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ABSTRACT

Large language models (LLMs) are showing expert-level ability in various fields
(e.g., programming and math). However, this progress heavily relies on the gen-
eration of high-quality synthetic data to improve the models’ capabilities during
post-training. Generating such data in a cost-effective manner presents a signifi-
cant challenge. Specifically, stronger models tend to generate higher-quality data
but come with a substantial computational cost, while weaker models are cheaper
to run but may produce weaker outputs. In this paper, we introduce Question-Wise
model pICK (QWICK) to address this challenge. By tracking the empirical re-
ward, cost, and number of trials for each model, QWICK strikes a balance between
exploitation and exploration, ultimately converging on a cost-effective model for
each specific question. Specifically, QWICK achieves a 50% cost reduction on a
programming dataset and a 40% cost reduction on a mathematics dataset, with-
out compromising data quality. Furthermore, compared to baseline methods, our
approach can produce up to 2.1 times more valid synthetic data at the same cost.
Our anonymized code is available at https://anonymous.4open.science/r/QWICK-
17C3

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated notable success across var-
ious domains, even achieving silver-medal-level performance in the International Mathematics
Olympiad (teams et al., 2024). The key to this success is post-training on domain-specific tasks
and datasets, such as mathematics (Luo et al., 2023a; Tong et al., 2024; Xin et al., 2024a;b) and
programming (Luo et al., 2023b). Traditionally, creating necessary post-training datasets relied on
human annotations, a process that is both costly and time-consuming. To mitigate these challenges,
Synthetic Data Generation (SDG) using state-of-the-art LLMs has emerged as a more scalable al-
ternative – autonomously producing large amounts of high-quality data that reaches the level of
human-generated ones (Gilardi et al., 2023; Singh et al., 2023; Bansal et al., 2024).

Despite these advantages, SDG faces challenges in balancing data quality with computational costs.
Generating high-quality data typically demands substantial computational resources (Tong et al.,
2024) or the use of high-performance, expensive LLMs. Conversely, using lower-cost models may
generate lower-quality data, which risks degrading model performance or even causes catastrophic
failure (Shumailov et al., 2024). For instance, OpenAI’s o1 (OpenAI, 2024) charges $15 per
million input tokens and $60 per million output tokens, whereas the Llama 70B model only costs
between $0.35 to $1.00 per million tokens on various endpoints (together.ai, 2024; Deepinfra, 2024).
Although using Llama 70B can cut costs by up to ∼ 150× compared to OpenAI’s o1, this cost
reduction comes at the expense of data quality. This dilemma presents a critical research question:

How can we cost-effectively generate high-quality synthetic data?

To elucidate this problem, consider a typical data synthesis pipeline (Bansal et al., 2024; Tong et al.,
2024), illustrated in Fig. 1, which begins with a seed dataset (e.g., MATH (Hendrycks et al., 2021))
containing question-answer pairs. The goal is to leverage many LLMs with varying inference costs
and response quality to generate reasoning paths (i.e., model responses) for each question, thereby
yielding a significantly expanded dataset of question-response pairs, which can be then used to train
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Figure 1: The SDG pipeline with QWICK for model selection. QWICK dynamically selects
models for each question in the SDG process by balancing empirical utility and exploration. In
each iteration, the algorithm processes the entire dataset, selects models to generate responses,
observes the resulting rewards, and updates its internal statistics. This iterative process continues
until the allocated budget is exhausted or a predefined stopping criterion is met.

and improve the model. A key part of this process is applying a threshold to filter out low-quality
responses. For example, ground truth answers can be used to filter out synthetic responses that are
incorrect. This makes model selection challenging. A stronger model may consistently pass the
filtering step due to generating higher-quality responses but will also incur higher computational
costs. In contrast, a weaker model might be cheaper to use but may produce a large number of un-
qualified responses, ultimately wasting computational resources. A critical decision in this pipeline
is, therefore, choosing the most appropriate model at each step

We propose to chose models based on an “utility” metric, defined as utility = reward/cost. Here,
“cost” refers to the computational expenses per model call, and “reward” quantifies the model’s
contribution to the final synthetic dataset per model call. In the above case, we can apply a binary
reward system: a reward of 1 is given when the model’s generated response matches the ground truth,
and 0 otherwise. Thus, the reward reflects the number of correct (valid) samples in the synthetic
dataset. This reward system quantifies the model’s contribution to the final synthetic dataset per
model call. Note this is just an example and can be extended depending on the user’s setting (e.g.,
using an outcome reward model), further detailed in §3.3. The model with the highest utility metric,
balancing reward and cost, is considered the most cost-effective for the SDG pipeline.

However, identifying the most cost-effective model is challenging because the reward can only be
determined through the SDG process itself, specific to each model and dataset. For example, in the
binary reward setting, it is impossible to predict the average reward (i.e., accuracy) each model will
achieve before the SDG process begins. Furthermore, estimating the utility (reward-to-cost ratio)
for a given set of models on a particular dataset is even more challenging. Even if we have an
accurate initial estimation of the utility of a model on a dataset, the utility can vary significantly
across models for different portions of the dataset. That is, different models may perform best on
different questions within the same dataset (§ 3.1). Therefore, selecting cost-effective models by
collecting information during the SDG process becomes crucial.

To address this challenge, we propose Question-Wise model pICK (QWICK), which dynamically
selects cost-effective models to generate synthetic data tailored to specific questions. QWICK uses
a budget-limited question-wise multi-armed bandit (MAB) framework to balance exploiting well-
performing models and exploring less-utilized ones. To illustrate, in QWICK, we are first given
a list of models with varying costs and capability. During the SDG process, QWICK look at the
cost and observed model reward, and employs a modified fractional KUBE algorithm to optimize
model selection on the fly. This dynamic adjustment ensures highly cost-effective model selection
throughout the SDG process.

We evaluate QWICK and show our method consistently outperforming baseline approaches in
generated data quality, while spending lower cost throughout the SDG process. Specifically, our
evaluation spans various model series (e.g., Gemma (Team et al., 2024), Llama (Dubey et al.,
2024), Deepseek-Coder (Guo et al., 2024)) and domains (e.g., GSM8K (Cobbe et al., 2021),
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MATH (Hendrycks et al., 2021), MBPP (Austin et al., 2021)), using different reward function setups
such as binary and outcome-based reward models (Feng et al., 2023). Even without prior knowl-
edge of the models’ reasoning capabilities, QWICK consistently outperforms baseline approaches,
delivering comparable data quality at up to 50% lower cost.

Our main contributions are summarized as follows:

• We introduce a budget-limited MAB algorithm QWICK for cost-effective SDG, utilizing
a dynamic question-wise model selection strategy that adapts to ongoing assessments of
model utility.

• We empirically validate that the proposed method outperforms the baselines not only in
terms of reward metrics but also by producing a dataset that, when used for post-training,
results in a model with higher accuracy at the same cost.

2 PROBLEM FORMULATION AND BACKGROUND

2.1 PROBLEM FORMULATION

To address the challenge of identifying cost-effective models for synthetic data generation on a
dataset of input questions, we formulate the problem under budget constraints as the dynamic se-
lection of the most cost-effective model, with the objective of maximizing the total reward. Please
refer to Tab. 4 for all the notations below.

Given a question dataset D = {x1, . . . ,xN} containing N input questions and a model pool
F = {f1, . . . , fK} consisting of K language models, we define a policy π(x) that selects a model to
generate responses based on input question x. For example, if π(x1) = f1, model f1 is selected to
generate a response for the question x1. We adopt a multi-iteration model selection process. At each
iteration t, the entire dataset D is processed, and a model is selected for each xj , where 1 ≤ j ≤ N .
The model selection policy πt(xj) is updated at each iteration t for each question. After each model
selection, we obtain a response oj,t for the corresponding question. Once a response oj,t is gener-
ated at iteration t, a cost cπt(xj),t,j is incurred, and a reward rπt(xj),t ∈ [0, 1] is observed, which
represents the quality of the response generated by the selected language model for question xj . Let
G(π) represent the expected total reward obtained by policy π. Our objective is to approximate the
optimal policy π∗ that maximizes the G(π) while adhering to a budget constraint B:

π∗ = argmax
π

G(π) = argmax
π

∑
t

N∑
j=1

rπt(xj),t : B ≥
∑
t

N∑
j=1

cπt(xj),t,j (1)

2.2 BUDGET-LIMITED MULTI-ARMED BANDITS

The multi-armed bandit (MAB) problem is a classic framework used to balance exploration and
exploitation in decision-making (Robbins, 1952). Several strategies exist to address this problem,
including ϵ-Greedy (Sutton & Barto, 2018), Thompson Sampling (Chapelle & Li, 2011), Upper Con-
fidence Bound (see Algorithm 3). An important extension of the MAB problem is the budget-limited
MAB, also known as Bandits with Knapsacks (Tran-Thanh et al., 2010). One notable solution is the
fractional KUBE algorithm (Tran-Thanh et al., 2012).

In the budget-limited MAB, there are K arms and a total budget B. At each iteration t, the algorithm
pulls the arm i selected by the policy πt, then the cost ci,t and the reward ri,t are observed. The
budget B is then reduced by ci,t. The process continues until the budget is exhausted. The objective
is to maximize the total reward obtained by the time the budget is exhausted.

The fractional KUBE (Algorithm 2) tracks the empirical mean reward r̂i,t, which is the average of
the observed rewards ri,t for arm i (1 ≤ i ≤ K), and the number of times arm i has been pulled,
denoted as ni,t, up to iteration t. For t < K, each arm is pulled once in turn. For t ≥ K, the arm

with the highest utility, defined as πt = argmaxi

(
r̂i,t
ci,t

+ 1
ci,t

√
2 ln t
ni,t

)
, is selected.

The core insight of fractional KUBE is to exploit the arms with the highest empirical utility (the
reward-cost ratio), instead of the highest reward. This enables fractional KUBE to find a policy
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π that minimizes total regret R(π) = G(π∗) − G(π) under budget B. Here, G(π) represents the
difference in rewards between the optimal policy π∗ and policy π. Note that π∗ always selects the
arm with the highest utility (i.e., the reward-to-cost ratio). Next, we will leverage this algorithm to
address our problem.

3 METHOD
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Figure 2: The fractional KUBE
identifies the Pareto frontier.

We propose the Question-Wise model pICK (QWICK)
Algorithm (detailed in Algorithm 1), with the full pipeline
illustrated in Fig. 1. This algorithm is designed to opti-
mize the reward (e.g. the amount of valid data) in syn-
thetic data generation by dynamically selecting the best
model for each question under the problem formulation
(§ 2). The algorithm effectively finds the Pareto frontier
(see Fig.2), ensuring the language model with the highest
utility is selected for each question xj ∈ D while adher-
ing the budget constraint B (§2.1).

3.1 QUESTION-WISE MODEL PICK

Table 1: Proportion of instances where
different models perform the best in utility

on a specific problem across the entire
MATH (Hendrycks et al., 2021) dataset.

Gemma Phi Llama

Share (%) 9.13% 35.43% 55.44%

Gemma 2B Gemma 9B Gemma 27B

Share (%) 41.16% 47.00% 11.84%

Inspired by fractional KUBE, we consider utility
(reward-cost ratio) as a crucial factor in determin-
ing which model to use. We base our question-
wise model pick on a simple yet important observa-
tion: models can exhibit varing performance across
the entire dataset. Specifically, some models excel
in terms of utility on certain questions, while oth-
ers perform better on different ones, as illustrated
in Tab. 1. This variability is observed both within
models of different sizes from the same family (e.g.,
Gemma-2 (Team et al., 2024)) and across different
model series (e.g., Gemma-2 (Team et al., 2024),
Llama-3.1 (Dubey et al., 2024), and Phi-3 (Abdin et al., 2024)).

Based on this observation, we opt to select models on a per-question basis rather than relying on a
single model for all questions. In each iteration, we evaluate the dataset and assign the best model
to each question based on its empirical utility and the number of trials, then generate synthetic
responses accordingly. The following section describes the algorithm in detail.

3.2 UTILITY-DRIVEN QUESTION-WISE MODEL PICK FOR SYNTHETIC DATA GENERATION

The algorithm (Algorithm 1) takes the question dataset D of size N and the model pool F of size
K as inputs. The models in the model pool are indexed in increasing order of per-token inference
cost, denoted as ai, with 1 ≤ i ≤ K. For each input question xj from the input dataset D with
1 ≤ j ≤ N , the algorithm maintains a model pool P (xj), initially containing only the cheapest
model f1. The following multi-iteration model selection and response generation process continues
until the stopping condition for each question is met or the budget B is exhausted.

At each iteration, the algorithm processes all question inputs xj in the question dataset D. For any
question, if its model pool (with size l) contains fewer than K models (i.e., l < K), we compare
the highest empirical reward-to-cost ratio (utility) in the current pool (i.e. maxi∈P (xj)

(
r̂i,t,j
ai

)
)

with the maximum potential reward-to-cost ratio of the next model in line, assuming a reward of
1 for that model (i.e., 1

al+1
) (line 16). If the potential ratio of the next model is greater, we add

it to the pool and select it for the next attempt. Otherwise, the algorithm defaults to selecting a
model by balancing exploration and exploitation within the existing pool. This approach enables
the algorithm to stop further exploration when the potential rewards of models outside the pool fall
below the current maximum empirical rewards within the pool. This reduces excessive exploration
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Algorithm 1 Question-Wise model pICK (QWICK) Algorithm

1: Input: Budget B, question dataset D, stopping condition Stop(xj) for each question xj ∈ D
2: Input: K models, where the i-th model is fi. Inference cost per token for model fi is ai

(1 ≤ i ≤ K). Models are sorted in increasing order of ai.
3: Input: β is a weight for balancing question-wise utility and dataset-level utility in model selec-

tion. α is a weight controlling the exploration term.
4: Environment: At iteration t, for a given question xj , model fi is selected by the action πt(xj)

(denoted as πt,j). The observed reward is ri,t ∈ [0, 1], and the cost is ci,t,j . The empirical
mean reward of fi for xj is r̂i,t,j . The empirical mean reward of fi over the entire dataset D is
r̂i,t. The empirical normalized cost of querying fi for question xj is ĉi,t,j . The number of trials
using fi for xj until iteration t is ni,t,j .

5: Initialize: t← 1
6: Initialize: Remaining budget Bt ← B
7: Initialize: Model pool for each question P (xj)← [1] for all xj ∈ D
8: while D ≠ ∅ do
9: for xj ∈ D do

10: if Stop(xj) then
11: Remove xj from D {Remove question xj that meets the stopping condition}
12: continue
13: end if
14: l← len(P (xj))
15: if l < K then
16: if maxi∈P (xj)

(
r̂i,t,j
ai

)
< 1

al+1
then

17: πt,j ← l + 1 {Select the next higher-cost model}
18: Append l + 1 to P (xj) {Add the selected model to the pool for question xj}
19: else
20: πt,j ← argmaxi∈P (xj)

(
mini′∈P (xj)

ĉi′,t,j

ĉi,t,j
(βr̂i,t,j + (1− β)r̂i,t) +

1
α

√
2 ln t
ni,t,j

)
{Select the best model based on estimated rewards and exploration term}

21: end if
22: else
23: πt,j ← argmaxi∈P (xj)

(
mini′∈P (xj)

ĉi′,t,j

ĉi,t,j
(βr̂i,t,j + (1− β)r̂i,t) +

1
α

√
2 ln t
ni,t,j

)
{Select

the best model based on estimated rewards and exploration term}
24: end if
25: Update remaining budget Bt ← Bt − cπt,j ,t,j

26: if Bt < 0 then
27: Exit {Terminate if budget is exhausted}
28: end if
29: Use model fπt,j

to generate response and observe the reward rπt,j ,t

30: Update the estimated reward r̂πt,j ,t,j , and r̂πt,j ,t, the cost ĉπt,j ,t,j , and the number of pulls
nπt,j ,t,j {Update statistics for the selected model}

31: end for
32: Bt+1 ← Bt
33: t← t+ 1
34: end while

commonly associated with traditional algorithms. Note that we assume uniform generation lengths
across models, as only the per-token cost ai is used to estimate the reward-to-cost ratio.

If the model pool already contains all K models, the algorithm selects the model i that maximizes

the expression
mini′∈P (xj)

ĉi′,t,j

ĉi,t,j
(βr̂i,t,j + (1− β)r̂i,t)+

1
α

√
2 ln t
ni,t,j

(line 23). The first term balances
question-level utility with dataset-level utility by mixing the question-level reward r̂i,t,j with the

dataset-level reward r̂i,t. Without loss of generality, the scaling factor
mini′∈P (xi)

ĉi′,t,i
ĉi,t,j

normalizes

the first term to the range [0,1]. The second term, 1
α

√
2 ln t
ni,t,j

, encourages exploration of underused
models. In our evaluations, we simply set α = 16 and β = 0.5 to balance between question-level
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utility, dataset-level utility, and the trade-off between exploration and exploitation. Note that that ĉ
is used to estimate the cost, as the true cost is unknown before each generation process.

The algorithm proceeds iteratively, and when the stopping condition for a specific question xj

(1 ≤ j ≤ N ) is met (such as reaching a target number of correct answers or hitting the infer-
ence cost threshold), that question is removed from D. The outer loop terminates when either no
more questions remain in D or the budget is depleted.

3.3 FLEXIBLE UTILITY METRIC

The utility (reward-cost ratio) metric is flexible in the proposed algorithm to accommodate diverse
use cases. This flexibility operates on two levels. First, the cost is easily adjustable by factoring
in the per-token pricing provided by the LLM service provider. Second, the reward component
is also configurable. For example, in tasks like math or code where the ground truth is available,
we can verify if the generated answer matches the correct one. If the answer is correct, a reward
of 1 is assigned; otherwise, the reward is 0. Furthermore, a more granular reward system can be
implemented using an Outcome Reward Model (ORM), which assigns a score between 0 and 1,
where higher values reflect better answer quality. Our evaluations (in §4.1 and §4.3) demonstrate
that the proposed method achieves higher rewards within the same budget when using varied utility
metrics.

4 EXPERIMENTS

Methodology. To assess the effectiveness of the proposed method across various scenarios, we
conducted evaluations on both math (GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021)) and programming (MBPP (Austin et al., 2021)) tasks. These datasets include both questions
and ground truth answers or test cases. We used the QWICK and baseline methods to generate syn-
thetic responses for the questions in the evaluation dataset under different budget settings. We then
evaluated the quality of the synthetic datasets in terms of diversity and coverage. Additionally, we
fine-tuned a model using the synthetic datasets and tested the fine-tuned model on the corresponding
test datasets. This approach provided a comprehensive assessment of the synthetic dataset quality
under various methods within a constrained budget.

Inference Settings. For synthetic data generation, we generate responses by inputting questions
from the MATH, GSM8K, and MBPP datasets into a list of corresponding LLMs. We use models
with varying computational costs and capabilities, achieved by using different model sizes from the
same series for each dataset, as detailed in Tab. 2. We set the temperature to 1 and limit the maxi-
mum token generation to 2048. To ensure the quality of generated responses, we apply reject sam-
pling (Yuan et al., 2023) to filter out incorrect responses. For math tasks, the generated answers were
compared against the ground truth, while for programming tasks, we executed the generated code
and filtered out responses that failed to execute or did not pass the test cases. To achieve uniform
sampling across the dataset, we set a maximum number of valid responses per question, as outlined
in Tab.2, following the approach in Tong et al. (2024). For evaluation, we generate responses using
the fine-tuned models with greedy sampling, setting a token limit of 2048. We evaluate model per-
formance using pass@1, where only the first generated response is considered, and report accuracy
for all experiments. Additionally, we apply Chain-of-Thought (CoT) prompting (Wei et al., 2022)
to enhance reasoning in both synthetic data generation and evaluation.

Fine-tuning Settings. We fine-tuned each model on the generated datasets, running 200 steps for the
GSM8K and MATH datasets, and 20 epochs for the MBPP dataset. For the math tasks, checkpoints
were saved every 20 steps, while for the programming tasks, checkpoints were saved every 5 steps.
We report the highest accuracy achieved across all checkpoints. Instruction tuning was employed
for fine-tuning, with a batch size of 64, utilizing Sequence Packing (Krell et al., 2021) to reduce
the total number of fine-tuning steps, following Tong et al. (2024). Fine-tuning was performed on
2 A100 80GB GPUs with a gradient accumulation size of 16. We used the Adam optimizer with
no weight decay, combined with a cosine learning rate scheduler. For the programming tasks, we
fine-tuned the Llama-2-7B (Touvron et al., 2023) model, and for the math tasks, we fine-tuned the
Llama-3-8B (Meta, 2024) model, both with a maximum learning rate of 5e-5.
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Utility Calculation. The cost of synthetic data generation is calculated on a per-token basis, pri-
marily estimated according to model size, following the pricing structure of TogetherAI’s serverless
endpoints (together.ai, 2024). For each response, the cost is determined by multiplying the number
of generated tokens by the per-token price. The reward calculation is binary: it is set to 1 if the
generated answer matches the ground truth (i.e., it is a valid sample), and 0 otherwise. The total
reward, therefore, reflects the number of valid samples.

Baseline Settings. We compared the proposed QWICK algorithm against following two baseline
settings:

• Random Model Selection (Algorithm 5). When prior knowledge of a model’s perfor-
mance on a specific dataset is unavailable, a straightforward approach is to randomly select
a model for each question. In this setting, we applied uniform random selection, where a
model is chosen randomly for each question.

• Dataset-wise UCB1 (Algorithm 4). We adapted the classic UCB1 algorithm (Algorithm 3)
to select the model based on upper confidence bound on the reward for the entire dataset
at each iteration. The process continued until the budget, B, was fully exhausted. Like
the original UCB1, this adapted version focuses on maximizing the reward but does not
take into account the cost associated with model calls. Instead, it prioritizes selecting the
model that is expected to yield the highest cumulative reward, without considering the cost
of achieving that reward.

Table 2: Dataset and model settings for §4.1

Dataset Model Type Model List Max #Response Per Question

GSM8K (Cobbe et al., 2021) Llama-3.1 (Dubey et al., 2024) 8B, 70B 3
MATH (Hendrycks et al., 2021) Gemma-2 (Team et al., 2024) 2B, 9B, 27B 10
MBPP (Austin et al., 2021) Deepseek-Coder (Guo et al., 2024) 1.3B, 6.7B, 33B 10

4.1 MAIN RESULTS
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Figure 3: Coverage and diversity can
positively boost the accuracy.

We demonstrate that our method can generate synthetic
datasets of comparable quality at a lower cost across
various question datasets. Specifically, we fine-tune the
Llama-3-8B model on the GSM8K and MATH datasets
and the Llama-2-7B model on the MBPP dataset, using
synthetic datasets generated by different methods. We
then report the accuracy of these fine-tuned models on
their respective test sets, as a measure of synthetic dataset
quality. As shown in the first row of Fig. 4, QWICK
achieves comparable or identical accuracy with up to 40%
lower cost on GSM8K, up to 33% lower cost on MATH,
and up to 50% lower cost on MBPP compared to the UCB1 method.

These performance gains are largely attributed to the increased diversity and coverage of the syn-
thetic datasets. As illustrated in Fig. 3 and supported by Bansal et al. (2024), synthetic dataset with
greater diversity and broader coverage enable models fine-tuned on these datasets to achieve higher
test accuracy. Specifically, QWICK consistently outperforms the baselines on these datasets in both
diversity and coverage metrics. For instance, as shown in the second row of Fig.4, QWICK generates
up to 69%, 112%, and 106% more valid samples on GSM8K, MATH, and MBPP, respectively, com-
pared to UCB1. Moreover, the third row of Fig.4 demonstrates that QWICK consistently maintains
higher coverage than baseline methods across all these datasets under different cost constraints.

Note that the total reward is equivalent to the number of valid samples, as the reward is binary. The
dataset-wise UCB1 algorithm focuses on maximizing the reward but neglects the associated costs,
which hinders its ability to identify the most cost-effective model. In fact, in some cases, UCB1
performs worse than random selection due to this oversight. In contrast, QWICK successfully max-
imizes the reward within a given budget by identifying the cost-effective model for each question.
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Figure 4: Accuracy, diversity, and coverage comparisons on GSM8K, MATH, and MBPP datasets
with different costs with QWICK and baselines.

4.2 ANALYSIS OF EFFECTIVENESS

We demonstrate QWICK’s model selection process on the MATH dataset using Gemma models
(2b, 9b, and 27b) to illustrate its model selection convergence trace. The algorithm starts with the
least expensive model (i.e., Gemma-2-2b) and progressively switches to larger models on questions
where Gemma-2-2b performs poorly. After a few iterations, it converges on the most cost-effective
model for most questions with potential solutions, as depicted in Fig. 5a. In contrast, a dataset-level
model selection algorithm will converge to a single model for the entire dataset after a few iterations
(e.g., 4 iterations), depending on the policy applied. For instance, an accuracy-driven algorithm
(e.g., dataset-wise UCB1) will repeatedly select the Gemma-2-27B model, while an utility-driven
algorithm will favor the Gemma-2-2B model. However, these models are sub-optimal when eval-
uated on a per-question basis, resulting in lower overall reward (measured by the number of valid
samples in this case) and poorer coverage. We illustrate the total reward and coverage for these
settings with the same maximum answer limit per question and the same cost limit as in Fig. 5b.
The proposed method outperforms the baselines on both metrics.
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(a) #Questions selected by each model across the entire MATH dataset
during the generation iterations. The dotted line indicates the number of
questions for which a model is utility-optimal (ϕ∗), after excluding those for
which no correct solutions were generated. We set no maximum number of
responses per question and set β = 1 to allow for clearer illustration.
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Figure 5: Visualizing the effectiveness of QWICK
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4.3 ABLATION STUDY

Generalization of the utility metric. We demonstrate that the utility metric can be applied to a
broader range of use cases. In §4.1, the reward is binary. However, this approach overlooks incorrect
reasoning paths and does not account for varying answer quality. To address this, we utilize an
Outcome Reward Model (ORM) fine-tuned on GSM8K by Feng et al. (2023), which allows for more
nuanced reward assignment. The ORM assigns a score between [−1, 1], which we linearly map to
the range of [0, 1] to align with the reward scale in the algorithm. Besides, we enforce a reward of 0
if the answer does not match the ground truth. As shown in Fig. 6, our method outperforms UCB1
and random selection across accuracy, diversity, and coverage metrics. In terms of total reward,
QWICK achieves up to 2.2x higher results compared to UCB1 under the same budgets.
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Figure 6: Accuracy, diversity, and coverage comparison on GSM8K with rewards by an ORM. The
maximum number of responses per question is set to 10.

Table 3: Accuracy comparisons on
GSM8K fine-tuning Mistral 7B with

different synthetic dataset

Norm. Cost 1X 2X 3X 4X 5X

QWICK 67.1% 68.2% 69.5% 71.8% 73.4%
UCB1 64.0% 66.7% 65.6% 71.2% 68.7%
Random 59.4% 66.1% 67.0% 68.9% 69.7%

Generalization of the synthetic dataset across differ-
ent models. To evaluate the generalization across differ-
ent models being fine-tuned of the synthetic dataset qual-
ity produced by the proposed methods, we fine-tuned the
v0.3 version of Mistral 7B model (Jiang et al., 2023), ad-
justing the maximum learning rate to 1e-5, using datasets
generated by different methods and measured the model’s
accuracy on the test set. The results, shown in Tab. 3,
demonstrate that the proposed method, QWICK, achieves
similar accuracy with up to 66.6% lower cost compared
with both UCB1 and random model selection when fine-
tuning the Mistral 7B model, indicating that it is effective beyond just the Llama model.

Generalization of the synthetic dataset across different reasoning method. We utilize the Tool-
Integrated Reasoning Agent (ToRA) by Gou et al. (2024) instead of the simpler CoT approach
to generate synthetic data. This is done to evaluate the generalization capabilities of the method
across different reasoning frameworks. Synthetic datasets were created using the 3B, 7B, and 14B
Qwen2.5 models (Team, 2024) on the MATH dataset, employing ToRA along with various model
selection strategies: random, dataset-wise UCB1, and QWICK. Each correct response generated by
these models during the data creation phase was awarded a reward of 1, with incorrect responses
receiving a reward of 0. Subsequently, these datasets were used to fine-tune a Llama-3-8B model
over three epochs. The diversity and coverage of the synthetic dataset and the accuracy of the fine-
tuned model on the test set are illustrated in Fig. 7. QWICK demonstrated a potential to reduce costs
by up to 60% while achieving comparable accuracy to that obtained using the UCB1 and random
model selection methods.
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Figure 7: Accuracy, diversity, and coverage comparison on MATH with ToRA. The maximum
number of responses per question is set to 10
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5 RELATED WORK

Cost-Effective Sampling. Recent research has focused on combining search algorithms (e.g., Xin
et al. (2024b), Xie et al. (2024) Yao et al. (2024)) with small yet strong language models ( OpenAI
(2024); Xin et al. (2024b)) to achieve cost-effective performance. Other works study the trade-off
between compute budget, model scale, and problem-solving performance at test time (Snell et al.
(2024), Wu et al. (2024)). Furthermore, research has shown the effectiveness of synthetic data
generated by small language models for fine-tuning stronger reasoners in supervised tasks, such as
math and coding ( Bansal et al. (2024)). While smaller models typically perform better under fixed
costs, larger models offer superior data quality, and performance can vary even among models of
the same size. Selecting the most cost-effective model or combination for a given dataset remains
challenging. Our work builds on previous approaches by proposing an algorithm that inherently
achieves cost-efficient sampling.

Learning LLM Reasoning. Several studies have investigated how to enhance the reasoning capa-
bilities of large language models (LLMs) using synthetic data in fine-tuning ( Yuan et al. (2023);
Gulcehre et al. (2023); Wu et al. (2024)). A common strategy is to aggregate diverse reasoning
paths generated through repeated sampling ( Wang et al. (2022); Li et al. (2023)). Some studies
have utilized rejection sampling in combination with repeated sampling to filter diverse reasoning
paths for math dataset augmentation in the post-training phase (Zelikman et al. (2022); Yuan et al.
(2023); Tong et al. (2024)). Researchers have also explored reinforcement learning techniques to
further improve the mathematical reasoning skills of LLMs, drawing distinctions between outcome-
based and process-based reward models (Uesato et al. (2022); Lightman et al. (2024); Chen et al.
(2024)). In our work, we focus on a streamlined method for generating augmented samples via
outcome rejection sampling.

Online Model Selection. Online model selection is important for selecting the best-performing
models from a set, especially given limited training resources and performance evaluations. Re-
search in LLM model selection predominantly focuses on two areas: (1) selecting the best perform-
ing model during inference (Ong et al. (2024); Peng et al. (2023)) and (2) non-stationary selection,
which accounts for changes in model performance due to iterative fine-tuning ( Xia et al. (2024)).
However, these studies have not explored how to optimize model selection under budget constraints,
which is formulated as knapsack-based multi-armed bandit problem. Methods such as fractional
KUBE ( Tran-Thanh et al. (2012)) and budgeted Thompson sampling ( Xia et al. (2015)) have been
developed for this task. The challenge extends to synthetic data generation as well. For instance,
Luo et al. (2024) proposed an approach where all models are evaluated to determine the best model-
answer pairs. This process can be streamlined using online model selection, by narrowing down the
top-performing models at each inference step.

6 DISCUSSION

Limitation. QWICK maximizes the total reward within a budget constraint. However, determining
how to accurately measure this total reward is non-trivial. Both the binary reward (0 or 1) and
rewards based on an Outcome Reward Model (ORM) have limitations. The former ignores important
factors such as coherence, completeness, and conciseness in reasoning, while the latter heavily relies
on the quality of the ORM itself.

Future work. Future work could explore the use of Process Reward Models and more advanced
search algorithms to generate higher-quality reasoning data. Additionally, experimenting with more
effective post-training techniques may further improve outcomes.

7 CONCLUSION

In this paper, we propose QWICK, an cost-effective synthetic data generation framework for post-
training through question-wise model selection. QWICK employs utility-driven model selection by
framing the problem as a multi-armed bandit with budget constraints. Our evaluations on math and
programming tasks demonstrate that this method can reduce costs by up to 50% while maintaining
comparable dataset quality to baseline approaches.
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A NOTATIONS

Notation Definition
D = {x1, . . . ,xN} dataset
F = {f1, . . . , fK} collection of arms
B total budget
N dataset size
K number of arms
πt(x) model selection policy on input x at iteration t
ri,t reward of pulling arm i at iteration t
ci,t cost of pulling arm i at iteration t
ai per token cost of the LLM i
G(π) expected total reward earned by using π to pull the arms
R(π) regret of π

Table 4: Explainations of the notations

B ALGORITHMS

B.1 FRACTIONAL KUBE (FOR KNAPSACK–BASED UPPER CONFIDENCE BOUND
EXPLORATION AND EXPLOITATION)

Algorithm 2 Fractional KUBE by Tran-Thanh et al. (2012)

1: Input: Budget B, number of arms K
2: Environment: At each iteration t, we pull an arm πt. The cost of pulling arm i at time t is ci,t,

and the reward received is ri,t. The empirical mean reward of arm i up to time t is r̂i,t, and the
total number of pulls for arm i up to time t is ni,t. This holds for 1 ≤ i ≤ K.

3: Initialize: t← 1
4: Initialize: remaining budget Bt ← B
5: while True do
6: if Bt < min1≤i≤K ci,t then
7: break {Stop if the remaining budget is less than the minimum arm cost}
8: end if
9: if t ≤ k then

10: πt ← t {Pull each arm once during the first K iterations}
11: else
12: πt ← argmaxi

(
r̂i,t
ci,t

+ 1
ci,t

√
2 ln t
ni,t

)
{Select the arm that maximizes the estimated reward-

to-cost ratio with exploration adjustment}
13: end if
14: Pull arm πt and observe the reward rπt,t

15: Update the estimated reward r̂πt,t and the number of pulls nπt,t

16: Bt+1 ← Bt − cπt,t {Deduct the cost of the selected arm from the remaining budget}
17: t← t+ 1
18: end while
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B.2 UCB1 (UPPER CONFIDENCE BOUND VERSION1)

Algorithm 3 UCB1 by AUER et al. (2002)

1: Input: number of arms K
2: Environment: At each iteration t, an arm πt is pulled. The reward received from pulling arm

i at iteration t is ri,t. The empirical mean reward for arm i up to iteration t is r̂i,t. The total
number of times arm i has been pulled until iteration t is ni,t. This holds for 1 ≤ i ≤ K.

3: Initialize: t← 1
4: while True do
5: if t ≤ k then
6: πt ← t {Pull each arm once in the first K iterations}
7: else
8: πt ← argmaxi

(
r̂i,t +

√
2 ln t
ni,t

)
{Select the arm that maximizes the upper confidence

bound}
9: end if

10: Pull arm πt and observe the reward rπt,t

11: Update the empirical mean reward r̂πt,t and the number of pulls nπt,t

12: t← t+ 1
13: end while

B.3 DATASET-WISE UCB1

Algorithm 4 Dataset-wise UCB1

1: Input: Budget B, input question dataset D of size N , stopping condition Stop(xj) for each
question xj ∈ D

2: Input: K models, the i-th model is fi. α is a weight controlling the exploration term.
3: Environment: At iteration t, a model πt is selected. The cost of using model fi for question xj

at time t is ci,t,j , and the observed reward is ri,t,j . The empirical mean reward of model fi up
to time t is denoted as r̂i,t, and the total number of selections of model fi up to time t is ni,t.
This applies for all 1 ≤ i ≤ K and 1 ≤ j ≤ N .

4: Initialize: t← 1
5: Initialize: Remaining budget Bt ← B
6: while D ≠ ∅ do
7: if t ≤ K then
8: πt ← t {Call each model once in the first K iterations}
9: else

10: πt ← argmaxi

(
r̂i,t +

1
α

√
2 ln t
ni,t

)
{Select the model that maximizes the upper confidence

bound}
11: end if
12: for xj ∈ D do
13: if Stop(xj) then
14: Remove xj from D {Remove question xj that meets the stopping condition}
15: continue
16: end if
17: Update remaining budget Bt ← Bt − cπt,t,j

18: if Bt < 0 then
19: Exit {Terminate if budget is exhausted}
20: end if
21: Use model fπt

to generate a response for the question xj and observe the reward rπt,t,j

22: end for
23: Update the estimated reward r̂πt,t and the number of pulls nπt,t {Update statistics for the

selected model}
24: Bt+1 ← Bt
25: t← t+ 1
26: end while
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B.4 RANDOM MODEL SELECTION

Algorithm 5 Random Model Selection

1: Input: Budget B, question dataset D, stopping condition Stop(xj) for each question xj ∈ D
2: Input: K models, where the i-th model is fi
3: Environment: At iteration t, for a given question xj , model fi is selected by the action πt(xj)

(denoted as πt,j). The observed reward is ri,t ∈ [0, 1], and the cost is ci,t,j .
4: Initialize: t← 1
5: Initialize: Remaining budget Bt ← B
6: while D ≠ ∅ do
7: for xj ∈ D do
8: if Stop(xj) then
9: Remove xj from D {Remove question xi that meets the stopping condition}

10: continue
11: end if
12: πt,j ← Discrete Uniform(1,K) {Select a model randomly from 1 to K}
13: Update remaining budget Bt ← Bt − cπt,j ,t,j

14: if Bt < 0 then
15: Exit {Terminate if budget is exhausted}
16: end if
17: Use model fπt,j

to generate a response
18: end for
19: Bt+1 ← Bt
20: t← t+ 1
21: end while
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