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Abstract

Tokenization is the first—and often underappre-
ciated—Ilayer of computation in language mod-
els. While Chain-of-Thought (CoT) prompt-
ing enables transformer models to approximate
recurrent computation by externalizing inter-
mediate steps, we show that the success of
such reasoning is fundamentally bounded by
the structure of tokenized inputs. This work
presents a theoretical and empirical investi-
gation into how tokenization schemes, partic-
ularly subword-based methods like byte-pair
encoding (BPE), impede symbolic computa-
tion by merging or obscuring atomic reason-
ing units. We introduce the notion of Token
Awareness to formalize how poor token granu-
larity disrupts logical alignment and prevents
models from generalizing symbolic procedures.
Through systematic evaluation on arithmetic
and symbolic tasks, we demonstrate that token
structure dramatically affect reasoning perfor-
mance, causing failure even with CoT, while
atomically-aligned formats unlock strong gen-
eralization, allowing small models (e.g., GPT-
40-mini) to outperform larger systems (e.g., ol)
in structured reasoning. Our findings reveal
that symbolic reasoning ability in LLMs is not
purely architectural, but deeply conditioned on
token-level representations. Full code, prompts,
and results are available at Anonymous GitHub.

1 Introduction

Inductive reasoning and arithmetic computation,
such as counting, addition, and pattern general-
ization, are foundational components of symbolic
and algorithmic intelligence. These abilities have
long been studied across disciplines—from their
cognitive development in humans (Wynn, 1990;
De Bruijn, 1964) to their formal characterization in
logic and computability theory (Boolos et al., 2002;
Cooper, 2017). In theoretical computer science,
arithmetic primitives like counting and addition
have been analyzed in terms of circuit complex-
ity (Jerrum, 1995), computational depth (Fischer

et al., 1968), and machine models such as counter
automata (Ibarra et al., 2002). Even simple op-
erations—e.g., counting from 1 to n—are known
to require a depth complexity that grows with in-
put length, imposing strict lower bounds on any
computational model (Fischer et al., 1968).

Transformers (Vaswani, 2017), including both
autoregressive (GPT-style) (Gregor et al., 2014;
Achiam et al.,, 2023) and non-autoregressive
(BERT-style) (Devlin, 2018; Liu et al., 2022) vari-
ants, are inherently limited to constant-depth com-
putation (Zhang et al., 2024; Delétang et al., 2022;
Li et al., 2024a). In neural models, all computa-
tion occur within model’s latent space ‘H, where
the hidden state h encodes intermediate computa-
tional representations. Unlike recurrent architec-
tures—where hidden states evolve over time via
recursive updates h; = gg(hy—1)—Transformers
update h only across a fixed number of layers, in-
dependent of input length. As a result, a standard
Transformer can process (or reason over) its hidden
states only a constant number of times, limiting its
computational depth and situating it at the lower
end of the Chomsky hierarchy (Delétang et al.,
2022). This architectural bottleneck fundamen-
tally restricts Transformer-based models—ranging
from task-specific expert systems to large-scale
LLMs—from solving even basic arithmetic oper-
ations such as counting, which require iterative
updates to internal state and growing depth with
input length.

Chain of Thought (CoT)(Wei et al., 2022) revo-
lutionizes the reasoning paradigm by shifting the
locus of computation from the latent space H to
the textual output space O(Zhang et al., 2024). By
externalizing intermediate reasoning steps into nat-
ural language "thoughts," CoT enables transformer-
based models to tackle fundamental computational
tasks that would otherwise exceed their architec-
tural capacity. These include basic arithmetic and
symbolic reasoning operations such as counting,
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Figure 1: Tllustration of inductive reasoning as performed

addition, and sequence manipulation. Theoretical
studies (Li et al., 2024a; Zhang et al., 2024; Feng
et al., 2024) demonstrate that CoT-augmented lan-
guage models, under idealized assumptions, pos-
sess an upper bound capacity to simulate computa-
tions of arbitrary complexity—thereby extending
the class of tasks solvable beyond what standard
Transformers can achieve.

Despite extensive theoretical analyses and guar-
antees on the upper bound of computational abil-
ities (Zhang et al., 2024; Chang and Bisk, 2024),
actual model performance remains far below these
limits. As LLMs scale from millions to billions of
parameters (Achiam et al., 2023), improvements
on fundamental tasks such as counting have been
marginal—GPT-4, for instance, still struggles to
count the number of "r"s in a word. While re-
cent work has explored contributing factors like
training data (Allen-Zhu and Li, 2023) and posi-
tional encoding (Chang and Bisk, 2024), one of
the most basic components—tokenization—has re-
ceived surprisingly little attention. In particular,
modern byte pair encoding (BPE) (Sennrich, 2015)
merges multiple characters into single tokens for
efficiency, often degrading arithmetic reasoning
due to information loss during tokenization. Even
OpenAlT’s latest o1' model, which integrates Monte
Carlo Tree Search (MCTS) for improved reason-
ing, achieves only 50% accuracy on long string
arithmetic tasks involving 30—40 characters.

In this work, we systematically investigate how
tokenization choices can substantially constrain the
theoretical reasoning and arithmetic capabilities of
neural models. Our approach is model-agnostic,
allowing us to evaluate even closed-source LLMs
with undisclosed tokenization schemes. Leverag-
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by humans, RNNs, and LLMs with CoT, respectively.

ing extensive experiments with Chain of Thought
(CoT)—which has been theoretically shown to
achieve Turing completeness under idealized con-
ditions (Li et al., 2024b)—we demonstrate that the
choice of tokenization plays a critical role in un-
locking a model’s full computational potential and
bridging the gap between theoretical guarantees
and practical performance. Neglecting this factor
can lead to performance degradations of up to 80%.
Moreover, we find that the impact of tokenization is
model-dependent: some tokens disproportionately
hinder performance on counting tasks, even when
the underlying task remains fixed.

2 Neural Networks and Arithmetic: A
Revisit

Training neural networks for arithmetic com-
putation. Arithmetic operations—including count-
ing, matching, and bracket balancing—are foun-
dational for symbolic reasoning and more com-
plex algorithmic tasks (Chang and Bisk, 2024).
Early studies on training neural networks (NNs)
for such tasks focused on architectures capable of
handling variable-length inputs. Since multi-layer
perceptrons (MLPs) (Rosenblatt, 1958) are inher-
ently limited to fixed-size inputs, initial progress
came through recurrent neural networks (RNNs).
Rodriguez et al. (1999) trained early RNNs to
recognize the regular language a™b", which re-
quires the network to implicitly count occurrences
of a and b. Of the 50 networks trained, 8 success-
fully generalized to longer sequences, highlighting
RNNs’ capacity for basic arithmetic generaliza-
tion. Building on this, Suzgun et al. (2019) showed
that LSTMs could perform more complex dynamic
counting via bracket pairing tasks, leveraging gat-
ing and cell-state mechanisms to maintain multiple
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counters—capabilities that standard RNNs lacked.

Theory of Model Architectures with Compos-
ability. Delétang et al. (2022) systematically inves-
tigated arithmetic capabilities across modern archi-
tectures, including RNNs, LSTMs, and Transform-
ers. Their findings confirmed that while LSTMs ex-
hibit computational behavior aligned with counter
machines, Transformers consistently fail at even
basic counting tasks. Chang and Bisk (2024) ex-
tended this analysis to newer architectures such
as Mamba (Gu and Dao, 2023) and RWKYV (Peng
et al., 2023), revealing that these models also under-
perform on arithmetic tasks outside their training
distributions—often performing worse than classic
RNNS in generalization.

Recent studies (Weiss et al., 2018; Ackerman
and Cybenko, 2020) have further validated the
computational capabilities of both RNNs and
LSTMs, particularly for tasks requiring symbolic
or arithmetic reasoning. In contrast, Transform-
ers—lacking inherent recurrence—are restricted
to TC® complexity in their inductive reasoning ca-
pacity (Li et al., 2024a), placing them at the lower
bound of the Chomsky hierarchy (Sanford et al.,
2024; Li et al., 2024a; Delétang et al., 2022). As a
result, they are fundamentally incapable of solving
even basic algorithmic tasks, such as arithmetic pat-
tern induction or sequence manipulation, without
incorporating explicit inductive biases (Chang and
Bisk, 2024).

3 Theoretical Limits of Answer-Only
Models for Arithmetic and Symbolic
Computation.

Transformer-based models (Vaswani, 2017) with-
out Chain-of-Thought (CoT) prompting (Fig. 2 left
2) are inherently constrained by their fixed architec-
tural depth and lack of recurrence. Let X be the
input token space, H the hidden state space, and O
the output token space. For a Transformer with L
layers and input sequence x1., € X", the hidden
representation at layer ¢ and position ¢ is given by

hy) = Layer, (h(é_

1in

1’), with h{”) = Embed(z).
The output token o; € O is then computed as
o; = Softmax (WhEL)).

This process applies a fixed sequence of trans-
formations to each input x;, with the number of
computational steps bounded above by L = O(1).
Since L does not scale with the input length n,
the depth complexity of computation in such mod-
els is constant, i.e., Depthr,ncormer = O(1). As
established in complexity theory (Zhang et al.,
2024; Li et al., 2024a; Chang and Bisk, 2024),
this places answer-only Transformers in the class
TC’—constant-depth circuits with polynomial size
and threshold gates—incapable of performing even
simple arithmetic functions such as parity, addition,
or comparison over unbounded inputs.

Formally, consider a function f : X" — O™
defined by a task such as computing sum(zi.,).
Such tasks require a computation of depth Q(log n)
for associative operations and §2(n) for sequentially
dependent operations (e.g., counting, carry prop-
agation, or string reversal) (Fischer et al., 1968).
Since L is constant in Transformers and all trans-
formations are composed in parallel across tokens,
such models fail to meet the depth requirement:
Depthtask(f ) > DepthTransformer lmphes that the
Transformer cannot compute f.

Furthermore, Transformers lack a mechanism to
store and evolve intermediate computational states
over time. In recurrent models, hidden states h;
are recursively defined as h; = gg(hi—1,x), al-
lowing the system to simulate Turing-complete be-
havior (Zhang et al., 2024; Li et al., 2024b). In con-
trast, Transformers treat all inputs simultaneously
through attention-based aggregation without itera-
tive update: hEL) = fan(®1:n), disallowing sym-
bolic loop constructs or dynamic memory—key
components in arithmetic computation.

When constrained to generate only answer to-
kens 01.,, € O™ without emitting intermediate
reasoning steps (Fig 2), the model’s total com-
putational budget is tightly bound by m, which
is typically small. Let 01.,, = f(«1.,) be the
model’s prediction. Then, for a computation that
requires 7'(n) steps, with T'(n) > m, the model
must either (1) compress computation into fixed
layers—violating the task’s depth complexity—or
(2) memorize input-output mappings—an approach
that does not generalize beyond training.

This reliance on shallow function approximation
implies that such models can only succeed by mem-



orizing specific input-output pairs, not by executing
general algorithms. Empirically, these models ex-
hibit sharp performance degradation on arithmetic
tasks outside their training distribution (Chang and
Bisk, 2024).

If the maximum number of distinct computation
traces a model can represent with d-dimensional
hidden states and p-bit numerical precision: |H| <
297 Therefore, the number of unique state transi-
tions is also bounded above by 2P, which is finite
and insufficient for representing the O(n)-length
trajectories required for tasks such as binary addi-
tion or bracket matching.

In summary, models limited to generating only
final answer tokens without CoT or external recur-
rence simulation (Fig 2).

4 CoT under Ideal Assumptions Enables
General Arithmetic Computation

Transformer-based LLMs (Achiam et al., 2023;
Touvron et al., 2023; Bai et al., 2023), though pow-
erful, are fundamentally bounded by their fixed
architectural depth (Li et al., 2024a; Zhang et al.,
2024), limiting their ability to perform arithmetic
operations that require sequential, stateful updates.
Chain-of-Thought (CoT) prompting (Wei et al.,
2022), however, offers a mechanism to simulate
recurrence, transforming the depth-limited Trans-
former into a theoretically Turing-complete system
under ideal assumptions.

4.1 Inductive Arithmetic Requires Depth

Arithmetic reasoning, in both human cognition and
formal computation, often involves inductive up-
dates across time or space (Fig 1). For instance,
computing the cumulative sum of a digit sequence
1., = (7,3,2, ) requires maintaining an accu-
mulator that evolves as s; = s;_1 + ¢y overt =1
to n. In recurrent neural networks (RNNs), this is
naturally represented as h; = gg(h¢—1, @), Where
the hidden state h; stores intermediate quantities
such as partial sums, carries, or flags. The computa-
tion depth required for such tasks is O(n), aligning
with results from counter machine theory (Fischer
et al., 1968).

Transformers, in contrast, lack temporal recur-
rence. Their hidden states h; are updated via a
fixed sequence of layers, independent of sequence
length. As a result, their total reasoning depth is
O(1) per token. Because all x; are processed in
parallel, the Transformer cannot simulate stepwise

updates required for arithmetic unless all logic is
memorized or encoded through exponentially wide
circuits (Li et al., 2024a).

This explains why arithmetic tasks—such
as computing sum(zxi.,), reverse(xi,), or
countyoxen(®1.,)—are infeasible for answer-
only Transformers without inductive bias (Chang
and Bisk, 2024; Delétang et al., 2022). These tasks
require depth-sensitive computation, where each
output depends on a chain of intermediate results
not recoverable from input alone.

4.2 Chain-of-Thought Simulates Recurrent
Computation

Chain-of-Thought (CoT) reasoning allows a Trans-
former to externalize its hidden state through in-
termediate tokens. Instead of directly mapping
x1., — Y, the model generates a sequence of
thought tokens 01.x:

ZTinm = (01,02,...,0;) = Y.

Each o; can encode intermediate computations
(e.g., partial sums, loop counters, flags) that are
later re-ingested through the embedding layer,
reinitializing the next latent state:
fo(Embed(oy), Ti11).

This iterative reasoning cycle approximates the
recurrence in RNNs:h;_{ = o; = h;, where
o; encodes sufficient information from h;_; to
resume and advance computation. Under ideal
assumptions—namely unlimited CoT token bud-
get and precise token-to-state fidelity—this ex-
ternalization loop can simulate unbounded depth,
making CoT+autoregressive models Turing com-
plete (Zhang et al., 2024; Li et al., 2024b).

hiy1 =

5 Tokenization as a Barrier to
Chain-of-Thought Computation

Despite the theoretical promise of Chain-of-
Thought (CoT) prompting to approximate
Turing-complete computation under ideal as-
sumptions (Zhang et al., 2024; Li et al., 2024a),
empirical failures persist even in state-of-the-art
models such as GPT-4. These failures are partic-
ularly evident in arithmetic and symbolic tasks
that require precise reasoning over fine-grained
units (e.g., digits, letters, or symbols), where large
language models often yield incorrect results for
inputs of even moderate length (e.g., computing the
number of rsin St rawberry). This discrepancy
highlights a critical limitation: CoT effectiveness is



inherently bounded not just by model architecture,
but also by the expressiveness of the underlying
language, which is in turn shaped by the tokenizer.

We treat tokenization as a black-box preproces-
SOI 1.y, 1> t1.m, where x1., is a raw input string
over characters and ¢;.,, is the resulting sequence
of tokens from vocabulary V. Modern tokenizers
such as byte-pair encoding (BPE) (Sennrich, 2015)
are designed to optimize compression and train-
ing efficiency, not fidelity of semantic or syntactic
granularity. However, for CoT reasoning to suc-
ceed in arithmetic and symbolic computation, the
token space V must be able to express and preserve
intermediate state information.

5.1 Expressiveness and the Token-to-Thought
Mapping

We define the expressiveness of a language £ =
(G,V)—with grammar G and vocabulary YV—as
the number of unique semantically meaningful se-
quences S it can generate:

Expressiveness(L) := |Sg|.

For a CoT process to emulate Turing-complete
computation, it must support a recurrent approxi-
mation: hy_; — (o1,...,0r) — h;, where latent
state h;_1 € H is decoded into intermediate nat-
ural language tokens o1.; € V¥, which are then
re-embedded and fed back to reconstruct h;.

This implies the need for a high-fidelity vector-
to-token mapping:

¢:H—V* and Y:V*  —H,

such that the composed transformation 1) o
¢(hi—1) =~ hy retains sufficient computational
state to perform stepwise updates. Tokenization
introduces two major obstacles to this cycle, de-
grading the effective CoT expressiveness.

5.2 Damage Type I: Information Hiding via
Token Granularity

The first form of damage is semantic obfuscation.
Suppose the reasoning task requires operating over
atomic units (e.g., characters, digits), but tokeniza-
tion merges these into opaque multi-character to-
kens: Strawberry — [Straw,berry]. Now,
let t; € V denote a token for which the model
lacks fine-grained internal features (e.g., how many
r’s are present). We define the token awareness
function as:

TokenAware(t;, prop) := [ [prop € Emb(¢;)],

where prop denotes a property (e.g., digit count,
lexical features), and Emb(¢;) is the token embed-
ding. When TokenAwareness(t;, prop) = 0, rea-
soning that relies on prop (e.g., “‘count the number
of 3’s”) will fail. Thus, even if the CoT reasoning
process is intact, its input signal is corrupted at the
encoding layer.

5.3 Damage Type II: Limited CoT
Expressiveness via Token Bottleneck

The second, more subtle limitation occurs during
the CoT process itself. The latent state h;_ stores
accumulated reasoning. To externalize this into
thought tokens o1.;, we require that:

Vhi_1 € H,301., € V¥ such that ¢(h;_1) = 014,

but when V is coarse (e.g., BPE with token merges)
or lacks the necessary expressive forms (e.g., miss-
ing digits, variable names, or operations), this sur-
jection fails. Let S}, be the space of latent states
and S, be the expressible token sequences. Then
CoT fidelity is bounded as:

Fidelity (CoT) < 9

Low expressiveness = low overlap = critical rea-
soning steps cannot be externalized.

This mismatch becomes catastrophic in arith-
metic tasks where thought tokens must verbalize
structured computations (e.g., carrying, intermedi-
ate sums). Without expressive enough V, many
h,_, are untranslatable, rendering the CoT step
ineffective. The model is thus forced to either trun-
cate reasoning or approximate it via memorized
heuristics, both of which degrade generalization.

5.4 Formal Failure Case: CoT under BPE
Tokenizer

Assume the model is asked to compute a symbolic
function f : x1., — vy (e.g., reverse digits). The
optimal CoT process proceeds via:

hy — o1., = h1 = Oy 412k, — - = Y,

but if 01,5, ¢ S, due to token constraints, then
h;+1 will be misaligned, i.e., h;11 % g(h;). Over
time, errors compound, and f becomes uncom-
putable.
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Figure 3: Four types of string formatting to manipulate tokenization in counting. Examples in the figure are
tokenized using the GPT-4o tokenizer. Each string-token type is labeled as (a), (b), (c), and (d) in the diagram. Note
that changing the format does not alter the fundamental nature or difficulty of the counting task.

5.5 Quantifying Tokenization Effects on
Symbolic Computation

To complement our theoretical findings, we intro-
duce a general, model-agnostic framework to eval-
uate how tokenization impacts symbolic and arith-
metic reasoning in LLMs. While many models are
closed-source, we treat LLMs as black boxes and
isolate tokenization as the key variable influencing
performance.

Let x € X" be a character-level input string
and 7 a tokenizer mapping it into a token se-
quence ti., = T (x), where each t; € V comes
from a fixed vocabulary. The LLM M then per-
forms a symbolic task by computing an output
y = M(t1.n). Our goal is to determine how mis-
matches between task granularity and token struc-
ture affect the model’s ability to solve f : X" —
Y.

We base our input manipulation on three typi-
cal properties of modern BPE-like tokenizers: (1)
Common substrings of 2—4 characters are merged
into single tokens. (2) Delimiters (e.g., spaces,
commas) are usually merged with adjacent tokens.
(3) Adding repeated delimiters can break these
merges and force token boundaries. These patterns
let us construct inputs that vary tokenization while
keeping the underlying symbolic task fixed.

Input Design. For a symbolic function f (e.g.,
digit sum, string reversal, pattern matching), we
generate two sets of inputs:

* Atomic-aligned inputs 22°™°: token bound-
aries align with units required for the task.

+ Merged-token inputs x™¢%: intentionally
merged to obscure symbolic units within to-
kens.

If the model lacks internal awareness of sub-
token structure (e.g., characters inside a token),

then symbolic reasoning that depends on those
units will fail—even if CoT prompting is used.

Quantifying Degradation. We define the tok-
enization damage as the average accuracy drop:

Atok — |Ez [A(watomiC) _ A(wmerged)] ”

where A(-) is model accuracy.

A high A indicates that the model relies
on token structure and cannot generalize
symbolic logic across inconsistent tokeniza-
tions.

6 Experiments

6.1 Settings

We evaluate the impact of tokenization and input
formatting on symbolic reasoning capabilities of
large language models (LLMs). We focus on three
fundamental symbolic tasks: Arithmetic counting,
Sorting and Sorting.

Each task operates on inputs drawn from con-
trolled domains (letters, digits, or words), and
varies in input length and tokenization strategy.
Despite differing surface forms, all tasks share a
symbolic core that requires composition, memory,
and manipulation of atomic units. Importantly, the
task identity remains unchanged across formatting
conditions.

To isolate the role of tokenization, we disable
tool use in all models and treat LLMs as black-box
functions M o T, where 7T is the tokenizer and M
is the model.

For counting tasks, we test four competitive
LLMs: GPT-40-mini, Claude 3.5 Sonnet, Qwen
Turbo, and OpenAl ol. For sorting and reversing,
we focus on GPT-40-mini due to its consistent per-
formance and API accessibility. Each experiment



Counting letter a

Counting letter b

String-Token Type len € [10-20] len € [20-30] len € [30-40] \ len € [10-20] len € [20-30] len € [30-40]
no-CoT CoT no-CoT CoT no-CoT CoT ‘ no-CoT CoT no-CoT CoT no-CoT CoT
pure string BPE tokens (a)  30.10 45.70 15.10 9.10 6.40 2.00 3320 47.70  14.00 9.40 3.80 2.70
" ".deliminated token (b) 4620 5840 16.10  24.90 7.50 1090 | 4590 63.70 17.60  34.00 5.60 18.60
", "-deliminated token (¢c) 56.00 5540 1940 38.60 1020 28.10 | 63.60 69.30 32.80 56.10 13.90 4230
precise-item token (d)  50.70 96.80 15.80  81.60 7.90 56.10 | 5830 96.50 30.20 90.00 12.60  70.80
A¢ok [max] 2590  41.10 4.30 72.50 3.80 5410 | 30.40 48.80 1880 80.60 10.10  68.10

Table 1: Results of counting as and bs in string consisting of letter a and b, using GPT-40-mini API. Numbers
indicate the average accuracy (%) over 1000 random generated instances.

Counting letter e

Counting letter z

String-Token Type len € [10-20] len € [20-30] len € [30-40] \ len € [10-20] len € [20-30] len € [30-40]
no-CoT CoT no-CoT CoT no-CoT CoT ‘ no-CoT CoT no-CoT CoT no-CoT CoT
pure string BPE tokens (a) 26.60 5520 19.80 12.20 11.40 2.10 31.10 59.10 11.70 22.10 4.60 7.30
" ".deliminated token (b) 41.00 5290 2390 28.20 13.00 16.00 | 4530 6390 16.60 46.20 6.80 29.50
", ".deliminated token (¢c) 4550 6420 2740 4420 18.00 27.60 | 56.20 73.60 2820 5560 13.90 41.90
precise-item token (d)  60.10 97.70 3250 89.30 1530 70.70 | 60.60 9840 30.60 93.80 1330 74.80
Atok [max] 33.50 44.80 1270  77.10 6.60 68.60 | 29.50 39.30 1890  71.70 9.30 67.50

Table 2: Results of counting es and zs in string consisting of letter e and z, using GPT-40-mini model. Numbers
indicate the average accuracy (%) over 1000 random generated instances.

Method/Length Letter Letter+Digit Digit
Str  List Ak Str  List Ak Str List Ak
5-10 246 320 74 301 357 56 562 844 278
CoT 10-15 33 8.7 5.4 54 101 47 79 330 251
1520 04 1.1 0.7 0.7 2.7 2.0 08 438 4.0
5-10 280 351 7.1 31.1 385 74 647 848 20.1
SCoT 10-15 104 126 22 106 156 50 156 34.6 19.0

15-20 24 34 1.0 26 47 2.1 32 8.6 54

Table 3: Performance on sorting tasks using GPT-
40 mini with Chain-of-Thought (CoT) and Supervised
Chain-of-Thought (SCoT) across different input types,
length ranges and tokenization types.

Random ‘Word High-freq Word

Method/Length

Str  List Ak Str List Ak Str List Ak

5-10 460 70.0 240 39.1 565 174 542 66.6 124

10-15 86 381 295 117 224 107 136 259 123

CoT 15-20 25 201 17.6 1.5 8.0 6.5 2.3 9.0 6.70

20-25 0.3 9.6 9.3 0.5 22 1.7 0.6 2.4 1.8
25-30 04 47 43 0.1 0.7 0.6 05 04 0.1

5-10 502 721 219 511 68.0 169 59.1 723 232
10-15 358 569 21.1 299 528 229 336 565 229
SCoT 1520 249 444 195 187 389 202 215 439 224
2025 186 313 127 136 301 165 123 326 203
25-30 126 238 112 72 214 142 85 238 153

Table 4: Performance comparison on reversing tasks,
using simlar settings as Table 3.

uses 1,000 randomly generated input instances per
length bucket. Input lengths are task-specific: for
counting, we use lengths in [10, 20], [20, 30], and
[30, 40]; for sorting, lengths are in [5, 10], [10, 15];
and for reversing, in [5, 30] (5-step increments). All
models use identical prompts. We evaluate with
and without CoT reasoning, and for some tasks
apply supervised CoT (SCoT) (Zhang et al., 2025)
to control for CoT quality. Evaluation measures

exact-match accuracy.

6.2 Tokenizer Sensitivity in Symbolic Tasks

Across all tasks, we observe a consistent phe-
nomenon: model performance varies dramatically
with tokenization format, even when the underly-
ing symbolic function f remains fixed. Following
are detailed analysis across all tasks conducted:

CoT grants compositional logic

Enabling Chain-of-Thought (CoT) significantly
boosts performance, particularly for tasks that re-
quire sequential or compositional logic. This im-
provement is most pronounced when input length
increases, suggesting that CoT enables models to
simulate recurrent computation by externalizing
intermediate state. In tasks where CoT is not used,
performance plateaus or drops sharply as sequence
length grows, reflecting the fixed-depth constraint
of answer-only Transformers.

Symbolic Reasoning is sensitive to input token
structure

Experiments show that tokenization plays a critical
role in determining symbolic generalization. For
a fixed task function f, changes in tokenization
alone—without altering task semantics—can yield
over 70% variance in accuracy. This phenomenon
is captured quantitatively by the tokenization degra-
dation gap Ak, which consistently reaches high
values across all experiments. In Table 1, for ex-
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Figure 4: Distribution of shifts from the correct count.

ample, switching from raw BPE inputs (type a) to
atomic-aligned inputs (type d) improves accuracy
by Ak = 54.1% for counting a, and similar gains
are observed in Table 2 for letters e and z.

The results in Tables 4 and 3 further reveal that
symbolic reasoning ability is not only sensitive to
tokenizer (controlled by using string vs. list), but
also to the type of atomic unit being processed.
Tasks involving digits consistently yield signifi-
cantly higher performance than those involving
letters or words, even when the overall structure of
the task and input formatting are matched.

For instance, in sorting tasks (Table 3), CoT per-
formance on digit sequences reaches up to 84.8%
accuracy for lengths 5-10 in list format, with a cor-
responding Aok of 27.8. In contrast, performance
drops to 35.1% on letter sequences under identi-
cal conditions, with a much smaller Ay of 7.1.
This discrepancy persists across input lengths and
holds under both CoT and SCoT prompting. A sim-
ilar trend is observed in reversing tasks (Table 4):
digit and high-frequency word sequences achieve
the highest absolute accuracies and largest gains
from structured formatting, suggesting that token
content—i.e., whether the model processes com-
pact numerical symbols or open-vocabulary lexical
tokens—has a significant effect on symbolic gener-
alization.

These results validate our theoretical claim
that symbolic reasoning over atomic units cannot
emerge reliably unless tokenization preserves unit-
level structure. When input tokens merge multiple
semantic units (e.g., letters or digits), the model
cannot apply symbolic operations like comparison
or increment at the proper resolution. This leads to
brittle reasoning and reliance on memorization. In
contrast, atomic-aligned formats ensure that sym-
bolic computation is recoverable from token-level
patterns, enabling models to generalize even across
longer inputs or different domains (letters vs. digits
vs. words).

Overall, the combination of CoT and precise to-
kenization unlocks the model’s latent arithmetic
and symbolic capabilities. However, without ei-
ther component, performance degrades—even if

the model architecture is unchanged. These find-
ings confirm that CoT grants access to general sym-
bolic reasoning under ideal token granularity, and
that a high Ay is a strong indicator that a model’s
performance hinges on token alignment rather than
true generalization.

6.3 Error Shifts Reveal BPE-Induced
Counting Failures

We define error shifts as the difference between
the model-predicted and true counts on failed in-
stances. As shown in Figure 4, GPT-40 mini ex-
hibits a strong bias toward negative shifts across
all tokenization types, indicating systematic under-
counting. With pure BPE tokenization, shifts are
exclusively negative—likely due to the model’s in-
ability to parse individual characters within merged
tokens (e.g., "abaa"), often resulting in zero counts
for target symbols (see Appendix Figure 10).
When delimiter-separated formats (types
(b)—(d)) are used, some positive shifts appear,
likely caused by overcounting or retrieval incon-
sistencies. Yet with fully atomic-aligned tokens
(type (d)), errors narrow to a band between —1
and -3, reflecting smaller arithmetic missteps
rather than structural confusion. This confirms that
BPE introduces larger, systematic errors, whereas
cleaner tokenization mitigates extreme deviations.

7 Conclusion

We have demonstrated that tokenization is a crit-
ical bottleneck in the symbolic reasoning ability
of language models. Even with Chain-of-Thought
prompting, coarse or misaligned token structures
prevent models from accurately performing arith-
metic and structured symbolic tasks. Our theo-
retical framework and empirical findings jointly
show that both token format and token type (e.g.,
digits vs. letters) significantly affect generaliza-
tion. Aligning tokenization with atomic reasoning
units enables smaller models to rival or surpass
larger ones, highlighting the need to treat tokeniza-
tion design as a core component of model capabili-
ties—not merely a preprocessing step.



Limitations

Our experiments were conducted on GPT-40 Mini,
Claude 3.5 Sonnet and Qwen Turbo. While all
models demonstrated strong patterns and consistent
evidence showing that certain types of tokenization
significantly improve counting performance, we
did not extend our testing to other open-source
LLMs such as LLaMA, Mistral. This was primar-
ily due to budget and time constraints, as well as
preliminary findings that these models exhibited
weaker instruction-following abilities compared to
GPT and Claude, making the evaluation process
more challenging. However, we believe our re-
search remains robust despite these limitations, as
mainstream model training and design principles
are largely universal, and the patterns observed are
likely generalizable to other LLMs.

Additionally, our experiments did not explore ex-
treme context lengths, such as counting instances
with more than several hundred tokens. We found
that such cases often led to instability due to the
accumulation of long CoT steps. We aim to fur-
ther investigate this aspect as LLMs improve in
handling long-context retrieval and generation.
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Appendix
A Supervised Chain of Thought

Naive Chain of Thought (CoT), which uses a
generic "think step by step" prompt for all tasks,
poses significant challenges for models in deter-
mining the correct steps, especially for complex,
multi-step reasoning tasks. To mitigate this con-
founding factor, we follow previous work and em-
ploy Supervised CoT (Zhang et al., 2025), as the
derivation of steps is not the focus of our research
and should not affect performance due to incorrect
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CoT steps. Below, we define Supervised CoT and
explain its application in counting tasks.

A.1 Definition

The search space for solving a task can be viewed
as a combination of the prompt space and the an-
swer space. When instructed to perform tasks step
by step, language models must devise a step tem-
plate which is used to determine the actions at each
step. This template is crucial for solving tasks, as
it specifies what information is processed and how
it is computed at each CoT step. However, for a
given task, there are numerous ways to perform
a "step-by-step" approach, each computing differ-
ent elements per step. Finding the optimal set of
steps is challenging yet essential, as it directly in-
fluences the ability to find solutions in the answer
space (Zhang et al., 2025).

Supervised CoT provides human supervision in
determining the step template. Rather than asking
the model to develop its own plan for each step,
humans identify the "recurrent" procedure in the
computation and explicitly instruct the model to fol-
low a specific step template. This approach allows
the CoT to bypass the need to search for optimal
steps, focusing instead on finding solutions within
the answer space under optimal step guidance.

—e— |Letter Frequency

Error Rate

Letter Frequency (%)

8
6
4
2
0

z b r e

Counted Letter

Figure 5: Counting accuracy (Orange) with respect to
target letter frequency (Blue) in Human Natural Lan-

guage.

A.2 Supervised CoT and Counting

In inductive counting, which relies on CoT to com-
pute the counter value recurrently(Figure 1), it is
crucial that each step of CoT accurately extracts
and outputs the counter value in text. This output
is necessary for the value to be recurrently pro-
cessed through "string-vector" conversion. There-
fore, rather than simply prompting the model with
"determine the number of a in the given string"
using the generic instruction "think step by step,"
we specifically instruct the model to print out a
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counter value at each step. We explicitly define
the step template to ensure the model follows the
optimal CoT steps, preventing deviations or the use
of suboptimal steps.

Experiments. We demonstrate the significant per-
formance gap between Supervised and Unsuper-
vised CoT. Specifically, we observe that supervi-
sion not only helps the model accurately extract the
counter but also ensures it follows the correct steps
(e.g., an incorrect step would be outputting whether
the current letter is the target, rather than extract-
ing the counter value). Even when Unsupervised
CoT identifies the correct steps (i.e., extracting the
counter into text), we still notice more frequent
errors during the extraction process compared to
Supervised CoT, which imposes strict constraints
on what to extract at each step. The comparison
between Supervised and Unsupervised CoT is pre-
sented in Table 5, showing a clear dominance of
Supervised CoT, with accuracy gains observed in
nearly all cases.

B Comprehensive Experiments on the
Relationship Between Letter Frequency
and Symbolic Reasoning Performance

Our results in counting experiments show consis-
tently higher counting accuracy for the letter b
compared to a across all proper counting settings
(CoT enabled, non-BPE tokenization), as shown
in Table 1 and Figure 8 left. We hypothesized this
difference stems from varying letter frequencies in
natural language affecting token-embedding sensi-
tivity.

To further investigate this hypothesis, we com-
pared counting performance between the most fre-
quent letter e (12.7%) and least frequent letter z
(0.07%) in English. Results in Table 2 show z sig-
nificantly outperforming e, mirroring the pattern
seen with b (1.5%) versus a (8.2%). The accuracy
advantage for lower-frequency letters ranges from
3-14% (Figure 8).

Our results reveal that lower-frequency tokens
carry less embedded information from training,
making them easier to track through the attention
mechanism. In contrast, common letters like a and
e may encode more complex linguistic information,
potentially interfering with counting tasks.

To verify these results beyond the letter pairs
a, b and e, z, we selected another set of letters
with significantly different frequencies in human
languages, according to Wikipedia: z (0.07%), b
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(1.48%), r (6.02%), and e (12.70%). We gen-
erated counting instances of lengths between 80
and 100—ensuring that each letter appears more
than 20 times on average—by uniformly sampling
one of the four letters to form each string (e.g.,
zrrbeez). We then performed counting for each
letter in the generated strings. As shown in Table
7, a consistent trend was observed across tokeniza-
tion types (b)—(d) (excluding (a), as pure BPE was
previously shown not to yield meaningful count-
ing results). Specifically, rare tokens consistently
outperformed more frequent tokens in natural lan-
guage, with performance improvements ranging
from 6% to 12%. Figure 5 visually compares per-
formance and letter frequency, showing an over-
lap between frequency and error rate. We suspect
that rare letters carry less information in their em-
beddings, reducing distraction during the attention
calculation in the counting process.

Random i Word 1 High-freq Word 1 Listify
zdxjakstch : endodontic : government : X,0,r,d,0,d, r,w

Figure 6: Tokenization patterns of the GPT-4o tokenizer
when processing four different input types for reversing
task: (a) random character strings, (b) regular dictionary
words, (c) high-frequency English words, and (d) listi-
fied random strings with explicit delimiters.

Letters

i Letters + Digits 1
igdztZNe :

63EGE2E

Digits
40305038

Listify Letters + Digits
0,G,rtat, 8 x

Figure 7: Tokenization patterns of the GPT-40 tokenizer
across diverse input compositions for sorting task: (a)
random letter strings composed solely of alphabetic
characters, (b) mixed random strings containing both
letters and digits, (c) random digit strings composed
exclusively of numerical characters, and (d) listified
mixed strings with explicit delimiters separating letter
and digit combinations.

C Tokenization in Different LLMs

Figure 10 and Figure 11 illustrate the tokeniza-
tion of input binary strings with difference lengths
across various LLMs. We investigate both lan-
guage models and multi-modal models, observ-
ing nearly identical tokenization behaviors across
most tested models (except GPT-4o series). There-
fore, in Figure 6 and Figure 7, we use the GPT-40
series models to further demonstrate tokenization



String-token Type

Counting a

Counting b

Unsupervised-CoT Supervised CoT ‘ Unsupervised-CoT  Supervised CoT

(b)
(©
)

8.40
24.00
34.90

10.90 20.70 18.60
28.10 29.30 42.30
56.10 42.70 70.80

Table 5: Counting experiments in the length range of 30-40 comparing Supervised CoT and Unsupervised CoT. The
bolded font indicates the better performance in the pairwise comparison between Supervised and Unsupervised CoT.

string-token ‘ len € [10-20] len € [20-30] len € [30-40]

type ‘ counta countb counta countb counta countb
(a) 86.30 86.20 62.40 65.20 50.60 54.40
(b) 90.60 94.00 80.40 87.50 76.10 79.60
(©) 94.90 97.70 92.80 97.90 91.40 94.20
(d) 93.00 94.20 87.80 91.00 87.30 89.80

Table 6: Counting results on strings with letter a and
b, using Claude 3.5 Sonnet API. All results are using
supervised CoT (Zhang et al., 2025), with same prompt
for GPT-40 mini. Numbers indicate the average accu-
racy (%) over 1000 random generated instances.

String-Token Type len € [80, 100]

zZ b r e
(b) 1450 13.60 890 8.40
(c) 36.00 36.60 2830 24.30
(d) 61.60 60.20 54.10 51.90
Letter Frequency
percentage 0.07 148 6.02 12.70

Table 7: Counting performance of letters that have very
different letter frequency in human language.

patterns in more complex cases. These include ran-
dom letter strings, random number sequences, dic-
tionary words, high-frequency words, and mixed
digit-letter strings. This analysis provides insight
into how tokenization varies across different input
types and structural formats.

Since pure strings may be tokenized differ-
ently due to the varying byte pair encoding (BPE)
schemes used by each tokenizer. When a token-
level delimiter is introduced, we consistently ob-
serve that the delimiter is combined with the adja-
cent letter, aligning with our previous assumptions.
Additionally, some models handle the initial token
differently, resulting in the first letter being treated
as a standalone token (e.g., in the Grok model) or
being combined with a quotation delimiter (e.g., in
GPT-40 mini). In summary, our string design ef-
fectively allows us to manipulate modern LLMs to
tokenize identical counting instances into different,
desired tokens.
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Accuracy for counting 'ab’

Accuracy for counting 'ez'

0.6

Accuracy

0.4

0.2

0.0

-0.2

Figure 8: Pairwise comparison of counting accuracy
for different letters in strings. The left plot shows the
distribution of accuracy for a and b in ab strings, with
each dot representing the average accuracy for a in a
given CoT case (e.g., spaced-string in the [10,20] range),
connected to the corresponding accuracy for b in the
same setting. The right plot illustrates a similar case for
e and z in ez strings. Note: The y-axis limit exceeds
[0,1] as the distribution is calculated based on variance
and mean, with larger variance pushing the upper bound
of the confidence interval beyond the maximum value.

D Prompt Template

The set of prompts we use for counting experi-
ments (base, unsupervised CoT, supervised CoT)
are shown in Figure 12. The set of prompts we
use for reversing and sorting experiments (unsuper-
vised CoT, supervised CoT) are shown in Figure 13
and Figure 14 respectively.

E Case Studies: Counting

In this section, we use counting task to showcase
our experiment results. The tables present cases for
each type of token counted using CoT. As shown,
Supervised CoT consistently adheres to a strict step-
by-step template, accurately extracting the counter
at each step. In contrast, Unsupervised CoT often
skips crucial steps or deviates from the optimal
method of extracting counters. Additionally, Su-
pervised CoT with type (d) tokenization tends to
produce much longer reasoning contexts, yet still
achieves the best performance due to the combina-
tion of optimal tokenization and supervision.

We also repeated the experiments with Claude



3.5 Sonnet and Qwen Turbo. With Qwen model,
we observed similar trends as GPT-40 mini (Table
8). With Claude model, there is a slight exception
that type (c) yielded the best results among types
(a)-(d), as shown in Table 6. Upon investigation,
we suspect this is because type (d) results in longer
CoT steps due to the higher number of irrelevant
tokens generation, leading to long-context reason-
ing failures in many cases for this model. We also
provide case studies using GPT-40 mini for count-
ing tasks, including examples where CoT led to
both correct and incorrect answers. Additionally,
we reveal the inferior performance with OpenAl ol
full model when tokenization is not properly done,
detailed in Appendix section E.1.

To this end, we are confident that our experi-
mental results can be generalized to other LLMs,
given that the training methods and tokenization
strategies (as demonstrated in Appendix Section
C) are nearly identical, leading to counting being
performed in a similar manner across such models.

E.1 OpenAlol

We evaluate ol on samples ranging from 30 to
40 letters in length, using pure string (type (a)) to
showcase the importance of using proper tokeniza-
tion. Additionally, since ol applies inference-time
scaling techniques (such as MCTS search and per-
step verifying), it implicitly engages in advanced
chain-of-thought reasoning. Thus, we rely solely
on a straightforward prompt rather than explicitly
specifying reasoning steps using Supervised Chain-
of-Thought as with other naive models. The final
accuray on tested samples for ol is 50%, which
is much lower than using GPT-40 mini with most
optimal tokenization techniques (Table 1, 70% in
such length range). An example for correct count-
ing is shown in Table 9, and an example for incor-
rect counting is shown in Table 10. In conclusion,
advanced LLM searching algorithms and infer-
ence time scaling techniques do not make up for
defect in tokenizer.

E.2 Qwen Turbo

We evaluate Qwen Turbo using supervised Chain-
of-Thought (CoT) prompts. Tables 17 and 18
demonstrate an incorrect counting example using
tokenization type (a), Table 19 shows a correct
counting example using tokenization type (d).
Notably, Qwen Turbo generates more tokens per
CoT step compared to Claude 3.5 Sonnet, which
appears to lead to its slightly lower performance.

string-token ‘ len € [10-20] len € [20-30] len € [30-40]
type ‘ counta countb counta countb counta countb
(a) 56.40 62.50 26.20 32.20 16.20 15.90
(b) 75.10 80.00 50.60 54.60 31.10 28.30
(c) 93.40 96.00 81.60 83.50 59.20 57.60
(d) 95.90 96.70 83.20 86.50 68.10 63.50

Table 8: Counting results under the same settings as in
Table 6 but using Qwen Turbo API. Numbers indicate
the average accuracy (%) over 1000 random generated
instances.

This suggests that concise reasoning steps is bene-
ficial for counting accuracy.

E.3 GPT-40 mini

We present three progressive examples that demon-
strate the effectiveness of combining Chain-of-
Thought (CoT) reasoning with appropriate tok-
enization strategies:

1. Table 20 shows that using a base prompt with
standard BPE tokenization (type (a)) results
in a counting error of 3 from the correct value.

2. Table 21 demonstrates that incorporating su-
pervised CoT improves accuracy, reducing the
counting error to just 1.

3. Table 22 illustrates that combining supervised
CoT with type (d) character-wise tokenization
achieves perfect accuracy, matching the gold
label exactly.

These examples clearly demonstrate how the syn-
ergy between CoT reasoning and appropriate to-
kenization methods can progressively enhance
counting accuracy.

E.4 Claude 3.5 Sonnet

We evaluate Claude 3.5 Sonnet using supervised
CoT prompts. We provide example cases demon-
strating different tokenization approaches and their
outcomes:

» Tables 11 and 12 showcase incorrect count-
ing results using tokenization type (a)

e Tables 13 and 14 demonstrate correct count-
ing using tokenization type (d)

» Tables 15 and 16 illustrate correct counting
using tokenization type (c)

To sum up, our analyses show that tokenization
type (c) yields superior results compared to type (d).
Notably, in Tables 13 and 14, we observe that type



pure string BPE tokenization item-space-deliminated tokenization item-clear-deliminated tokenization
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Figure 9: Same error-shifting distribution (as in Figure 4) but for Claude model. Claude 3.5 tend to count more than
counting less, compared to GPT-4o.

(d) tokenization generates excessive and irrelevant
content (specifically, index information) which may
interfere with the accuracy of the counting process.

F Replication Experiments Note

We have open-sourced the experimental results for
every instance of each experiment, in the provided
GitHub link, to facilitate future research and analy-
sis by other researchers. All reported experiment
numbers are stable, using the same experimental
settings and prompts. Specifically, we observe an
average variance in accuracy of less than 1% across
runs of the same experiments, indicating that they
are fully replicable with the same model version
used. Note that updates to the API version may
cause potential variations in results, which are be-
yond our control.
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| GPT-40 & GPT-4o-mini |
abbabababaaaabababababaaabaaababababaaababa

Tokens Characters
13 43

|  GPT-48GPT-35 |
abbabababaaaabababababaaabaaababababaaababa

Tokens Characters
20 43

| Anthropic |
abbabababaaaabababababaaabaaababababaaababa

Tokens Characters
20 43

| Qwen |

abbabababaaaabababababaaabaaababababaaababa

Tokens Characters
20 43

| Grok |
abbabababaaaabababababaaabaaababababaaababa

Tokens Characters
15 43

| Llama 3 |

<|begin_of_text|>abbabababaaaabababababaaabaaababababaaababa<|end_of_text|>

Tokens Characters
22 43

Figure 10: Difference in tokenization on long binary strings without punctuations across different LLMs.

[ LLAMA |
(a) string: abbab (b) string: abbab (c) string: a,b,b,a, b (d) string: “a”, “b” “b” “a”, “b”
[ Claude |
(a) string: abbab (b) string: abbab (c) string: a,b,b,a,b (d) string: “a”, “b”, “b”, “a”, “b”
[ Mistral |
(a) string: abbab (b) string: abbab (c) string: a,b,b,a,b (d) string: “a”, “b” “b” “a”, “b”
| GROK |
(a) string: abbab (b) string: abbab (c) string: a,b,b,a, b ) string: “a”, “b”, “b”, “a”, “b”

Figure 11: Difference in tokenization on binary strings when counting instances are presented in different formats
with punctuations to facilitate tokenization, across different LLMs.
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Count the number of appearances of ‘{substring}’s in the string below. Directly output
‘Result: * followed by the counted number. Do not use bold font in the response.

String: {sample}

Response:

(a) Base prompt template

Determine the number of appearances of ‘{substring}’s in the string below. Think step by
step. Directly output ‘Result: > followed by the counted number. Do not use bold font in the
response.

String: {sample}

Response:

(b) Chain-of-Thought (unsupervised) prompt template

Task: Count the number of occurrences of the substring ‘{substring}’ in the given string step
by step. Do not use bold font in the response.

Instructions:

* [terate through the string and count each occurrence of the substring.
* Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.

* Conclude with: ‘Result: > followed by the number.

String: {sample}

Response:

(c) Chain-of-Thought (supervised) prompt template

Figure 12: Different prompt templates used in counting experiments. The templates include a base prompt, an
unsupervised chain-of-thought prompt, and a supervised chain-of-thought prompt.
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Reverse the string provided below. Think step by step. Output the final result in a dictionary
with the key ‘Result’. For instance, if the input string is ‘iamhappy’, the output would be:
{‘Result’: ‘yppahmai’}. The input string may contain punctuations, do not add them into
reversed string.

Input string: {{string} }

(a) Chain-of-Thought (unsupervised) prompt template

Reverse the string following the instructions below:
1. Initialize an empty string called ‘reversed’

2. For each character in the input string:

¢ Remove the first (leftmost) character
* Add this character to the beginning of ‘reversed’
* Display the remaining input string

3. Once all characters are processed, ‘reversed’ will contain the reversed string. Return
the reversed string in a dictionary format with the key ‘Result’. For example, the result
dictionary for input string "hello" will be { ‘Result’: ‘olleh’}.

Input String: {{string}}

(b) Chain-of-Thought (supervised) prompt template

Figure 13: Different prompt templates used in reversing experiments. The templates include an unsupervised
chain-of-thought prompt, and a supervised chain-of-thought prompt.
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Sort the string below in ascending order using insertion sort. Think step by step. Note that
lower case characters are greater than upper case characters. Convert the sorted characters
into a single string, and store the result in a dictionary with the key ‘Result.” For example,
given the string ‘2CsU4bSc’, the sorted result should be ‘24CSUbcs’ and should be stored as
{‘Result’: ‘24CSUbcs’ }.

String: {{string}}

(a) Chain-of-Thought (unsupervised) prompt template

Sort the string below in ascending order using insertion sort following the steps below. Note
that lower case characters are greater than upper case characters.

1. Start by creating an empty list for sorted characters.

2. For each step:

* Specify which character you’re currently looking and insert the character to the
correct place in sorted list.

* Display both the original string (showing characters remaining) and sorted list after
each step.

3. Conbine the sorted list to a single string. Return the sorted string in a dictionary format
with the key ‘Result’. For example, the result dictionary for input list “[‘2°, ‘C’, ‘s’, ‘U,
‘4°,°b’, S’ ‘c’]” will be { ‘Result’: 24CSUbcs’ }.

String: {{string}}

(b) Chain-of-Thought (supervised) prompt template

Figure 14: Different prompt templates used in sorting experiments. The templates include an unsupervised chain-of-
thought prompt, and a supervised chain-of-thought prompt.
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Model & Experiment:
OpenAl o1, token type (a), length 30-40

Prompt:
Count the number of appearances of ‘a’ in the string below. Do not use tool.

String: abaaaaaaabaabaaabbaaaaabaabbbbbbbabaaaaa

Response:

Model Response:
Let’s count the occurrences of ‘a’ in the given string:

String:
abaaaaaaabaabaaabbaaaaabaabbbbbbbabaaaaa

We’ll go through each character and count how many times ‘a’ appears:

a (1)
b

a (2)
a (3)
a (4)
a (95)
a (6)
a (7)
a (8)
b

a (9)
a (10)
b

a (11)
a (12)
a (13)
b

b

a (14)
a (15)
a (16)
a (17)
a (18)
b

a (19)
a (20)
b

b

b

b

b

b

b

a (21)
b

a (22)
a (23)
a (24)
a (25)
a (26)
a (27)

Number of ‘a’s counted: **27*%*

Correct Answer:
26

Table 9: Case Study 1 - Incorrect Prediction with ol (base prompt)
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Model & Experiment:
OpenAl o1, token type (a), length 30-40

Prompt:
Count the number of appearances of ‘b’ in the string below. Do not use tool.

String: babbbbbbbabbababbbaabbbbbbabaabbbbabb

Response:

Model Response:
Let’s count carefully:

The given string is:
babbbbbbbabbababbbaabbbbbbabaabbbbabb

Let’s go through it character by character and count every ‘b’:

OO0 O00® MO OOOO0OO0OCOYMM OO0 OO OOOOOTOTON O

Counting all the marked ‘b’s, we get a total of **27%%*,

Correct Answer:
27

Table 10: Case Study 2 - Correct Prediction with ol (base prompt)
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Model & Experiment:
Claude 3.5 Sonnet, token type (a), length 30-40

Prompt:

Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
¢ Iterate through the string and count each occurrence of the substring.
* Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.
* Conclude with: ‘Result: > followed by the number.

String: babbbababbbaabbbbaabaabaaabbaaababbbabb

Response:

Model Response:

Step 1: Initialize a counter to 0.
Counter =0

Step 2: Start iterating through the string:
b - not ‘a’, counter remains 0

a - found ‘a’, increment counter
Counter = 1

Step 3: Continue iterating:

b - not ‘a’, counter remains 1

b - not ‘a’, counter remains 1

b - not ‘a’, counter remains 1

b - not ‘a’, counter remains 1

a - found ‘a’, increment counter
Counter =2

Step 4: Continue iterating:

b - not ‘a’, counter remains 2

a - found ‘a’, increment counter
Counter =3

Step 5: Continue iterating:

b - not ‘a’, counter remains 3

b - not ‘a’, counter remains 3

b - not ‘a’, counter remains 3

a - found ‘a’, increment counter
Counter = 4

Step 6: Continue iterating:
a - found ‘a’, increment counter
Counter =5

Step 7: Continue iterating:
- , cou i
b - not ‘a’, counter remains 5
b - not ‘a’, counter remains 5
- , cou i
b - not ‘a’, counter remains 5
b - not ‘a’, counter remains 5
a - found ‘a’, increment counter
Counter = 6

Step 8: Continue iterating:
a - found ‘a’, increment counter
Counter =7

Table 11: Case Study 3 - Incorrect Prediction with Claude 3.5 Sonnet (CoT prompt)
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Step 9: Continue iterating:

b - not ‘a’, counter remains 7

a - found ‘a’, increment counter
Counter = 8

Step 10: Continue iterating:
a - found ‘a’, increment counter
Counter =9

Step 11: Continue iterating:

b - not ‘a’, counter remains 9

a - found ‘a’, increment counter
Counter = 10

Step 12: Continue iterating:
a - found ‘a’, increment counter
Counter =11

Step 13: Continue iterating:

b - not ‘a’, counter remains 11
b - not ‘a’, counter remains 11
a - found ‘a’, increment counter
Counter = 12

Step 14: Continue iterating:
a - found ‘a’, increment counter
Counter = 13

Step 15: Finish iterating through the remaining characters:

b - not ‘a’, counter remains 13
a - found ‘a’, increment counter
Counter = 14

Step 16: Iteration complete.

Result: 14

Correct Answer:
17

Table 12: Case Study 3 Continued
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Model & Experiment:
Claude 3.5 Sonnet, token type (d), length 30-40

Prompt:

Task: Count the number of occurrences of the substring ’a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
* Iterate through the string and count each occurrence of the substring.
» Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.
¢ Conclude with: ‘Result: > followed by the number.

String: [‘b’, ‘a’, sbv’ ‘b’, ‘b’, ¢a” ‘b’, ‘a’, ‘b’, ‘b’, sbv’ ‘a’, ‘a’, ‘b’, ‘bs7 ‘b’, ‘b’, ‘a’, ;a’, ‘b’, ‘a’, ‘a” ‘b’, ‘a’,
‘a’, ‘a’, ‘b,, Ab” ‘a,’ ‘a’, ‘a” ‘b,, Aa7’ ‘b,, ‘b’, ‘b’, ‘a’, Ab” ‘b’]

Response:

Model Response:

Step 1: Initialize counter to O
Counter: 0

Step 2: Start iterating through the string

[D’, a’, b, b, b, ‘@, b, ‘@, b’ b, b’ a’, b, b, b, b, e, ‘a, b, e, ‘al, b, ‘e’ ‘)
@b, b, @, et b, @, b, b, b, @, b, b

Step 3: Found ‘a’ at index 1

Counter: 1

Step 4: Found ‘a’ at index 5
Counter: 2

Step 5: Found ‘a’ at index 7
Counter: 3

Step 6: Found ‘a’ at index 11
Counter: 4

Step 7: Found ‘a’ at index 12
Counter: 5

Step 8: Found ‘a’ at index 17
Counter: 6

Step 9: Found ‘a’ at index 18
Counter: 7

Step 10: Found ‘a’ at index 20
Counter: 8

Step 11: Found ‘a’ at index 21
Counter: 9

Table 13: Case Study 4 - Correct Prediction with Claude 3.5 Sonnet 1 (CoT prompt)
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Step 12: Found ‘a’ at index 23
Counter: 10

Step 13: Found ‘a’ at index 24
Counter: 11

Step 14: Found ‘a’ at index 25
Counter: 12

Step 15: Found ‘a’ at index 28
Counter: 13

Step 16: Found ‘a’ at index 29
Counter: 14

Step 17: Found ‘a’ at index 30
Counter: 15

Step 18: Found ‘a’ at index 32
Counter: 16

Step 19: Found ‘a’ at index 36
Counter: 17

Step 20: Finished iterating through the string

Result: 17

Correct Answer:
17

Table 14: Case Study 4 Continued
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Model & Experiment:
Claude 3.5 Sonnet, token type (c), length 30-40

Prompt:

Task: Count the number of occurrences of the substring ’a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
¢ Iterate through the string and count each occurrence of the substring.
¢ Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.
* Conclude with: ‘Result: > followed by the number.
String: b, a,b, b, b, a,b,a,b,b,b,a,a,b,b,b,b,a,a,b,a,a,b,a,a,a,b,b,a,a,a,b,a,b,b,b,a,b,b

Response:

Model Response:

Step 1: Initialize counter to O
Counter: 0

Step 2: Start iterating through the string
b, - Counter: 0

a, - Found ‘a’. Counter: 1

b, - Counter: 1

b, - Counter: 1

b, - Counter: 1

a, - Found ‘a’. Counter: 2

b, - Counter: 2
a, - Found ‘a’. Counter: 3
b, - Counter: 3
b, - Counter: 3
b, - Counter: 3
a, - Found ‘a’. Counter: 4
a, - Found ‘a’. Counter: 5
b, - Counter: 5
b, - Counter: 5
b, - Counter: 5
b, - Counter: 5

a, - Found ’a’. Counter: 6
a, - Found ’a’. Counter: 7
b, - Counter: 7
a, - Found ’a’.

Table 15: Case Study 5 - Correct Prediction with Claude 3.5 Sonnet 2 (CoT prompt)
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Counter: 8

a, - Found ’a’. Counter: 9

b, - Counter: 9

a, - Found ’a’. Counter:
a, - Found ’a’. Counter:
a, - Found ’a’. Counter:

b, - Counter: 12
b, - Counter: 12

a, - Found ‘a’. Counter:
a, - Found ’a’. Counter:
a, - Found ‘a’. Counter:

b, - Counter: 15

a, - Found ‘a’. Counter:

b, - Counter: 16
b, - Counter: 16
b, - Counter: 16

a, - Found ‘a’. Counter:

b, - Counter: 17
b - Counter: 17

10
11
12

13
14
15

16

17

Step 3: Finished iterating through the string

Result: 17

Correct Answer:
17

Table 16: Case Study 5 Continued
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Model & Experiment:
Qwen Turbo, token type (a), length 30-40

Prompt:

Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
* Iterate through the string and count each occurrence of the substring.
» Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.
¢ Conclude with: ‘Result: * followed by the number.

String: baaabaaabaaababbbababbaababbabbaabb

Response:

Model Response:

To count the number of occurrences of the substring ‘a’ in the given string step by step, we will iterate
through the string and increment a counter each time we encounter an ‘a’.

String: baaabaaabaaababbbababbaababbabbaabb

Step 1: Start with the first character ‘b’, no ‘a’ found.

Step 2: Second character is ‘a’, increment the counter (counter = 1).
Step 3: Third character is ‘a’, increment the counter (counter = 2).

Step 4: Fourth character is ‘a’, increment the counter (counter = 3).
Step 5: Fifth character is ‘b’, no ‘a’ found.

Step 6: Sixth character is ‘a’, increment the counter (counter = 4).

Step 7: Seventh character is ‘a’, increment the counter (counter = 5).
Step 8: Eighth character is ‘b’, no ‘a’ found.

Step 9: Ninth character is ‘a’, increment the counter (counter = 6).
Step 10: Tenth character is ‘a’, increment the counter (counter = 7).
Step 11: Eleventh character is ‘b’, no ‘a’ found.

Step 12: Twelfth character is ‘a’, increment the counter (counter = 8).
Step 13: Thirteenth character is ‘b’, no ‘a’ found.

Step 14: Fourteenth character is ‘b’, no ‘a’ found.

Step 15: Fifteenth character is ‘b’, no ‘a’ found.

Step 16: Sixteenth character is ‘a’, increment the counter (counter = 9).
Step 17: Seventeenth character is ‘b’, no ‘a’ found.

Step 18: Eighteenth character is ‘a’, increment the counter (counter = 10).

Table 17: Case Study 6 - Incorrect Prediction with Qwen Turbo (CoT prompt)
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Step 19:
Step 20:
Step 21:
Step 22:
Step 23:
Step 24:
Step 25:
Step 26:
Step 27:
Step 28:
Step 29:
Step 30:
Step 31:
Step 32:
Step 33:
Step 34:
Step 35:
Step 36:
Step 37:
Step 38:
Step 39:
Step 40:
Step 41:
Step 42:

Nineteenth character is ‘b’, no ’a’ found.

Twentieth character is ‘b’, no ‘a’ found.

Twenty-first character is ‘a’, increment the counter (counter = 11).
Twenty-second character is ‘a’, increment the counter (counter = 12).
Twenty-third character is ‘b’, no ’a’ found.

Twenty-fourth character is ‘b’, no ‘a’ found.

Twenty-fifth character is ‘a’, increment the counter (counter = 13).
Twenty-sixth character is ‘b’, no ‘a’ found.

Twenty-seventh character is ‘a’, increment the counter (counter = 14).
Twenty-eighth character is ‘b’, no ‘a’ found.

Twenty-ninth character is ‘b’, no ‘a’ found.

Thirtieth character is ‘a’, increment the counter (counter = 15).
Thirty-first character is ‘b’, no ‘a’ found.

Thirty-second character is ‘b’, no ‘a’ found.

Thirty-third character is ‘a’, increment the counter (counter = 16).
Thirty-fourth character is ‘b’, no ‘a’ found.

Thirty-fifth character is ‘b’, no ‘a’ found.

Thirty-sixth character is ‘a’, increment the counter (counter = 17).
Thirty-seventh character is ‘b’, no ‘a’ found.

Thirty-eighth character is ‘b’, no ‘a’ found.

Thirty-ninth character is ‘a’, increment the counter (counter = 18).
Fortieth character is ‘b’, no ‘a’ found.

Forty-first character is ‘b’, no ‘a’ found.

Forty-second character is ‘a’, increment the counter (counter = 19).

Result: 19

Correct Answer:

18

Table 18: Case Study 6 Continued
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Model & Experiment:
Qwen Turbo, token type (d), length 30-40

Prompt:

Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
¢ Iterate through the string and count each occurrence of the substring.
* Use a counter to keep track of how many times the substring appears.
¢ Output your step-by-step counting process.
* Conclude with: ‘Result: > followed by the number.

String: [‘b’, ‘a’, ‘a7’ ‘a’, Ab” ‘a” ‘a’, ‘a7’ ‘b,, Aa” ‘a” ‘a’, ‘b’, ‘a,’ Ab” ‘b’, ‘b’, ‘a,’ ‘b’, ‘a” ‘b,, ‘b’, ‘a,’ Aa”
cbv, ‘a’, ‘b’, ‘b’, ‘a’, cbv, ‘b’, ‘a” ‘a” ‘b’, cb’]

Response:

Model Response:

To count the number of occurrences of the substring ‘a’ in the provided string, we’ll go through it step by
step:

- First element: ‘b’ - No match. Counter = 0

- Second element: ‘a’ - Match found. Counter = 1

- Third element: ‘a’ - Match found. Counter = 2

- Fourth element: ‘a’ - Match found. Counter = 3

- Fifth element: ‘b’ - No match. Counter = 3

- Sixth element: ’a’ - Match found. Counter = 4

- Seventh element: ‘a’ - Match found. Counter = 5

- Eighth element: ‘a’ - Match found. Counter = 6

- Ninth element: ‘b’ - No match. Counter = 6

- Tenth element: ‘a’ - Match found. Counter = 7

- Eleventh element: ‘a’ - Match found. Counter = 8

- Twelfth element: ‘a’ - Match found. Counter = 9

- Thirteenth element: ‘b’ - No match. Counter = 9

- Fourteenth element: ‘a’ - Match found. Counter = 10

- Fifteenth element: ‘b’ - No match. Counter = 10

- Sixteenth element: ‘b’ - No match. Counter = 10

- Seventeenth element: ‘b’ - No match. Counter = 10

- Eighteenth element: ‘a’ - Match found. Counter = 11

- Nineteenth element: ‘b’ - No match. Counter = 11

- Twentieth element: ‘a’ - Match found. Counter = 12

- Twenty-first element: ‘b’ - No match. Counter = 12

- Twenty-second element: ‘b’ - No match. Counter = 12
- Twenty-third element: ‘a’ - Match found. Counter = 13
- Twenty-fourth element: ‘a’ - Match found. Counter = 14
- Twenty-fifth element: ‘b’ - No match. Counter = 14

- Twenty-sixth element: ‘a’ - Match found. Counter = 15
- Twenty-seventh element: ‘b’ - No match. Counter = 15
- Twenty-eighth element: ‘b’ - No match. Counter = 15
- Twenty-ninth element: ‘a’ - Match found. Counter = 16
- Thirtieth element: ‘b’ - No match. Counter = 16

- Thirty-first element: ‘b’ - No match. Counter = 16

- Thirty-second element: ‘a’ - Match found. Counter = 17
- Thirty-third element: ‘a’ - Match found. Counter = 18
- Thirty-fourth element: ‘b’ - No match. Counter = 18

Result: 18
Correct Answer:
18

Table 19: Case Study 7 - Correct Prediction with Qwen Turbo (CoT prompt)
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Model & Experiment:
GPT-40 mini, token type (a), length 20-30

Prompt:

Count the number of appearances of ’a’s in the string below. Directly output 'Result: * followed by the
counted number. Do not use bold font in the response.

String: abaaababbbbbbaaaabaaaa

Response:

Model Response:
Result: 10

Correct Answer:
13

Table 20: Case Study 8 - Incorrect Prediction with GPT-40 mini (base prompt)
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Model & Experiment:
GPT-40 mini, token type (a), length 20-30

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use

bold font in the response.

Instructions:
* Iterate through the string and count each occurrence of the substring.
* Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.

* Conclude with: ‘Result: > followed by the number.

String: abaaababbbbbbaaaabaaaa

Model Response:

1. Start with the string: abaaababbbbbbaaaabaaaa.
2. Initialize a counter at 0.
3. Iterate through each character in the string.

- Index 0: ’a’ (counter = 1)

- Index 1: ’b’ (counter remains 1)
- Index 2: ’a’ (counter =2)

- Index 3: ’a’ (counter = 3)

- Index 4: ’a’ (counter = 4)

- Index 5: ’b’ (counter remains 4)
- Index 6: ’a’ (counter = 5)

- Index 7: ’b’ (counter remains 5)
- Index 8: ’b’ (counter remains 5)
- Index 9: ’b’ (counter remains 5)
- Index 10: ’b’ (counter remains 5)
- Index 11: ’a’ (counter = 6)

- Index 12: ’a’ (counter = 7)

- Index 13: ’a’ (counter = 8)

- Index 14: ’b’ (counter remains 8)
- Index 15: ’a’ (counter = 9)

- Index 16: ’a’ (counter = 10)

- Index 17: ’a’ (counter = 11)

- Index 18: ’a’ (counter = 12)

4. End of string reached.

Result: 12

Correct Answer:
13

Table 21: Case Study 9 - Incorrect Prediction with GPT 40 mini (CoT prompt)
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Model & Experiment:
GPT-40 mini, token type (a), length 20-30

Prompt:

Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:
* Iterate through the string and count each occurrence of the substring.
» Use a counter to keep track of how many times the substring appears.
* Output your step-by-step counting process.
* Conclude with: ‘Result: > followed by the number.

String: [‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘a’]

Model Response:
Let’s count the occurrences of the substring ‘a’ step by step in the given string:

1. Initialize a counter at 0.
2. Start iterating through the list: [‘a’, b, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’ ‘a’, ‘a’, ‘a’, ‘a’,
‘b, e, )

- Index O: The element is ‘a’. Increment counter to 1.

- Index 1: The element is ‘b’. Counter remains 1.

- Index 2: The element is ‘a’. Increment counter to 2.

- Index 3: The element is ‘a’. Increment counter to 3.

- Index 4: The element is ‘a’. Increment counter to 4.

- Index 5: The element is ’b’. Counter remains 4.

- Index 6: The element is ‘a’. Increment counter to 5.

- Index 7: The element is ‘b’. Counter remains 5.

- Index 8: The element is ‘b’. Counter remains 5.

- Index 9: The element is ‘b’. Counter remains 5.

- Index 10: The element is ‘b’. Counter remains 5.

- Index 11: The element is ‘b’. Counter remains 5.

- Index 12: The element is ‘b’. Counter remains 5.

- Index 13: The element is ‘a’. Increment counter to 6.
- Index 14: The element is ‘a’. Increment counter to 7.
- Index 15: The element is ‘a’. Increment counter to 8.
- Index 16: The element is ‘a’. Increment counter to 9.
- Index 17: The element is ‘b’. Counter remains 9.

- Index 18: The element is ‘a’. Increment counter to 10.
- Index 19: The element is ‘a’. Increment counter to 11.
- Index 20: The element is ‘a’. Increment counter to 12.
- Index 21: The element is ‘a’. Increment counter to 13.

3. The final count after iterating through all elements is 13.

Result: 13
Correct Answer:
13

Table 22: Case Study 10 - Correct Prediction with GPT-40 mini (CoT prompt)
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