
Theoretical Barriers of Modern Tokenizer on Symbolic and Arithmetic
Computation in Language Models

Anonymous ARR Submission

Abstract

Tokenization is the first—and often underappre-001
ciated—layer of computation in language mod-002
els. While Chain-of-Thought (CoT) prompt-003
ing enables transformer models to approximate004
recurrent computation by externalizing inter-005
mediate steps, we show that the success of006
such reasoning is fundamentally bounded by007
the structure of tokenized inputs. This work008
presents a theoretical and empirical investi-009
gation into how tokenization schemes, partic-010
ularly subword-based methods like byte-pair011
encoding (BPE), impede symbolic computa-012
tion by merging or obscuring atomic reason-013
ing units. We introduce the notion of Token014
Awareness to formalize how poor token granu-015
larity disrupts logical alignment and prevents016
models from generalizing symbolic procedures.017
Through systematic evaluation on arithmetic018
and symbolic tasks, we demonstrate that token019
structure dramatically affect reasoning perfor-020
mance, causing failure even with CoT, while021
atomically-aligned formats unlock strong gen-022
eralization, allowing small models (e.g., GPT-023
4o-mini) to outperform larger systems (e.g., o1)024
in structured reasoning. Our findings reveal025
that symbolic reasoning ability in LLMs is not026
purely architectural, but deeply conditioned on027
token-level representations. Full code, prompts,028
and results are available at Anonymous GitHub.029

1 Introduction030

Inductive reasoning and arithmetic computation,031

such as counting, addition, and pattern general-032

ization, are foundational components of symbolic033

and algorithmic intelligence. These abilities have034

long been studied across disciplines—from their035

cognitive development in humans (Wynn, 1990;036

De Bruijn, 1964) to their formal characterization in037

logic and computability theory (Boolos et al., 2002;038

Cooper, 2017). In theoretical computer science,039

arithmetic primitives like counting and addition040

have been analyzed in terms of circuit complex-041

ity (Jerrum, 1995), computational depth (Fischer042

et al., 1968), and machine models such as counter 043

automata (Ibarra et al., 2002). Even simple op- 044

erations—e.g., counting from 1 to n—are known 045

to require a depth complexity that grows with in- 046

put length, imposing strict lower bounds on any 047

computational model (Fischer et al., 1968). 048

Transformers (Vaswani, 2017), including both 049

autoregressive (GPT-style) (Gregor et al., 2014; 050

Achiam et al., 2023) and non-autoregressive 051

(BERT-style) (Devlin, 2018; Liu et al., 2022) vari- 052

ants, are inherently limited to constant-depth com- 053

putation (Zhang et al., 2024; Delétang et al., 2022; 054

Li et al., 2024a). In neural models, all computa- 055

tion occur within model’s latent space H, where 056

the hidden state h encodes intermediate computa- 057

tional representations. Unlike recurrent architec- 058

tures—where hidden states evolve over time via 059

recursive updates ht = gθ(ht−1)—Transformers 060

update h only across a fixed number of layers, in- 061

dependent of input length. As a result, a standard 062

Transformer can process (or reason over) its hidden 063

states only a constant number of times, limiting its 064

computational depth and situating it at the lower 065

end of the Chomsky hierarchy (Delétang et al., 066

2022). This architectural bottleneck fundamen- 067

tally restricts Transformer-based models—ranging 068

from task-specific expert systems to large-scale 069

LLMs—from solving even basic arithmetic oper- 070

ations such as counting, which require iterative 071

updates to internal state and growing depth with 072

input length. 073

Chain of Thought (CoT)(Wei et al., 2022) revo- 074

lutionizes the reasoning paradigm by shifting the 075

locus of computation from the latent space H to 076

the textual output space O(Zhang et al., 2024). By 077

externalizing intermediate reasoning steps into nat- 078

ural language "thoughts," CoT enables transformer- 079

based models to tackle fundamental computational 080

tasks that would otherwise exceed their architec- 081

tural capacity. These include basic arithmetic and 082

symbolic reasoning operations such as counting, 083

1

https://anonymous.4open.science/r/Counting-ARR-DDEF

Figure 1: Illustration of inductive reasoning as performed by humans, RNNs, and LLMs with CoT, respectively.

addition, and sequence manipulation. Theoretical084

studies (Li et al., 2024a; Zhang et al., 2024; Feng085

et al., 2024) demonstrate that CoT-augmented lan-086

guage models, under idealized assumptions, pos-087

sess an upper bound capacity to simulate computa-088

tions of arbitrary complexity—thereby extending089

the class of tasks solvable beyond what standard090

Transformers can achieve.091

Despite extensive theoretical analyses and guar-092

antees on the upper bound of computational abil-093

ities (Zhang et al., 2024; Chang and Bisk, 2024),094

actual model performance remains far below these095

limits. As LLMs scale from millions to billions of096

parameters (Achiam et al., 2023), improvements097

on fundamental tasks such as counting have been098

marginal—GPT-4, for instance, still struggles to099

count the number of "r"s in a word. While re-100

cent work has explored contributing factors like101

training data (Allen-Zhu and Li, 2023) and posi-102

tional encoding (Chang and Bisk, 2024), one of103

the most basic components—tokenization—has re-104

ceived surprisingly little attention. In particular,105

modern byte pair encoding (BPE) (Sennrich, 2015)106

merges multiple characters into single tokens for107

efficiency, often degrading arithmetic reasoning108

due to information loss during tokenization. Even109

OpenAI’s latest o11 model, which integrates Monte110

Carlo Tree Search (MCTS) for improved reason-111

ing, achieves only 50% accuracy on long string112

arithmetic tasks involving 30–40 characters.113

In this work, we systematically investigate how114

tokenization choices can substantially constrain the115

theoretical reasoning and arithmetic capabilities of116

neural models. Our approach is model-agnostic,117

allowing us to evaluate even closed-source LLMs118

with undisclosed tokenization schemes. Leverag-119

1https://openai.com/o1

ing extensive experiments with Chain of Thought 120

(CoT)—which has been theoretically shown to 121

achieve Turing completeness under idealized con- 122

ditions (Li et al., 2024b)—we demonstrate that the 123

choice of tokenization plays a critical role in un- 124

locking a model’s full computational potential and 125

bridging the gap between theoretical guarantees 126

and practical performance. Neglecting this factor 127

can lead to performance degradations of up to 80%. 128

Moreover, we find that the impact of tokenization is 129

model-dependent: some tokens disproportionately 130

hinder performance on counting tasks, even when 131

the underlying task remains fixed. 132

2 Neural Networks and Arithmetic: A 133

Revisit 134

Training neural networks for arithmetic com- 135

putation. Arithmetic operations—including count- 136

ing, matching, and bracket balancing—are foun- 137

dational for symbolic reasoning and more com- 138

plex algorithmic tasks (Chang and Bisk, 2024). 139

Early studies on training neural networks (NNs) 140

for such tasks focused on architectures capable of 141

handling variable-length inputs. Since multi-layer 142

perceptrons (MLPs) (Rosenblatt, 1958) are inher- 143

ently limited to fixed-size inputs, initial progress 144

came through recurrent neural networks (RNNs). 145

Rodriguez et al. (1999) trained early RNNs to 146

recognize the regular language anbn, which re- 147

quires the network to implicitly count occurrences 148

of a and b. Of the 50 networks trained, 8 success- 149

fully generalized to longer sequences, highlighting 150

RNNs’ capacity for basic arithmetic generaliza- 151

tion. Building on this, Suzgun et al. (2019) showed 152

that LSTMs could perform more complex dynamic 153

counting via bracket pairing tasks, leveraging gat- 154

ing and cell-state mechanisms to maintain multiple 155

2

https://openai.com/o1

Figure 2: CoT vs Answer Only Generation Models.

counters—capabilities that standard RNNs lacked.156

157

Theory of Model Architectures with Compos-158

ability. Delétang et al. (2022) systematically inves-159

tigated arithmetic capabilities across modern archi-160

tectures, including RNNs, LSTMs, and Transform-161

ers. Their findings confirmed that while LSTMs ex-162

hibit computational behavior aligned with counter163

machines, Transformers consistently fail at even164

basic counting tasks. Chang and Bisk (2024) ex-165

tended this analysis to newer architectures such166

as Mamba (Gu and Dao, 2023) and RWKV (Peng167

et al., 2023), revealing that these models also under-168

perform on arithmetic tasks outside their training169

distributions—often performing worse than classic170

RNNs in generalization.171

Recent studies (Weiss et al., 2018; Ackerman172

and Cybenko, 2020) have further validated the173

computational capabilities of both RNNs and174

LSTMs, particularly for tasks requiring symbolic175

or arithmetic reasoning. In contrast, Transform-176

ers—lacking inherent recurrence—are restricted177

to TC0 complexity in their inductive reasoning ca-178

pacity (Li et al., 2024a), placing them at the lower179

bound of the Chomsky hierarchy (Sanford et al.,180

2024; Li et al., 2024a; Delétang et al., 2022). As a181

result, they are fundamentally incapable of solving182

even basic algorithmic tasks, such as arithmetic pat-183

tern induction or sequence manipulation, without184

incorporating explicit inductive biases (Chang and185

Bisk, 2024).186

3 Theoretical Limits of Answer-Only187

Models for Arithmetic and Symbolic188

Computation.189

Transformer-based models (Vaswani, 2017) with-190

out Chain-of-Thought (CoT) prompting (Fig. 2 left191

2) are inherently constrained by their fixed architec-192

tural depth and lack of recurrence. Let X be the193

input token space, H the hidden state space, and O194

the output token space. For a Transformer with L195

layers and input sequence x1:n ∈ X n, the hidden196

representation at layer ℓ and position t is given by197

h
(ℓ)
t = Layerℓ

(
h
(ℓ−1)
1:n

)
, with h

(0)
t = Embed(xt). 198

The output token ot ∈ O is then computed as 199

ot = Softmax
(
Wh

(L)
t

)
. 200

This process applies a fixed sequence of trans- 201

formations to each input xt, with the number of 202

computational steps bounded above by L = O(1). 203

Since L does not scale with the input length n, 204

the depth complexity of computation in such mod- 205

els is constant, i.e., DepthTransformer = O(1). As 206

established in complexity theory (Zhang et al., 207

2024; Li et al., 2024a; Chang and Bisk, 2024), 208

this places answer-only Transformers in the class 209

TC0—constant-depth circuits with polynomial size 210

and threshold gates—incapable of performing even 211

simple arithmetic functions such as parity, addition, 212

or comparison over unbounded inputs. 213

Formally, consider a function f : X n → Om 214

defined by a task such as computing sum(x1:n). 215

Such tasks require a computation of depth Ω(log n) 216

for associative operations and Ω(n) for sequentially 217

dependent operations (e.g., counting, carry prop- 218

agation, or string reversal) (Fischer et al., 1968). 219

Since L is constant in Transformers and all trans- 220

formations are composed in parallel across tokens, 221

such models fail to meet the depth requirement: 222

Depthtask(f) > DepthTransformer implies that the 223

Transformer cannot compute f . 224

Furthermore, Transformers lack a mechanism to 225

store and evolve intermediate computational states 226

over time. In recurrent models, hidden states ht 227

are recursively defined as ht = gθ(ht−1,xt), al- 228

lowing the system to simulate Turing-complete be- 229

havior (Zhang et al., 2024; Li et al., 2024b). In con- 230

trast, Transformers treat all inputs simultaneously 231

through attention-based aggregation without itera- 232

tive update: h(L)
t = fattn(x1:n), disallowing sym- 233

bolic loop constructs or dynamic memory—key 234

components in arithmetic computation. 235

When constrained to generate only answer to- 236

kens o1:m ∈ Om without emitting intermediate 237

reasoning steps (Fig 2), the model’s total com- 238

putational budget is tightly bound by m, which 239

is typically small. Let o1:m = f(x1:n) be the 240

model’s prediction. Then, for a computation that 241

requires T (n) steps, with T (n) ≫ m, the model 242

must either (1) compress computation into fixed 243

layers—violating the task’s depth complexity—or 244

(2) memorize input-output mappings—an approach 245

that does not generalize beyond training. 246

This reliance on shallow function approximation 247

implies that such models can only succeed by mem- 248

3

orizing specific input-output pairs, not by executing249

general algorithms. Empirically, these models ex-250

hibit sharp performance degradation on arithmetic251

tasks outside their training distribution (Chang and252

Bisk, 2024).253

If the maximum number of distinct computation254

traces a model can represent with d-dimensional255

hidden states and p-bit numerical precision: |H| ≤256

2dp. Therefore, the number of unique state transi-257

tions is also bounded above by 2dp, which is finite258

and insufficient for representing the O(n)-length259

trajectories required for tasks such as binary addi-260

tion or bracket matching.261

In summary, models limited to generating only262

final answer tokens without CoT or external recur-263

rence simulation (Fig 2).264

4 CoT under Ideal Assumptions Enables265

General Arithmetic Computation266

Transformer-based LLMs (Achiam et al., 2023;267

Touvron et al., 2023; Bai et al., 2023), though pow-268

erful, are fundamentally bounded by their fixed269

architectural depth (Li et al., 2024a; Zhang et al.,270

2024), limiting their ability to perform arithmetic271

operations that require sequential, stateful updates.272

Chain-of-Thought (CoT) prompting (Wei et al.,273

2022), however, offers a mechanism to simulate274

recurrence, transforming the depth-limited Trans-275

former into a theoretically Turing-complete system276

under ideal assumptions.277

4.1 Inductive Arithmetic Requires Depth278

Arithmetic reasoning, in both human cognition and279

formal computation, often involves inductive up-280

dates across time or space (Fig 1). For instance,281

computing the cumulative sum of a digit sequence282

x1:n = (7,3,2, · · ·) requires maintaining an accu-283

mulator that evolves as st = st−1 + xt over t = 1284

to n. In recurrent neural networks (RNNs), this is285

naturally represented as ht = gθ(ht−1,xt), where286

the hidden state ht stores intermediate quantities287

such as partial sums, carries, or flags. The computa-288

tion depth required for such tasks is O(n), aligning289

with results from counter machine theory (Fischer290

et al., 1968).291

Transformers, in contrast, lack temporal recur-292

rence. Their hidden states ht are updated via a293

fixed sequence of layers, independent of sequence294

length. As a result, their total reasoning depth is295

O(1) per token. Because all xt are processed in296

parallel, the Transformer cannot simulate stepwise297

updates required for arithmetic unless all logic is 298

memorized or encoded through exponentially wide 299

circuits (Li et al., 2024a). 300

This explains why arithmetic tasks—such 301

as computing sum(x1:n), reverse(x1:n), or 302

counttoken(x1:n)—are infeasible for answer- 303

only Transformers without inductive bias (Chang 304

and Bisk, 2024; Delétang et al., 2022). These tasks 305

require depth-sensitive computation, where each 306

output depends on a chain of intermediate results 307

not recoverable from input alone. 308

4.2 Chain-of-Thought Simulates Recurrent 309

Computation 310

Chain-of-Thought (CoT) reasoning allows a Trans- 311

former to externalize its hidden state through in- 312

termediate tokens. Instead of directly mapping 313

x1:n → y, the model generates a sequence of 314

thought tokens o1:k: 315

x1:n ⇒ (o1,o2, . . . ,ok) ⇒ y. 316

Each ot can encode intermediate computations 317

(e.g., partial sums, loop counters, flags) that are 318

later re-ingested through the embedding layer, 319

reinitializing the next latent state: ht+1 = 320

fθ(Embed(ot),xt+1). 321

This iterative reasoning cycle approximates the 322

recurrence in RNNs:ht−1 ⇒ ot ⇒ ht, where 323

ot encodes sufficient information from ht−1 to 324

resume and advance computation. Under ideal 325

assumptions—namely unlimited CoT token bud- 326

get and precise token-to-state fidelity—this ex- 327

ternalization loop can simulate unbounded depth, 328

making CoT+autoregressive models Turing com- 329

plete (Zhang et al., 2024; Li et al., 2024b). 330

5 Tokenization as a Barrier to 331

Chain-of-Thought Computation 332

Despite the theoretical promise of Chain-of- 333

Thought (CoT) prompting to approximate 334

Turing-complete computation under ideal as- 335

sumptions (Zhang et al., 2024; Li et al., 2024a), 336

empirical failures persist even in state-of-the-art 337

models such as GPT-4. These failures are partic- 338

ularly evident in arithmetic and symbolic tasks 339

that require precise reasoning over fine-grained 340

units (e.g., digits, letters, or symbols), where large 341

language models often yield incorrect results for 342

inputs of even moderate length (e.g., computing the 343

number of rs in Strawberry). This discrepancy 344

highlights a critical limitation: CoT effectiveness is 345

4

inherently bounded not just by model architecture,346

but also by the expressiveness of the underlying347

language, which is in turn shaped by the tokenizer.348

We treat tokenization as a black-box preproces-349

sor x1:n
T−→ t1:m, where x1:n is a raw input string350

over characters and t1:m is the resulting sequence351

of tokens from vocabulary V . Modern tokenizers352

such as byte-pair encoding (BPE) (Sennrich, 2015)353

are designed to optimize compression and train-354

ing efficiency, not fidelity of semantic or syntactic355

granularity. However, for CoT reasoning to suc-356

ceed in arithmetic and symbolic computation, the357

token space V must be able to express and preserve358

intermediate state information.359

5.1 Expressiveness and the Token-to-Thought360

Mapping361

We define the expressiveness of a language L =362

(G,V)—with grammar G and vocabulary V—as363

the number of unique semantically meaningful se-364

quences SL it can generate:365

Expressiveness(L) := |SL|.366

For a CoT process to emulate Turing-complete367

computation, it must support a recurrent approxi-368

mation: ht−1 → (o1, . . . ,ok) → ht, where latent369

state ht−1 ∈ H is decoded into intermediate nat-370

ural language tokens o1:k ∈ Vk, which are then371

re-embedded and fed back to reconstruct ht.372

This implies the need for a high-fidelity vector-373

to-token mapping:374

ϕ : H −→ V∗ and ψ : V∗ −→ H,375

such that the composed transformation ψ ◦376

ϕ(ht−1) ≈ ht retains sufficient computational377

state to perform stepwise updates. Tokenization378

introduces two major obstacles to this cycle, de-379

grading the effective CoT expressiveness.380

5.2 Damage Type I: Information Hiding via381

Token Granularity382

The first form of damage is semantic obfuscation.383

Suppose the reasoning task requires operating over384

atomic units (e.g., characters, digits), but tokeniza-385

tion merges these into opaque multi-character to-386

kens: Strawberry → [Straw,berry]. Now,387

let ti ∈ V denote a token for which the model388

lacks fine-grained internal features (e.g., how many389

r’s are present). We define the token awareness390

function as:391

TokenAware(ti,prop) := I [prop ∈ Emb(ti)] ,392

where prop denotes a property (e.g., digit count, 393

lexical features), and Emb(ti) is the token embed- 394

ding. When TokenAwareness(ti,prop) = 0, rea- 395

soning that relies on prop (e.g., “count the number 396

of 3’s”) will fail. Thus, even if the CoT reasoning 397

process is intact, its input signal is corrupted at the 398

encoding layer. 399

5.3 Damage Type II: Limited CoT 400

Expressiveness via Token Bottleneck 401

The second, more subtle limitation occurs during 402

the CoT process itself. The latent state ht−1 stores 403

accumulated reasoning. To externalize this into 404

thought tokens o1:k, we require that: 405

∀ht−1 ∈ H,∃o1:k ∈ Vk such that ϕ(ht−1) = o1:k, 406

but when V is coarse (e.g., BPE with token merges) 407

or lacks the necessary expressive forms (e.g., miss- 408

ing digits, variable names, or operations), this sur- 409

jection fails. Let Sh be the space of latent states 410

and So be the expressible token sequences. Then 411

CoT fidelity is bounded as: 412

Fidelity(CoT) ≤ |ϕ(Sh) ∩ So|
|Sh|

. 413

Low expressiveness ⇒ low overlap ⇒ critical rea- 414

soning steps cannot be externalized. 415

This mismatch becomes catastrophic in arith- 416

metic tasks where thought tokens must verbalize 417

structured computations (e.g., carrying, intermedi- 418

ate sums). Without expressive enough V , many 419

ht−1 are untranslatable, rendering the CoT step 420

ineffective. The model is thus forced to either trun- 421

cate reasoning or approximate it via memorized 422

heuristics, both of which degrade generalization. 423

5.4 Formal Failure Case: CoT under BPE 424

Tokenizer 425

Assume the model is asked to compute a symbolic 426

function f : x1:n → y (e.g., reverse digits). The 427

optimal CoT process proceeds via: 428

h0 → o1:k1 → h1 → ok1+1:k2 → · · · → y, 429

but if o1:ki /∈ SL due to token constraints, then 430

hi+1 will be misaligned, i.e., hi+1 ̸≈ g(hi). Over 431

time, errors compound, and f becomes uncom- 432

putable. 433

5

Figure 3: Four types of string formatting to manipulate tokenization in counting. Examples in the figure are
tokenized using the GPT-4o tokenizer. Each string-token type is labeled as (a), (b), (c), and (d) in the diagram. Note
that changing the format does not alter the fundamental nature or difficulty of the counting task.

5.5 Quantifying Tokenization Effects on434

Symbolic Computation435

To complement our theoretical findings, we intro-436

duce a general, model-agnostic framework to eval-437

uate how tokenization impacts symbolic and arith-438

metic reasoning in LLMs. While many models are439

closed-source, we treat LLMs as black boxes and440

isolate tokenization as the key variable influencing441

performance.442

Let x ∈ X n be a character-level input string443

and T a tokenizer mapping it into a token se-444

quence t1:m = T (x), where each ti ∈ V comes445

from a fixed vocabulary. The LLM M then per-446

forms a symbolic task by computing an output447

y = M(t1:m). Our goal is to determine how mis-448

matches between task granularity and token struc-449

ture affect the model’s ability to solve f : X n →450

Y .451

We base our input manipulation on three typi-452

cal properties of modern BPE-like tokenizers: (1)453

Common substrings of 2–4 characters are merged454

into single tokens. (2) Delimiters (e.g., spaces,455

commas) are usually merged with adjacent tokens.456

(3) Adding repeated delimiters can break these457

merges and force token boundaries. These patterns458

let us construct inputs that vary tokenization while459

keeping the underlying symbolic task fixed.460

Input Design. For a symbolic function f (e.g.,461

digit sum, string reversal, pattern matching), we462

generate two sets of inputs:463

• Atomic-aligned inputs xatomic: token bound-464

aries align with units required for the task.465

• Merged-token inputs xmerged: intentionally466

merged to obscure symbolic units within to-467

kens.468

If the model lacks internal awareness of sub-469

token structure (e.g., characters inside a token),470

then symbolic reasoning that depends on those 471

units will fail—even if CoT prompting is used. 472

Quantifying Degradation. We define the tok- 473

enization damage as the average accuracy drop: 474

∆tok := |Ex

[
A(xatomic)−A(xmerged)

]
|, 475

where A(·) is model accuracy. 476

A high ∆tok indicates that the model relies
on token structure and cannot generalize
symbolic logic across inconsistent tokeniza-
tions.

477

6 Experiments 478

6.1 Settings 479

We evaluate the impact of tokenization and input 480

formatting on symbolic reasoning capabilities of 481

large language models (LLMs). We focus on three 482

fundamental symbolic tasks: Arithmetic counting, 483

Sorting and Sorting. 484

Each task operates on inputs drawn from con- 485

trolled domains (letters, digits, or words), and 486

varies in input length and tokenization strategy. 487

Despite differing surface forms, all tasks share a 488

symbolic core that requires composition, memory, 489

and manipulation of atomic units. Importantly, the 490

task identity remains unchanged across formatting 491

conditions. 492

To isolate the role of tokenization, we disable 493

tool use in all models and treat LLMs as black-box 494

functions M◦T , where T is the tokenizer and M 495

is the model. 496

For counting tasks, we test four competitive 497

LLMs: GPT-4o-mini, Claude 3.5 Sonnet, Qwen 498

Turbo, and OpenAI o1. For sorting and reversing, 499

we focus on GPT-4o-mini due to its consistent per- 500

formance and API accessibility. Each experiment 501

6

Counting letter a Counting letter b

String-Token Type len ∈ [10-20] len ∈ [20-30] len ∈ [30-40] len ∈ [10-20] len ∈ [20-30] len ∈ [30-40]

no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT

pure string BPE tokens (a) 30.10 45.70 15.10 9.10 6.40 2.00 33.20 47.70 14.00 9.40 3.80 2.70
" "-deliminated token (b) 46.20 58.40 16.10 24.90 7.50 10.90 45.90 63.70 17.60 34.00 5.60 18.60
", "-deliminated token (c) 56.00 55.40 19.40 38.60 10.20 28.10 63.60 69.30 32.80 56.10 13.90 42.30

precise-item token (d) 50.70 96.80 15.80 81.60 7.90 56.10 58.30 96.50 30.20 90.00 12.60 70.80
∆tok [max] 25.90 41.10 4.30 72.50 3.80 54.10 30.40 48.80 18.80 80.60 10.10 68.10

Table 1: Results of counting as and bs in string consisting of letter a and b, using GPT-4o-mini API. Numbers
indicate the average accuracy (%) over 1000 random generated instances.

Counting letter e Counting letter z

String-Token Type len ∈ [10-20] len ∈ [20-30] len ∈ [30-40] len ∈ [10-20] len ∈ [20-30] len ∈ [30-40]

no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT no-CoT CoT

pure string BPE tokens (a) 26.60 55.20 19.80 12.20 11.40 2.10 31.10 59.10 11.70 22.10 4.60 7.30
" "-deliminated token (b) 41.00 52.90 23.90 28.20 13.00 16.00 45.30 63.90 16.60 46.20 6.80 29.50
", "-deliminated token (c) 45.50 64.20 27.40 44.20 18.00 27.60 56.20 73.60 28.20 55.60 13.90 41.90

precise-item token (d) 60.10 97.70 32.50 89.30 15.30 70.70 60.60 98.40 30.60 93.80 13.30 74.80
∆tok [max] 33.50 44.80 12.70 77.10 6.60 68.60 29.50 39.30 18.90 71.70 9.30 67.50

Table 2: Results of counting es and zs in string consisting of letter e and z, using GPT-4o-mini model. Numbers
indicate the average accuracy (%) over 1000 random generated instances.

Method/Length Letter Letter+Digit Digit

Str List ∆tok Str List ∆tok Str List ∆tok

CoT
5-10 24.6 32.0 7.4 30.1 35.7 5.6 56.2 84.4 27.8

10-15 3.3 8.7 5.4 5.4 10.1 4.7 7.9 33.0 25.1
15-20 0.4 1.1 0.7 0.7 2.7 2.0 0.8 4.8 4.0

SCoT
5-10 28.0 35.1 7.1 31.1 38.5 7.4 64.7 84.8 20.1

10-15 10.4 12.6 2.2 10.6 15.6 5.0 15.6 34.6 19.0
15-20 2.4 3.4 1.0 2.6 4.7 2.1 3.2 8.6 5.4

Table 3: Performance on sorting tasks using GPT-
4o mini with Chain-of-Thought (CoT) and Supervised
Chain-of-Thought (SCoT) across different input types,
length ranges and tokenization types.

Method/Length Random Word High-freq Word

Str List ∆tok Str List ∆tok Str List ∆tok

CoT

5-10 46.0 70.0 24.0 39.1 56.5 17.4 54.2 66.6 12.4
10-15 8.6 38.1 29.5 11.7 22.4 10.7 13.6 25.9 12.3
15-20 2.5 20.1 17.6 1.5 8.0 6.5 2.3 9.0 6.70
20-25 0.3 9.6 9.3 0.5 2.2 1.7 0.6 2.4 1.8
25-30 0.4 4.7 4.3 0.1 0.7 0.6 0.5 0.4 0.1

SCoT

5-10 50.2 72.1 21.9 51.1 68.0 16.9 59.1 72.3 23.2
10-15 35.8 56.9 21.1 29.9 52.8 22.9 33.6 56.5 22.9
15-20 24.9 44.4 19.5 18.7 38.9 20.2 21.5 43.9 22.4
20-25 18.6 31.3 12.7 13.6 30.1 16.5 12.3 32.6 20.3
25-30 12.6 23.8 11.2 7.2 21.4 14.2 8.5 23.8 15.3

Table 4: Performance comparison on reversing tasks,
using simlar settings as Table 3.

uses 1,000 randomly generated input instances per502

length bucket. Input lengths are task-specific: for503

counting, we use lengths in [10, 20], [20, 30], and504

[30, 40]; for sorting, lengths are in [5, 10], [10, 15];505

and for reversing, in [5, 30] (5-step increments). All506

models use identical prompts. We evaluate with507

and without CoT reasoning, and for some tasks508

apply supervised CoT (SCoT) (Zhang et al., 2025)509

to control for CoT quality. Evaluation measures510

exact-match accuracy. 511

6.2 Tokenizer Sensitivity in Symbolic Tasks 512

Across all tasks, we observe a consistent phe- 513

nomenon: model performance varies dramatically 514

with tokenization format, even when the underly- 515

ing symbolic function f remains fixed. Following 516

are detailed analysis across all tasks conducted: 517

CoT grants compositional logic 518

Enabling Chain-of-Thought (CoT) significantly 519

boosts performance, particularly for tasks that re- 520

quire sequential or compositional logic. This im- 521

provement is most pronounced when input length 522

increases, suggesting that CoT enables models to 523

simulate recurrent computation by externalizing 524

intermediate state. In tasks where CoT is not used, 525

performance plateaus or drops sharply as sequence 526

length grows, reflecting the fixed-depth constraint 527

of answer-only Transformers. 528

Symbolic Reasoning is sensitive to input token 529

structure 530

Experiments show that tokenization plays a critical 531

role in determining symbolic generalization. For 532

a fixed task function f , changes in tokenization 533

alone—without altering task semantics—can yield 534

over 70% variance in accuracy. This phenomenon 535

is captured quantitatively by the tokenization degra- 536

dation gap ∆tok, which consistently reaches high 537

values across all experiments. In Table 1, for ex- 538

7

Figure 4: Distribution of shifts from the correct count.

ample, switching from raw BPE inputs (type a) to539

atomic-aligned inputs (type d) improves accuracy540

by ∆tok = 54.1% for counting a, and similar gains541

are observed in Table 2 for letters e and z.542

The results in Tables 4 and 3 further reveal that543

symbolic reasoning ability is not only sensitive to544

tokenizer (controlled by using string vs. list), but545

also to the type of atomic unit being processed.546

Tasks involving digits consistently yield signifi-547

cantly higher performance than those involving548

letters or words, even when the overall structure of549

the task and input formatting are matched.550

For instance, in sorting tasks (Table 3), CoT per-551

formance on digit sequences reaches up to 84.8%552

accuracy for lengths 5–10 in list format, with a cor-553

responding ∆tok of 27.8. In contrast, performance554

drops to 35.1% on letter sequences under identi-555

cal conditions, with a much smaller ∆tok of 7.1.556

This discrepancy persists across input lengths and557

holds under both CoT and SCoT prompting. A sim-558

ilar trend is observed in reversing tasks (Table 4):559

digit and high-frequency word sequences achieve560

the highest absolute accuracies and largest gains561

from structured formatting, suggesting that token562

content—i.e., whether the model processes com-563

pact numerical symbols or open-vocabulary lexical564

tokens—has a significant effect on symbolic gener-565

alization.566

These results validate our theoretical claim567

that symbolic reasoning over atomic units cannot568

emerge reliably unless tokenization preserves unit-569

level structure. When input tokens merge multiple570

semantic units (e.g., letters or digits), the model571

cannot apply symbolic operations like comparison572

or increment at the proper resolution. This leads to573

brittle reasoning and reliance on memorization. In574

contrast, atomic-aligned formats ensure that sym-575

bolic computation is recoverable from token-level576

patterns, enabling models to generalize even across577

longer inputs or different domains (letters vs. digits578

vs. words).579

Overall, the combination of CoT and precise to-580

kenization unlocks the model’s latent arithmetic581

and symbolic capabilities. However, without ei-582

ther component, performance degrades—even if583

the model architecture is unchanged. These find- 584

ings confirm that CoT grants access to general sym- 585

bolic reasoning under ideal token granularity, and 586

that a high ∆tok is a strong indicator that a model’s 587

performance hinges on token alignment rather than 588

true generalization. 589

6.3 Error Shifts Reveal BPE-Induced 590

Counting Failures 591

We define error shifts as the difference between 592

the model-predicted and true counts on failed in- 593

stances. As shown in Figure 4, GPT-4o mini ex- 594

hibits a strong bias toward negative shifts across 595

all tokenization types, indicating systematic under- 596

counting. With pure BPE tokenization, shifts are 597

exclusively negative—likely due to the model’s in- 598

ability to parse individual characters within merged 599

tokens (e.g., "abaa"), often resulting in zero counts 600

for target symbols (see Appendix Figure 10). 601

When delimiter-separated formats (types 602

(b)–(d)) are used, some positive shifts appear, 603

likely caused by overcounting or retrieval incon- 604

sistencies. Yet with fully atomic-aligned tokens 605

(type (d)), errors narrow to a band between –1 606

and –3, reflecting smaller arithmetic missteps 607

rather than structural confusion. This confirms that 608

BPE introduces larger, systematic errors, whereas 609

cleaner tokenization mitigates extreme deviations. 610

7 Conclusion 611

We have demonstrated that tokenization is a crit- 612

ical bottleneck in the symbolic reasoning ability 613

of language models. Even with Chain-of-Thought 614

prompting, coarse or misaligned token structures 615

prevent models from accurately performing arith- 616

metic and structured symbolic tasks. Our theo- 617

retical framework and empirical findings jointly 618

show that both token format and token type (e.g., 619

digits vs. letters) significantly affect generaliza- 620

tion. Aligning tokenization with atomic reasoning 621

units enables smaller models to rival or surpass 622

larger ones, highlighting the need to treat tokeniza- 623

tion design as a core component of model capabili- 624

ties—not merely a preprocessing step. 625

8

Limitations626

Our experiments were conducted on GPT-4o Mini,627

Claude 3.5 Sonnet and Qwen Turbo. While all628

models demonstrated strong patterns and consistent629

evidence showing that certain types of tokenization630

significantly improve counting performance, we631

did not extend our testing to other open-source632

LLMs such as LLaMA, Mistral. This was primar-633

ily due to budget and time constraints, as well as634

preliminary findings that these models exhibited635

weaker instruction-following abilities compared to636

GPT and Claude, making the evaluation process637

more challenging. However, we believe our re-638

search remains robust despite these limitations, as639

mainstream model training and design principles640

are largely universal, and the patterns observed are641

likely generalizable to other LLMs.642

Additionally, our experiments did not explore ex-643

treme context lengths, such as counting instances644

with more than several hundred tokens. We found645

that such cases often led to instability due to the646

accumulation of long CoT steps. We aim to fur-647

ther investigate this aspect as LLMs improve in648

handling long-context retrieval and generation.649

References650

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama651
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,652
Diogo Almeida, Janko Altenschmidt, Sam Altman,653
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.654
arXiv preprint arXiv:2303.08774.655

Joshua Ackerman and George Cybenko. 2020. A sur-656
vey of neural networks and formal languages. arXiv657
preprint arXiv:2006.01338.658

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of659
language models: Part 3.1, knowledge storage and660
extraction. arXiv preprint arXiv:2309.14316.661

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,662
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei663
Huang, et al. 2023. Qwen technical report. arXiv664
preprint arXiv:2309.16609.665

George S Boolos, John P Burgess, and Richard C Jef-666
frey. 2002. Computability and logic. Cambridge667
university press.668

Yingshan Chang and Yonatan Bisk. 2024. Language669
models need inductive biases to count inductively.670
arXiv preprint arXiv:2405.20131.671

S Barry Cooper. 2017. Computability theory. Chapman672
and Hall/CRC.673

Nicolaas Govert De Bruijn. 1964. Polya’s theory of 674
counting. In Applied combinatorical mathematics, 675
pages 144–184. Eindhoven University of Technology. 676

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim 677
Genewein, Li Kevin Wenliang, Elliot Catt, Chris 678
Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. 679
2022. Neural networks and the chomsky hierarchy. 680
arXiv preprint arXiv:2207.02098. 681

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 682
rectional transformers for language understanding. 683
arXiv preprint arXiv:1810.04805. 684

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, 685
Di He, and Liwei Wang. 2024. Towards revealing the 686
mystery behind chain of thought: a theoretical per- 687
spective. Advances in Neural Information Processing 688
Systems, 36. 689

Patrick C Fischer, Albert R Meyer, and Arnold L Rosen- 690
berg. 1968. Counter machines and counter languages. 691
Mathematical systems theory, 2(3):265–283. 692

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles 693
Blundell, and Daan Wierstra. 2014. Deep autore- 694
gressive networks. In International Conference on 695
Machine Learning, pages 1242–1250. PMLR. 696

Albert Gu and Tri Dao. 2023. Mamba: Linear-time 697
sequence modeling with selective state spaces. arXiv 698
preprint arXiv:2312.00752. 699

Oscar H Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, 700
and Richard A Kemmerer. 2002. Counter machines 701
and verification problems. Theoretical Computer 702
Science, 289(1):165–189. 703

Mark Jerrum. 1995. The computational complexity 704
of counting. In Proceedings of the International 705
Congress of Mathematicians: August 3–11, 1994 706
Zürich, Switzerland, pages 1407–1416. Springer. 707

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. 708
2024a. Chain of thought empowers transformers 709
to solve inherently serial problems. arXiv preprint 710
arXiv:2402.12875. 711

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. 712
2024b. Chain of thought empowers transformers to 713
solve inherently serial problems. 714

Puyuan Liu, Xiang Zhang, and Lili Mou. 2022. A 715
character-level length-control algorithm for non- 716
autoregressive sentence summarization. Advances in 717
Neural Information Processing Systems, 35:29101– 718
29112. 719

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, 720
Samuel Arcadinho, Stella Biderman, Huanqi Cao, 721
Xin Cheng, Michael Chung, Matteo Grella, et al. 722
2023. Rwkv: Reinventing rnns for the transformer 723
era. arXiv preprint arXiv:2305.13048. 724

Paul Rodriguez, Janet Wiles, and Jeffrey L Elman. 1999. 725
A recurrent neural network that learns to count. Con- 726
nection Science, 11(1):5–40. 727

9

http://arxiv.org/abs/2402.12875
http://arxiv.org/abs/2402.12875
http://arxiv.org/abs/2402.12875

Frank Rosenblatt. 1958. The perceptron: a probabilistic728
model for information storage and organization in729
the brain. Psychological review, 65(6):386.730

Clayton Sanford, Daniel Hsu, and Matus Telgarsky.731
2024. Transformers, parallel computation, and loga-732
rithmic depth. arXiv preprint arXiv:2402.09268.733

Rico Sennrich. 2015. Neural machine translation of734
rare words with subword units. arXiv preprint735
arXiv:1508.07909.736

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov,737
and Stuart M. Shieber. 2019. Lstm networks can738
perform dynamic counting.739

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier740
Martinet, Marie-Anne Lachaux, Timothée Lacroix,741
Baptiste Rozière, Naman Goyal, Eric Hambro,742
Faisal Azhar, et al. 2023. Llama: Open and effi-743
cient foundation language models. arXiv preprint744
arXiv:2302.13971.745

A Vaswani. 2017. Attention is all you need. Advances746
in Neural Information Processing Systems.747

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten748
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,749
et al. 2022. Chain-of-thought prompting elicits rea-750
soning in large language models. Advances in neural751
information processing systems, 35:24824–24837.752

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On753
the practical computational power of finite precision754
rnns for language recognition.755

Karen Wynn. 1990. Children’s understanding of count-756
ing. Cognition, 36(2):155–193.757

Xiang Zhang, Muhammad Abdul-Mageed, and Laks758
V. S. Lakshmanan. 2024. Autoregressive + chain of759
thought = recurrent: Recurrence’s role in language760
models’ computability and a revisit of recurrent trans-761
former.762

Xiang Zhang, Juntai Cao, Jiaqi Wei, Chenyu You, and763
Dujian Ding. 2025. Why does your cot prompt (not)764
work? theoretical analysis of prompt space com-765
plexity, its interaction with answer space during cot766
reasoning with llms: A recurrent perspective.767

Appendix768

A Supervised Chain of Thought769

Naive Chain of Thought (CoT), which uses a770

generic "think step by step" prompt for all tasks,771

poses significant challenges for models in deter-772

mining the correct steps, especially for complex,773

multi-step reasoning tasks. To mitigate this con-774

founding factor, we follow previous work and em-775

ploy Supervised CoT (Zhang et al., 2025), as the776

derivation of steps is not the focus of our research777

and should not affect performance due to incorrect778

CoT steps. Below, we define Supervised CoT and 779

explain its application in counting tasks. 780

A.1 Definition 781

The search space for solving a task can be viewed 782

as a combination of the prompt space and the an- 783

swer space. When instructed to perform tasks step 784

by step, language models must devise a step tem- 785

plate which is used to determine the actions at each 786

step. This template is crucial for solving tasks, as 787

it specifies what information is processed and how 788

it is computed at each CoT step. However, for a 789

given task, there are numerous ways to perform 790

a "step-by-step" approach, each computing differ- 791

ent elements per step. Finding the optimal set of 792

steps is challenging yet essential, as it directly in- 793

fluences the ability to find solutions in the answer 794

space (Zhang et al., 2025). 795

Supervised CoT provides human supervision in 796

determining the step template. Rather than asking 797

the model to develop its own plan for each step, 798

humans identify the "recurrent" procedure in the 799

computation and explicitly instruct the model to fol- 800

low a specific step template. This approach allows 801

the CoT to bypass the need to search for optimal 802

steps, focusing instead on finding solutions within 803

the answer space under optimal step guidance. 804

Figure 5: Counting accuracy (Orange) with respect to
target letter frequency (Blue) in Human Natural Lan-
guage.

A.2 Supervised CoT and Counting 805

In inductive counting, which relies on CoT to com- 806

pute the counter value recurrently(Figure 1), it is 807

crucial that each step of CoT accurately extracts 808

and outputs the counter value in text. This output 809

is necessary for the value to be recurrently pro- 810

cessed through "string-vector" conversion. There- 811

fore, rather than simply prompting the model with 812

"determine the number of a in the given string" 813

using the generic instruction "think step by step," 814

we specifically instruct the model to print out a 815

10

http://arxiv.org/abs/1906.03648
http://arxiv.org/abs/1906.03648
http://arxiv.org/abs/1906.03648
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2409.09239
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084
http://arxiv.org/abs/2503.10084

counter value at each step. We explicitly define816

the step template to ensure the model follows the817

optimal CoT steps, preventing deviations or the use818

of suboptimal steps.819

Experiments. We demonstrate the significant per-820

formance gap between Supervised and Unsuper-821

vised CoT. Specifically, we observe that supervi-822

sion not only helps the model accurately extract the823

counter but also ensures it follows the correct steps824

(e.g., an incorrect step would be outputting whether825

the current letter is the target, rather than extract-826

ing the counter value). Even when Unsupervised827

CoT identifies the correct steps (i.e., extracting the828

counter into text), we still notice more frequent829

errors during the extraction process compared to830

Supervised CoT, which imposes strict constraints831

on what to extract at each step. The comparison832

between Supervised and Unsupervised CoT is pre-833

sented in Table 5, showing a clear dominance of834

Supervised CoT, with accuracy gains observed in835

nearly all cases.836

B Comprehensive Experiments on the837

Relationship Between Letter Frequency838

and Symbolic Reasoning Performance839

Our results in counting experiments show consis-840

tently higher counting accuracy for the letter b841

compared to a across all proper counting settings842

(CoT enabled, non-BPE tokenization), as shown843

in Table 1 and Figure 8 left. We hypothesized this844

difference stems from varying letter frequencies in845

natural language affecting token-embedding sensi-846

tivity.847

To further investigate this hypothesis, we com-848

pared counting performance between the most fre-849

quent letter e (12.7%) and least frequent letter z850

(0.07%) in English. Results in Table 2 show z sig-851

nificantly outperforming e, mirroring the pattern852

seen with b (1.5%) versus a (8.2%). The accuracy853

advantage for lower-frequency letters ranges from854

3-14% (Figure 8).855

Our results reveal that lower-frequency tokens856

carry less embedded information from training,857

making them easier to track through the attention858

mechanism. In contrast, common letters like a and859

emay encode more complex linguistic information,860

potentially interfering with counting tasks.861

To verify these results beyond the letter pairs862

a, b and e, z, we selected another set of letters863

with significantly different frequencies in human864

languages, according to Wikipedia: z (0.07%), b865

(1.48%), r (6.02%), and e (12.70%). We gen- 866

erated counting instances of lengths between 80 867

and 100—ensuring that each letter appears more 868

than 20 times on average—by uniformly sampling 869

one of the four letters to form each string (e.g., 870

zrrbeez). We then performed counting for each 871

letter in the generated strings. As shown in Table 872

7, a consistent trend was observed across tokeniza- 873

tion types (b)–(d) (excluding (a), as pure BPE was 874

previously shown not to yield meaningful count- 875

ing results). Specifically, rare tokens consistently 876

outperformed more frequent tokens in natural lan- 877

guage, with performance improvements ranging 878

from 6% to 12%. Figure 5 visually compares per- 879

formance and letter frequency, showing an over- 880

lap between frequency and error rate. We suspect 881

that rare letters carry less information in their em- 882

beddings, reducing distraction during the attention 883

calculation in the counting process. 884

Figure 6: Tokenization patterns of the GPT-4o tokenizer
when processing four different input types for reversing
task: (a) random character strings, (b) regular dictionary
words, (c) high-frequency English words, and (d) listi-
fied random strings with explicit delimiters.

Figure 7: Tokenization patterns of the GPT-4o tokenizer
across diverse input compositions for sorting task: (a)
random letter strings composed solely of alphabetic
characters, (b) mixed random strings containing both
letters and digits, (c) random digit strings composed
exclusively of numerical characters, and (d) listified
mixed strings with explicit delimiters separating letter
and digit combinations.

C Tokenization in Different LLMs 885

Figure 10 and Figure 11 illustrate the tokeniza- 886

tion of input binary strings with difference lengths 887

across various LLMs. We investigate both lan- 888

guage models and multi-modal models, observ- 889

ing nearly identical tokenization behaviors across 890

most tested models (except GPT-4o series). There- 891

fore, in Figure 6 and Figure 7, we use the GPT-4o 892

series models to further demonstrate tokenization 893

11

String-token Type Counting a Counting b

Unsupervised-CoT Supervised CoT Unsupervised-CoT Supervised CoT

(b) 8.40 10.90 20.70 18.60
(c) 24.00 28.10 29.30 42.30
(d) 34.90 56.10 42.70 70.80

Table 5: Counting experiments in the length range of 30-40 comparing Supervised CoT and Unsupervised CoT. The
bolded font indicates the better performance in the pairwise comparison between Supervised and Unsupervised CoT.

string-token len ∈ [10-20] len ∈ [20-30] len ∈ [30-40]

type count a count b count a count b count a count b

(a) 86.30 86.20 62.40 65.20 50.60 54.40
(b) 90.60 94.00 80.40 87.50 76.10 79.60
(c) 94.90 97.70 92.80 97.90 91.40 94.20
(d) 93.00 94.20 87.80 91.00 87.30 89.80

Table 6: Counting results on strings with letter a and
b, using Claude 3.5 Sonnet API. All results are using
supervised CoT (Zhang et al., 2025), with same prompt
for GPT-4o mini. Numbers indicate the average accu-
racy (%) over 1000 random generated instances.

String-Token Type len ∈ [80, 100]

z b r e

(b) 14.50 13.60 8.90 8.40
(c) 36.00 36.60 28.30 24.30
(d) 61.60 60.20 54.10 51.90

Letter Frequency
percentage 0.07 1.48 6.02 12.70

Table 7: Counting performance of letters that have very
different letter frequency in human language.

patterns in more complex cases. These include ran-894

dom letter strings, random number sequences, dic-895

tionary words, high-frequency words, and mixed896

digit-letter strings. This analysis provides insight897

into how tokenization varies across different input898

types and structural formats.899

Since pure strings may be tokenized differ-900

ently due to the varying byte pair encoding (BPE)901

schemes used by each tokenizer. When a token-902

level delimiter is introduced, we consistently ob-903

serve that the delimiter is combined with the adja-904

cent letter, aligning with our previous assumptions.905

Additionally, some models handle the initial token906

differently, resulting in the first letter being treated907

as a standalone token (e.g., in the Grok model) or908

being combined with a quotation delimiter (e.g., in909

GPT-4o mini). In summary, our string design ef-910

fectively allows us to manipulate modern LLMs to911

tokenize identical counting instances into different,912

desired tokens.913

Figure 8: Pairwise comparison of counting accuracy
for different letters in strings. The left plot shows the
distribution of accuracy for a and b in ab strings, with
each dot representing the average accuracy for a in a
given CoT case (e.g., spaced-string in the [10,20] range),
connected to the corresponding accuracy for b in the
same setting. The right plot illustrates a similar case for
e and z in ez strings. Note: The y-axis limit exceeds
[0,1] as the distribution is calculated based on variance
and mean, with larger variance pushing the upper bound
of the confidence interval beyond the maximum value.

D Prompt Template 914

The set of prompts we use for counting experi- 915

ments (base, unsupervised CoT, supervised CoT) 916

are shown in Figure 12. The set of prompts we 917

use for reversing and sorting experiments (unsuper- 918

vised CoT, supervised CoT) are shown in Figure 13 919

and Figure 14 respectively. 920

E Case Studies: Counting 921

In this section, we use counting task to showcase 922

our experiment results. The tables present cases for 923

each type of token counted using CoT. As shown, 924

Supervised CoT consistently adheres to a strict step- 925

by-step template, accurately extracting the counter 926

at each step. In contrast, Unsupervised CoT often 927

skips crucial steps or deviates from the optimal 928

method of extracting counters. Additionally, Su- 929

pervised CoT with type (d) tokenization tends to 930

produce much longer reasoning contexts, yet still 931

achieves the best performance due to the combina- 932

tion of optimal tokenization and supervision. 933

We also repeated the experiments with Claude 934

12

3.5 Sonnet and Qwen Turbo. With Qwen model,935

we observed similar trends as GPT-4o mini (Table936

8). With Claude model, there is a slight exception937

that type (c) yielded the best results among types938

(a)-(d), as shown in Table 6. Upon investigation,939

we suspect this is because type (d) results in longer940

CoT steps due to the higher number of irrelevant941

tokens generation, leading to long-context reason-942

ing failures in many cases for this model. We also943

provide case studies using GPT-4o mini for count-944

ing tasks, including examples where CoT led to945

both correct and incorrect answers. Additionally,946

we reveal the inferior performance with OpenAI o1947

full model when tokenization is not properly done,948

detailed in Appendix section E.1.949

To this end, we are confident that our experi-950

mental results can be generalized to other LLMs,951

given that the training methods and tokenization952

strategies (as demonstrated in Appendix Section953

C) are nearly identical, leading to counting being954

performed in a similar manner across such models.955

E.1 OpenAI o1956

We evaluate o1 on samples ranging from 30 to957

40 letters in length, using pure string (type (a)) to958

showcase the importance of using proper tokeniza-959

tion. Additionally, since o1 applies inference-time960

scaling techniques (such as MCTS search and per-961

step verifying), it implicitly engages in advanced962

chain-of-thought reasoning. Thus, we rely solely963

on a straightforward prompt rather than explicitly964

specifying reasoning steps using Supervised Chain-965

of-Thought as with other naive models. The final966

accuray on tested samples for o1 is 50%, which967

is much lower than using GPT-4o mini with most968

optimal tokenization techniques (Table 1, 70% in969

such length range). An example for correct count-970

ing is shown in Table 9, and an example for incor-971

rect counting is shown in Table 10. In conclusion,972

advanced LLM searching algorithms and infer-973

ence time scaling techniques do not make up for974

defect in tokenizer.975

E.2 Qwen Turbo976

We evaluate Qwen Turbo using supervised Chain-977

of-Thought (CoT) prompts. Tables 17 and 18978

demonstrate an incorrect counting example using979

tokenization type (a), Table 19 shows a correct980

counting example using tokenization type (d).981

Notably, Qwen Turbo generates more tokens per982

CoT step compared to Claude 3.5 Sonnet, which983

appears to lead to its slightly lower performance.984

string-token len ∈ [10-20] len ∈ [20-30] len ∈ [30-40]

type count a count b count a count b count a count b

(a) 56.40 62.50 26.20 32.20 16.20 15.90
(b) 75.10 80.00 50.60 54.60 31.10 28.30
(c) 93.40 96.00 81.60 83.50 59.20 57.60
(d) 95.90 96.70 83.20 86.50 68.10 63.50

Table 8: Counting results under the same settings as in
Table 6 but using Qwen Turbo API. Numbers indicate
the average accuracy (%) over 1000 random generated
instances.

This suggests that concise reasoning steps is bene- 985

ficial for counting accuracy. 986

E.3 GPT-4o mini 987

We present three progressive examples that demon- 988

strate the effectiveness of combining Chain-of- 989

Thought (CoT) reasoning with appropriate tok- 990

enization strategies: 991

1. Table 20 shows that using a base prompt with 992

standard BPE tokenization (type (a)) results 993

in a counting error of 3 from the correct value. 994

2. Table 21 demonstrates that incorporating su- 995

pervised CoT improves accuracy, reducing the 996

counting error to just 1. 997

3. Table 22 illustrates that combining supervised 998

CoT with type (d) character-wise tokenization 999

achieves perfect accuracy, matching the gold 1000

label exactly. 1001

These examples clearly demonstrate how the syn- 1002

ergy between CoT reasoning and appropriate to- 1003

kenization methods can progressively enhance 1004

counting accuracy. 1005

E.4 Claude 3.5 Sonnet 1006

We evaluate Claude 3.5 Sonnet using supervised 1007

CoT prompts. We provide example cases demon- 1008

strating different tokenization approaches and their 1009

outcomes: 1010

• Tables 11 and 12 showcase incorrect count- 1011

ing results using tokenization type (a) 1012

• Tables 13 and 14 demonstrate correct count- 1013

ing using tokenization type (d) 1014

• Tables 15 and 16 illustrate correct counting 1015

using tokenization type (c) 1016

To sum up, our analyses show that tokenization 1017

type (c) yields superior results compared to type (d). 1018

Notably, in Tables 13 and 14, we observe that type 1019

13

Figure 9: Same error-shifting distribution (as in Figure 4) but for Claude model. Claude 3.5 tend to count more than
counting less, compared to GPT-4o.

(d) tokenization generates excessive and irrelevant1020

content (specifically, index information) which may1021

interfere with the accuracy of the counting process.1022

F Replication Experiments Note1023

We have open-sourced the experimental results for1024

every instance of each experiment, in the provided1025

GitHub link, to facilitate future research and analy-1026

sis by other researchers. All reported experiment1027

numbers are stable, using the same experimental1028

settings and prompts. Specifically, we observe an1029

average variance in accuracy of less than 1% across1030

runs of the same experiments, indicating that they1031

are fully replicable with the same model version1032

used. Note that updates to the API version may1033

cause potential variations in results, which are be-1034

yond our control.1035

14

GPT-4o & GPT-4o-mini

abbabababaaaabababababaaabaaababababaaababa
Tokens
13

Characters
43

GPT-4 & GPT-3.5

abbabababaaaabababababaaabaaababababaaababa
Tokens
20

Characters
43

Anthropic

abbabababaaaabababababaaabaaababababaaababa
Tokens
20

Characters
43

Qwen

abbabababaaaabababababaaabaaababababaaababa
Tokens
20

Characters
43

Llama 3

<|begin_of_text|>abbabababaaaabababababaaabaaababababaaababa<|end_of_text|>
Tokens
22

Characters
43

abbabababaaaabababababaaabaaababababaaababa
Tokens
15

Characters
43

Grok

Figure 10: Difference in tokenization on long binary strings without punctuations across different LLMs.

(a) string: abbab (b) string: a b b a b (c) string: a, b, b, a, b (d) string: “a”, “b”, “b”, “a”, “b”
LLAMA

Claude

(a) string: abbab (b) string: a b b a b (c) string: a, b, b, a, b (d) string: “a”, “b”, “b”, “a”, “b”

Mistral

(a) string: abbab (b) string: a b b a b (c) string: a, b, b, a, b (d) string: “a”, “b”, “b”, “a”, “b”

GROK

(a) string: abbab (b) string: a b b a b (c) string: a, b, b, a, b (d) string: “a”, “b”, “b”, “a”, “b”

Figure 11: Difference in tokenization on binary strings when counting instances are presented in different formats
with punctuations to facilitate tokenization, across different LLMs.

15

Count the number of appearances of ‘{substring}’s in the string below. Directly output
‘Result: ’ followed by the counted number. Do not use bold font in the response.

String: {sample}

Response:

(a) Base prompt template

Determine the number of appearances of ‘{substring}’s in the string below. Think step by
step. Directly output ‘Result: ’ followed by the counted number. Do not use bold font in the
response.

String: {sample}

Response:

(b) Chain-of-Thought (unsupervised) prompt template

Task: Count the number of occurrences of the substring ‘{substring}’ in the given string step
by step. Do not use bold font in the response.

Instructions:
• Iterate through the string and count each occurrence of the substring.
• Use a counter to keep track of how many times the substring appears.
• Output your step-by-step counting process.
• Conclude with: ‘Result: ’ followed by the number.

String: {sample}

Response:

(c) Chain-of-Thought (supervised) prompt template

Figure 12: Different prompt templates used in counting experiments. The templates include a base prompt, an
unsupervised chain-of-thought prompt, and a supervised chain-of-thought prompt.

16

Reverse the string provided below. Think step by step. Output the final result in a dictionary
with the key ‘Result’. For instance, if the input string is ‘iamhappy’, the output would be:
{‘Result’: ‘yppahmai’}. The input string may contain punctuations, do not add them into
reversed string.

Input string: {{string}}

(a) Chain-of-Thought (unsupervised) prompt template

Reverse the string following the instructions below:

1. Initialize an empty string called ‘reversed’

2. For each character in the input string:

• Remove the first (leftmost) character
• Add this character to the beginning of ‘reversed’
• Display the remaining input string

3. Once all characters are processed, ‘reversed’ will contain the reversed string. Return
the reversed string in a dictionary format with the key ‘Result’. For example, the result
dictionary for input string "hello" will be {‘Result’: ‘olleh’}.

Input String: {{string}}

(b) Chain-of-Thought (supervised) prompt template

Figure 13: Different prompt templates used in reversing experiments. The templates include an unsupervised
chain-of-thought prompt, and a supervised chain-of-thought prompt.

17

Sort the string below in ascending order using insertion sort. Think step by step. Note that
lower case characters are greater than upper case characters. Convert the sorted characters
into a single string, and store the result in a dictionary with the key ‘Result.’ For example,
given the string ‘2CsU4bSc’, the sorted result should be ‘24CSUbcs’ and should be stored as
{‘Result’: ‘24CSUbcs’}.

String: {{string}}

(a) Chain-of-Thought (unsupervised) prompt template

Sort the string below in ascending order using insertion sort following the steps below. Note
that lower case characters are greater than upper case characters.

1. Start by creating an empty list for sorted characters.

2. For each step:

• Specify which character you’re currently looking and insert the character to the
correct place in sorted list.

• Display both the original string (showing characters remaining) and sorted list after
each step.

3. Conbine the sorted list to a single string. Return the sorted string in a dictionary format
with the key ‘Result’. For example, the result dictionary for input list “[‘2’, ‘C’, ‘s’, ‘U’,
‘4’, ‘b’, ‘S’, ‘c’]” will be {‘Result’: ‘24CSUbcs’}.

String: {{string}}

(b) Chain-of-Thought (supervised) prompt template

Figure 14: Different prompt templates used in sorting experiments. The templates include an unsupervised chain-of-
thought prompt, and a supervised chain-of-thought prompt.

18

Model & Experiment:
OpenAI o1, token type (a), length 30-40

Prompt:
Count the number of appearances of ‘a’ in the string below. Do not use tool.

String: abaaaaaaabaabaaabbaaaaabaabbbbbbbabaaaaa

Response:

Model Response:
Let’s count the occurrences of ‘a’ in the given string:

String:

abaaaaaaabaabaaabbaaaaabaabbbbbbbabaaaaa

We’ll go through each character and count how many times ‘a’ appears:

a (1)
b
a (2)
a (3)
a (4)
a (5)
a (6)
a (7)
a (8)
b
a (9)
a (10)
b
a (11)
a (12)
a (13)
b
b
a (14)
a (15)
a (16)
a (17)
a (18)
b
a (19)
a (20)
b
b
b
b
b
b
b
a (21)
b
a (22)
a (23)
a (24)
a (25)
a (26)
a (27)

Number of ‘a’s counted: **27**
Correct Answer:
26

Table 9: Case Study 1 - Incorrect Prediction with o1 (base prompt)

19

Model & Experiment:
OpenAI o1, token type (a), length 30-40

Prompt:
Count the number of appearances of ‘b’ in the string below. Do not use tool.

String: babbbbbbbabbababbbaabbbbbbabaabbbbabb

Response:

Model Response:
Let’s count carefully:

The given string is:
babbbbbbbabbababbbaabbbbbbabaabbbbabb

Let’s go through it character by character and count every ‘b’:

b (1)
a
b (2)
b (3)
b (4)
b (5)
b (6)
b (7)
b (8)
a
b (9)
b (10)
a
b (11)
a
b (12)
b (13)
b (14)
a
a
b (15)
b (16)
b (17)
b (18)
b (19)
b (20)
a
b (21)
a
a
b (22)
b (23)
b (24)
b (25)
a
b (26)
b (27)

Counting all the marked ‘b’s, we get a total of **27**.

Correct Answer:
27

Table 10: Case Study 2 - Correct Prediction with o1 (base prompt)

20

Model & Experiment:
Claude 3.5 Sonnet, token type (a), length 30-40

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: babbbababbbaabbbbaabaabaaabbaaababbbabb

Response:

Model Response:
Step 1: Initialize a counter to 0.
Counter = 0

Step 2: Start iterating through the string:
b - not ‘a’, counter remains 0
a - found ‘a’, increment counter
Counter = 1

Step 3: Continue iterating:
b - not ‘a’, counter remains 1
b - not ‘a’, counter remains 1
b - not ‘a’, counter remains 1
b - not ‘a’, counter remains 1
a - found ‘a’, increment counter
Counter = 2

Step 4: Continue iterating:
b - not ‘a’, counter remains 2
a - found ‘a’, increment counter
Counter = 3

Step 5: Continue iterating:
b - not ‘a’, counter remains 3
b - not ‘a’, counter remains 3
b - not ‘a’, counter remains 3
a - found ‘a’, increment counter
Counter = 4

Step 6: Continue iterating:
a - found ‘a’, increment counter
Counter = 5

Step 7: Continue iterating:
b - not ‘a’, counter remains 5
b - not ‘a’, counter remains 5
b - not ‘a’, counter remains 5
b - not ‘a’, counter remains 5
a - found ‘a’, increment counter
Counter = 6

Step 8: Continue iterating:
a - found ‘a’, increment counter
Counter = 7

Table 11: Case Study 3 - Incorrect Prediction with Claude 3.5 Sonnet (CoT prompt)

21

Step 9: Continue iterating:
b - not ‘a’, counter remains 7
a - found ‘a’, increment counter
Counter = 8

Step 10: Continue iterating:
a - found ‘a’, increment counter
Counter = 9

Step 11: Continue iterating:
b - not ‘a’, counter remains 9
a - found ‘a’, increment counter
Counter = 10

Step 12: Continue iterating:
a - found ‘a’, increment counter
Counter = 11

Step 13: Continue iterating:
b - not ‘a’, counter remains 11
b - not ‘a’, counter remains 11
a - found ‘a’, increment counter
Counter = 12

Step 14: Continue iterating:
a - found ‘a’, increment counter
Counter = 13

Step 15: Finish iterating through the remaining characters:
b - not ‘a’, counter remains 13
a - found ‘a’, increment counter
Counter = 14

Step 16: Iteration complete.

Result: 14
Correct Answer:
17

Table 12: Case Study 3 Continued

22

Model & Experiment:
Claude 3.5 Sonnet, token type (d), length 30-40

Prompt:
Task: Count the number of occurrences of the substring ’a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: [‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘b’, ‘a’,
‘a’, ‘a’, ‘b’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘b’]

Response:

Model Response:
Step 1: Initialize counter to 0
Counter: 0

Step 2: Start iterating through the string
[‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’,
‘a’, ‘b’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘b’]

Step 3: Found ‘a’ at index 1
Counter: 1

Step 4: Found ‘a’ at index 5
Counter: 2

Step 5: Found ‘a’ at index 7
Counter: 3

Step 6: Found ‘a’ at index 11
Counter: 4

Step 7: Found ‘a’ at index 12
Counter: 5

Step 8: Found ‘a’ at index 17
Counter: 6

Step 9: Found ‘a’ at index 18
Counter: 7

Step 10: Found ‘a’ at index 20
Counter: 8

Step 11: Found ‘a’ at index 21
Counter: 9

Table 13: Case Study 4 - Correct Prediction with Claude 3.5 Sonnet 1 (CoT prompt)

23

Step 12: Found ‘a’ at index 23
Counter: 10

Step 13: Found ‘a’ at index 24
Counter: 11

Step 14: Found ‘a’ at index 25
Counter: 12

Step 15: Found ‘a’ at index 28
Counter: 13

Step 16: Found ‘a’ at index 29
Counter: 14

Step 17: Found ‘a’ at index 30
Counter: 15

Step 18: Found ‘a’ at index 32
Counter: 16

Step 19: Found ‘a’ at index 36
Counter: 17

Step 20: Finished iterating through the string

Result: 17
Correct Answer:
17

Table 14: Case Study 4 Continued

24

Model & Experiment:
Claude 3.5 Sonnet, token type (c), length 30-40

Prompt:
Task: Count the number of occurrences of the substring ’a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: b, a, b, b, b, a, b, a, b, b, b, a, a, b, b, b, b, a, a, b, a, a, b, a, a, a, b, b, a, a, a, b, a, b, b, b, a, b, b

Response:

Model Response:
Step 1: Initialize counter to 0
Counter: 0

Step 2: Start iterating through the string
b, - Counter: 0
a, - Found ‘a’. Counter: 1
b, - Counter: 1
b, - Counter: 1
b, - Counter: 1
a, - Found ‘a’. Counter: 2
b, - Counter: 2
a, - Found ‘a’. Counter: 3
b, - Counter: 3
b, - Counter: 3
b, - Counter: 3
a, - Found ‘a’. Counter: 4
a, - Found ‘a’. Counter: 5
b, - Counter: 5
b, - Counter: 5
b, - Counter: 5
b, - Counter: 5
a, - Found ’a’. Counter: 6
a, - Found ’a’. Counter: 7
b, - Counter: 7
a, - Found ’a’.

Table 15: Case Study 5 - Correct Prediction with Claude 3.5 Sonnet 2 (CoT prompt)

25

Counter: 8
a, - Found ’a’. Counter: 9
b, - Counter: 9
a, - Found ’a’. Counter: 10
a, - Found ’a’. Counter: 11
a, - Found ’a’. Counter: 12
b, - Counter: 12
b, - Counter: 12
a, - Found ‘a’. Counter: 13
a, - Found ’a’. Counter: 14
a, - Found ‘a’. Counter: 15
b, - Counter: 15
a, - Found ‘a’. Counter: 16
b, - Counter: 16
b, - Counter: 16
b, - Counter: 16
a, - Found ‘a’. Counter: 17
b, - Counter: 17
b - Counter: 17

Step 3: Finished iterating through the string

Result: 17
Correct Answer:
17

Table 16: Case Study 5 Continued

26

Model & Experiment:
Qwen Turbo, token type (a), length 30-40

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: baaabaaabaaababbbababbaababbabbaabb

Response:

Model Response:
To count the number of occurrences of the substring ‘a’ in the given string step by step, we will iterate
through the string and increment a counter each time we encounter an ‘a’.

String: baaabaaabaaababbbababbaababbabbaabb

Step 1: Start with the first character ‘b’, no ‘a’ found.
Step 2: Second character is ‘a’, increment the counter (counter = 1).
Step 3: Third character is ‘a’, increment the counter (counter = 2).
Step 4: Fourth character is ‘a’, increment the counter (counter = 3).
Step 5: Fifth character is ‘b’, no ‘a’ found.
Step 6: Sixth character is ‘a’, increment the counter (counter = 4).
Step 7: Seventh character is ‘a’, increment the counter (counter = 5).
Step 8: Eighth character is ‘b’, no ‘a’ found.
Step 9: Ninth character is ‘a’, increment the counter (counter = 6).
Step 10: Tenth character is ‘a’, increment the counter (counter = 7).
Step 11: Eleventh character is ‘b’, no ‘a’ found.
Step 12: Twelfth character is ‘a’, increment the counter (counter = 8).
Step 13: Thirteenth character is ‘b’, no ‘a’ found.
Step 14: Fourteenth character is ‘b’, no ‘a’ found.
Step 15: Fifteenth character is ‘b’, no ‘a’ found.
Step 16: Sixteenth character is ‘a’, increment the counter (counter = 9).
Step 17: Seventeenth character is ‘b’, no ‘a’ found.
Step 18: Eighteenth character is ‘a’, increment the counter (counter = 10).

Table 17: Case Study 6 - Incorrect Prediction with Qwen Turbo (CoT prompt)

27

Step 19: Nineteenth character is ‘b’, no ’a’ found.
Step 20: Twentieth character is ‘b’, no ‘a’ found.
Step 21: Twenty-first character is ‘a’, increment the counter (counter = 11).
Step 22: Twenty-second character is ‘a’, increment the counter (counter = 12).
Step 23: Twenty-third character is ‘b’, no ’a’ found.
Step 24: Twenty-fourth character is ‘b’, no ‘a’ found.
Step 25: Twenty-fifth character is ‘a’, increment the counter (counter = 13).
Step 26: Twenty-sixth character is ‘b’, no ‘a’ found.
Step 27: Twenty-seventh character is ‘a’, increment the counter (counter = 14).
Step 28: Twenty-eighth character is ‘b’, no ‘a’ found.
Step 29: Twenty-ninth character is ‘b’, no ‘a’ found.
Step 30: Thirtieth character is ‘a’, increment the counter (counter = 15).
Step 31: Thirty-first character is ‘b’, no ‘a’ found.
Step 32: Thirty-second character is ‘b’, no ‘a’ found.
Step 33: Thirty-third character is ‘a’, increment the counter (counter = 16).
Step 34: Thirty-fourth character is ‘b’, no ‘a’ found.
Step 35: Thirty-fifth character is ‘b’, no ‘a’ found.
Step 36: Thirty-sixth character is ‘a’, increment the counter (counter = 17).
Step 37: Thirty-seventh character is ‘b’, no ‘a’ found.
Step 38: Thirty-eighth character is ‘b’, no ‘a’ found.
Step 39: Thirty-ninth character is ‘a’, increment the counter (counter = 18).
Step 40: Fortieth character is ‘b’, no ‘a’ found.
Step 41: Forty-first character is ‘b’, no ‘a’ found.
Step 42: Forty-second character is ‘a’, increment the counter (counter = 19).

Result: 19
Correct Answer:
18

Table 18: Case Study 6 Continued

28

Model & Experiment:
Qwen Turbo, token type (d), length 30-40

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: [‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘a’, ‘a’,
‘b’, ‘a’, ‘b’, ‘b’, ‘a’, ‘b’, ‘b’, ‘a’, ‘a’, ‘b’, ‘b’]

Response:

Model Response:
To count the number of occurrences of the substring ‘a’ in the provided string, we’ll go through it step by
step:

- First element: ‘b’ - No match. Counter = 0
- Second element: ‘a’ - Match found. Counter = 1
- Third element: ‘a’ - Match found. Counter = 2
- Fourth element: ‘a’ - Match found. Counter = 3
- Fifth element: ‘b’ - No match. Counter = 3
- Sixth element: ’a’ - Match found. Counter = 4
- Seventh element: ‘a’ - Match found. Counter = 5
- Eighth element: ‘a’ - Match found. Counter = 6
- Ninth element: ‘b’ - No match. Counter = 6
- Tenth element: ‘a’ - Match found. Counter = 7
- Eleventh element: ‘a’ - Match found. Counter = 8
- Twelfth element: ‘a’ - Match found. Counter = 9
- Thirteenth element: ‘b’ - No match. Counter = 9
- Fourteenth element: ‘a’ - Match found. Counter = 10
- Fifteenth element: ‘b’ - No match. Counter = 10
- Sixteenth element: ‘b’ - No match. Counter = 10
- Seventeenth element: ‘b’ - No match. Counter = 10
- Eighteenth element: ‘a’ - Match found. Counter = 11
- Nineteenth element: ‘b’ - No match. Counter = 11
- Twentieth element: ‘a’ - Match found. Counter = 12
- Twenty-first element: ‘b’ - No match. Counter = 12
- Twenty-second element: ‘b’ - No match. Counter = 12
- Twenty-third element: ‘a’ - Match found. Counter = 13
- Twenty-fourth element: ‘a’ - Match found. Counter = 14
- Twenty-fifth element: ‘b’ - No match. Counter = 14
- Twenty-sixth element: ‘a’ - Match found. Counter = 15
- Twenty-seventh element: ‘b’ - No match. Counter = 15
- Twenty-eighth element: ‘b’ - No match. Counter = 15
- Twenty-ninth element: ‘a’ - Match found. Counter = 16
- Thirtieth element: ‘b’ - No match. Counter = 16
- Thirty-first element: ‘b’ - No match. Counter = 16
- Thirty-second element: ‘a’ - Match found. Counter = 17
- Thirty-third element: ‘a’ - Match found. Counter = 18
- Thirty-fourth element: ‘b’ - No match. Counter = 18

Result: 18
Correct Answer:
18

Table 19: Case Study 7 - Correct Prediction with Qwen Turbo (CoT prompt)

29

Model & Experiment:
GPT-4o mini, token type (a), length 20-30

Prompt:
Count the number of appearances of ’a’s in the string below. Directly output ’Result: ’ followed by the
counted number. Do not use bold font in the response.

String: abaaababbbbbbaaaabaaaa

Response:

Model Response:
Result: 10

Correct Answer:
13

Table 20: Case Study 8 - Incorrect Prediction with GPT-4o mini (base prompt)

30

Model & Experiment:
GPT-4o mini, token type (a), length 20-30

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.
Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: abaaababbbbbbaaaabaaaa

Model Response:
1. Start with the string: abaaababbbbbbaaaabaaaa.
2. Initialize a counter at 0.
3. Iterate through each character in the string.

- Index 0: ’a’ (counter = 1)
- Index 1: ’b’ (counter remains 1)
- Index 2: ’a’ (counter = 2)
- Index 3: ’a’ (counter = 3)
- Index 4: ’a’ (counter = 4)
- Index 5: ’b’ (counter remains 4)
- Index 6: ’a’ (counter = 5)
- Index 7: ’b’ (counter remains 5)
- Index 8: ’b’ (counter remains 5)
- Index 9: ’b’ (counter remains 5)
- Index 10: ’b’ (counter remains 5)
- Index 11: ’a’ (counter = 6)
- Index 12: ’a’ (counter = 7)
- Index 13: ’a’ (counter = 8)
- Index 14: ’b’ (counter remains 8)
- Index 15: ’a’ (counter = 9)
- Index 16: ’a’ (counter = 10)
- Index 17: ’a’ (counter = 11)
- Index 18: ’a’ (counter = 12)

4. End of string reached.

Result: 12
Correct Answer:
13

Table 21: Case Study 9 - Incorrect Prediction with GPT 4o mini (CoT prompt)

31

Model & Experiment:
GPT-4o mini, token type (a), length 20-30

Prompt:
Task: Count the number of occurrences of the substring ‘a’ in the given string step by step. Do not use
bold font in the response.

Instructions:

• Iterate through the string and count each occurrence of the substring.

• Use a counter to keep track of how many times the substring appears.

• Output your step-by-step counting process.

• Conclude with: ‘Result: ’ followed by the number.

String: [‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘a’]

Model Response:
Let’s count the occurrences of the substring ‘a’ step by step in the given string:

1. Initialize a counter at 0.
2. Start iterating through the list: [‘a’, ‘b’, ‘a’, ‘a’, ‘a’, ‘b’, ‘a’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘b’, ‘a’, ‘a’, ‘a’, ‘a’,
‘b’, ‘a’, ‘a’, ‘a’, ‘a’].

- Index 0: The element is ‘a’. Increment counter to 1.
- Index 1: The element is ‘b’. Counter remains 1.
- Index 2: The element is ‘a’. Increment counter to 2.
- Index 3: The element is ‘a’. Increment counter to 3.
- Index 4: The element is ‘a’. Increment counter to 4.
- Index 5: The element is ’b’. Counter remains 4.
- Index 6: The element is ‘a’. Increment counter to 5.
- Index 7: The element is ‘b’. Counter remains 5.
- Index 8: The element is ‘b’. Counter remains 5.
- Index 9: The element is ‘b’. Counter remains 5.
- Index 10: The element is ‘b’. Counter remains 5.
- Index 11: The element is ‘b’. Counter remains 5.
- Index 12: The element is ‘b’. Counter remains 5.
- Index 13: The element is ‘a’. Increment counter to 6.
- Index 14: The element is ‘a’. Increment counter to 7.
- Index 15: The element is ‘a’. Increment counter to 8.
- Index 16: The element is ‘a’. Increment counter to 9.
- Index 17: The element is ‘b’. Counter remains 9.
- Index 18: The element is ‘a’. Increment counter to 10.
- Index 19: The element is ‘a’. Increment counter to 11.
- Index 20: The element is ‘a’. Increment counter to 12.
- Index 21: The element is ‘a’. Increment counter to 13.

3. The final count after iterating through all elements is 13.

Result: 13
Correct Answer:
13

Table 22: Case Study 10 - Correct Prediction with GPT-4o mini (CoT prompt)

32

