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Abstract

Diffusion models are a remarkably effective way
of learning and sampling from a distribution p(z).
In posterior sampling, one is also given a mea-
surement model p(y | x) and a measurement ¥,
and would like to sample from p(z | y). Posterior
sampling is useful for tasks such as inpainting,
super-resolution, and MRI reconstruction, so a
number of recent works have given algorithms to
heuristically approximate it; but none are known
to converge to the correct distribution in poly-
nomial time. In this paper we show that poste-
rior sampling is computationally intractable: un-
der the most basic assumption in cryptography—
that one-way functions exist—there are instances
for which every algorithm takes superpolynomial
time, even though unconditional sampling is prov-
ably fast. We also show that the exponential-time
rejection sampling algorithm is essentially opti-
mal under the stronger plausible assumption that
there are one-way functions that take exponential
time to invert.

1. Introduction

Over the past few years, diffusion models have emerged as a
powerful way for representing distributions of images. Such
models, such as Dall-E (Ramesh et al., 2022) and Stable
Diffusion (Rombach et al., 2021), are very effective at learn-
ing and sampling from distributions. These models can then
be used as priors for a wide variety of downstream tasks,
including inpainting, superresolution, and MRI reconstruc-
tion.

Diffusion models are based on representing the smoothed
scores of the desired distribution. For a distribution p(x),
we define the smoothed distribution p, () to be p convolved
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with /(0,021 ). These have corresponding smoothed scores
sq(x) == Vlogps(x). Given the smoothed scores, the dis-
tribution p can be sampled using an SDE (Ho et al., 2020) or
an ODE (Song et al., 2021). Moreover, the smoothed score
is the minimizer of what is known as the score-matching
objective, which can be estimated from samples.

Sampling via diffusion models is fairly well understood
from a theoretical perspective. The sampling SDE and ODE
are both fast (polynomial time) and robust (tolerating Lo
error in the estimation of the smoothed score). Moreover,
with polynomial training samples of the distribution, the
empirical risk minimizer (ERM) of the score matching ob-
jective will have bounded L» error, leading to accurate sam-
ples (Block et al., 2020; Gupta et al., 2023). So diffusion
models give fast and robust unconditional samples.

But sampling from the original distribution is not the main
utility of diffusion models: that comes from using the mod-
els to solve downstream tasks. A natural goal is to sam-
ple from the posterior: the distribution gives a prior p(z)
over images, so given a noisy measurement y of x with
known measurement model p(y | x), we can in principle
use Bayes’ rule to compute and sample from p(z | y). Often
(such as for inpainting, superresolution, MRI reconstruction)
the measurement process is the noisy linear measurement
model, with measurement y = Az 47 for a known measure-
ment matrix A € R™*? with m < d, and Gaussian noise
n = BN (0, I,,); we will focus on such linear measurements
in this paper.

Posterior sampling has many appealing properties for image
reconstruction tasks. For example, if you want to identify
x precisely, posterior sampling is within a factor 2 of the
minimum error possible for every measurement model and
every error metric (Jalal et al., 2021a). When ambiguities do
arise, posterior sampling has appealing fairness guarantees
with respect to sensitive attributes (Jalal et al., 2021b).

Given the appeal of posterior sampling, the natural ques-
tion is: is efficient posterior sampling possible given ap-
proximate smoothed scores? A large number of recent pa-
pers (Jalal et al., 2021a; Chung et al., 2023; Kawar et al.,
2021; Trippe et al., 2023a; Song et al., 2023; Kawar et al.,
2022; Dou & Song, 2024) have studied algorithms for pos-
terior sampling, with promising empirical results. But all
these fail on some inputs; can we find a better posterior
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sampling algorithm that is fast and robust in all cases?

There are several reasons for optimism. First, there’s the fact
that unconditional sampling is possible from approximate
smoothed scores; why not posterior sampling? Second, we
know that information-theoretically, it is possible: rejection
sampling of the unconditional samples (as produced with
high fidelity by the diffusion process) is very accurate with
fairly minimal assumptions. The only problem is that re-
jection sampling is slow: you need to sample until you get
lucky enough to match on every measurement, which takes
time exponential in m.

And third, we know that the unsmoothed score of the poste-
rior p(z | y) is computable efficiently from the unsmoothed
score of p(z) and the measurement model: V, logp(x |
y) = Vogp(x) + Vog p(y | z). This is sufficient to run
Langevin dynamics to sample from p(z | y). Of course,
this has the same issues that Langevin dynamics has for
unconditional sampling: it can take exponential time to mix,
and is not robust to errors in the score. Diffusion models
fix this by using the smoothed score to get robust and fast
(unconditional) sampling. It seems quite plausible that a
sufficiently clever algorithm could also get robust and fast
posterior sampling.

Despite these reasons for optimism, in this paper we show
that no fast posterior sampling algorithm exists, even
given good approximations to the smoothed scores, under
the most basic cryptographic assumption that one-way func-
tions exist. In fact, under the further assumption that some
one-way function is exponentially hard to invert, there exists
a distribution—one for which the smoothed scores are well
approximated by a neural network so that unconditional
sampling is fast—that takes exponential in m time for pos-
terior sampling. Rejection sampling takes time exponential
in m, and so, one can no longer hope for much general
improvement over rejection sampling.

Precise statements. To more formally state our results,
we make a few definitions. We say a distribution is “well-
modeled” if its smoothed scores can be represented by a
polynomial size neural network to polynomial precision:

Definition 1.1 (C-Well-Modeled Distribution). For any

constant C' > 0, we say a distribution p over R® with

covariance % is “C-well-modeled” by score networks if

I2]] < 1 and there are approximate scores S, that satisfy
1

dCo?

—~ 2

LB 5o (@) = so(2)]7] <
and can be computed by a poly(d)-parameter neural net-
work with poly (d)-bounded weights for every 7o < o <
de.

Throughout our paper we will be comparing similar distribu-
tions. We say distributions are (7, §) close if they are close

up to some shift 7 and failure probability §:

Definition 1.2 ((7, §)-Close Distribution). We say the dis-
tribution of x and T are (7,0) close if they can be coupled
such that

Pr[l|lz — Z|| > 7] < 4.

An unconditional sampler is one that is (7, d) close to the
true distribution.

Definition 1.3 ((7, 0)-Unconditional Sampler). A (7, ) un-
conditional sampler of a distribution D is one where its
samples T are (1,0) close to the true x ~ D.

The theory of diffusion models (Chen et al., 2023) says that
the diffusion process gives an unconditional sampler for
well-modeled distributions that takes polynomial time (with
the precise polynomial improved by subsequent work (Ben-
ton et al., 2024)).

Theorem 1.4 (Unconditional Sampling for Well-Modeled
Distributions). For an O(C')-well-modeled distribution p,
the discretized reverse diffusion process with approximate
scores gives a (d%, d%)—unconditional sampler (as defined
in Definition 1.3) for any constant C' > 0 in poly(d) time.

But what about posterior samplers? We want that, for most
measurements y, the conditional distribution is (7, ) close
to the truth:

Definition 1.5 ((7, §)-Posterior Sampler). Let D be a dis-
tribution over X x Y with density p(x,y). Let C be an
algorithm that takes iny € Y and outputs samples from
some distribution p|, over X. We say Cis a (7, §)-Posterior
Sampler for D if, with 1 — § probability over y ~ Dy, p|,
and p(x | y) are (1,9) close.

As described above, we consider the linear measurement
model:

Definition 1.6 (Linear Measurement Model). In the linear
measurement model with m measurements and noise param-
eter 3, we have for x € R?, the measurement y = Az + 1
for A € R™*4 normalized such that ||A|| < 1, and
n= 6N(07 Im)

One way to implement posterior sampling is by rejection
sampling. As long as the measurement noise [ is much
bigger than the error 7 = m from the diffusion process,
this is accurate. However, the running time is exponentially
large in m:

Theorem 1.7 (Upper Bound). Let C > 1 be a constant.
Consider an O(C')-well-modeled distribution and a linear
measurement model with 3 > d%. When 6 > d%, rejection
sampling of the diffusion process gives a (d%, d)-posterior

sampler that takes poly(d)(%)m time.

Our main result is that this is nearly tight:
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Theorem 1.8 (Lower Bound). Suppose that one-way func-
tions exist. Then for any m > d°°1, there exists a 10-
well-modeled distribution over RY, and linear measure-
ment model with m measurements and noise parameter
8 = @(bg%d), such that (55, 15 )-posterior sampling re-
quires superpolynomial time in d.

To be a one-way function, inversion must take superpoly-
nomial time on average. It is widely believed, including
for problems based on lattices (Aggarwal et al., 2023) and
elliptic curves (Zhandry, 2019), that many one-way func-
tion candidates need exponential time to invert. Under the
stronger assumption that there exist some one-way functions
that require exponential time to invert with non-negligible
probability, we can show that posterior sampling takes 2("™)
time:

Theorem 1.9 (Lower Bound: Exponential Hardness). Sup-

pose that there exist one-way functions f : {£1}™ —

{£1}™ that require 2°("™) time to invert. Then for any

m < O(d) and C > 1, there exists a C-well-modeled

distribution over R* and linear measurement model with
1

m measurements and noise level f = TTogT @ such that

(%, Tl())-posterior sampling takes at least 2™ time.
Assuming such strong one-way functions exist, then for the
lower bound instance, 2°2(™) time is necessary and rejec-
tion sampling takes 20 (™ 19812 4) o]y (d) time. Up to the
log log d factor, this shows that rejection sampling is the
best one can hope for in general.

Remark 1.10. The lower bound produces a “well-modeled”
distribution, meaning that the scores are representable by a
polynomial-size neural network, but there is no requirement
that the network be shallow. One could instead consider
only shallow networks; the same theorem holds, except
that f must also be computable by a shallow depth network.
Many candidate one-way functions can be computed in NC’
(i.e., by a constant-depth circuit) (Applebaum et al., 2004),
so the cryptographic assumption is still mild.

2. Related Work

Diffusion models (Sohl-Dickstein et al., 2015; Dhariwal
& Nichol, 2021; Song & Ermon, 2019) have emerged as
the most popular approach to deep generative modeling of
images, serving as the backbone for the recent impressive
results in text-to-image generation (Ramesh et al., 2022;
Rombach et al., 2021), along with state-of-the-art results
in video (Blattmann et al., 2023; Ho et al., 2022) and au-
dio (Kong et al., 2021; Chen et al., 2021) generation.

Noisy linear inverse problems capture a broad class of ap-
plications such as image inpainting, super-resolution, MRI
reconstruction, deblurring, and denoising. The empirical
success of diffusion models has motivated their use as a

data prior for linear inverse problems, without task-specific
training. There have been several recent theoretical and em-
pirical works (Jalal et al., 2021a; Chung et al., 2023; Kawar
et al., 2021; Trippe et al., 2023a; Song et al., 2023; Kawar
et al., 2022; Dou & Song, 2024) proposing algorithms to
sample from the posterior of a noisy linear measurement.
We highlight some of these approaches below.

Posterior Score Approximation. One class of ap-
proaches (Chung et al., 2023; Kawar et al., 2021; Song
et al., 2023) approximates the intractable posterior score
Vg pi(zi|ly) = Viogpi(zt) + Vlogp:(y|as) at time ¢
of the reverse diffusion process, and uses this approxima-
tion to sample. Here, y = Az + 7 is the noisy measure-
ment of xg ~ pgy, where p; is the density at time ¢. For
instance, Chung et al. (2023) proposes the approximation
Vlog pi(y|zt) = Vlogp(x| E [xg|x:]), thereby incurring
error quantified by the so-called Jensen gap. (Song et al.,
2023) proposes an approximation based on the pseudoin-
verse of A, while (Kawar et al., 2021) proposes to use the
score of the posterior wrt measurement ¥, of .

Replacement Method. Another approach, first intro-
duced in the context of inpainting (Lugmayr et al., 2022),
replaces the observed coordinates of the sample with a noisy
version of the observation during the reverse diffusion pro-
cess. An extension was proposed for general noisy linear
measurements (Kawar et al., 2022). This approach essen-
tially also attempts to sample from an approximation to the
posterior.

Particle Filtering. A recent set of works (Trippe et al.,
2023a;b; Dou & Song, 2024) makes use of Sequential Monte
Carlo (SMC) methods to sample from the posterior. These
methods are guaranteed to sample from the correct distri-
bution as the number of particles goes to co. Our paper
implies a lower bound on the number of particles necessary
for good convergence. Assuming one-way functions exist,
polynomially many particles are insufficient in general, so
that these algorithms takes superpolynomial time; assuming
some one-way function requires exponential time to invert,
particle filtering requires exponentially many particles for
convergence.

To summarize, our lower bound implies that these ap-
proaches are either approximations that fail to sample from
the posterior, and/or suffer from prohibitively large runtimes
in general.

3. Proof Overview — Lower Bound

In this section, we give an overview of the proof of our main
Theorem 1.8, which states that there is some well-modeled
distribution for which posterior sampling is hard. The full
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proof can be found in the Appendix.

The core idea of our proof is that any general posterior
sampler would imply an algorithm that can invert a one-way
function. A one-way function is formally defined as follows:

Definition 3.1. A polynomial-time computable function f :
{-1,1}* — {—1,1}* is one-way if, for any polynomial-
time randomized algorithm A, any constant ¢ > 0, and all
sufficiently large n,

Pr [f(A(f(2))) = f(z)] <n™*

x~U,
where Uy, is the uniform distribution over {—1,1}".

The function f is defined on inputs of arbitrary length; for
inputs of length n it can be assumed to have some fixed
polynomial output length m(n).

An initial attempt. Suppose we have a one-way function
f:{-1,1}¢ — {—1,1}%, and consider the distribution that
is uniform over (s, f(s)) € {—1,1}?? forall s € {—1,1}%.
This distribution is easy to sample from unconditionally:
sample s uniformly, then compute f(s). At the same time,
posterior sampling is hard: if you observe the last d bits, i.e.
f(s), a posterior sample should be from f~1(f(s)); and if
f is a one-way function, finding any point in this support is
computationally intractable on average.

However, it is not at all clear that this distribution is well-
modeled as per Definition 1.1; we would need to be able to
accurately represent the smoothed scores by a polynomial
size neural network. The problem is that for smoothing
levels 1 < o < /d, the smoothed score can have nontrivial
contribution from many different (s, f(s)); so it’s not clear
one can compute the smoothed scores efficiently. Thus,
while posterior sampling is intractable in this instance, it’s
possible the hardness lies in representing and computing
the smoothed scores using a diffusion model, rather than in
using the smoothed scores for posterior sampling.

However, for smoothing levels o < 711 — . the smoothed
Viog

scores are efficiently computable with high accuracy. The

smoothed distribution is a mixture of Gaussians with very

little overlap, so rounding to a nearby Gaussian and taking

its score gives very high accuracy.

To design a better lower bound, we modify the distribution to
encode f(s) differently: into the phase of the discretization
of a Gaussian. At large smoothing levels, a discretized Gaus-
sian looks essentially like an undiscretized Gaussian, and
the phase information disappears. Thus at large smoothing
levels, the distribution is essentially like a product distri-
bution, for which the scores are easy to compute. At the
same time, conditioning on the observations still implies
inverting f, so this is still hard to conditionally sample; and

it’s still the case that small smoothing levels are efficiently
computable.

Based on the above, we define our lower bound instance
formally in Section 3.1. Then, in Section 3.2 we sketch a
proof of Lemma 3.5, which shows that it is impossible to
perform accurate posterior sampling for our instance, under
standard cryptographic assumptions. Section 3.3 shows that
our lower bound distribution is well-modeled by a small
ReL.U network, which means that the hardness is not com-
ing merely from inability to represent the scores, and that
unconditional sampling is provably efficient. Finally, we
put these observations together to show the theorem.

3.1. Lower Bound Instance

We define our lower bound instance here formally. Let
w, (x) denote the density of a Gaussian with mean zero and
standard deviation o, and let comb, denote the Dirac Comb
distribution with period €, given by

comb, () = Z 0(x — ke)
k=—oc0
For any b € {—1,1}, let ¢, be the density of a standard
Gaussian discretized to multiples of ¢, with phase either 0
or § depending on b:

Uy(@) o wi (z) - comb, <l — /2 1;’) .

Definition 3.2 (Unscaled Lower Bound Distribution). Let
fo{£1} = {:I:l}d' be a given function. For R > 0 and
for any s € {£1}%, define the product distribution g, over
x € R such that

x; ~wy(x; — R-8;) fori<d

T ~ Vf(s);_q fori > d.

The unconditional distribution g we consider is the uniform
mixture of g, over s € {£1}4,

We will have d = O(d) throughout. Figure 1 gives a
visualization of g; the final distribution is the mixture of g
over uniformly random s.

For ease of exposition, we will also define a scaled version
of our distribution ¢ such that its covariance ¥ has ||X|| < 1.

Definition 3.3 (Scaled Lower Bound Distribution). Let
g(x) = R g(R - ) be the scaled version of the dis-
tribution with density g defined in Definition 3.2. Similarly,
let o = R4 g (R - z).

The measurement process then takes sample x ~ ¢ and
computes Ar + 7, where n = N(0,8%Iy) and A =
(Od/ xd Id/) . That is, we observe the last d’ bits of z, with
variance 32 Gaussian noise added to each coordinate.
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Figure 1: The distribution of each coordinate in g, has independent coordinates. For any seed s € {:I:l}d, the first d bits are normal
distributions whose mean is specified by s;, and the last d’ bits are a discretized standard normal where the discretization is specified by

f(s);. The full distribution g is a mixture over all seeds s of gs.

3.2. Posterior Sampling Implies Inversion

Below, we state the main result of this section, and give
a sketch of the proof. We show that given any function
f : R?Y — R™, if we can conditionally sample the above
measurement process, then we can invert f. For the sake
of exposition, we assume here that f has unique inverses; a
similar argument applies in general. The full proof of this
Lemma is given in the Appendix.

Lemma 3.4. For any function f, suppose C is an
(1/10, 1/10)-posterior sampler in the linear measurement
model with noise parameter (3 for distribution with density
g as defined in Definition 3.3, with ¢ > [+/32logd and
R > 32+/logd. If C takes time T to run, then there exists
an algorithm A that runs in time T + O(d) such that

= W

Prf(A(f(s)) # 1(5)] <

‘57

Take some z € {£1}%. Our goal is to compute f~*(z),
using the posterior sampler for g. To do this, we take a
sample z; ~ 1., * N'(0,3%) fori € {1,...,d'}, and feed
in Z into our posterior sampler, to output . We then take
the first d bits of Z, round each entry to the nearest +1, and
output the result.

To see why this works, let’s analyze what the resulting con-
ditional distribution looks like. First, note that any sample
x ~ g encodes some (s, f(s)) coordinate-wise so that the
encoding of f(s) is one of two discretizations of a normal
distribution, with width ¢, offset by /2 from each other (see
Figure 1). Furthermore, since § < ¢, these two encodings
are distinguishable with high probability even after adding
noise with variance 2. Therefore, with high probability, our
sample z, which is a noised and discretized encoding of the
input z we want to invert, will be such that each coordinate

is within /4 of the correct discretization. Consequently,
a posterior sample with this observation will correspond
to an encoding of (s, f(s)) where s = f~1(z), with high
probability. The first d bits of this encoding are just the bits
of f~1(z) smoothed by a gaussian with variance 1/R?, and
since R >> 1, rounding these coordinates to the nearest 1
returns f~1(z), with high probability.

So, we showed how to invert an arbitrary f using a posterior
sampler. The runtime of this procedure was just the runtime
of the posterior sampler, along with some small overhead.
In particular, if f were a one-way function that takes su-
perpolynomial time to invert, posterior sampling must take
superpolynomial time. Formally, we show the following:

Lemma 3.5. Suppose m > d°°' and one-way functions ex-
ist. Then, for g as defined in Definition 3.3 with ¢ = C%\/@
and R = Clogd, and linear measurement model with

noise parameter 8 = &z 1(1)g2 - and measurement matrix
d (1 1 ; .
A € R™*%, ({5, 1g)-posterior sampling takes superpoly-

nomial time.

One minor detail is that a one-way function is defined to
map {0,1}" — {0,1}" for an unconstrained n/, while
we want one that maps {0, 1}9~™ — {0,1}™. Standard
arguments imply that we can get such a function from the
assumption; see Section G for details.

3.3. ReLU Approximation of Lower Bound Score

We have shown that our (scaled) lower bound distribution g
(as defined in Definition 3.3) is computationally intractable
to sample from. Now, we sketch our proof showing that g
is well-modeled: the o-smoothed scores are well approx-
imated by a polynomially bounded ReLLU network. The
main result of this section is the following.
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(a) I is unbounded and has an unbounded number of pieces

(b) [ is bounded, has a small number of pieces.

Figure 2: Piecewise-Linear Approximations of Score s

Corollary 3.6 (Lower Bound Distribution is Well-Mod-
eled). Let C' be a sufficiently large constant. Given a
ReLU network f : {£1}¢ — {41} with poly(d) pa-
rameters bounded by poly(d) in absolute value, the dis-
tribution g defined in Definition 3.3 for R = C'logd and
poli(d) <e< C\/i)T’ is O(C)-well-modeled.

To show this, we will first show that the unscaled distribu-
tion g has a score approximation representable by a and
polynomially bounded ReLU net. Rescaling by a factor of
R = C'log d then shows the above.

Notation. We will let i be the o-smoothed version of g,
and h,- be the o-smoothed version of g,..

Strategy. We will first show how to approximate the score
of any o-smoothed product distribution using a polynomial-
size ReLU network with polynomially bounded weights in
our dimension d, 1 and % for L? error 72.

Then, we will observe that when o is large, so that
poly(d) > o > e+v/logd, h becomes very close to a mix-
ture of (1 + 02)14, 4-covariance Gaussians placed at the
vertices of a scaled hypercube (in the first d coordinates).
Since this is a product distribution, we can represent its
score using our ReLLU construction.

On the other hand, when o is small, for R > log d and
m <o K \/15@’ the score of  at any point z is
well approximated by the distribution h,., where r € {£1}¢
represents the orthant containing the first d coordinates of x.
Since h,. is a product distribution, our ReLU construction

applies.

Finally, we set R > logd so that for any m <o <
poly(d), there is a polynomially bounded ReLU net that
approximates the score of h. We now describe each of these

steps in more detail.

3.3.1. RELU APPROXIMATION FOR SCORE OF PRODUCT
DISTRIBUTION

We will show first how to construct a ReLU network ap-
proximating the score of a one-dimensional distribution —
the construction generalizes to product distributions in a
straightforward way.

Consider any one-dimensional distribution p with o-
smoothed version p,, and corresponding score s,. Suppose
ps has standard deviation mo. We will first construct a
piecewise-linear function [ that approximates s, in LZ.

Since s, is o-smoothed, its value does not change much in
most o-sized regions. More precisely, Lemma H.1 shows
that

1
)

E 2

T~Po

sup s, (z+¢)?| <

le|<o g

This immediately gives a piecewise linear-approximation
I with O(~yo?)-width pieces: By Taylor expansion, we can
write any s, (x) = So(az) + (& — ay)s, (€) for some &
between o, and x. Then, if o is the largest discretization
point smaller than z (so that |z — | < v0?), this gives
that

E [(s¢(2) = s0(02))?] S 770" Elsup So(z+0)?) S

So, we can approximate every s, (z) with s, (), yielding
a piecewise-constant approximation. Then, we can similarly
obtain another piecewise-constant approximation by replac-
ing s, (x) with s,(8,) for 8, the smallest discretization
point larger than x. By convexity, we can linearly interpolate
between s, (o) and s, (8,) to obtain our piecewise-linear
approximation [ (see Fig. 2).

Unfortunately, [; suffers from two issues: 1) It is potentially
unbounded, and 2) It has an unbounded number of pieces.

For 1), since s, is o-smoothed, it is bounded by with high
probability, so that we can ensure that our approximation



Diffusion Posterior Sampling is Computationally Intractable

is also bounded without increasing its error much. For 2),
since p, has standard deviation mso, Chebyshev’s inequality
gives that the total probability outside a radlus 2 region is
small, so that we can use a constant approx1matlon outside
this region. This allows us to bound the number of pieces

by poly (mz ) yielding our final approximation /.

As is well-known, such a piecewise linear function can be

represented using a ReLU network with poly (’”2 ) parame-

ters, and each parameter bounded by poly ( in absolute

value. For product distributions, we simply construct ReLU
networks for each coordinate individually, and then append
them, for bounds polynomial in d and 1/, 1/ and ms. In
the remaining proof, whenever this construction is used, all
these parameters are set to polynomial in d, for final bounds

poly(d).

3.3.2. RELU APPROXIMATION FOR LARGE o

Figure 3: 11 and v are discretized Gaussians with discretization
width € and phase 0 and /2 respectively. If we convolve with
N(0,0?), we get a distribution close to Gaussian when o > ¢ for
each of i1, ¢¥_1.

Py Uy x N(0,0°)
Y1 * N(0,07)

—be

Note that our lower bound distribution g is such that the
first d coordinates are simply a mixture of Gaussians placed
on the vertices of a (scaled) hypercube, while the last d’
coordinates are discretized Gaussians 1y or ©_1, with the
choice of discretization depending on the first d coordinates.

The only reason g is not already a product distribution is that
11 and ¥ _; are different. But for smoothing o > e+/logd,
a Fourier argument shows that the smoothed versions of 1),
and ¢_ are polynomially close to each other. See Figure 3
for an illustration.

3.3.3. RELU APPROXIMATION FOR SMALL o

When 0 <« \/153@ and R > logd, consider the density
h(z) for z1 4 lying in the orthant identified by r € {£1}<.

Recall that

> ha(x)

se{£1}d

where h; is the product distribution that is Gaussian with
mean R - s; in the first d coordinates and is a smoothed

discretized Gaussian with mean 0 in the remaining d’ coor-
dinates.

We first show that h(z) is approximated by by (f) up to

small additive error. Thls is because every hg has radius at
most 1+ 02 $ = and there are ~ (g) points s # 7

with the mean of hs at least Q(VER) away from z. So, the
total contribution of all the terms involving hs(x) to h(zx)
for s # ris at most ~ 57 - poly(d) We can show that VA(x)

is approximated by %;,() in L? up to similar additive error
in an analogous way.

We then show that the score of h,. serves as a good approx-
imation to the score of h for all such points x such that
Z1,...,4 lies in the orthant identified by r. For x close to

the mean of A, (to within R/10, say), the above gives that
h(x) is approximated up to multiplicative error by hQ(f” ),
and Vh(z) is approximated up to multiplicative error by

%d(l'), Together, this gives that the score of h at Vh}(bg)

is approximated by the score of h,. at z up to m error.
On the other hand, for x far from the mean of h,., since the
density itself is small, the total contribution of such points

to the score error is negligible.

Since the score of h is well-approximated by the score of
h,., and h,. is a product distribution, we can essentially use
our ReLU construction for product distributions to represent
its score, after using a small gadget to identify the orthant
that zq .. g lies in.

3.4. Putting it all Together

Lemma 3.5 shows that it is computationally hard to sample
from g from the posterior of a noisy linear measurement
when f is a one-way funciton, while Corollary 3.6 shows
that g has score that is well-modeled by a ReLU network
when f can be represented by a polynomial-sized ReLU
network. In Section G, we show that any one-way function
can be represented using a polynomial-sized ReLU network.
Thus, together, these imply our lower bound, Theorem 1.8.

Essentially the same argument holds under the stronger
guarantee that there exists a one-way function that takes
exponential time to invert, for a lower bound exponential in
the number of measurements m.

4. Proof Overview - Upper Bound

In this section, we sketch the proof of Theorem 1.7 in Sec-
tion E: the time complexity of posterior sampling by rejec-
tion sampling (Algorithm 1). For ease of discussion, we
only consider the case when 6 = O(1). The proof overview
below will repeatedly refer to events as occurring with “ar:
bitrarily high probability”; this means the statement is true
for every constant probability p < 1. (Usually there will be
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Algorithm 1 Rejection Sampling Algorithm

Input: y €Y
1: while True do
Sample x ~ D,

— Az —y]|?
232

2

3: Computeq:=e (proportional to p(y | z))
4:  Generate a random number r ~ U(0, 1)

5. ifr < g then

6 return x

7:  endif

8:

end while

a setting of constants in big-O notation nearby that depends
on p.)

Sampling Correctness With Ideal Sampler. To illustrate
the idea of the proof, we first focus on the scenario where
we can sample from the distribution of = perfectly. We aim
to show that rejection sampling perfectly samples x | y. To
prove the correctness of Algorithm 1, noting that each round
is independent, it suffices to verify that each round outputs
a with probability density proportional to p(z | y). We have

[Az—y]|

ply | 2)p(x) =

p(y)

p(z|y) = o p(y | Az)p(x) oc e
Therefore, with a perfect unconditional sampler for D,, (sam-
pling z according to density p(x)), rejection sampling per-
fectly samples x | y.

Running time. Now we show that for linear measure-
ments y = Ax + BN(0, 1), with arbitrarily high proba-
bility over z ~ D, the acceptance probability per round
is at least ©(5)™; this implies the algorithm terminates in
(O(1)/B)™ rounds with arbitrarily high probability. For a
given y, the acceptance probability per round is equal to

_lAz—y|? —O(m)
Ele” 22 | >Pr[|Az —y| < O(Bvm)] -e ™.

x

We first focus on the case when m = 1. We aim to show
that with arbitrarily high probability over y,

Pr{fAz —yll < O(B)] = 5.

For well-modeled distributions, the covariance matrix of
x has constant singular values. Then with arbitrarily high
probability, x is O(1) in each direction. Since every singular
value of A is at most 1, the projection Ax onto R will
lie in [-C, +C] for some constant C' with arbitrarily high
probability.

We divide [-C,+C] into N = segments of length
B, forming set S. Now we only need to prove that with

2C

arbitrarily high probability over y, there exists a segment
6 € S satisfying for all z € 0, |z — y| < O(B) , and
Pryp,[Az € 0] 2 (. For any constant ¢ > 0, define

’a_ <
S ={0es| INsz[Ax €6 > N}.

Each segment in S has probability at least Q(1/N) = S to
be hit. Therefore, we only need to prove that, with arbitrarily
high probability, y = Ax+n satisfies these two independent
events simultaneously: (1) Ax lands in some segment 6 €
S5 @05 B

By a union bound, the probability that Az lies in a segment
in S\ S is at most N - % < c. For sufficiently small c,
combining with the fact that Az € S with arbitrarily high
probability, we have (1) with arbitrarily high probability.
Since that  ~ N (0, 3?). By the concentration of Gaussian
distribution, (2) is satisfied with arbitrarily high probability.

For the general case when m > 1, with arbitrarily high
probability, Az will lie in {z € R™ | ||z|| < C'y/m} for
some C' > 0. Instead of segments, we use N = (%)m
balls with radius § to cover {z € R™ | ||z|| < C'y/m}. Fol-
lowing a similar argument, we can prove that with arbitrarily

high probability over y,

Pr[[|Az — y|l < O(8v/m)] = ©(8)™

Diffusion as unconditional sampler. In practice, we do
not have a perfect sampler for D,. Theorem 1.4 states that
for O(C')-well-modeled distributions, diffusion model gives
an unconditional sampler that samples from approximation
distribution D, satisfying that there exists a coupling be-
tween x ~ D, and & ~ D, such that with arbitrarily high
probability, ||z — Z| < 1/d*C.

For (x, z) drawn from this coupling, we know from our pre-
vious analysis that rejection sampling based on z is correct.
But the algorithm only knows Z, which changes its behavior
in two ways: (1) it chooses to accept based on p(y | T)
rather than p(y | x), and (2) it returns Z rather than z on
acceptance. The perturbation from (2) is easily within our
tolerance, since it is dg% close to x with arbitrarily high
probability.

For (1), we can show when z and ¥ are close, these two

probabilities are nearly the same. When ||z — Z|| < 5= <

o(B/+/m), we have
(

2 ~ 2
p [Az —y[” Az -yl _
p( -

252 232

o(1).

log

ylf)‘
yla

)

This implies that p(y | ) = (1 £ o(1))p(y | =) and proves
Theorem 1.7.



Diffusion Posterior Sampling is Computationally Intractable

5. Conclusion and Future Work

We have shown that one cannot hope for a fast general al-
gorithm for posterior sampling from diffusion models, in
the way that diffusion gives general guarantees for uncon-
ditional sampling. Rejection sampling, slow as it may be,
is about the fastest one can hope for on some distributions.
However, people run algorithms that attempt to approxi-
mate the posterior sampling every day; they might not be
perfectly accurate, but they seem to do a decent job. What
might explain this?

Given our lower bound, a positive theory for posterior sam-
pling of diffusion models must invoke distributional assump-
tions on the data. Our lower bound distribution is derived
from a one-way function, and not very “nice”. It would be
interesting to identify distributional properties under which
posterior sampling is possible, as well as new algorithms
that work under plausible assumptions.
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A. Lower Bound instance

We first define our Lower Bound Distribution g (up to scaling). Let w, (x) denote the density of a Gaussian with mean zero
and standard deviation o, and let comb, denote the Dirac Comb distribution with period ¢, given by

comb, (z) = Z 0(z — ke)

k=—o00

For any b € {—1,1}, let ¢, be the density of a standard Gaussian discretized to multiples of ¢, with phase either 0 or 5
depending on b:

() o< wi () - comb, <x /2. 1;") .

Definition 3.2 (Unscaled Lower Bound Distribution). Ler f : {+1}% — {+1} be a given function. For R > 0 and for
any s € {+1}4, define the product distribution g, over x € R4 such that

x; ~wi(x; — R-8;) fori<d
T ~ Vi(s)ia fori > d.

The unconditional distribution g we consider is the uniform mixture of gs over s € {+1}4.

We define our final Lower Bound distribution below, which is a scaled version of g.

Definition 3.3 (Scaled Lower Bound Distribution). Let §(z) = R*% g(R - x) be the scaled version of the distribution with
density g defined in Definition 3.2. Similarly, let g, = R¥9 g, (R - ).

B. Lower Bound — Posterior Sampling implies Inversion of One-Way Function

B.1. Notation

Letl = [d] ={1,2,3,...,d},andletr .= {d+ 1,d + 2,...,d + d'}, so that for any x € R+ TLq) € R? is a vector
containing the first d entries of x, and z|_q) € R is a vector containing the last d’ entries of x.

Let Roundy : R* — {£R}* be such that for all i € [k],

Roundg(z); = argmin |x; — v].
ve{+R}

Let parity : Z — {—1,+1} be such that parity(2i) = —1, parity(2i + 1) = 1 forall i € Z. Let Bits. : R* — {+1}* be
such that for all 7 € [k],

This function takes a value y and returns a guess for whether y comes from a smoothed distribution discretized to even
multiples of €/2 or odd multiples of £/2, based on which is closer.

€
1'5*311:

(Bitse(y)); = parity <arg min
i€z

Definition B.1 (Conditional Distribution). Let g be the distribution defined in 3.2, parameterized by a function f, and real
values R, e > 0. For some noise pdf h, we define XﬁRﬁ to be the distribution over (x,y) where v ~ g and y ~ x|_q; + h.

We also explicitly define the two noise models we will be using for the lower bound: we take

X=X, wsg=N(0,52). 0

Let (X ﬁ r.c)y denote the marginal over y. Further, X fB ﬁ:";* = X} . where b is a clipped normal distribution: b :=
clip(Bmax, N (0, 5%)).
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B.2. Inverting f via Posterior Sampling

Lemma B.2. Let B,y < €/4 and /32 logg < R. Then,

Pr [f(RoundR(xﬁd])) = Bitse(yb)} >1-94

xb’beXf)vgtnEm

Proof. Let zb, y® ~ X ]{3 ’g:“;*. By definition, we know that y, ~ x?f a9 T+ clip(Bmax, N (0, ). Further, for all indices 1,
(xl[’fd,:])i = je/2 for some integer j. So, if Omax < €/4, then
Bits. () = Bits (z{_g.,)- )
We know that 2° is drawn from a uniform mixture over g (), as defined in 3.2. So, fixing an s € {£1}%. We have that
Bitss(a:l[’_d,:]) =s. (3)

On the other hand, z|.) is a product of gaussians centered at Rs; in the sth coordinate. Therefore, for all 7 < d,

§1/210g2l1 Zl—g

Pbr {RoundR(xﬁd}) = s] >1-0. ()

Pr U(wﬁdw - B

Since 4/2 log g < R/4, we get that

Putting together Equation (2), Equation (3), and Equation (4) we get

Pr [RoundR(xﬁd]) = Bitss(yb)} >1-9

x

O

Lemma B.3. Let C be a (7, 0)-conditional sampling algorithm for XﬁRﬁ. Ife > B4/321og %, 7 < R/4, and 321og % < R?
then for y ~ (X)’?:R,s)y and T ~ C(y),

Pr[f(Roundgr(Z.q))) # Bits-(y)] < 5.

Proof. Let X f . have pdf p?. Assume we have a (7, §)-posterior sampler over X’ fB R, that outputs sample from distribution

X with distribution p. This means that with probability 1 — § over v, there exists a coupling P over (z,7) such that (x, 7)
are (T, 8)-close. Therefore, there exists a distribution P over (z,7,y) € R¥4 x R4t x RY with density p” such that

PP (z,y) = p*(z,y), " (T | y) = D(Z | y), and

ErP[Hx —Zll2<71] >1-24

Now, let X% have pdf pPBma with Bpax = B1/2log +. We have
f.R,e p 5

TV(X}B,R,E»XE}%:X) < o B/ 28° <4
Therefore, building on P, we can construct a new distribution P’ over (z, Z, 2%, y, y?) € R+ x Ri+d" 5 Ra+d’ x R 5 R
with density p” such that p” (z,y) = p°(z,y), p” (T | y) = D@ | y), p” (2°,4") = p?Pm(a®,4°), (2,y) = (2°,4")
with probability 1 — 4, and

Pr [lo—3ls<r]>1-25

z, TP’

13
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Therefore, under this distribution,
Pr [|z—2’2<7]>1-30
Z,xb~P!
In particular, we apply the fact that [|Z.q) — 27yl < |7 — 2°(loc < [T — 2|2 to get

Pr_ I8ea — oyl < 7] 2136, 5)

z,xb~P!

Now, by the definition of X fﬁ ’}g";‘“, forall 7 < d, mlj is a mixture of variance 1 normal distributions centered at +=R. So, for

any 1 < d,
Pr ’xl-’ —RoundR(xl-’)| > \/210g£l < o
xb ! v ol — d

Applying a union bound over i € [d] and putting this together with Equation (5),

1
z b
i,mlbjip/ lx[;d] — RoundR(x[:d])HC>o < QIOgS g

So, since ,/QIOg% + 7 < % + % = g, and RoundR((x’[):d])i) € +R, we have

. / d
[Round g (Z[.q)) — RoundR(xﬁd])Hoo <1/2log 5 +7

Again, the output of Roundp, is always £ R, so this means

>1-46

Pr

z,xb~ P’

<1-36

Pr [RoundR(E[:d}) = RoundR(acl[’:d])} >1-30

z,xb~ P’

Now, by Lemma B.2, since Sn.x < €/4and R > 1/32log %, we have

Pr [f(RoundR(xl[’:d])) = Bitsg(yb)} >1-9

Zb,beP’

Therefore,
R I;’rp [f(Roundp(Z.q))) = Bits:(y")] > 1 — 45
z,y’~P’

Finally, we know that yy = y® with probability 1 — §. Therefore, we get

R PrP [f(Roundp(Z1.q))) = Bits(y)] > 1 — 58
z,y~P’

O

Theorem B.4. For any function f, let C be a (R/4,6)-posterior sampler (1.5) for XﬁRvs, as defined in (1), with ¢ >

B4/321og %, and R > 1/32log %, that takes time T to run. Then, there exists an algorithm A that runs in time T + O(d)
such that

Pr{f(A(f(s))) # f(s)] = 65

Proof. Sample y ~ hy(,), where
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Now, since 5 < each coordinate of the noise, drawn from N (0, 3?), is less than £/4 with probability 1 — §/d.

€
\/3210g%’

Therefore,
Pr[Bits. (y) = £(r)] > 1

By definition, h; is the same as the density of (Xf,R,E)y. So, by Lemma B.3, since R > 7/4, R > 1/32log %, and we take
Z ~ C(y), we have

gi [f(RoundR(ﬁE[,d])) # Bitsg(y)} <56

Therefore,
api [f(Roundg (Z1.q))) # f(r)] < 66

So, our algorithm A can output Round(Z;). All we had to do to run this algorithm was to sample d normal random
variables, and then run our posterior sampler. This takes 7' + O(d) time. O

Lemma 3.4. For any function f, suppose C is an (1/10,1/10)-posterior sampler in the linear measurement model with
noise parameter [3 for distribution with density g as defined in Definition 3.3, with € > 31/32logd and R > 32+/logd. If C
takes time T' to run, then there exists an algorithm A that runs in time T + O(d) such that

=] w

Pr{f(A(f(s))) # f(s)] <

s,A

Proof. This follows from Theorem B.4, using the fact that after rescaling down by R, X f R, as a distribution over (z,y) is
the same distribution as x ~ g, with y = Az + N (0, 52). O

B.3. Inverting a One-Way function via Posterior Sampling

Lemma 3.5. Suppose m > d°°! and one-way functions exist. Then, for § as defined in Definition 3.3 with ¢ = ﬁ/@

Rmxd

and R = C'log d, and linear measurement model with noise parameter [3 = - and measurement matrix A €

__1
C?log?

s

(%, Tlt))-posterlbr sampling takes superpolynomial time.

Proof. When m > d/2, we can add an arbitrary number of dummy observations which always observes 0. Posterior
sampling in this instance is identical to only observing the first d/2 coordinates. Therefore, we only need to consider the
case when m < d/2.

When d*' < m < d/2, d and m are only polynomially separated. So, by G.1, we can construct a one-way function
f:{£1}4™ — {£1}™. By definition, we can see that §, with measurement noise £3 is the same distribution as Xﬁg,e’

scaled down by R. Therefore, by Theorem B.4, since R > 324/log %, e > BRy/log %, if we can run a posterior sampler in

time 7', we can invert f with probability 1 — 66 in time 7'+ O(m). So, if f takes time superpolynomial in m to invert, then
T + O(m) is superpolynomial. Since m > d"-°%, this means that 7 itself is superpolynomial in d. O

Lemma B.5. Suppose that there exist one-way functions f : {£1}™ — {£1}™ that require 2" time to invert. Then, for
any m = O(d), for g as defined in Definition 3.3 with e = C%\/@ and R = C'log d, and linear measurement model with

5 and measurement matrix A € R™*4, ( L1

noise parameter 3 = W 16° TO)-conditional sampling takes at least 2°2(™)

time.

Proof. Similar to the proof of Lemma 3.5, we only need to consider the case when m < d/2. By definition, we can see
that g, with measurement noise [ is the same distribution as X f };75, scaled down by R. Therefore, by Theorem B.4, since
R > 32+/logd, ¢ > BR+/logd, if we can run a posterior sampler in time 7", we can invert f with probability 0.4 in time
T +O(m). So, if f takes at least time 2°*("™) to run, then we must have 7'+ O(m) > 2%0™) which means 7' > 2%(™), [

15
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C. Lower Bound — ReLU Approximation of Score
C.1. Piecewise Linear Approximation of c-smoothed score in One Dimension

In this section, we analyze the error of a piecewise linear approximation to a smoothed score. We first show that for one
dimensional distributions, we can get good approximations, and later extend it to product distributions in higher dimensions.

First, we show that a piecewise linear approximation that discretizes the space into intervals of width + has low error.

Lemma C.1. Let p be a distribution over R, and let p, = p* N(0,0?) have score s,. Lety < o, and let S; = [i7y, (i +1)7)
for all i € Z. Define a piecewise linear function f : R — R so that: for all x, if i is such that S; > x, then

((+ 1)y —a) - s(iy) + (& —iy) - s((i + 1))

fz) = 5

Then f is continuous and satisfies

(V)

E [(s(z) - f(2))*] £

9=

Proof. Define the left and right piecewise constant approximations [(x) = s(iy),7(z) = s((i + 1)) forall z € S;.
We know that for any y € S;, there is some y’ € [iy, y] such that s(y) = s(iy) + (y — iv)s'(y'). So, we get

Vy € S;, s(y) < s(iy) + v sup s'(2) < s(iy) +7v sup s'(y + ¢).
z€ES; |C|§"/

Therefore,

E, (6o (@) = 1)) <9° E [sup o/(y+0)') 3 i

By Lemma H.1. The same holds for r(x). Now, recall that f satisfies

(i+1)y—x (i x — iy

VieZ,Vr e S;, f(x) = s(iy) + -s((i+ 1)y).

The coefficients “F2Y=% and =9 sum to 1 and are within the interval [0,1]. So, at each point, f is just a convex

combination of the two approximations [ and r. Therefore, by convexity, for any S;, if z € S,

E [(so(2) = f(2)))] £ E [(s0(x) = 1(2))*] + E [(so(z) —r(2))?] ©)

z€S; z€S; TES;

This immediately gives us that

El(se(2) — f(2))*] < El(sq(2) — 1(2))?] + E[(s5(x) — 7(2))?] <

un ™

Within each interval, the function is linear and so it is continous. We just need to check continuity at the endpoints. However,
we can see that for any i € Z, lim,,_,;,~ = lim,_,;.+ = 5(i7), and so we also have continuity. O

Unfortunately, the above approximation has an infinite number of pieces. To handle this, we show that in regions far away
from the mean, a zero-approximation is good enough, given that the distribution has bounded second moment ms.

Lemma C.2. Let p be some distribution over R with mean p, and let p, = p * N(0,02) have score s,. Let m3 =
Eznp [(m — u)z] be the second moment of p,. Further, let || < % log % be some constant. Then,

Ve

E (Sa(m)_¢)2‘1\zfu|>m7§ f,ﬁ

16
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Proof. We have

2 2 2
E [(So(x) - <P) ’ ]1|m—u|>m—\/§:| /S E |:SU($) ’ ]1|w—u|>m—\/§:| +E |:<)O : ]1\1—;1,\>m7§
First, by Chebyshev’s inequality, we know that

ma

Pr[lfc—ulz 5

<o

Now, we use Cauchy Schwarz to bound the first term:

B 500 1i—pio 23| <[ l50 @1 (1 23]

= \/IE [s¢(x)4] Pr [|x —pul > \/5}
— VER, @76 £ Vb0t = Vi/o?

where the last line is by Corollary H.8. Finally, for the second term, we know that

1 1
2 2
E[Lp .1‘1*H|>7\7}§:| S]E |:02 log 6-]1|517H>n12:|

Vs
]. 2 ]. m2
= ﬁlog gPr {x—u > \/S}
] 1 )
== 10g2 < £
"~ o2
The last line here uses the fact that for all z, zlog®(1/z) < 3y/z. Summing the two terms gives the desired result. O

Then, we show that neighborhoods where the magnitude of the score can be large are rare and can also be approximated by
the zero function. This allows us to control the slope of the piecewise linear approximation in each piece.

Lemma C.3. Let p be a distribution over R. Let p, = p % N(0,02) have score s,. Let v < 5, and let m(z) =
SUPyc(z—ry,atq] (). Then,

Proof.

E |m(z)? 1 o log%} < by Cauchy-Schwarz
m(x)>——%

: J (o) | oo 2]

1 log +
Sy = Pr {m(x) > ogd] by Lemma H.8
o o
1)
< £2 by Lemma H.2
o

O

We put these lemmas together to show that a piecewise linear function with a bounded number of pieces and bounded slope
in each piece is a good approximation to the smoothed score.

17
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Lemma C.4. Let p be a distribution over R with mean i, and let p, = p * N (0, 0?) have score s, and second moment m3.
Then, for any oo < 1/4 there exists a function | : R — R that satisfies

1. lis piecewise linear with at most ©( =75 ) pieces,

o . . . B ma
2. if x is a transition point between two pieces, then |x — | < ==

3. the slope of each piece is bounded by © (:’f\/é),
4. || < %log%
5. .
E [(I(z) - s(2))*] S —
xe~p g

Proof. First, we partition the real line into S; = [iy, (i+1)~) for all ¢ € Z, where v < /2. Define the function/; : R — R
so that if S; > x, then

(6 + 1)y — 2)s(iv) _; (x —iv)s((i + 1)7). @)

As in Lemma C.1, this is the linear interpolation between s(i7) and s((¢ + 1)) on the interval [i7, (i + 1)). By Lemma
C.1, when v < /2, we have

ll(l’) =

E[(s(@) ~ h(@)] 5 5

Now, we define /> : R — R. This function uses the piecewise linear [; to create a linear approximation that has small slopes
on all of the pieces. Define first a set of “good” sets

1 1
G= {Si :sup s(x) < log}.
yES; g 6

These are the intervals on which the score is always bounded. Further, define two helper maps L(z) and U (x):

L(x) = the largest  such that iy < z,S;_1 € G
R(z) = the smallest ¢ such that iy >, 5; € G

These represent the nearest endpoint of a “good” interval to the left and right, respectively. We then interpolate linearly
between s(yL(x)) and s(yR(z)) to evaluate [3(x). That is,

(vR(x) — x)s(yL(2)) + (x = vL(x))s(yR(x)) @)
V(R(z) — L(x))

Note that by assumption, we have that [s(yR(z))]| , |s(vL(z))| < L log 3, and so |l2(z)| < L log +. We now analyze the
error of [, against s. First, we note that on the sets outside G, the error is bounded, using Lemma C.3:

l2 (1‘) =

Y E[(s(2) = (@) Loes] <2 ) (B [5(2)°Loes,] +E [l2(2) Lyes,])
S:¢G S;¢G
4 Z [ 10g Ipes, } by Lemma C.3
Si¢G
Vi1 51
= ?+?log gPr[ z & G
Vi1 51 1. 1
< —+ —log“=P > —log =
T o’ ’ 2% ye[ws—uvl,)w-i-v]S(x) “0 5
< if + % log? 1 by Lemma H.2
o o )

18
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Further, if « is in a “good” interval, then L(x), R(x) are simply the left and right endpoints of the interval that x is in. This
means that lo(x) = 1 (). So,

> E[(s(2) = la(2)’Laes,] = D E[(s(@) = h(2)) Lacs,]
S,€G S,eG
Vo
< ]E ) —Iq( eS| S —
Z 1(2))*Taes;| S 5
Putting these two together, we get that
Vo A2 1) 1
2 2
Now, define I3 : R — R as follows:
la(z) o —ul < 2
I3(z) = < l2 M—% $<M—7 )

ma _ma
I | p+ v B v
This takes our previous approximation /o and holds it constant on values of x far away from the mean.

Let B be the integers i such thatx € S; = |z — u| > mg/ /4. In other words, the set B enumerates the intervals on which
la # 11, and equivalently, [ = 0. Note that since |I3(z)| < ilog %, we have in particular that ‘13 (M + %)‘ < ilog %.

Therefore, for some || < 1 log &, we have

E [(s(z) = 13(2))*] = ZE [(s(2) = 13(2))*Lses;]

= ZE 13 2116&] + ZE [(s(m) - lS(x))Q]l:L’ESJ
i€B i¢B

- ZE[ ]]‘\r ,u\>m2/\f} +Z]E 12( )) ZL’GSz‘:I
i€EB

5@+§

where this last line uses Lemma C.2.
Finally, each piece of /3 has slope at most © < fa‘s ) since the endpoints of each interval are bounded in magnitude by

% log & 5 and each interval is at least 7y in width. Also, we can see that /3 has at most as many pieces as [, which has © (%)

pieces, with each endpoint being within 15 /+/ of the mean.

So, we take [ to be lg with § = k2, and v = 0/k. Note that when x < 1/4, we have v < /2. Plugging these in, and using
the fact that z log? (1/z) < S\f we get that the number of pieces is © ( e /2) the slope of each piece is bounded by

C) (1;57%), the function itself is always bounded by 1 log -, and E, ., [[|l(z) — s()||3] < Z. O

Finally, we show that if we have a product distribution over d dimensions, we can simply use the product of the one
dimensional linear approximations along each coordinate to give a good approximation for the full score.

Lemma C.5. Let p be a product distribution over R?, such that p(z) = H?:l pi(x;). Let s : RT — RY be the score of p
and let s; : R — R be the score of p;. If I; : R — R is an approximation to s; such that

I.IEP, [(Li(z:) — si(x))?] < e/d,
then the function | : R — R? defined as I(x) = (I;(x;)) satisfies
E [l@) = s@)ll3] <e

19
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Proof. We have

s(z); = (Vlogp(x)

0
(2i) = (i) = o0x;

Therefore,

E (i@ = s@)3] = E an zi) = si(@i)|3

(i) = si(e:) 3] < d-e/d =

[
M&

=1 Zqr pz

C.2. Small noise level — Score of vertex distribution close to full score in vertex orthant
Lemma C.6 (Density g,(z) is close to g(z) for s € {+1}? closest to x). Let d’ = O(d). Consider g; and g as in
Definition 3.2. We have that for x € {£1}? such that s is closest to x1,.._ 4 among points in {1}%, for the o-smoothed

versions hy = gy * N'(0,0%Iqra') of gs and h = g * N'(0, 0% Iq4a') of g, for 2 Tio7 > Clogd for sufficiently large constant
C,

1
ﬁhs (z) — h(x)

Proof. We have that there are ({) vectors z € {1} such that |R - z — 21, 4||* > kR>. For such a z,

_ __kR2
holy) S e T
So,

1

1 __R% __
_ < .e 4(1+0?)
2d ~ 2d

x)| = 2% Z hy(x)

r#s

hs(x) —h

1 d —kR?
72 dk62(1+02)
~ 2d
k=1

since % > C'logd. O

Lemma C.7 (Gradient of density g, (y) is close to g(y) for x € {£1}% closest to y). Let d’ = O(d) and consider g and g
as in Definition 3.2, and x € R We have that for s € {£1}? such that s is closest to x1.._q among points in {+1}%, for
oc>T,T= d% and € > m,for the a-smoothed versions hs = g5 * N'(0,0%I4yq) of gs and h = g * N'(0,0%Lqyq)

of g, for % > C'log d for sufficiently large constant C,

2 1 __R%2 _
< . g 16(1+02)
2d

= Vhy(z) — Vh(z)

1
2d

Proof. We will let ?Lsyi = gs.i * N(0,0?), where g5 ; is defined in Definition 3.2. So, hs(z) = H;H{i hs,i(x;). We have

that there are (Z) vectors z € {£1}¢ such that ||[R - z — z1,._4* > kR?. So, for i € [d], for such a z,

~

< T
[ (Vhe(2));| Se 2052

20
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On the other hand, for ¢ > d, by Lemma C.16, since o > g?and e > m,

o2 j%o? 1 J
< e 22(1402) E 6_252(1+o‘2)+0g c(1+02)

R (i) = w! oy ()

7>0
2 _ %2 J
< e 2+ 4 § e a2 T8 sy
>0
1
5 & 1 + -
T

So, we have that for z € {:1}% such that | R - z — z1,_q||* > kR?, since ¢ >

1 _ 1 R2
poty(@* T = poiy(@ 2 135z > Clogd,

1 ___kR? ___kRZ?
(Vhe(@)] S eqf1+ = e 3o < maton

So, finally, for such z,

9 _ __kRZ?
[Vh:(z)|" Se 30+
Thus,

2 Rr2

1 1 1 d L ) e
= 7ZV}LT($) 5 *Zd e 8(1+s?) 5 ? . e 16(1+02)

—Vhs(z) — Vh(x)

O

Lemma C.8 (Score of mixture close to score of closest (discretized) Gaussian). Let d = O(d'), and consider gs, g as

in Definition 3.2 for any s € {£1}%, with 1?; > Clogd for sufficiently large constant C. Let S C R be the orthant

and let € >

containing s. Let o > T for T = We have that, for the o-smoothed scores s, s of gs and s, of g,

_ 1 1
poly(d)’ poly(d)*

E [I50.5(2) — 50 @)1, ._ues] S e (7

xr~h

1z,

where h is the o-smoothed version of g, given by h = g x N'(0,0% 14, 4).

Proof. Let hy be the o-smoothed version of g, given by hy = gs * N (0,021, /). Let § € R4’ be such that the first d
coordinates are given by s, and the remaining d’ coordinates are 0. We have

E |ll50,5(2) = 50 (2)[I*|La,

ies] = E [Is0,(2) = 0@ po-sy<ryio|Les...ues]

x~h L TN 2 T A e
+ Eh {Hs"*s(x) — so(x)]* Ljz—3)1>R/10 111,_._.des}
___R2
Note that when ||z — 5]| < R/10, by Lemma C.16, hy(z) 2 e 610+%) since o > 7 for 7 = poli(d), e > poli(d) and
—ﬁ; > C'logd. So, by Lemmas C.6 and C.7, h(x) = 2—1dh§(:1:) <1 + 0 <es<1ia2>>) and |Vh(z) — Q*Iths(I)HQ <

__R2 _ __R2 _ ___R2 _
s7€ 180477 Also note that by Lemma C.6, h(z|z1,....q € S) < hy(x)+O(e 30+D) < hy(z)- <1 +0 (e 32<1+U2>>).
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So, for the first term,

E |l150,5(®) = 50 @I 1jpozjz | Lo, aes]
r 2
_ g |2V vh@ | .
a~h Lrhs(z) h(x) z—3l<R/10|t21, .. .a€S
- _ __ R? __R?
-k are 180+ e 80+ . L || Vhy(z)]? . .
~ z~h Q%hs(wy " Hz—3lI<R/10| @1, a€S
- 2 2 2
< efzz(ﬁcr?) +efs(1ﬁ02> . K M
~ z~hg hs(x)?
R2
2 T840
< efsz(ﬁﬂ) + w
R2
5 e 64(1+o2)
: 1 1 R?
since o > oly(@)’ € > oly(d) and o7 > C'logd.
For the second term, by Cauchy-Schwarz,
2
B [Hsa,s(x) = So (D17 Ljpzys £ |Lar des}
S \/ (g@h lsas@II* + llsa (@) 141, des}) “E [Lnjo—si>r/10[L1,.. ges]

R4 ]. -0 R2
< /B LB [l es] e )
1 —o(-E2_
=Bt B Bl esio~ a]]e )
(o s~{+1}a L L | 77
2 2
S Riz . e_Q(lfaz)
g
< A

So, we have the claim.

C.3. ReLU Network approximation of o-smoothed Scores of Product Distributions

Once we have this, we also need to go from being close to mixture of Gaussians to being close to mixture of discretized

Gaussians.

Lemma C.9. Let f : R — R be a continuous piecewise linear function with D segments. Then, f can be represented by a
ReLU network with O(D) parameters. If each segment’s slope, each transition point, and the values of the transition points
are at most (3 in absolute value, each parameter of the network is bounded by O(f) in absolute value.

Proof. Since f is piecewise linear, we can define f as follows: there exists —co =7 <71 <2 < - <7Yp-1 =7p =

+00 such that

a1 + by,
as + ba,

f()

<7
1<z <)

apr+bp, Yp-1<uw,

where a4+ b = ag+17k + br41 foreach k € [D — 1]. Now we will show that f(z) equals g(z) defined below:

D

g(z) == a1z + by + ZReLU((ai —a;i—1)(x —7yi=1)).

=2
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We observe that for y,_1 < 2 < g,

k k
g(@) =az+b+ Y (a6 —ai1)(@—vi1) =az— > _(a; — ai_1)yi1.
1=2

i=2
Then, when k > 1, for y,_1 < < %, we have

k

9(x) = apz — Z(ai = ai-1)7Yi-1

=2

k—1
= (%-1%-1 — > (ai— ai—l)'Yi—l) + ar® — ak—1Yk—1 — (ak — ak—1)Yr—1
=2

= g(Ye—1) + arT — apYe—1-

Using these observations, we can inductively show that for each k € [D], g(z) = f(x«) holds for y,_1 < 2 < 7. For
T < 1,
g(x) = a1z + by = f(z).
Assuming for yx_o < x < Y1, g(x) = f(x). Then g(vxk—1) = f(Yk—1) = axYr—1 + bg. Therefore, for vx_1 < z < v,
we have
9(x) = g(yk-1) + ax® — apyr—1 = axr + by = f(x).
This proves that g(z) = f(z) for x € R and we only need to design neural network to represent g. By employing one

neuron for a;x + by and D — 1 neurons for ReLU((a; — a;—1)(x — 7;—1)), and aggregating their outputs, we obtain the
function g. There are O(D) parameters in total, and each parameter is bounded by O(3) in absolute value. O

Lemma C.10. Let f1, ..., fi be functions mapping R to R. Suppose each f; can be represented by a neural network with p
parameters bounded by (3 in absolute value. Then, function g : R¥ — R defined by

g(x1, .. x) = (fi(xr), ..., fr(ak))

can be represented by a neural network with O(pk) parameters bounded by 3 in absolute value.

Proof. We just need to deal with each coordinate separately and use the neural network representation for each f;. We just
need to concatenate each result of f; together as the final output. O

Lemma C.11 (ReLU network implementing the score of a one-dimensional o-smoothed distribution). Let p be a distribution

over R with mean i, and let p, = p * N'(0,02) have variance m3 and score s,. There exists a constant-depth ReLU
lo

1
Ui; + |p|) such that

network f : R — R with O(WZ‘;4 ) parameters with absolute values bounded by O(;;’—jz +
E [ls0@) - f@)]?] $7?
~Po

and

Proof. By Lemma C.4, there exists a continuous piecewise approximation of p with O(J’?—;) pieces with each segment’s
slope, each transition point, and function value all bounded in O(;22; + ﬁ log % + 1 log a%y + |p|). Taking this into C.9

and we have the bound. O

Lemma C.12. Let p be a product distribution over R? such that p(x) = H?Zl pi(x;), and let p, = p * N'(0,0214) have
score s,. Assume p, has mean p and variance m3 = Ep[||x — ||3]. Then, there exists a constant-depth ReLU network

f R — R with O( ) parameters with absolute values bounded by O3 + % log % + |||y ) such that

0242

E [lso(2) = f(@)IIP] $*

IT~Po

dmg
301
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and

Proof. Consider distribution p; : R — R and its o-smoothed version p;, = p; * N'(0,02). Let p1; and my; be the mean
and the variance of p; respectively. Let s,; be the i-th component of s,. Then, Lemma C.11 shows that for each i € [d],
there exists a constant-depth ReLU network f; : R — R with 0(772?4) parameters with absolute values bounded by

O( dmg | % log % + |1;]) such that

022

2 ’72
E [lsos(a) - £@)I%) 5 2

IT~Poi
Then, we can use the product function f = (f1,..., f4) as the approximation for s,. By Lemma C.5,
wg[mamffmmﬂsw?

Taking the fact that Y-, | = [la]| and 35, moi < dim into Lemma C.10, and we prove the statement.

C.4. ReLU network for Score at Small smoothing level

Lemma C.13 (Vertex Identifier Network). For any 0 < a < 1, there exists a ReLU network h : RY — R® with O(d/«)
parameters, constant depth, and weights bounded by O(1/«) such that

o If |zi| > o, forall i € [d), then h(x); = ﬁfor all i € [d].

Proof. Consider the one-dimensional function

71, yﬁ*a
gy)=¢% —a<y<a
1, y>a«a

This is a piecewise linear function, where the derivative of each piece is bounded by é, the value of the transition points
are at most « in absolute value, and |h| itself is bounded by 1. Thus, by Lemma C.9, we can represent the function
h(z) = (g9(x1),...,9(xq)) using O(d/c) parameters, with each parameter’s absolute value bounded by O(1/«). Moreover,

clearly h(x); = 34 for all i € [d] whenever |z;| > .

Lemma C.14 (Switch Network). Consider any function switch : R4t — R such that for v € R%, y € R, with |x;| < T
foralli e [d],

r ify=1

itch(x,y) =
switch(x, y) {0 o= 1

switch can be implemented using a constant depth ReLU network with O(dT') parameters, with each parameter’s absolute
value bounded by O(T).

Proof. Consider the ReLU network given by
switch(z,y); = ReLU((z; — 2T) + 2T - y) — ReLU((—z; — 2T) + 2T - y)

It computes our claimed function. Moreover, it is constant-depth, the number of parameters is O(dT"), and each parameter is
bounded by O(T') in absolute value, as claimed. O
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Lemma C.15. Let d' = O(d). Given a constant-depth ReLU network representing a one-way function f : {—1,1}¢ —
{=1,1}" with poly(d) parameters, there is a constant-depth ReLU network h : R4 — RI+d" wish poly (%)

parameters with each parameter bounded in absolute value by poly (U%) such that for the unconditional distribution g

defined in Definition 3.2 with o-smoothed version g, and corresponding score S, for T = d% andT <0 < 01#\/@ for

sufficiently large constant C, and R > C'logd, € > poli(d), v > dc/lmo

E [lso(z) = h(@)II’] <~

T~Go

Proof. We will let our ReLU network h be as follows. Let r be the ReLU network from Lemma C.13 that identifies the
closest hypercube vertex with any constant parameter o < 1.

For each i € [d], we will let h; be the ReLU network that implements the approximation to the score of the one-dimensional
distribution w1 (x) * N'(0, 0?) from Lemma C.11. By the lemma, it satisfies

ol [(hi(x) — Viogw m(x))ﬂ < A2 (10)

Fori € d + [d'], we will let Em be the ReLU network that implements the approximation to the score S,; —1 of g5 ;,—1 =
( wy -comb, w1 (x)-combe (x—e/2) ) %

J wi(z)-combe (z)dx J w1 (z)-comb, (x—e/2)dx
N(0,0?), as given by Lemma C.11. By the Lemma, for every i € d + [d'] and j € {£1}, we have

E |(hig(@) = s005(@))?] 77 an

T~Go,i,j

)*N(0,0?), and we will let Ei7_1 implement the approximation to the score of (

Note that each |El| < % log % for ¢ < d, and |7L1"i1| < % log U% for i > d, for sufficiently large constant C'.
Now let switch be the ReLU network described in Lemma C.14 for T' = % log 0—17
Consider the network & : R4+ — R+’ given by

h(a), — {%i(xi —r(z); - R) fori < d

switch(h 1 (x;), f(r(z))i—q) + switch(h; _1(z;), —f(r(x))i—q) fori>d
Note that & can be represented with poly (U%) parameters with absolute value of each parameter bounded in poly (%) .
We will show that h approximates s, well in multiple steps.

For r(x) € {£1}9, consider the score S¢.r(z) Of Go,r(x), the o-smoothed version of the distribution g,.(,) centered at

r(z) € R¥? as described in Definition 3.2, where r(z) has the first d coordinates given by r(z), and the remaining
coordinates set to 0.

Whenever r(z) = j € {1}¢, h approximates s, ; well over g, ;. We will show that for fixed j € {£1}¢
E llso,(@) = @) L)—] S dv*

T~Go,j
First, note that for ¢ < d, by (10) and our definition of h,

E_ [(h@)i = Viegw mrp(e = R 1))* - Liw=] $7°
Vot " j

r~w p)
o“+1

On the other hand, for ¢ > d, by (11) and our definition of A,
E [(h(x)i - So’,i7f(j)i—d)2 : 1r(w):j] <7’

TGoi ()i a
Since by Definition 3.2, for j € {+1}4, g, ;(z) = [, w /mrr(T) - H?iirl Go,i,f(j):_a(2), we have by Lemma C.5,
E [lh(z) = s @) Lyw)—] < dv?

T~Go,j
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h approximates s, ; exponentially accurately over g,. By Lemma C.6, we have that for « such that r(x) = j,

1 1 __Rr2 __
ﬁga,j(x) - ga(l‘) 5 od

for our choice of R, 0.

So, we have

dv?
zlEg [Hh(x) - SG,j(x)HQ : lr(x):j] /S W

h approximates s, well over g, whenever r(z) € {+1}9. Summing the above over j € {£1}? gives

E [Hh(l‘) - Sa,r(x)(x)|‘2 : 17'(w)e{il}d] 5 d72

I~Go

Moreover, by Lemma C.8, for 7(x) = y where y € {1} represents the orthant that = € {£1}¢ belongs to,

_ R2 1
E oo = so@I?) 5 F) g -2

So, by the above, we have that

1
E [||h(x) - Sa(x)Hz : 1r(x)€{i1}d] Sdy? + 707710

I~Go

Contribution of z such that r(z) ¢ {£1}? is small. By the definition of r,

Pr [r(z) ¢ {£1}9] < de= " < e F

T~Go

So, by Cauchy-Schwarz,

E (s @I L] < L E s @I Pr (@) € (211

T~Go

R2

1
S e
o2
_R2
Se

Similarly, since |h(z);| < € log ﬁ we have

1 1 _R2 2
E @I Lrwpgaye] S glog” o7 S

Thus, we have

CEEZQG [Hh(x) - SJ(I)HZ ! 17‘(x)§?{i1}d] S e s /S 4C?/40

Putting it together. By the above, we have,

1
LE [Ih@) = 5o @] S 1 + g

Reparameterizing y and noting that y > —=755 gives the claim.
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C.5. Smoothing a discretized Gaussian

Lemma C.16. For any ¢, let g be the univariate discrete Gaussian with pdf
g(x) x wy(x) - comb.(x — ¢)

Consider the p-smoothed version of g, given by g, = g * w,. We have that
2

[ - A
‘gp(x) —w p2+1(m)‘ <e 20 Ly p2+1(a?)

and

L _ %P j
g;(m) — wl\/pZ—_H(x)‘ g e 2:2(1+p2) . |w 2+1 | + Ze 252(1+p)2 . 5(1 —|—p2) .w\/p2+1(:c)

7>0

Proof. The Fourier transform of the comb, distribution is given by %combl Je- S0, for the discrete Gaussian g, we have that

its Fourier Transform is given by
 [emie
( ( : ) Jio

(&——)2

9(&

~—
I
g
iy
*

Then, for g, the p-smoothed version of g, we have that its Fourier Transform is

:q\p(f) = (./g\ wl/p)(ﬁ)

k
zézeﬁ

j=—k

So, we have that, by the inverse Fourier transform,

2,2 (6= D)2

9p() = P +1 27r/ Lgmze_? e~ de

J#0
1 0 52 ;2 i
+ / e"'gx . 6_?+2E§(p§+1) g e_?d) . e_
— 00

J#0

.2 9 .
+ E e ? . 252](pp2+1)em€(02]+1) Cw (1’)
P +1 i VP2l
J

p2+1

GEC=9)

so that
2 2
‘gp( —w s (T ’_Ze 222D g ’72+1( x)
J#0

giving the first claim. For the second claim, note that the above gives

2 2 L ..
/ 2 : ié 751 5 v (] ’
gp(x) 2+1 + e = - 2e2(p2+1) & (02+1) . (6(/}2 n 1) w\/p2+1(-r) +w /p2+1(x))
J#0
So,

2

< eim . + Z e 252(1+p2) J w (55)
~ 2+1 = 6(1 + p2) \/p +1

/

() v (@)
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C.6. Large Noise Level - Distribution is close to a mixture of Gaussians

Lemma C.17. Let C be a sufficiently large constant. Let g’ () H?Zl wy () - H?/:dﬂ wi(x;) - combe(x; — ¢; ;) be the
pdf of a distribution on R \pith shifts ¢; ;. Consider a mixture of discrete d-dimensional Gaussians, given by the pdf

k
(z) = Zﬁjgj(x — 1)

Let hy(x) = (h* w,)(x) be the smoothed version of h. Then, for the mixture of standard (d + d')-dimensional Gaussians
given by

k
) =Y Bjw (e — )
=1

for #ip% > C'log d, we have that

vauo_vnu>
@) T

x~h,

2 .
j

o (L s lsl?) + Yo HED L

] ? ! ; e(1+p?)

where m3 = Eqop, [[|2]1?].
Proof. We have that
k
)= Big)(x
i=1
where g () = ¢’ (x) * w,(z). By Lemma C.16, we have that for every i, j,

(Vgy(@), = (Vo @),

< de 252<1+p )

(V“’m ) ‘+d Ze W.e(li/ﬁ) -w\/p2+1(x)

So,
|(Vh (x)); = (Vfp(@)),]

Zﬁj (Vobte =) = Voo (e =)

k ) )
<$dy g e = v( (o — ) ‘+Ze W J ot w0 (@)
j=1

Similarly, for the density, by Lemma C.16

2
. _ 2
g () —wm(x) < de 252<1+pz>w\/p2—+1(x)
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So,
o) = f(@)] = Zﬁj (920 = 1) —w (@ = 1))

2
[ -
S de 2E0ED E B0 (@ = )
j=1

2

S de” =0T £ ()

Thus, we have

(Vh(e)i  (Vh, )i
milj:hﬂ ( hp(x) fp(x) > ]

e\ £ () <1+O<(de <+)>> fole)

B
- == z
5 de <20+02) . K
k _¢
S - (e

322 2
Vu (@ = ) ‘ + X s0€ O T W@ ))

+d-E
folz)
k 2
2 ; 2 > =1 Byl = pli-w (@ — 1y)
S%efmﬂiZe*%ij 4 de T B = Tt Vel ’
p >0 e(l+p?) fo()
0% __i%p% j 0% 9
5 de 2(+02) +d26 52(1+p2)m +de <20+, . K [sup|:z: _Mj|7,‘:|
7>0 J
0% J
< de 20+, (14+E S d 52(1+ﬂ2) R —
< de ( +E [27] + uplujlz)+ > e T
7>0
Thus, we have
2 2 2 2 .
|Sete) - L < et (14 B [JalP] + sup s )+ 2 e 05T
fol(z) j = e(1+ p?)
;)2 5 5 j2p2 ]
Semhm (1 mdsup ) + 3 e D T
i)+ Sy
since ( ) > C'logd O

Corollary C.18. Let d' = O(d), and let g be as defined in Definition 3.2, and let g, = g+ N'(0, p> I a’) be the p-smoothed
version of g. Let f, be the mixture of (d + d')-dimensional standard Gaussians, given by

=5 X w - RD)

ze{£1}d
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where ¥ € R4 has the first d coordinates given by x, and the last d' coordinates 0. Then, for % > C'logd for
sufficiently large constant C, we have

p2 j292 .
E [Iv1 _ vl 2}< TETOED L (14 R2 4 p? ) S A
LE, [Vioggp(2) = Vieg (@) | S e (1+ R+ p°) +§)e e
Proof. Follows from the facts that m3 < d (R? + p?) and p3 < dR? for all j. O

C.7. ReLU network for Score at Large smoothing Level

This section shows how to represent the score of the o-smoothed unconditional distribution defined in Definition 3.2 for
large o using a ReLU network with a polynomial number of parameters bounded by a polynomial in the relevant quantities.
We proceed in two stages — first, we show how to represent the score of a mixture of Gaussians placed on the vertices of
a scaled hypercube. Then, we show that for large o, this network is close to the score of the o-smoothed unconditional
distribution.

Lemma C.19 (ReLU network representing score of mixture of Gaussians on hypercube). For any 0 > 0 and R > 1
consider the distribution on R¢ with pdf

folt) =57 O wolw— Ru)

pe{£1}d

where w, is the pdf of N'(0,021,).

There is a constant depth ReLU network h : R? — R? with O ( di ) parameters, with absolute values bounded by

v
dR
0 (0372) such that

B [IV108 fo(a) = h@)|?] 77

Proof. Note that g, is a product distribution. So, the claim follows by Lemma C.12. O

Lemma C.20. Let d’ = O(d), and let R < poly(d). Let g be the pdf of the unconditional distribution on R4 | as defined

in Definition 3.2, and let g, be its o-smoothed version with score s,. For e < c%\/@, and o > Ce (y/log d+ 4/log %)

for sufficiently large constant C, there is a constant depth ReLU network h with O (ﬁ%) parameters with absolute values

bounded by O ( dfg ) such that

o3

LE lso(@) = h(@)I?) S+ 7

Proof. Let h be the ReLU network from Lemma C.19 for smoothing o. It satisfies our bounds on the number of parameters
and the absolute values.

Note that for our setting of € and o, we have that

o2 1 1 1 C?logd
2 2y ~ 2 Ty -~ 2 3~
e2(l14+02) ¢ (1-5-?) €+t CTlogd  T7logd 2
and
2 C?(logd + log *
g > ( g & 5) > log ——<
2(1+ 02) 2 e(1+0?)

So, by Lemma C.18, for the mixture of Gaussians f,, as described in Lemma C.19, for R < poly(d),
2
1

E llss(a) = Viog £,(@)|7] S & 07057 S~
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Also, by Lemma C.16,

0 (2) — Jola)| < 2]

So, by Lemma C.19,
E [[Vlog fo(z) — h(z)[?] S xlEf [[IV1og fo(x) = h(z)|1?] S~

T~go
So we have

LE (llso(@) - h@)?] 7 + 27z

C.8. ReLU Network Approximating score of Unconditional Distribution

Theorem C.21 (ReLLU Score Approximation for Lower bound Distribution). Let C' be a sufficiently large constant,
and let d = O(d). Fix any o > 7 for 7 = d% Given a constant-depth ReLU network representing a function
[ {=1,1}¢ = {=1,1}% with poly(d) parameters, there is a constant-depth ReLU network h : R+ — RI+d" yirh
poly (d) parameters with each parameter bounded in absolute value by poly (d) such that for the unconditional distribution

g defined in Definition 3.2 with o-smoothed version g, and corresponding score s, for R > Clogd, ———

1
poly(d) <e< 017@’
1
2
JE llso(®) = @)I°] S o730

Proof. Follows by Lemmas C.15 and C.20. O

Corollary 3.6 (Lower Bound Distribution is Well-Modeled). Let C be a sufficiently large constant. Given a ReLU network
[ {E1} — {£1} with poly(d) parameters bounded by poly(d) in absolute value, the distribution § defined in

Definition 3.3 for R = C'log d and m <e< ﬁ@, is O(C)-well-modeled.
Proof. Follows via reparameterization from the Theorem, and rescaling. O

D. Lower Bound - Putting it all Together

Theorem 1.8 (Lower Bound). Suppose that one-way functions exist. Then for any m > d°9, there exists a 10-well-modeled
distribution over R%, and linear measurement model with m measurements and noise parameter 3 = @(log%d), such that
(%, 1—10)—posteri0r sampling requires superpolynomial time in d.

Proof. First, by Lemma G.3, there exists a ReLU network that represents a one-way function f : {£1}™ — {£1}™, with
constant weights, polynomial size, and parameters bounded in magnitude by poly(d).

1
C+/logd"
then by Lemma 3.5, any (1/10, 1/10)-posterior sampler

Therefore, by Corollary 3.6, the distribution g over R4 is a C-well-modeled distribution, if we take R = C logd, e =

Further, if we take a linear measurement model with 5 = #g%l)’

for this distribution takes at least 22(™) time to run. O

Theorem 1.9 (Lower Bound: Exponential Hardness). Suppose that there exist one-way functions f : {£1}™ — {£1}™
that require 2™ time to invert. Then for any m < O(d) and C > 1, there exists a C-well-modeled distribution over R?
and linear measurement model with m measurements and noise level 5 = Cz%ggd, such that (%, %)-posterior sampling
takes at least 2°0™) time.

Proof. First, by Lemma G.3, there exists a ReLU network that represents a one-way function f : {£1}™ — {£1}", with
constant weights, polynomial size, and parameters bounded in magnitude by poly(d).

Therefore, by Corollary 3.6, the distribution g over R? is a C-well-modeled distribution, if we take R = C'logd, ¢ = ——~

Cy/logd’
Further, if we take a linear measurement model with 8 = m, then by Lemma B.5, any (1/10,1/10)-posterior
sampler for this distribution takes at least 2°(™) time to run. O
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E. Upper Bound

Lemma E.1. Let q be a distribution over R™ such that E,q[|w||3] = O(m). Let w ~ g and y = w + SN (0, I,,). Then,
there exists a constant ¢ > 0 such that

Pr [Pr {Hy —w| < 10yy/m + log(1/9) ’ y} > (ey)™ - 57”/2“} >1-4.
y w
Proof. Since E,yq[||w]|3] < m, there exists a constant C' such that

Cm 4]
Pr [||w||§ > ] <3

wrq )

Lemma H.10 shows that there exists a covering over {z € R™ | ||z||, < /Cm/é} with N = O(\%ﬁ)m balls of radius
B+/m +log(1/4). Let S be the set of all the covering balls. This means that

Prl30eS:wed >1-—

Wl >

Define 5
/. 9
S .7{9€S|P1’Ur[w€9]> 3N}.

Then we have that with high probability, w will land in one of the cells in S”:

+N- <

Privoe S :w¢ ] <PrvoeS:w¢b+Pr[ \/ wed< 3

05\ S’

1
Sti={yeR™ |30 €S Vw e b w—y| <108)/m+log <},

By the sampling process of y, we have that

[JCR S

5 _2
5

Moreover, we define

+1 = +
P;r [y es } = quJE\r[(O’Im) [w +pze S ]

> P Fes: 0) A <38
_w~q,z~/\rf(o,1m) (30 ¢ w e 0) A(||z] < 8vm)]

1
>1- P;r Ve S :w¢ o — z~NI()(§,I,,L) |:||Z||2 > 64(m + log g)
By Lemma H.9, we have
1 1
P > > 64 log )| < .
| s satm 10 ) <

Therefore,
Pryes]>1-4
y

This implies that with 1 — § probability over y, there exists a cell # € .S such that Hy —t || < 108 and Pr,[w € 6] > % >
5 - @(\/3,8)7”.
]

Lemma E.2. Consider a well-modeled distribution and a linear measurement model. Suppose we have a (T, §)-unconditional

.. . c5p . L .
sampler for the distribution, where T < Vmtos1/5) for a sufficiently small constant ¢ > 0. Then rejection sampling

(Algorithm 1) gives a (1, 20)-posterior sampler using at most logg# (%)m samples .
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Proof. Let P be the distribution that couples true distribution D over (x,y) and the output distribution of the posterior
sampler pj,. Rigorously, we define P over (z,Z,y) € X x X x Y with density p¥ such that p”(z,y) = pP(z,y),

p” (T | y) = P, (Z). Similarly, we let P over (z,7,y) € R? x R x R be the joint distribution between the unconditional
sampler over (z, T) and the measurement process D over (z, y). Then by the definition of unconditional samplers, we have

Pr [l -] >7] <.

z,x~P

Therefore, to prove the correctness of the algorithm, we only need to show that there exists a P over (z,Z,y) such that
P |y) = pjy(x) and TV(P,P) < 4. By Lemma H.9,

1 5
Pr ||| Az — y||* > 48%(m + log )| < 7.
P ) 4

~ ~ 2
Therefore, we define P’ as P conditioned on ||z — Z|| < 7 and % < 2(m + log ). Then we have

~ ~ 36
TV(P,P') < —.
Algorithm correctness. We have
N ] P ]
SN pF (T) - e 27 [P (z,7) e 20" dz
py(@) = A vZ EPEEE ’

[pP(@)-e 27 dz  [pP'(@)-e 2 dF

Then we define
~, N —llAz—y]|?
o [p7 (z,2) e 257 dx
r(x) T —|AZ—y]|2

[pP (2,%) - 27 da

Conditioned on ||z — Z|| < 7 and % < 2(m + log §), we have

1Az — y|* — ||AZ — ||
232
- T IAIR + 2 Al | Az — ]
< 552
2 \/7
§L+T m + log(1/9)
p? B
By our setting of 7, we have 1 — §/8 < r(Z) < 14 4/8.

[log r(Z)| < sup
xT

So we have

=, Az —y|2 =, Az —y|? ) ~, —Az—y|2
/pp (Z)-e 257 dfz/p7> (2,Z)-e 287 dmdfz(l:l:g) /pp (z,Z)-e 207  daxdz.

Hence,
(,\) f 75/( /\) _HAI;y”2d

PSR rix)- | p- (x,xr)e 2P x

p|y(l’) =

—llAz—y]|?

1+2) [pP (x,B)e 27 dedd

r(@) - [P (,2)p" (y | x) dx
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Finally, we have

| >

J 17 @1 - mu@aza” v = [|(143) 5@ 10 -7 @ )| azaf ) <

This implies that

~ ~ ~ ~ ~  ~ 6 o6 3
TV(Pz, Ps) = TV(Ps, Pz) + TV(P:, Pe) < T + 5 <
Hence, 5 5
3 7
— > < — < —
MNP[II»T ol z7] <+

Running time. Now we prove that for most y For y € Y, for each round, the acceptance probability ¢(y) each round is
that

B B~ _Hy;A;n? N
qy) = [ p~ (@)e =7 dr

o 5 —lAz—y|?

:(lztg)/pp (x,Z)-e 27  dadz

1 —llAz—y|?
> 5/17’“(1:) e de

1 [ lAz—y|?
- 51;?2\5' € e :|

1 100(m+log(1/0))ﬂ2
> P Az — y|| < 10y/m + log(1/0) 5}

1
=3 PrX HAJ: —y|| < 10\/m—|—10g(1/5)ﬂ] - §ePom

By Lemma H.11, EQJNX[HAQCH;] = O(m). By Lemma E.1, we have that for 1 — §/8 probability over y, for some ¢ > 0,

Pr [||Ax—y|\ < 10y/m + log(1/3) ﬁ] (cB)™ - §m/2+L.

Therefore, for some ¢ > 0,

| >

Pr[a(y) > (eg)" - 5722 > 1 -

Hence, for some C > 0,

= >

log(1/8) ( C \"
Pr [Rejection sampling terminates in &2/) () rounds} >1-—
0 BV

O

Theorem 1.7 (Upper Bound). Let C' > 1 be a constant. Consider an O(C')-well-modeled distribution and a linear
measurement model with 3 > dlc. When 6§ > d% rejection sampling of the diffusion process gives a (d%, 0)-posterior
o)

55 )™ time.

sampler that takes poly (d) (=2

Proof. Theorem 1.4 suggests that for an O(C')-well-modeled distribution, a poly(d) time (5e, 540

exists. Since
1 1L 2
Y (i R L
d Vd m + log(1/6)

log(1/5) (051[)
BVo

each sample costs poly(d) time. The total time is poly(d)(%) . O

)-unconditional sampler

By lemma E.2, a (5=, 7 )-posterior sampler exists using )™ < poly(d)(%)m samples. Since generating
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F. Well-Modeled Distributions Have Accurate Unconditional Samplers

Notation. For the purposes of this section, we let s; = s,z denote the score at time .

Definition F.1 (Forward and Reverse SDE). For distribution qq over R?, consider the Variance Exploding (VE) Forward
SDE, given by

dzy = dBi, x9~qo
where By is Brownian motion, so that z; ~ xo + N(0,t1y). Let q; be the distribution of ;.

There is a VE Reverse SDE associated with the above Forward SDE given by
drp_¢ = sp—¢(x7r—¢) + dBy (12)

for xp ~ qr.
Theorem F.2 (Unconditional Sampling Theorem, Implied by (Benton et al., 2024), adapted from (Gupta et al., 2023)). Let q
1

be a distribution over R® with second moment m} = E,q [||z|?] between soly(@ and poly(d). Let ¢t = g+ N(0,t1q) be

the \/t-smoothed version of q, with corresponding score 5;. Suppose T = d°. Forany~ > 0, there exist N = 9] (5% log2 %)
discretization times 0 = to < --- <ty < T — ~ such that, given score approximations hr_., of sp_, that satisfy

2

€
E 57—t — hr_e |I?] S
B 187t = hr—e, ] S C (T~ ty) log 2

for sufficiently large constant C, then, the discretization of the VE Reverse SDE defined in (12) using the score approximations
can sample from a distribution € + dc—lm close in TV to a distribution yma-close in 2-Wasserstein to q in N steps.

Theorem 1.4 (Unconditional Sampling for Well-Modeled Distributions). For an O(C)-well-modeled distribution p, the
discretized reverse diffusion process with approximate scores gives a (d%, d%)-unconditional sampler (as defined in
Definition 1.3) for any constant C > 0 in poly(d) time.

Proof. The definition of a well-modeled distribution gives that, for every d% < o < dC there is an approximate score 5,
such that

1
E [|[5,(x) — 2
2 [II55(2) — so(x)]?] < Co2

and 5, can be computed by a poly(d)-parameter neural network with poly(d) bounded weights. Here p,, is the o-smoothed
version of p with score s,.

Then, by Theorem F.2, this means that the discretized reverse diffusion process can use the S, to produce a sample Z from
a distribution p that is dc% close in TV to a distribution dc% close in 2-Wasserstein. This means there exists a coupling
between T ~ p and x ~ p such that

The claim follows via reparameterization. O

G. Cryptographic Hardness

Recall that a one-way function f is a function such that every polynomial-time algorithm fails to find a pre-image of a
random output of f with high probability.
Lemma G.1. If a one-way function f : {£1}" — {£1}"™(") exists, then for any —~— < I(n) < poly(n), there exists a

poly(n)
one-way function g : {£1}" — {il}l(")'

Proof. Forl(n) > m(n), we just need to pad [(n) — m(n) 1’s at the end of the output, i.e.,
g(m) = (f(sc), 1l(n)—m(n,)).
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For < (n) < m(n), for each n, there exists a constant ¢ < 1 such that I(n) = m(n°). Then we can satisfies the

1
poly(n) —
requirement by defining

g(x) := f(first n® bits of ).
O
Lemma G.2. Every circuit f : {#1}" — {£1}™") of poly(n) size can be simulated by a ReLU network with poly(n)
parameters and constant weights.

Proof. In the realm of {+1,—1}, —1 corresponds to True and +1 corresponds to False. We can use a layer of neurons
to translate it to {0, 1} first, where 1 corresponds to True and —1 corresponds to False. We will translate {0, 1} back to
{+1, —1} when output.

Now we only need to show that the logic operation (—, A, V) in each gate of the circuit can be simulated by a constant
number of neurons with constant weights in ReLU network when the input is in {0, 1}":

* For each AND (A) gate, we use ReLU(> (y; — 1) + 1) to calculate A y;.
* For each OR (V) gate, we use ReLU(1 — ReLU(1 — > ¥;)) to calculate \/ y;.

* For each NOT (—) gate , we use ReLU(1 — y;) to calculate —y;.

It is easy to verify that for {0, 1} input, the output of each neuron-simulated gate will remain in {0, 1}" and equal to the
result of the logical operation. O

Then the next corollary directly follows.

Corollary G.3. Every one-way function can be computed by a ReLU network with poly(n) parameters, and constant
weights.

H. Utility Results

Lemma H.1. Let p, be some o-smoothed distribution with score s,. For any € < o,

E sup s, (z+c¢) S —
TPo |o)<e o

Proof. Draw = ~ p,, and let z ~ N (0, 02) be independent of x. By Lemma H.3,

so(x) = E [i} .

z|x

Moreover, by Corollary H.4,

2cz—c2 -
E.p. [6 (iac)} E.p, [/ ()]

S‘T(I + C) = z—c cz/o
., [ ] .o [e/]

Taking the derivative with respect to ¢, since (a/b)’ = (a’b — ab’) /b?,
Bzl [6“/”2 (#)} E.(o[e%/"] — Ejq [ecz/02 (%)} E.js [ﬁecz/oz}
E.jo[ec=/%)?

B[ (258 Bk B [ 5]

]Ez‘w[ecz/UQ]Z

si(x+c)=

(13)
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Now we take the supremum over all |¢| < ¢, and take the expectation of this quantity over x to get the desired moment:

Ez|x[ecz/02%}2
E |sup s, (z+c)*| <E|sup ——7
T e|<e T e|<e Ez\az[ecz/azP
272 21 —2
<E|[ sup E |:66Z/02Z4:| sup E {ecz/gz]
= | \lel<e #l® g le|<e 2|z
914
<,|E |sup E |:€CZ/‘7224:| E |[sup E [ecz/‘fz]_4 (14)
T e <e 2l g T lef<e 2l

The last inequality here follows from Cauchy-Schwarz. For the first term of equation 14, we have

E

x

9.4
sup E {e‘:z/‘ﬂz}

1
le|<e 2|z g

We compute the 4th moment of this term directly:

16
- \/ [28(e8e2/7% + em8e2/7)| E {;J

1 61652/02
32e2 /02 | _—  __
ST = — (15)
For the second term of equation 14,
2 —4 [ 2
E|sup E [ecz/" } <E|sup E [e*“z/"} by Jensen’s
x \c|§ez‘z z _|c\§6zl$
<E|E [64e\z\/02]
Tzl
<E »6452/02 _|_€74sz/02:|
_ 26%02»(45/02)2 _ 26852/02 (16)

So, putting equations 16 and 15 into equation 14, we get

2 2
< \/26862/02 el

T e|<e o8

E lsup sl (xz + ¢)?
|

Now, by assumption, ¢ < 0. So, we finally get that

< gLt _1
~ Vot ot

E

x

sup s, (x + ¢)?
le|<e

37



Diffusion Posterior Sampling is Computationally Intractable

Lemma H.2. Let p be a distribution over R, and let p, = p * N(0,0?%) have score s,. If v < 7 /4, then,

Pr sup  s(y)>t| <e
LyE[z—7,7+7]

Proof. From Corollary H.8, we have
kF15%
ok

E| sup s(yﬂ <
]

|yElr—y,m+y

So, we have

E |:Sllp T—y,x+ s(‘r)k] 15k k
Pr sup  s(x)F > tF| < vel W,’ il < 15k
tF to

yElz—v,2+7]

Setting k = log %, we get

For the following Lemmas, If p is a distribution over R and has score s, define the Fisher information Z as

T:= E [s*(z)]
x~p
Lemma H.3 (Lemma A.1 from (Gupta et al., 2022)). Let p be a distribution over R, and let p, = p * N (0, c2) have score
.. Let (x,vy, 2) be the joint distribution such that y ~ p, z ~ N(0,0?) are independent, and v = y + z. For all ¢ > 0,

p(x + g) 2ez—c2 z
_— = E 252 d o == E -
p(x) z|x |:€ :| ands (m) z|x |:0'2]

Corollary H.4. Let p be a distribution over R, and let p, = p x N(0,02) have score s,.

Bapo [ (5|

SU($+€) = Ez‘w[esz/oi}

Proof. This proof is given in Lemma A.2 of (Gupta et al., 2022), and is reproduced here for convenience and completeness,
since a statement in the middle of their proof is what we use.

By Lemma H.3, we have

62752

Do (T +€) E { 2 }
Do (.’L‘) z|x

Taking the derivative with respect to €, we have

Po(T +¢)

2ez—e2 zZ — €&
pa(x) [ ’ ( o2 )]

So,

po(z+e) _po(z+e) po(x)

Solx+¢)= =
Tt = @ te) . @ pul@to)
252:—52
E.p. [ (15)} E.p. [/ ()]
R[] Bk
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Lemma H.5 (Lemma 3.1 from (Gupta et al., 2022)). Let p be a distribution over R and let p, = p * N(0, c?) have Fisher
information Z,. Then, I, < %

Lemma H.6 (Lemma B.3 from (Gupta et al., 2022)). Let p be a distribution over R and let p, = p * N (0, 02) have score
$o and Fisher information Z,. If |y| < 0/2, then

1
E[s? <7 I, 1
2o+ <7+ 0 ( 22y low - )

Lemma H.7 (Lemma A.6 from (Gupta et al., 2022)). Let p be a distribution over R and let p, = p * N(0, c?) have score
So and Fisher information I,. Then, for k > 3 and |y| < 0 /2,

Bllso (2 -+ 7)) < 2 (15/0)* 2 max (E[s2 (@ + 7)), T,)

Corollary H.8. Let p be a distribution over R and let p, = p * N (0, 0?) have score s,. Then, for k > 3 and |y| < 0/2,
15k
Bsnte - < (1)

Proof. Consider the continuous function f(z) = log . This function is only defined on 0 < z < 1/0%. We have

f'(x) =

210
1/10

ozf Since f(1/0?) = 0 and lim,_,q+ f(x) = 0, we have this
is the maximum value of the function. Further, we know by Lemma H.5 that I, < 1/ 2. So, along with the fact that

|v] < /2, we have
1
I5y/log 2[ §—2

Therefore, from Lemma H.6, and using Lemma H.5 again, we get

Setting this equal to zero gives © = - f(5z) =

1
E[s® <T,+0 (21,41 <
et ) < T+ 0 (1oyflog ) 5

Finally, we can plug this into Lemma H.7 to get

Lemma H.9 (Laurent-Massart Bounds(Laurent & Massart, 2000)). Let v ~ N(0, I,,). For any t > 0,

Prl||v]? = n > 2vnt +2t] < et
Lemma H.10 (See Mohri et al. (2018), Lemma 6.27). There exist O(R/e)? d-dimensional balls of radius ¢ that cover
{z eR?| ||z[l, < R}.

Lemma H.11. Let p be a distribution over R® with covariance ¥ such that ||| < 1, and let A € R™*4 be a matrix with
|A|l < 1. Then

E [l4al? s m
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Proof. Note the expectation of the squared norm || Az||? can be expressed as:

E.pl||Az||?] = trace(AT AX).

Given that || A|| < 1, the singular values of A are at most 1. Hence, the matrix AT A, which represents the sum of squares of
these singular values, will have its trace (sum of eigenvalues) bounded by m:

trace(AT A) < m.

Hence, given that || X|| < 1, we have :

E.pl||Az||?] = trace(ATAX) < ||X|| - trace(AT A) < m.
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