denoising, which however performs poorly for ill-posed settings (Metzler et al., 2018). Wang et al.
(2021) propose a running image-variance estimate as a proxy for the reconstruction error. Our experiments
find this method somewhat unreliable for sparse CT reconstruction. Ding et al. (2022) and Yaman et al. (2021)
propose to split the observation vector into training and validation sub-vectors, and use the loss functional
on the latter as a stopping criteria. Unfortunately, this violates the i.i.d. data assumption that underpins
validation-based early stopping (Shalev-Shwartz & Ben-David, 2014, Theorem 11.2). Independently, Liu et al.
(2019) and Baguer et al. (2020) add a TV regulariser to the DIP objective (2). This only partially alleviates
the need for early stopping and has seen widespread adoption. To the best of our knowledge, the present
work is the first to successfully avoid overfitting without significant performance degradation.

Linear subspace estimation: Literature on low-rank matrix approximation is rich, with randomised
SVD approaches being the most common (Halko et al., 2011; Martinsson & Tropp, 2020). However, in high-
dimensions, even working with a small set of dense basis vectors can itself be prohibitively expensive. Matrix
sketching methods (Drineas et al., 2012; Liberty, 2013) alleviate this through axis-aligned subspaces. To the
best of our knowledge, our work is the first to combine these two method classes, producing non-axis-aligned
but sparse approximations.

Optimising neural networks in subspaces: Closely related to the present work is that of Li et al. (2018)
and Wortsman et al. (2021), who find that networks can be trained in low-dimensional subspaces of the
parameters without loss of performance, and that more complex tasks need larger subspaces. Similarly to
our methodology, Li et al. (2023) identify subspaces from training trajectories and observe the resulting
robustness to label noise. Results reported in Frankle & Carbin (2019) show that pruning a very large number
of parameters in fully-connected and convolutional feed-forward networks yields trainable sub-networks that
can achieve performance comparable to that of the original network. This principle has yielded speedups in
network evaluation (Wen et al., 2016; Daxberger et al., 2021). Shwartz-Ziv et al. (2022) use a low-rank estimate
of the curvature around an optimum of a pre-training task to regularise subsequent supervised learning.

Second order optimisation for neural networks: Despite their adoption in traditional optimisation
(Liu & Nocedal, 1989), second order methods are rarely used with neural networks due to the high cost of
dealing with curvature matrices for high-dimensional functions. Martens & Sutskever (2012) use truncated
conjugate-gradient to approximately solve against a network’s Hessian. However, a limitation of the Hessian
is that it is not guaranteed to be positive semi-definite (PSD). This is one motivation for NGD (Foresee &
Hagan, 1997; Amari, 2013; Martens, 2020), that uses the FIM (guaranteed PSD). Commonly, the KFAC
approximation (Martens & Grosse, 2015a) is used to reduce the costs of FIM storage and inversion. Also,
common deep-learning optimisers, e.g., Adam (Kingma & Ba, 2015) or RMSprop (Hinton et al., 2014) may
be interpreted as computing online diagonal approximations to the Hessian.

3 Deep Image Prior

DIP expresses the reconstructed image x = f(x0, θ) in terms of the parameters θ ∈ Rdθ of a CNN f :
Rdx × Rdθ → Rdx , and fixed input x0 ∈ Rdx . The parameters θ are learnt by minimising the loss

L(θ) = ∥Af(x0, θ)− y∥2
2 + λTV(f(x0, θ)), (2)

composed of a data fidelity and total variation (TV), weighed by λ > 0. TV is the most popular regulariser
for image reconstruction (Rudin et al., 1992; Chambolle et al., 2010). Its anisotropic version is given by

TV(x)=
∑
i,j

|Xi,j−Xi+1,j |+
∑
i,j

|Xi,j−Xi,j+1|, (3)

where X ∈ Rh×w is a vector x ∈ Rdx reshaped into an h× w image, and dx=h · w. In this work, f is a fully
convolutional U-Net, see C.3 for more details. This implicitly regularises the reconstruction by preventing
overfitting to noise, as long as the optimisation is stopped early enough.
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DIP optimisation costs can be reduced by pre-training on synthetic data. E-DIP (Barbano et al., 2022b)
first generates samples from a training data distribution P of random ellipses, and then applies the forward
model A and adds white noise, following (1). The network input is set as the filtered back-projection (FBP)
x0 =x† :=A†y, where A† denotes the (approximate) pseudo-inverse of A. The pre-training loss is given by

Lpre(θ) = Ex,y∼P ∥f(x†, θ)− x∥2
2, (4)

where P denotes the (empirical) joint distribution between the ground truth x and the corresponding noisy
data. The pre-trained network can then be fine-tuned on any new observation y by optimising the objective
(2) with FBP as the input. E-DIP decreases the DIP’s training time, but can increase susceptibility to
overfitting, making early stopping even more critical, cf. discussion in Section 5.

4 Methodology

We now describe our procedure for optimising DIP parameters in a subspace. We first describe how the E-DIP
pre-training trajectory is used to extract a sparse basis for a low-dimensional subspace of the parameters.
The objective is then reparametrised in terms of sparse basis coefficients. Finally, we describe how L-BFGS
and NGD are used to update the sparsified subspace coefficients.

Step 1 — Identifying the sparse subspace: First, we find a subspace of parameters that is low-
dimensional and easy to work with, but contains a rich enough set of parameters to fit to the observation y. We
leverage E-DIP pre-training trajectory to acquire basis vectors by stacking dpre parameter vectors, sampled at
uniformly spaced checkpoints on the pre-training trajectory, into a matrix Θpre ∈ Rdθ×dpre . We then compute
top-dsub SVD of Θpre ≈ USV ⊤, and keep the left singular vectors U ∈ Rdθ×dsub , where dsub ≤ dpre is the
dimensionality of the chosen subspace. We then sparsify the orthonormal basis U by computing leverage
scores (Drineas et al., 2012), associated with each DIP parameter as

ℓi =
dsub∑
k=1

[U ]2ik, i = 1, . . . , dθ.

We keep only the basis vector entries corresponding to dlev < dθ largest leverage scores. This can be
achieved by applying a diagonal mask M ∈ {0, 1}dθ×dθ satisfying [M ]ii = 1(i ∈ arg top-dlev ℓ), where
ℓ = [ℓ1, ℓ2, . . . , ℓdθ

]. The sparse basis MU contains at most dlev · dsub non-zero entries.

Pre-training and sparse subspace selection are only performed once, and can be amortised across different
reconstructions. We choose dpre ≈ 103, resulting in a large memory footprint of the matrix Θpre, though this
is stored in cpu memory. Alternatively, incremental SVD algorithms (Brand, 2002) can be used to further
reduce the memory requirements (see Appendix A). Training DIP in the sparse subspace requires storing
only the sparse basis vectors MU in accelerator (gpu / tpu) memory. Thus, sparsification allows training in
relatively large subspaces dsub > 103 of large networks dθ > 107.

Step 2 — Network reparametrisation: We write the objective L(θ) in terms of sparse basis coefficients
c ∈ Rdsub as

Lγ(c) := L(γ(c)), with γ(c) := θpre + MUc. (5)

This restricts the DIP parameters θpre (from pre-training) to change only along the sparse subspace MU .
The coefficient vector c is initialised as a sample from a uniform distribution on the unit sphere.

Step 3 — Second order optimisation: The subspace reparametrised objective Lγ in (5) differs from
traditional DL loss functions in that the method-dependent local curvature matrix of Lγ can be computed
and stored accurately and efficiently, without resorting to restrictive approximation of its structure, such as
the often used diagonal or KFAC approximations (Martens & Grosse, 2015b). These facts open the door to
second order optimisation of Lγ , which may converge faster than first order methods. However, repeatedly
evaluating second order derivatives of neural networks has a prohibitive cost, further compounded by the rapid
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change of the local curvature of the non-quadratic loss when traversing the parameter space. We mitigate
this by performing online low-rank updates of a curvature estimate while only accessing loss Jacobians. In
particular, we use L-BFGS (Liu & Nocedal, 1989) and stochastic NGD (Amari, 1998; Martens, 2020) in the
experimental evaluation. The former estimates second directional derivatives by solving the secant equation.
The latter keeps an exponentially moving average of stochastic estimates of the Fisher information matrix
(FIM).

NGD for DIP in a subspace: The exact FIM is given as

Ev∼N (Af(x†,γ(c)), Idy )[∇cLγ(c)⊤∇cLγ(c)], (6)

where ∇cLγ(c) = (Af(x†, γ(c))−v)⊤AJf MU ∈ R1×dsub is the Jacobian of the subspace loss Lγ at the current
coefficients (with Idy

∈ Rdy×dy being the identity matrix), and Jf := ∇θf(x†, θ)|θ=γ(c) ∈ Rdx×dθ is the neural
network Jacobian at θ = γ(c). Note that TV’s contribution is omitted since the FIM is defined only for terms
that depend on the observations and not for the regulariser (Ly et al., 2017). At step t we estimate the FIM
by the Monte-Carlo method as

F̂t = 1
n

n∑
i=1

(z⊤
i AJf MU)⊤z⊤

i AJf MU, with zi ∼ N (0, Idy
). (7)

The moving average of the FIM is updated as

Ft+1 = βFt + (1− β)F̂t with β ∈ (0, 1). (8)

Our implementation of NGD follows the approach of Martens & Grosse (2015a), with adaptive damping, and
step size and momentum parameters chosen by locally minimising a quadratic model. See Appendix B for
additional discussion.

Note that he methodology presented in this section can be extended beyond the DIP framework, in the
spirit of test-time fine-tuning strategies of learned reconstruction methods (Darestani et al., 2022). Here we
offer an alternative for adapting reconstruction algorithms at test-time, by introducing a robust optimisation
framework.

5 Experiments

Our experiments cover a wide range of image restoration and tomographic reconstruction tasks. In Section
5.1, we conduct an ablation study on CartoonSet (Royer et al., 2017), examining the impact of subspace
dimension dsub, subspace sparsity level dlev, degree of problem ill-posedness, and choice of the optimiser on
reconstruction speed and fidelity. The acquired insights are then applied to challenging tomography tasks and
image restoration. We compare the reconstruction fidelity, propensity to overfitting, and convergence stability
relative to vanilla DIP and E-DIP on a real-measured high-resolution CT scan of a walnut, in Section 5.2,
and on medically realistic high-resolution abdomen scans from the Mayo Clinic, in Section 5.3.

We simulate observations using (1) with dynamically scaled Gaussian noise given by

ϵ ∼ N (0, σ2Idy
) with σ = p/dy

dy∑
i=1
|yi|, (9)

with the noise scaling parameter set to p = 0.05, unless noted otherwise. We conclude with denoising and
deblurring on a standard RGB natural image dataset (Set5) in Section 5.4. For studies in Sections 5.2, 5.3 and
5.4, we use a standard fully convolutional U-Net architecture with either ∼ 3M (for CT reconstruction tasks)
or ∼ 1.9M (for natural images) parameters, see architectures in Appendix C.3. For the ablative analysis in
Section 5.1, we use a shallower architecture (∼ .5M) with only 64 channels and four scales, keeping the skip
connections in lower layers. Following the literature, we train the vanilla DIP (Ulyanov et al., 2018) (labelled
DIP) and E-DIP (Barbano et al., 2022b) with ADAM. We train subspace coefficients with Adam (Sub-DIP
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Ground truth

PSNR: 34.35 dB

DIP max

PSNR: 33.99 dB

E-DIP max

PSNR: 32.55 dB

E-DIP last

PSNR: 33.76 dB

Sub-DIP NGD last

Figure 1: Reconstruction comparison for an example CartoonSet image from 45 angles. “max” indicates
oracle (highest possible) PSNR, which we note is only available if a ground truth image exists. “last” denotes
the final reconstruction.

Figure 2: The influence of subspace dimension dsub (left), sparsity level dlev/dθ (middle) on PSNR, and the
PSNR vs time Pareto-frontier (right) for CartoonSet. The dashed line defines a Pareto-frontier. “max” refers
to the oracle stopping PSNR, while “conv.” refers to the PSNR at the stopping point found by applying
Algorithm 1, cf. Appendix A, to (2), with δ=0.995 and patience of p=100. Left and middle plots use NGD.
Results show mean and standard deviation over 25 reconstructed images from 95 angles. Runs are performed
on A100 GPU. Note that the PSNR line for DIP conv., in the leftmost panel, is almost completely obscured
by E-DIP conv. PSNR, since they have an almost identical PSNR value.

Adam), which serves as a baseline, L-BFGS (Sub-DIP L-BFGS) and NGD (Sub-DIP NGD). Image quality is
assessed through peak signal-to-noise ratio (PSNR).

For tomographic tasks we use the same pre-training runs for E-DIP and all subspace methods: minimising
(4) over 32k images of ellipses with random shape, location and intensity. Pre-training inputs are constructed
from an FBP obtained with the same tomographic projection geometry as the dataset under consideration.
Analogously, for image restoration tasks, we pre-train on ImageNet (Deng et al., 2009).

The method is built on top of the E-DIP library (github.com/educating-dip). The full implementation
and data are available at github.com/subspace-dip.

5.1 Ablative analysis on CartoonSet (Royer et al., 2017)

We investigate Sub-DIP’s sensitivity to subspace dimension dsub, sparsity level dlev, and ill-posedness on 25
images of size (128 px)2 from CartoonSet (Royer et al., 2017, google.github.io/cartoonset). Example
reconstructions are shown in Fig. 1. We simulate a parallel-beam geometry with 183 detectors and 45,
95 or 285 angles, corresponding to, respectively, a very sparse-view (dy=8235), a moderately sparse-view
(dy=17385), and a fully sampled setting (dy=52155). We construct subspaces by sampling dpre=2k parameters
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at uniformly spaced checkpoints during 100 pre-training epochs on ellipses as in Barbano et al. (2022b). We
measure the degree of overfitting by comparing the highest PSNR obtained throughout optimisation (max)
with that given by Algorithm 1, applied to the training loss (2) with δ=0.995 and p=100 steps (conv.).
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35.5

36.0

36.5

37.0

37.5

285 angles

Figure 3: PSNR mean and standard deviation over 50
CartoonSet images from 45, 95, and 285 angles.

In Appendix A we report results of additional ab-
lation experiments on the extracted subspaces, ex-
amining their adaptability to changes in the forward
operator, and comparing them to random subspace
bases.

Subspace dimension: Fig. 2 (left) explores the
trade-off between subspace dimension dsub and re-
construction quality. We use 95 angles, subspace
methods with no sparsity (dlev=dθ) and the NGD
optimiser. Both standard DIP and E-DIP overfit,
showing a ≈ 3 dB gap between max and conv. PSNR
values, while subspace methods exhibit only a ≈ 0.5
dB gap. Both max and conv. PSNR present a mono-
tonically increasing trend with subspace dimension,
while the gap at dsub > 1k stays roughly constant at
∼0.25 dB. Thus, these subspace dimensions are too small for significant overfitting to occur. In spite of this,
dsub=100 is enough to obtain better conv. PSNR than DIP and E-DIP.

Subspace sparsity level: Fig. 2 (middle) shows that for dlev/dθ > 0.01, the reconstruction fidelity is largely
insensitive to the sparsity level. This is true for both dsub=1200 and dsub=1800. This effect is also somewhat
independent of the subspace dimensionality dsub. Hence, sparse subspaces should be constructed by choosing a
large dsub and then sparsifying its basis vectors to ensure computational tractability.

Figure 4: Average PSNR trajectories for 45, 95, and
285 angles over 50 reconstructions.

Problem ill-posedness: We report the perfor-
mance with varying numbers of view angles in Fig.
3, with non-sparse subspaces of dimension dsub=1800.
The smaller is the number of view angles, the more
ill-posed the reconstruction problem becomes. Sub-
space methods present a smaller gap between max
and conv. PSNR (∼ 0.25 dB) than DIP and E-DIP
(∼ 2.5 dB). Subspace methods also present better
fidelity at convergence for all the studied number of
view angles. Notably, the improvement is larger for
more ill-posed settings (∼ 2.5 dB at 45 and 95 vs
≈ 1 dB at 285 angles), despite the worsening per-
formances for all methods in sparser settings. This
is expected as there is a reduced risk of overfitting
in data-rich regimes and more flexible models can
do better. E-DIP’s max reconstruction fidelity is
consistently above that of other methods by at least
0.5 dB. This may be attributed to full-parameter
flexibility with benign inductive biases from pre-training. However, obtaining max PSNR performance
requires oracle stopping and is not achievable in practice. In Fig. 4, we show PSNR trajectories of the
studied methods (DIP, E-DIP, Sub-DIP Adam, Sub-DIP LBFGS, and Sub-DIP NGD) for 45, 95, and 285
angles, averaged over 50 reconstructed images. This figure provides additional evidence supporting previous
observations. While DIP and E-DIP tend to overfit to noise once they reach their maximum PSNR values,
subspace methods consistently maintain stable reconstruction performance with no noticeable performance
degradation, due to the inherent regularising effect obtained by restricting to a subspace.
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First vs second order optimisation: We compare optimisers’ conv. PSNR vs their time to convergence.
Fig. 2 (right) shows that Sub-DIP L-BFGS and NGD converge in less than 50 seconds. These methods are
optimal along the known Pareto-frontier, reaching ∼ 1.5 dB higher reconstruction fidelity than DIP and
E-DIP. LBFGS converges in only ∼20 seconds. Sub-DIP Adam retains protection against overfitting but
converges at a rate similar to non-subspace first order methods (in ∼180 seconds). These trends hold across
studied degrees of ill-posedness; see Appendix A.1.

µ
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nu

t

Ground truth

PSNR: 29.93 dB

DIP max

PSNR: 26.81 dB

DIP last

PSNR: 29.49 dB

E-DIP max

PSNR: 29.12 dB

Sub-DIP NGD last

Figure 5: Reconstructions of the Walnut using 60 angles. Sub-DIP reconstructions do not capture any noise,
but present slightly increased ringing around very thin structures. “max” indicates oracle (highest possible)
PSNR. “last” denotes the final reconstruction.

Algorithm 1 Early stop criterion
Inputs: metric g(·), patience p, de-

crease proportion δ
1 gmin ←∞, i← 0, imin ←∞

while i ≤ imin + p do
2 if g(i) < δ · gmin then
3 gmin ← g(i) and imin ← i
4 end
5 i← i + 1
6 end

Output: imin
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Figure 6: The evolution of PSNR and stopping metrics (variance-
based for DIP and E-DIP, and loss-based for Sub-DIP NGD and
L-BFGS) vs optimisation time on Walnut with one seed.

5.2 µCT Walnut (Der Sarkissian et al., 2019)

In this section we study the methods on a real-measured high-resolution µCT problem. We reconstruct a
(501 px)2 slice from a very sparse, real-measured cone-beam scan of a walnut, using 60 angles and 128 detector
pixels (dy = 7680). We compare reconstructions against ground-truth (Der Sarkissian et al., 2019), which
uses classical reconstruction from full data acquired at 3 source positions with 1200 angles and 768 detectors.
This task involves fitting both broad-stroke and fine-grained image details (see Fig. 5), making it a good
proxy for µCT of industrial context. We pre-train the 3M parameter U-Net for 20 epochs and save dpre=5k
parameter checkpoints. Following Section 5.1, we construct a dsub=4k dimensional subspace and sparsify it
down to dlev/dθ=0.5 of the parameters.

Fig. 7 (left) shows the optimisation curves for all optimisers, averaged across 3 seeds. Qualitatively, the results
are similar to the cartoon data. Second order subspace methods converge to their highest reconstruction
fidelity within the first 500 seconds and do not overfit. Vanilla DIP and E-DIP also converge quickly but
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suffer from overfitting leading to ∼3 dB and ∼ 1.8 dB of performance degradation, respectively. Sub-DIP
Adam takes over 3000 seconds to converge and does not overfit.

Stopping criterion challenges: Capturing the oracle performance of DIP and E-DIP would require
a robust stopping criterion. Note that we cannot base a stopping criterion on (2). We instead turn to the
method from Wang et al. (2021), which minimises a rolling estimate of the reconstruction variance across
optimisation steps, a proxy for the squared error. Following Wang et al. (2021), we compute variances with
a 100 step window and apply Algorithm 1 with a patience of p=1000 steps and δ=1. Figure 6 shows this
metric to be very noisy when applied to DIP and E-DIP. This breaks the smoothness assumption implicit
in the stopping criterion (Algorithm 1), leading to stopping more than 1 dB before/after reaching the max
PSNR. This phenomenon is attributed to the severe ill-posedness of the tasks causing variance across a large
subspace of reconstructions that fit our observations well. For tomographic reconstruction, the variance curve
becomes more non-convex, and its minimum does not correspond to the optimal PSNR. Since subspace
methods do not overfit and the loss is smooth, we can use it as our stopping metric (δ=0.995, p = 100).
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Figure 7: Optimisation curves for the µCT Walnut data (left), and Mayo using 100 angles (middle) and Mayo
using 300 angles (right) averaged over 10 images.

5.3 Mayo Clinic dataset (Moen et al., 2021)

To investigate a medical setting, we use 10 clinical CT images of the human abdomen released by Mayo Clinic
(Moen et al., 2021) and study the behaviour of subspace optimisation. We reconstruct from a simulated
fan-beam projection, with 300 angles and white noise with the noise scaling parameter p = 0.025, cf. (9). As a
more ill-posed reference setting, we use 100 angles (comparable sparsity to the Walnut setting) and Gaussian
noise with p=0.05. For both tasks, we use the 3M parameter U-Net, as in Section 5.2, pre-trained on 32k
ellipse samples. For the sparse setting (100 angles), we use a dsub = 4k dimensional subspace constructed
from dpre=5k checkpoints, but with sparsity ratio dlev/dθ=0.25. For the more data-rich setting (300 angles),
we use dsub = 8k, sampled from dpre=10k checkpoints, and similarly, we sparsify it down to dlev/dθ=0.25.

In the 300 angle setting, Sub-DIP NGD reaches 37 dB within 200 seconds. PSNR the continutes to increas,
albeit slowly, without performance saturation, cf. Fig. 7 (right). In contrast, for the sparser Walnut and
Mayo data, Sub-DIP NGD maintains a steep PSNR increase until reaching max PSNR. Interestingly, L-BFGS
does not perform well in the 300 angle setting, obtaining < 36 dB PSNR. This might be due to L-BFGS’s
tendency to stop the iterations too early in high dimensions.

Note that the observed time efficiency of the Sub-DIP reported in Fig. 2, is not preserved in high-dimensional
CT tasks; see Fig. 7. This behaviour is expected as the efficiency of second order optimisation methods
is affected both by the high-dimensionality of the measurements—resulting in costlier forward operator
evaluations—and more importantly, by the depth of the U-Net—resulting in costlier vector-Jacobian and
Jacobian-vector products. As discussed, second order methods converge in fewer iterations (see e.g., Fig. 19
in Appendix A) but require a higher per-iteration cost.
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Figure 8: Example reconstructions on the Mayo dataset in 100 (top) and 300 (bottom) angle settings.

However, it is worth noting that when working with a limited runtime budget, Sub-DIP (L-BFGS and NGD)
methods may take more time to reach their maximum PSNR, but they consistently deliver the highest image
quality within a 100-second runtime, as illustrated in Fig. 7. At the same time, Sub-DIP methods do not
suffer performance degradation due to overfitting to noise. A comparison in terms of the number of iterations,
instead of optimisation time, can be found in the rightmost panel in Figs. 19, 20 and 21 in the Appendix.

Fig. 8 shows example reconstructions using 100 and 300 angles. If stopped within a narrow max PSNR
window, DIP and E-DIP can deliver reconstructions that better capture high-frequency details than Sub-DIP
methods as expected. However, while DIP and E-DIP reconstructions become noisy once they start to overfit,
Sub-DIP methods do not exhibit any noise. We deem the increased robustness vs reduced flexibility trade-off
provided by the Sub-DIP to be favourable, even in the well-determined setting.

In Appendix A.3 we investigate the effect of the dataset used to extract the subspace, in the 300 angle case.
Namely, we compare the task-agnostic dataset of random ellipses with a task-specific Mayo dataset. As
expected, the results show that using a task-specific dataset, matching the target image manifold, improves
reconstruction performance. However, the generality of the approach is compromised, since a suitable dataset
of images specific enough for a task and modality at hand might not always be available and the method
starts to resemble supervised learning. In the data-poor settings, using a synthetic dataset provides a good
performance compromise.

5.4 Image restoration of Set5

We conduct denoising and deblurring on five widely used RGB natural images (“baboon”, “jet F16”, “house”,
“Lena”, “peppers”) of size (256 px)2. The pre-training is done on ImageNet (Deng et al., 2009), a dataset of
natural images, which we use to extract the basis for the subspace methods.

For denoising we consider four noise settings with the noise scaling parameter p ∈ {0.10, 0.15, 0.25, 0.5}, cf.
(9), We extract a single subspace for all the noise levels. To this end, during the pre-training stage, we
construct a dataset by adding noise to each training datum, with a randomly selected noise scaling parameter
p ∼ Uni(0.05, 0.5). Then a dsub = 8k subspace with sparsity level dlev/dθ = 0.25 is extracted from dpre = 10k
samples. In the high noise case (p = 0.5), we sub-extract to a smaller dsub = 1k subspace. This sub-extraction
is necessary to minimise overfitting in high noise level scenarios. Further comments on this are at the bottom
of the page. For deblurring we consider two settings, using a Gaussian kernel with std of κ ∈ {0.8, 1.6} pixels
and p = 0.05 Gaussian noise. We then follow an analogous procedure; adding p = 0.05 Gaussian noise and
applying κ ∼ Uni(0.4, 2) blur to each training datum, and then constructing a single subspace.
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On the top we show PSNR trajectories for each of the tasks, comparing DIP and Sub-DIP NGD, and on the
bottom we show mean and std of max and conv. PSNR over the studied 5 images. Results for the other two
noise levels are reported in Appendix A.
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Figure 10: Restoration of the noisy (with noise scaling parameter p = 0.15) “baboon” image.

As common practice when deploying DIP on restoration tasks, we do not include the TV (λ = 0) in (2) for
neither denoising nor deblurring. Instead, the regularising property of the reconstruction stems exclusively
from restricting the DIP optimisation to a low-dimensional subspace of its parameters.

The top row in Fig. 9 shows PSNR trajectories for denoising and deblurring on “jet F16” and “house” images.
These images contain large regions of continuous colour intensity with clearly defined edges. Hence, we
expect subspace methods to perform well. This is confirmed by the results: Sub-DIP NGD and DIP have
a comparable max PSNR. The bottom row in Fig. 9 shows the mean and std of max and conv. PSNR
over 5 studied natural images for low and high noise and blur. The conv. reconstructions are computed
by Algorithm 1, applied to the training loss (2) with δ=0.995 and p=100 steps. We notice that DIP mildly
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Figure 11: Investigation of the regularising effect of the dimensionality of the chosen subspace on Set5. We
report PSNR trajectories for two specific images, the “baboon” and the “peppers” using Sub-DIP NGD. Our
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Figure 12: Restoration of the noisy (with noise scaling parameter p = 0.1) “house” image in Set5 using
different subspace dimensions.

outperforms Sub-DIP in terms of time to max PSNR. However, DIP is also significantly more prone to overfit
to noise and exhibits a sharp decline in image quality after reaching max PSNR. Thus, selecting a good
stopping criterion is not only critical but also challenging.

Fig. 10 shows the denoising results for the “baboon” image with a moderate noise level (p = 0.15). The
“baboon” image contains fine-grained details and sharp transitions throughout the image. Hence, we expect a
somewhat comparatively worse performance of subspace methods on this task, as higher frequency information
can be lost when using low-dimensional approaches. The results confirm this intuition: the max PSNR for
the “baboon” with E-DIP is at least 1 dB higher than that for subspace methods. Moreover, while standard
DIP experiences a sharp decline after achieving max PSNR, subspace methods retain the performance.

To gain deeper insight into the interplay between the dimension of the subspace and the noise level corrupting
the data, we sweep over dsub ∈ {500, 1000, 3000, 8000} and p ∈ {0.1, 0.15, 0.25, 0.5}. While we maintain the
ratio dlev/dθ at 1 for subspaces up to 3k, for computational feasibility we reduce it to 0.25 for the 8k-dimensional
case. As shown in Fig. 11, and in Fig. 23 and Fig. 22 in Appendix A.4, in high-noise scenarios (i.e., p = 0.5),
using a larger subspace leads to overfitting. Conversely, in low-noise settings, a lower-dimensional subspace
limits the network’s capacity to fit higher frequencies and adapt, resulting in overly smooth reconstructions,
cf. Fig. 12. We can thus conclude that noisier problems require more regularisation, thus a lower-dimensional
subspace may be beneficial.
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6 Conclusion

In this work, we develop a novel approach that constrains DIP optimisation to a sparse principal low-
dimensional subspace, extracted from pre-training trajectories. This greatly mitigates, if not completely
eliminates, overfitting. Our approach may be understood from the perspective of the bias-variance trade-off.
At initialisation, the vanilla DIP presents a useful bias towards learning low-frequency image components; but
the over-parameterisation of the neural network leads to overfitting. Pre-training only partially removes DIP’s
low pass bias, allowing the E-DIP to often fit images quickly. This comes at the cost of increased variance.
Our approach seeks to efficiently navigate the bias-variance trade-off. Constraining the optimisation to a
low-dimensional subspace greatly reduces the variance. By extracting the subspace from principal directions
of pre-training trajectories, and through the use of leverage scoring, we limit the bias introduced into the
model. Furthermore, optimising in lower dimensional subspaces allows using fast and stable second order
optimisation methods. In future work, alternative approaches for the identification of the subspace and their
implicit regularising properties will be investigated.

In our experiments on several image restoration and tomographic tasks, subspace DIP methods deliver
reconstructions on par with DIP’s max performance, and result in better reconstruction quality than the
overfit DIP reconstructions.
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