
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING LARGE LANGUAGE MODEL PLANNING
WITH ACTION SEQUENCE SIMILARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Planning is essential for artificial intelligence systems to look ahead and proac-
tively determine a course of actions to reach objectives in the virtual and real
world. Recent work on large language models (LLMs) sheds light on their plan-
ning capability in various tasks. However, it remains unclear what signals in the
context influence the model performance. In this work, we explore how to im-
prove the model planning capability through in-context learning (ICL), specifi-
cally, what signals can help select the exemplars. Through extensive experiments,
we observe that commonly used problem similarity may result in false positives
with drastically different plans, which can mislead the model. In response, we
propose to sample and filter exemplars leveraging plan side action sequence sim-
ilarity (AS). We propose GRASE-DC: a two-stage pipeline that first re-samples
high AS exemplars and then curates the selected exemplars with dynamic cluster-
ing on AS to achieve a balance of relevance and diversity. Our experimental re-
sult confirms that GRASE-DC achieves significant performance improvement on
various planning tasks (up to ~11-40 point absolute accuracy improvement with
27.3% fewer exemplars needed on average). With GRASE-DC∗+VAL, where
we iteratively apply GRASE-DC with a validator, we are able to even boost the
performance by 18.9% more. Extensive analysis validates the consistent perfor-
mance improvement of GRASE-DC with various backbone LLMs and on both
classical planning and natural language planning benchmarks. GRASE-DC can
further boost the planning accuracy by ~24 absolute points on harder problems
using simpler problems as exemplars over a random baseline. This demonstrates
its ability to generalize to out-of-distribution problems.

1 INTRODUCTION

Planning is important for intelligent agents when exploring the environment and conducting complex
multi-hop actions to achieve their goals strategically. Classical studies in planning mainly leverage
search-based algorithms and reinforcement learning to tackle these problems. Recent advances in
utilizing Large Language Models (LLMs) as the backbone of agents, e.g., for games (ToT, Yao et al.,
2023) and travel scheduling (Xie et al., 2024), call for the need to improve model planning ability to
facilitate various downstream applications.

Recent work achieves good performance on LLM planning with a combination of search-based al-
gorithms and LLM decoding (Besta et al., 2024; Silver et al., 2024; Lehnert et al., 2024); however,
multiple rounds of prompting in a tree structure, e.g., Monte-Carlo Tree Search (MCTS), can lead
to high inference cost (Yao et al., 2023). To further improve the effectiveness and efficiency, this
paper focuses on improving the planning capability of LLMs with direct prompting in the in-context
learning (ICL) (Brown et al., 2020) manner. We aim to seek signals that help select the good demon-
strative task-plan examples in the context, i.e. exemplars (Rubin et al., 2022). Previous work (Ye
et al., 2023) in the natural language processing (NLP) community considers an exemplar selector
as a dense retriever (Karpukhin et al., 2020) that matches the semantics of two task descriptions.
However, for planning tasks, semantically similar task descriptions with one different initial state
can lead to different core strategies and eventually drastically different correct plans. For example,
requiring an end state of a block on the top or bottom of a 100-block pile will only have a one-
word difference in task description: put b1 on the table vs. put b100 on the table, but the problem

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

...
1. Unstack b4, b5 
2. Pick-up b5 
3. Stack b6, b7 

… THRESH1 THRESH2

Selected

Exemplar Candidate Pool

Task: 
  Initials: b2 on b3, b5….   
  Goal: b2 on b6  
Reference Plan: 
1. Pick-up b2 
2. Stack b3, b5 

…

Step2: Compute Action 
sequence Similarity (AS)

Model initial 
Plans (p’)

Not selected

Exemplar Cluster

Example Sim. 
Thresholds

Task: 
  Initials: b4 on b5, b2….   
  Goal: b4 on b2  
Reference Plan: 
1. Unstack b4, b5 
2. Stack b3, b5 

…

Task: 
  Initials: b4 on b5, b2….   
  Goal: b5 on b4  
Reference Plan: 
1. Unstack b4, b5 
2. Pick-up b5 

…

…
Task: 
  Initials: b4 on b5, b2….   
  Goal: b5 on b4, b4 on b2 

Test Example Task

Step1: ICL with Random Exemplar

Step3: Select high AS Exemplars

Per Test Example 
Candidate Pool

Generative Re-Sampling of Action sequence Similar Exemplars 
(GRASE)

Sampled 
Candidate Pool

Final Generated 
Plans (p’’)

1. Unstack b4, b5 
2. Pick-up b5 
3. Stack b5, b1 
4. Pickup b3 

…

Step4: 
Sampling 
with 
relevance 
+ diversity

Test Example 
Task

LLM

Step5: Final ICL 
with selected 
exemplars

Dynamic Clustering 
(DC)

Step6*: Iterate 
Step 2-5.   
(GRACE-DC*)

Figure 1: An illustration of our two-stage GRASE-DC pipeline. Given a test example, [GRASE
stage:] we first use the random exemplars from the candidate pool to acquire the initial model plan.
We then utilize actions in this plan to rank the pool with the action sequence similarity. [DC stage:]
we further sample the specific exemplar pool for the test example with the relevance and diversity
in the lens of clusters based on action sequence similarity. Finally, we conduct ICL and prompt
LLMs with the sampled pool and original test example. We can iteratively apply GRASE-DC, i.e.,
GRASE-DC∗, by re-sampling exemplars with the action sequences of the generated plans.

complexity, as well as the desired operations in plans, is different. To avoid potential false positive
exemplars, we explore the signals from the actual plans with the view of their essence: a sequence
of ordered and dependent actions.

We validate such intuition by comparing the ICL performance on various tasks with exemplars
sampled from signals in the tasks or plans. We propose to consider plans as a series of ordered
actions and measure the Action sequence Similarity (AS). Specifically, we measure the similarity
between two action sequences with their longest common action sequence (LCAS) normalized by
sequence lengths. Our analytical experiments with Oracle plans of test examples confirm that the
proposed AS is a better and more robust signal in selecting exemplars to assist the model planning,
compared to random sampling or signals from task descriptions.

We propose GRASE-DC a two-stage pipeline that empirically leverages AS to improve LLM plan-
ning with ICL. As shown in Figure 1, we first acquire the model’s initial output plans for the test
examples with randomly selected exemplars. Then, we perform the first stage, Generative Re-
sampling of Action Sequence Similar Exemplars (GRASE): we utilize the model-generated plans
to compute the action sequence similarity with all exemplar candidates. Last, given the set of similar
exemplars sampled in GRASE, we further remove potential noise and redundancy with a Dynamic
Clustering (DC) step: we capture the geometric relations among exemplar candidates plus each test
example with clustering over their distance as the reciprocal of AS. We utilize these relations to keep
a new dynamic set of exemplars for each individual test example with a balance between relevance
and diversity. We use this final set of exemplars, with a dynamic size for each test example, to con-
struct the prompt for standard ICL to guide models to generate plans. Since GRASE-DC maintains
the original ICL pipeline, with the final model-generated plans, we can iteratively apply the GRASE
and DC steps, we denote this iterative approach as GRASE-DC∗.

We evaluate the performance of GRASE-DC on both classic planning benchmarks (Aeronautiques
et al., 1998; Höller et al., 2020; Bohnet et al., 2024) as well as natural language planning bench-
marks (Zheng et al., 2024). Through extensive experiments, we show that GRASE-DC achieves
significant and robust performance improvement in planning through ICL with LLMs across tasks
with a concise set of exemplars. GRASE-DC achieves up to ~11-40 point absolute accuracy im-
provement and 27.3% fewer exemplars needed on average, compared to random exemplar selection.
GRASE-DC∗ with validator further achieves similar or better performance with fewer exemplars,
compared to GRASE-DC, with up to 18.9% performance improvement and 39% fewer exemplars.

We further analyze the cost of selecting exemplars with our approach against random selection.
We show that with parallel computation of plan similarity, the extra compute cost for selecting
exemplars with AS is negligible compared to random, and GRASE only requires only one additional
prompt to the LLMs, which is much less than the overhead of the search-based algorithms such as
MCTS and ToT. We further investigate how to use MLP and BPE-Proxy to approximate AS at
different performance-efficiency trade-offs. We estimate the floating-point operations per second
(FLOPs) needed for exemplar selection and plan generation for each test example. The proposed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

MLP achieves 95% performance of GRASE with around 66% FLOPs; BPE-Proxy achieves 83%
performance of GRASE with around 27% FLOPs, showing the effectiveness of these methods.

To assess the broader applicability of our method, we further evaluate it on different backbone
LLMs as well as data beyond its original training distribution. We observe that GRASE consistently
enhances the planning capabilities of different backbone LLMs. This means it reliably leads to
better performance across a range of LLMs, regardless of their design. Furthermore, GRASE-DC
significantly outperform random baseline (~24 absolute points) on harder and out-of-distribution
test examples using simple exemplar candidates.

2 METHODOLOGY

2.1 TASK FORMATION

In this paper, we investigate how to improve the planning capability of large language models
(LLMs) through in-context learning (ICL). Given the task description of the planning problem (e.g.,
the initial component states and the final goal), we prompt the model with a set of exemplar candi-
dates and let the model directly output the executable and verifiable plans in the response.

Formally, each planning instance, either an exemplar candidate (c) or test example (t), contains
a task description and a referential Oracle plan, i.e., (cd, cp) refers to an exemplar candidate and
(td, tp) refers to a test example. Each plan cp or tp can be rewritten into a sequence of actions
A = {a1, a2, ...}. For each task, there exists a validator, e.g., a rule-based system VAL (Howey
et al., 2004), to verify if each action in A is valid considering its impact on the states and if the
objectives (described as the object states) in task descriptions are satisfied after executing a plan1. It
is common to exist multiple plans that satisfy one specific task description, which can be different
in the action orders or number of steps.

In ICL setting, for each test example that contains task description td and plan tp, we sample a
set of exemplars Dt = {c1, c2...} from all exemplar candidates D to form the prompt for model M
(typically a LLM) and collect the model generated plans: p′ ∼ P (td,Dt,M), where VAL can verify
if p′ is executable and can satisfy td, where p′ is not necessarily the same as the referential tp. For a
planning task, the actions in sequence are temporally dependent, where the pair-wise order matters.
To compute the similarity of two action sequences Ai,Aj , we propose to find the longest common
action sequence Alc (ordered and consecutive) that exists in both, denoted as LCAS(Ai,Aj). Action
sequence similarity of a pair of plans, as a measure of plan similarity, is then defined as SimAS =
|LCAS(Ai,Aj)|2/(|Ai| · |Aj |). Next, we discuss the details of our method.

2.2 GRASE-DC: ICL WITH ACTION SEQUENCE SIMILARITY

We propose GRASE-DC as a two-stage pipeline that leverages SimAS to help sample exemplars for
conducting ICL, as shown in Figure 1.

(1) GRASE: Generative Re-sampling of Action Sequence Similar Exemplars: Given a test example,
we first randomly select a set of exemplars from the candidates to obtain an initial model-generated
plan (p′). Next, in the first GRASE stage, we rewrite p′ into the corresponding action sequence A′

and rank the exemplar candidates with SimAS between A′ and each Ac. After this stage, we can
already conduct conventional ICL with the ranking by selecting the Top-N (e.g., N=40) exemplars
to include in the context for prompting the LLMs. However, SimAS can further provide us with
relational information among candidates, which can be leveraged to further refine the exemplar
candidates for each test example.

(2) DC: Dynamic Clustering: To reduce potential redundancy and noise in the candidates we con-
duct dynamic clustering, with the reciprocal of SimAS defining the pair-wise distance. We keep the
exemplars with the highest interval of similarity (e.g., > mean plus three standard deviations) with

1Planning problems are commonly written in Planning Domain Definition Language (PDDL, Aeronautiques
et al., 1998), which provides a standard representation that guarantees the verification of the planning problems
given a definition on the task domain. For tasks not written in PDDL, there is a commonly used rule-based
verification system, e.g., check all the constraints of a travel planning problem. The verification of a plan is
generally considered less costly than searching for a plan.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the test example. For other examples, we cap the maximum number of exemplars per cluster to
ensure a diverse set of candidates and include it in the context. With DC, we automatically collect a
different set of exemplars for each test example, which relieves the need to search for the number of
exemplars, i.e., N in Top-N.

GRASE-DC maintains the original pipeline of ICL, where operations are all done on the exemplar
selection, not the instruction or the output, which makes the pipeline flexible and easy to iterate
over. We can either iterate the GRASE step before conducting DC, or iterate GRASE and DC steps
together. We denote these iterative versions GRASE∗ and GRASE-DC∗ respectively.

Next, we discuss the GRASE and DC steps in more detail. For clarity, common abbreviated terms
along with explanations are gathered in Table 4 in Appendix A.11.

2.2.1 GRASE: GENERATIVE RE-SAMPLING OF ACTION SEQUENCE SIMILAR EXEMPLARS

Exemplar selection (Rubin et al., 2022; Zhang et al., 2022; Ye et al., 2023) has been shown to boost
ICL performance by leveraging problem-level similarity (e.g., similarity in task description). In this
section, we aim to build an exemplar scoring method for LLM planning. Specifically, given a set of
candidate exemplars D and a test example description td, the method scores and ranks each entry in
D to decide the corresponding Dt that then forms the prompt.

Beyond problem-level similarity, we identify that the underlying plan similarity reveals the actual
similarity or the potential mutual referencing ability of two planning tasks since (1) objects in plan-
ning tasks can be renamed; (2) complex tasks can be composed of multiple threads of simple tasks,
e.g., reverse the order of a three-block pile. Two similar-sized problems can share similar task de-
scriptions but require completely different threads. We present a qualitative example comparing the
high task and plan similarity exemplars in Appendix A.9.

As a result, we treat SimAS as the way to score the exemplars. In an analytical case, we propose to
use the Oracle plans for the test example (tp) to compute the score to validate if it acts as a good
signal for exemplars. We denote this analytical method as BaselineAS . Besides acting as a proof of
concept, modeling planning performance with BaselineAS can also be used to detect the quality of
a certain exemplar pool, which helps to decide if extra candidates are needed.

To empirically leverage SimAS , instead of Oracle plan tp, we let the model generate p′ (i.e., A′) by
itself to compute the SimAS . The method to generate p′ can be arbitrary. In our experiments, we first
use randomly sampled exemplars to let the model generate plans in an ICL manner. Besides start-
ing with random sampling, GRASE can cooperate with any strategies that output model-generated
plans, e.g., ICL with problem-level similarity or Chain-of-Thought prompting (Wei et al., 2022). In
this direction, we extend our experiment with the model-generated plans from both GRASE (Ap-
pendix A.5) alone and GRACE-DC (Section 3.2), i.e., an iterative approach of our strategy.

As described in (Kambhampati et al., 2024), we can obtain hard critiques (if the current plan is
executable or correct) from VAL outputs for PDDL planning problems to assist LLMs. Before re-
sampling, we can also apply VAL and only conduct GRASE on the test examples where models
generate the wrong plans initially, as a classical rejection sampling (RS) pipeline. We denote this
variant as GRASE+VAL and GRASE-DC+VAL for our pipeline at different steps. We show the
performance gain from RS with either GRASE and random sampling in A.8. Note that the action
sequence is not an equivalent representation of the original plans since the objects are ignored. We
explore other design choices for plan representation in Section A.7.

2.2.2 DC: DYNAMIC CLUSTERING WITH ACTION SEQUENCE SIMILARITY

One critical component that contributes to the success of ICL is the choice of exemplar candidates.
In the previous section, we discuss the ranking of the candidates. In this section, we further discuss
the curation of the candidate pool for noise removal.

In a realistic scenario, the exemplar candidates are either from previous interaction records of the
environment, e.g., in Web Arena (Zhou et al., 2023), or automatic environment exploration, e.g., in
BAGEL (Murty et al., 2024). However, since the test examples are unknown when collecting the ex-
emplar candidates, there could be noise introduced to the context when simply selecting the Top-N
in the exemplar ranks. Specifically, we identify two kinds of noise: (1) duplicating or unnecessary

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

examples; and (2) unnecessary or redundant actions in a good example, with potential complemen-
tary actions from other examples. The existence of these kinds of noise suggests the importance
of keeping a set of exemplars considering both the relevance and diversity, with similar findings in
Auto-CoT (Zhang et al., 2023). We denote the whole strategy as Dynamic Clustering (DC):

Relevance: The goal of this step is to remove less relevant exemplars for each test example, since for
different test examples, there is no guarantee of a fixed number of good exemplars in the pool. We
leverage SimAS between generated plans and each exemplar candidate plan to sample a dynamic
number of candidates for each test example. That is, we compute the mean plus one standard
deviation for all SimAS scores among the candidates and discard any candidate that scores below
this threshold. We then use the remaining candidates to build the clusters.

Diversity: Upon acquiring the first rough candidate set with good relevance, the second step aims
at sampling a diverse set of exemplars with removed duplication. We leverage the SimAS between
each pair of these candidates to conduct Agglomerative Hierarchical Clustering (Müllner, 2011) to
capture the internal relations among candidates. Before clustering, to ensure that highly relevant
exemplars are not discarded, similar to the relevance step, we keep all candidates with scores above
mean plus X standard deviation. In practice, we select X to be 3.

We control the number of clusters with a hyperparameter Nc
2. With the clusters, we can sample

a diverse set of exemplars to perform ICL by ensuring that there are fewer than three examples
selected per cluster. Nc is considered to control balance between relevance (large Nc) and diversity
(small Nc). In Section 3.2, we show robust performance with different values of Nc, which helps
alleviate the cost of deciding the hyperparameter.

3 EXPERIMENTS AND ANALYSIS

3.1 EXPERIMENTAL SETUP

Dataset and LLM Backbone. Similar to existing work (Valmeekam et al., 2023a; Bohnet et al.,
2024), we conduct our main experiments on data collected by or created from the pipeline of (Aero-
nautiques et al., 1998; Höller et al., 2020). Specifically, we conduct experiments on four PDDL
tasks: BlocksWorld, Minigrid, Logistics, and Tetris, with details in Appendix A.1. For natural lan-
guage planning, we conduct experiments on Trip Planning (Zheng et al., 2024). We use 300 test
examples for each task and the originally provided training set as our exemplar candidates. For each
test example, there is an Oracle test plan given, which is a valid plan and satisfies the goal in the task
description, but it is not necessarily the only viable plan. If the use of backbone LLM is not specified,
we use Gemini 1.5 Pro (Gemini Team et al., 2024) as the default to generate plans at test time. We
also experiment with other commercial and open-source LLMs, including GPT-4-Turbo (Achiam
et al., 2023), Claude-3.0-Opus (Anthropic, 2024), and LLama 3.1 (Dubey et al., 2024) with different
parameter sizes (results are in Section 3.3).

Baseline and Metric. For baselines, we use Random to denote the commonly used random sam-
pling (Valmeekam et al., 2023a; Bohnet et al., 2024). To validate our intuition on the effectiveness
of AS in Section 2.2.1, we also use task description similarity as a baseline. Given the task descrip-
tion of a test example (td) and an exemplar candidate (cd), we compute the similarity as the token
overlap with QA-F1, following (Khashabi et al., 2020; Zhao et al., 2023). We denote this method
as Task. For the metric, similar to (Valmeekam et al., 2023a; Bohnet et al., 2024), we use planning
accuracy, which denotes the portion of test examples with generated plans that are both executable
at each step (no undefined behavior or failed pre-condition) and satisfy the final goals.

3.2 PERFORMANCE ON PDDL TASKS

What signal helps ICL for planning? We first validate our intuition in Section 2.2.1 by com-
paring the ICL performance between sampling exemplars with signals from the task description
(Task) and plans (BaselineAS), where both methods are based on token matching, with no contextu-
alized embedding involved. The comparison is shown in Figure 2, we can observe that the proposed

2Empirically, with n exemplar candidates to be clustered, we set the number of clusters to be (n0.25+1)∗Nc,
when there are more clusters considered, typically more exemplars are included in the context for ICL.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 4 10 20 40 100

Number of Exemplars (log-scale)
20

30

40

50

60

70

Pl
an

ni
ng

 A
cc

 (%
)

PDDL Planning: Blocksworld
Random AS Task

1 4 10 20 40 100

Number of Exemplars (log-scale)

20

30

40

50

60

70

80
PDDL Planning: Minigrid

Random AS Task

1 4 10 20 40 100

Number of Exemplars (log-scale)

0

10

20

30

40

50

PDDL Planning: Tetris
Random AS Task

1 4 10 20 40 100

Number of Exemplars (log-scale)

5

10

15

20

25

30

35

40

45

Error Bars represent a 70% CI

PDDL Planning: Logistics
Random AS Task

Figure 2: PDDL Planning on various tasks with Gemini 1.5 Pro. BaselineAS denotes ranking exem-
plars with the plan similarity given Oracle test plans. Task denotes the baseline that calculates the
similarity between each test example and exemplar candidate with a token overlap in descriptions.

1 4 10 20 40 100

30

40

50

60

70

Pl
an

ni
ng

 A
cc

 (%
) w

ith
 G

RA
SE

PDDL Planning: Blocksworld
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

20

30

40

50

60

70

80

PDDL Planning: Minigrid
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

0

10

20

30

40

50

PDDL Planning: Tetris
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

5

10

15

20

25

30

35

40

45

Error Bars represent a 70% CI

PDDL Planning: Logistics
Random
AS

GRASE GRASE+VAL

4 10 20 40

Number of Exemplars (log-scale)

30

40

50

60

70

80

90

Pl
an

ni
ng

 A
cc

 (%
) w

ith
 G

RA
SE

-D
C

GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

4 10 20 40

Number of Exemplars (log-scale)

20

30

40

50

60

70

80
GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

4 10 20 40

Number of Exemplars (log-scale)

0

10

20

30

40

50

60
GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

4 10 20 40

Number of Exemplars (log-scale)

0

10

20

30

40

50

Error Bars represent a 70% CI

GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

Figure 3: PDDL planning accuracy on various tasks with Gemini 1.5 Pro. BaselineAS (AS lines)
denotes the use of Oracle test plans. BaselineAS and Random lines are the anchors across rows (the
second row focuses on exemplars from 4 to 40). GRASE denotes the use of model output plans
from random exemplars. VAL denotes the use of the plan validator. GRASE-DC∗ denotes another
iteration with the model outputs from GRASE-DC. Numbers of exemplars for GRASE-DC and its
iteration denote the average number of exemplars used over the whole test set with Nc = 1, 2, 3.

BaselineAS presents a strong and robust signal on selecting the exemplars, which achieves signifi-
cant improvement in ICL performance with Gemini in all domains, compared to Random and Task.
It is observed that the performance of Task over different datasets is not consistent. Specifically,
while in Blocksworld and Minigrid, signals from the task descriptions (Task) are misleading and
lead to an accuracy even worse than Random, it performs almost similarly to Random in Tetris. On
the other hand, in Logistics, Task achieves similar performance as BaselineAS . The reason can be
that the action types are much attached to the objects, e.g., between an airplane and airports, there
is only one kind of action defined: flying airplane. Examples with similar object sets, which can be
captured by task descriptions, will lead to similar action sequences.

Main results on PDDL planning tasks. After validating the performance of BaselineAS , we then
evaluate the performance of our proposed GRASE-DC on PDDL tasks. Figure 3 shows the trend of
performance change with line charts over varied numbers of exemplars. For the detailed scores, we
also present the performance in tables in Appendix A.10. We also explore other empirical methods
built upon BaselineAS in Section 3.6.

As shown in Figure 3 (upper row), with GRASE, we observe significant and consistent performance
improvement against Random. GRASE achieves 15 absolute planning accuracy points improvement
(43 to 58) on Blocksworld, as well as other tasks: 6.3 on Minigrid (58 to 64.3); 10.3 on Tetris (5.7
to 16); 5.3 on Logistics (20.7 to 26). If the plan validator is provided (GRASE+VAL) and the
re-sampling is only done on failed examples, we can observe an extra ~3-5 accuracy points gain.

Since the generated plans themselves can be wrong, GRASE can suffer from diminishing perfor-
mance gain with additional exemplars. However, to our surprise, when the number of exemplars
is small (e.g., 1 and 4 for Blocksworld), GRASE can perform better than BaselineAS . One poten-
tial reason is that Gemini can generate plans toward a correct preferred direction even with random

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 4 10

Number of exemplars (log-scale)

20

30

40

50

60

70

Pl
an

ni
ng

 A
cc

 (%
)

LLM: GPT-4-Turbo
Random GRASE GRASE+VAL

1 4 10

Number of exemplars (log-scale)

20

30

40

50

60

LLM: Opus
Random GRASE GRASE+VAL

1 4 10

Number of exemplars (log-scale)

0

10

20

30

40

50

60

LLM: Llama3.1-70B
Random GRASE GRASE+VAL

1 4 10

Number of exemplars (log-scale)
0

20

40

60

80

100

Error Bars represent a 70% CI

LLM: Llama3.1-405B
Random GRASE GRASE+VAL

Figure 4: PDDL Planning on Blocksworld with various LLMs with different numbers of exemplars.
All models are using the same set of exemplars for Random. Opus denotes Claude-3.0-Opus.

exemplars. However, minor mistakes can make the whole plan invalid 3. GRASE helps Gemini re-
trieve and learn from the exemplars from preferred directions, thus the minor mistakes are addressed.
BaselineAS , on the other hand, helps sample exemplars with the Oracle test plans, which can devi-
ate from the preferred directions, e.g., in action priority. We also observe consistent performance
improvement over AS through iterating only over GRASE in Appendix A.5.

Next, in Figure 3 (lower row), we observe that GRASE-DC, with Nc = 1, 2, 3, achieves improved
performance compared to the baselines. In the first iteration (solid line), GRASE-DC achieves
~11-40 point absolute planning accuracy improvement over Random. Similarly, VAL brings extra
performance gain, with consistently improved performance over the analytical BaselineAS . After
one iteration (dashed line), GRASE-DC∗, either with or without VAL, helps achieve higher perfor-
mance with few exemplars (pushing the curve to the upper left), which further improves the overall
effectiveness and efficiency of the pipeline at inference. We also show the original performance
without zoom-in (i.e., not focusing on exemplars from 4 to 40) in Figure 8 in the appendix.

3.3 PERFORMANCE WITH OTHER LLMS

We further examine whether the observed performance improvements of our proposed methods
translate to LLMs other than Gemini 1.5 Pro. We test the performance of GRASE on both commer-
cial and open-source LLMs, including GPT-4-Turbo (Achiam et al., 2023), Claude-3.0-Opus (An-
thropic, 2024), and LLama 3.1 (Dubey et al., 2024) with different parameter sizes. For GPT-4 and
Claude, we use their official API service. For Llama 3.1, we use the instruct-turbo version provided
by Together AI (Together AI Team, 2024) 4.

As shown in Figure 4, we observe that GRASE generally helps the models achieve improved per-
formance on PDDL planning over the random exemplar selection (Random). With GRASE, models
also show improved performance with the increasing number of exemplars, while the improvement
can be unstable with random selection 5. On the other hand, we can observe that, with the help of
GRASE, open-source Llama-3.1-70B can achieve similar performance to GPT-4-Turbo with random
exemplar selection, which further signifies the usability of GRASE in general application.

3.4 PERFORMANCE ON NATURAL LANGUAGE TRIP PLANNING

In the previous sections, we show the significant performance of GRASE-DC on PDDL tasks. We
further experiment on Natural Plan (Zheng et al., 2024), where problems, plans, and actions are
written in natural language. We use the Trip Planning dataset, where the actions are flights between
two cities, which are eventually linked to a full plan to help the travelers cover each city within the
given travel and visit time frame. We use the rule-based validator from the original work to parse
and evaluate the correctness of the output plans 6.

3The case that minor errors can lead to total failure adds to the complexity of planning tasks. For example,
in Blocksworld, the model can forget to put down a block in hand and continue to operate. Exemplars can help
remind models to keep hands empty before conducting the next action.

4Due to the instability of API with long context, we test planning performance with few-shot exemplars
(1,4,10). In this scenario (DC typically selects 10+ exemplars), diversity is not the major consideration, so we
start with conducting a pilot study on the proposed GRASE.

5The authors would like to note that comparison across commercial API systems can be unfair since the
design and inference details are not disclosed.

6Trip Planning has a natural definition of actions. Another task, Calendar Planning, requires the model to
find a time slot with the availabilities of multiple people, where there is no direct definition of actions. We
conduct experiments on Calendar Planning with an extended version of AS in Appendix A.6.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 4 10 20 40 100
Number of Exemplars (log-scale)

0

10

20

30

40

50

60

Pl
an

ni
ng

 A
cc

 (%
)

Error Bars represent a 70% CI

Natural Planning: Trip
Random
AS
GRASE
Task

3 4 5 6 7 8 9
Number of Cities

0

20

40

60

80

100

Pl
an

 A
cc

ur
ac

y 
(%

)

69.2 66.7

54.5
62.5

25.0

6.2
0.0

69.0

91.7

76.7 75.7

45.9

31.7

14.6

Natural Planning: Trip (Best Performing)
Random
GRASE

Figure 5: Natural language planning performance on Trip Planning with Gemini 1.5 Pro. (left) ICL
performance with different numbers of exemplars and signals for exemplars sampling. BaselineAS

(denoted as AS in the figure) denotes the use of Oracle test plans. (right) ICL performance with
different problem complexity (denoted by number of cities). Best Performing denotes the use of 40
and 100 exemplars for Random and GRASE, respectively.

1 4 10 20 40 100
Number of Exemplars (log-scale)

0

10

20

30

40

50

60

Pl
an

ni
ng

 A
cc

 (%
)

Error Bars represent a 70% CI

PDDL: Blocksworld - OOD
GRASE-DC Random AS GRASE

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Blocks

0

20

40

60

80

100

Pl
an

 A
cc

ur
ac

y 
(%

)

100

45.8

58.1

38.9
30.6

23.8 23.7

40.0

20.0 22.7 21.7

10.5

22.2

0.0
7.4 5.3

0.0 3.7

100

81.2
77.0

67.8

54.1

42.9
47.4

68.0

35.0

50.0
43.5

26.3

44.4

21.1

33.3

21.1

40.9 40.7

ID OOD
PDDL: Blocksworld (Best Performing)

Random
GRASE-DC

Figure 6: (left) PDDL planning performance on Blocksworld - OOD setting . Unlike Figure 3 (with
3-7 blocks in each example), we test on problems containing 8-20 blocks. BaselineAS denotes the
use of Oracle test plans. Numbers of exemplars for GRASE-DC denote the average number of
exemplars used over the whole test set with Nc = 1, 2, 3; (right) ICL performance with different
numbers of blocks. Best Performing denotes 4 and 13.9 (on average) exemplars for Random and
GRASE-DC, respectively. Since all the exemplar candidates are with 3-7 blocks, we denote test
examples with 3-7 blocks as in-distribution (ID) and 8-20 blocks as out-of-distribution (OOD).

As shown in Figure 5 (left), we observe that both BaselineAS and GRASE achieve better perfor-
mance compared to the random baseline, while sampling exemplars with problem/task similarity
do not show significant improvement. Similar to PDDL tasks, using model-generated initial plans
to conduct GRASE achieves better results than BaselineAS . One reason can be that the reference
Oracle plans may not always align with the model preference, e.g., on which cities to start, which
brings extra noise. Figure 5 (right) further validates the source of the gain. It depicts a detailed view
of the best-performing entries on Figure 5 (left) across different problem complexity (# of cities),
noting that the gain from GRASE is across the problems with different # of cities. The improvement
is prominent in harder planning problems including more cities.

3.5 ANALYSIS: OUT-OF-DISTRIBUTION GENERALIZATION

Motivated by (Bohnet et al., 2024), we note one crucial factor that decides the hardness of the
planning problems: the size of the object set. The bigger the size, the harder the planning problem.
For Blocksworld, the size denotes the number of the blocks in the problem, i.e. how many blocks
are on the table, where some of them are required to be rearranged to reach the goal state. Here,
we investigate how our proposed method performs in settings where the size of each test example is
different from all the exemplar candidates. This essentially captures the out-of-distribution (OOD)
scenario. For the OOD setting, we use exemplar candidates with size 3-7 to solve test examples with
size 8-20. From Figure 6 (left), we observe that similar to our findings in Section 3.2, AS achieves
significant performance compared to random sampling across various numbers of exemplars, with
no decrease in performance when there is a large number of exemplars. We also observe that utilizing
the model-generated plans achieves even improved performance than Oracle test plans (BaselineAS),
which further validates our assumptions in Section 3.2 that GRASE helps models refine its preferred
direction of plans with targeted exemplars.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 4 10 20 40 100

Number of exemplars (log-scale)
20

30

40

50

60

70

80

Pl
an

ni
ng

 A
cc

 (%
)

Error Bars represent a 70% CI

PDDL Planning: Blocksworld
Random
AS

GRASE
GRASE*

MLP
BPE-Proxy

20 21 22 23 24

Per example cost in FLOPs (log-scale)
20

30

40

50

60

70

80

Pl
an

ni
ng

 A
cc

 (%
)

PDDL Planning: Blocksworld
Random
AS

GRASE
GRASE*

MLP
BPE-Proxy

Figure 7: PDDL planning performance on Blocksworld with different ways to empirically approx-
imate AS from the view of (left) numbers of exemplars (right) computation efficiency. GRASE∗

denotes the iterative application of GRASE only.

As expected, GRASE-DC further improves the model performance by reducing potential noise,
so that models can achieve better performance with fewer exemplars, compared to GRASE alone.
From the per block size performance in Figure 6 (right), we note that Random can completely fail to
help models solve hard problems (e.g., problems with 16 and 19 blocks), while GRASE-DC helps
achieve consistent gain, which is more significant when the problem is harder: 23.3 points absolute
accuracy improvement for out-of-distribution (8-20 blocks) test cases versus 16.3 for in-distribution
(3-7 blocks) cases on average.

3.6 ANALYSIS: HOW TO APPROXIMATE AS, CONSIDERING THE EFFICIENCY TRADE-OFFS?

In our main experiments, we demonstrate how the plan similarity (AS) is a good source of signal
for exemplar selection, as well as how GRASE approximates AS and boosts model performance.
It is worth noting that there is extra computing needed for the selection of exemplars compared
to Random. For BaselineAS , computing LCAS is a dynamic programming problem, which can be
done in parallel by CPUs in a neglectable time. GRASE requires one additional prompt to the LLMs,
which is much less than search-based algorithms such as MCTS and ToT, which typically require
multiple simulations and one prompt on each node in a tree structure. To achieve further efficiency,
we propose additional methods to approximate AS.

Multi-Layer Perceptron (MLP): We utilize the Gecko model (Lee et al., 2024) to acquire em-
beddings, denoted as m, to represent the task descriptions and plans. Following our definition in
Section 2.1, for an exemplar candidate and a test example, we treat the approximation as a regres-
sion task with mean square error (MSE) between MLP(m(cd),m(cp),m(td)) and SimAS of Ac,At.
During training, we sample pairs from candidates. During inference, we use td to score and rank all
candidates to conduct ICL. The implementation details are in Appendix A.2.

Byte Pair Encoding as the Proxy: the above MLP-based method relieves the need for one extra
prompt step to acquire p′ with an embedding step from a comparative lightweight language model.
However, the cost still grows linearly with the number of exemplar candidates. To further improve
the efficiency, we propose to add a proxy between the exemplar candidates and the test examples.

Similar to the common practice on tokenization in NLP (Zouhar et al., 2023), we treat actions as
characters in natural languages and their sequences (i.e., plans) as sentences. We conduct Byte
Pair Encoding (BPE, Gage, 1994) over the action sequences of the exemplar set to acquire the
most commonly appearing sequences, which can be considered as the common subroutines of
plans. We denote these proxy action sequences as b1, b2, ..., bn (n is typically 200), which are
also action sequences but not necessarily full plans. Before inference, we first pre-compute the
Simx

AS between each bx and exemplar candidate action sequence Ac. Then during inference, for
each td of a test example, SimAS is computed as the weighted average of each proxy similarity:
SimAS =

∑
x∈n cos∠(m(td),m(bx)) · Simx

AS , where m is the embedding model (e.g., Gecko).

To compare the efficiency of the methods described above, we estimate the floating-point operations
per second (FLOPs) needed for exemplar selection and plan generation for each test example. We
compute the FLOPs of LLMs following PaLM (Chowdhery et al., 2022), where the number of
FLOPs per token is approximately equal to the number of parameters. We assume the use of 1000
candidates (200 natural language tokens per candidate) in the pool, LLama 3.1 405B for inference,
and Gecko (1B, 768 dimensions) for embedding. We also assume that Gecko embeddings for the
exemplar candidates and BPE tokens are pre-computed (extended details are in Appendix A.3).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

From Figure 7, we can observe that, at the best-performing entries, MLP achieves 95% performance
of GRASE with around 66% FLOPs and BPE-Proxy achieves 83% performance of GRASE with
around 27% FLOPs. Although MLP and BPE-Proxy can not get performance improvement through
iteration, they present to be good alternatives of GRASE when there is a limited budget.

4 RELATED WORK

LLM Planning. Recent investigation on LLM capability (Hao et al., 2023; Valmeekam et al.,
2023b; Kambhampati et al., 2024) shows that models can struggle with solving planning tasks di-
rectly given the problem descriptions. To comprehensively study this problem, researchers have
designed various benchmarks and environments (Valmeekam et al., 2024; Xie et al., 2024; Bohnet
et al., 2024; Zheng et al., 2024; Hu & Shu, 2023). In response, there is a line of work discovering the
methods to improve planning with LLMs: e.g., applying advanced prompting methods (Silver et al.,
2024), utilizing external tools (Hirsch et al., 2024; Hao et al., 2024), or leveraging search-based al-
gorithms (Hao et al., 2023; Lehnert et al., 2024; Zhi-Xuan et al., 2024). In our work, we instruct the
model with common and direct in-context learning, without format conversion or customized tool
use. We show that simple exemplar selection helps achieve good performance on various planning
tasks at a low cost.

LLM In-Context Learning. Prompting and in-context learning (ICL) have been considered as
the prominent way to interact with LLMs, which achieves significant performance on various
tasks (Brown et al., 2020; Wei et al., 2022; Agarwal et al., 2024). Strategical exemplar selection
is key to ICL success, where the model performance can be sensitive to perturbations over the ex-
emplars (Zhang et al., 2022). Previous work on exemplar (i.e., demonstration) selection mainly
focuses on improving the modeling of task-side similarity (Rubin et al., 2022; Ye et al., 2023). Re-
cently, Auto-CoT (Zhang et al., 2023) discusses how to select exemplars with a fixed cluster on test
examples and their rationales. In our work, we demonstrate the effectiveness of the similarity from
another perspective, the expected outputs. We show how the action sequence works analytically
and empirically on both performance and efficiency (e.g., -DC reduces the exemplar needed). We
anticipate the design to be extended to tasks requiring long and dependent sequences as answers,
such as web agent trajectory, coding, and math.

Iterative Refinement with LLMs. Leveraging model-generated signals to improve model perfor-
mance has demonstrated its effectiveness in various domains, with supervised fine-tuning (Schick
& Schütze, 2021; Welleck et al., 2022; Peng et al., 2023; Chen et al., 2024), prompting (Zelikman
et al., 2022), and reinforcement learning (Brooks et al., 2024; Madaan et al., 2024). iPET (Schick
& Schütze, 2021) iteratively applies model classification output to improve few-shot learning.
STaR (Zelikman et al., 2022) uses the model-generated rationales to improve model reasoning capa-
bility. Recently, Self-Refine (Madaan et al., 2024) shows how to utilize feedback on the generation
sampled from the same model to refine the model output. Unlike commonsense reasoning tasks
such as WSC (Levesque et al., 2012), where the answer is a single choice with a rough overall ex-
planation. In planning tasks, besides the overall goal achievement, the validity of every single action
in the sequence is also vital. In our work, we utilize the model-generated plans to re-sample the
exemplars in ICL with action sequence similarity. Maintaining the ICL pipeline also allows direct
evaluation and easy bootstrapping.

5 CONCLUSION

In this paper, we propose GRASE-DC to improve the model planning capability through in-context
learning. To do so, we found action sequence similarity (AS) acts as a significant and consistent
signal in sampling and filtering exemplars. Following this finding, our GRASE-DC first re-samples
high AS exemplars and then curates the selected exemplars with dynamic clustering on AS to achieve
a balance of relevance and diversity. Experiments on various planning tasks and settings validate
consistent and robust performance improvement with the proposed methods. Extensive analysis
demonstrates that our proposed methods deliver these strong results across different LLMs, and
even in out-of-distribution scenarios. Given the efficiency and applicability of GRASE-DC, we plan
to investigate its application in more complex scenarios and generalization to different environments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al. Pddl|
the planning domain definition language. Technical Report, Tech. Rep., 1998.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In ICML 2024
Workshop on In-Context Learning, 2024. URL https://openreview.net/forum?id=
goi7DFHlqS.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michał Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of Thoughts: Solving Elaborate Problems with Large Language Models. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, Mar 2024. doi: 10.
1609/aaai.v38i16.29720. URL https://ojs.aaai.org/index.php/AAAI/article/
view/29720.

Bernd Bohnet, Azade Nova, Aaron T Parisi, Kevin Swersky, Katayoon Goshvadi, Hanjun Dai, Dale
Schuurmans, Noah Fiedel, and Hanie Sedghi. Exploring and benchmarking the planning capabil-
ities of large language models. arXiv preprint arXiv:2406.13094, 2024.

Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. Advances in Neural Information Processing Systems, 36, 2024.

Tom B Brown, Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam,
G Sastry, A Askell, S Agarwal, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1, 2020.

Yunmo Chen, Tongfei Chen, Harsh Jhamtani, Patrick Xia, Richard Shin, Jason Eisner, and Ben-
jamin Van Durme. Learning to retrieve iteratively for in-context learning. arXiv preprint
arXiv:2406.14739, 2024.

Aakanksha Chowdhery et al. Palm: Scaling Language Modeling with Pathways, 2022. URL
https://arxiv.org/abs/2204.02311.

Abhimanyu Dubey et al. The Llama 3 Herd of Models. arXiv, 2024. URL https://arxiv.
org/abs/2407.21783.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv, 2024. URL https://arxiv.org/abs/2403.05530.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. arXiv preprint arXiv:2404.11891, 2024.

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. What’s the plan? evaluating and developing
planning-aware techniques for llms. arXiv preprint arXiv:2402.11489, 2024.

Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fiorino, Damien Pellier,
and Ron Alford. Hddl: An extension to pddl for expressing hierarchical planning problems. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 9883–9891.
AAAI Press, 2020. doi: 10.1609/aaai.v34i06.6542.

11

https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=goi7DFHlqS
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.05530


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pp. 294–301. IEEE, 2004.

Zhiting Hu and Tianmin Shu. Language models, agent models, and world models: The law for
machine reasoning and planning. arXiv preprint arXiv:2312.05230, 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 22895–22907. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/kambhampati24a.html.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
URL https://aclanthology.org/2020.emnlp-main.550.

D. Khashabi, S. Min, T. Khot, A. Sabhwaral, O. Tafjord, P. Clark, and H. Hajishirzi. Unifiedqa:
Crossing format boundaries with a single qa system. In UnifiedQA: Crossing Format Boundaries
With a Single QA System, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik Duddu, Gustavo Hernandez
Abrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Prateek Jain, Siddhartha Reddy Jonnala-
gadda, Ming-Wei Chang, and Iftekhar Naim. Gecko: Versatile text embeddings distilled from
large language models, 2024. URL https://arxiv.org/abs/2403.20327.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul McVay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=SGoVIC0u0f.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’12, pp. 552–561. AAAI Press, 2012. ISBN 9781577355601.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Boot-
strapping agents by guiding exploration with language. arXiv, 2024. URL https://arxiv.
org/abs/2403.08140.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms, 2011. URL https:
//arxiv.org/abs/1109.2378.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yin-
fei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pp. 1864–1874, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.146. URL
https://aclanthology.org/2022.findings-acl.146.

12

https://proceedings.mlr.press/v235/kambhampati24a.html
https://proceedings.mlr.press/v235/kambhampati24a.html
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2403.20327
https://openreview.net/forum?id=SGoVIC0u0f
https://openreview.net/forum?id=SGoVIC0u0f
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/1109.2378
https://arxiv.org/abs/1109.2378
https://aclanthology.org/2022.findings-acl.146


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813,
2023.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2655–2671, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.191.
URL https://aclanthology.org/2022.naacl-main.191.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are
also few-shot learners. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2339–2352, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.185. URL
https://aclanthology.org/2021.naacl-main.185.

Tom Silver, Soham Dan, Kavitha Srinivas, Josh Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in PDDL domains with pretrained large language models. In AAAI Confer-
ence on Artificial Intelligence (AAAI), 2024.

Together AI Team. Together ai, 2024. URL https://www.together.ai/.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. Planbench: An extensible benchmark for evaluating large language
models on planning and reasoning about change. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 38975–38987. Curran Associates, Inc., 2023a. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.
pdf.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Informa-
tion Processing Systems, 36:75993–76005, 2023b.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Forty-first
International Conference on Machine Learning, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. the
Thirty-Seventh Annual Conference on Neural Information Processing Systems, 2023. URL
https://arxiv.org/abs/2305.10601.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars
for in-context learning. The Fortieth International Conference on Machine Learning, 2023.

13

https://aclanthology.org/2022.naacl-main.191
https://aclanthology.org/2021.naacl-main.185
https://www.together.ai/
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2305.10601


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active Example Selection for In-Context Learning. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 9134–9148, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.622. URL https://aclanthology.org/2022.emnlp-main.622.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5NTt8GFjUHkr.

Xinran Zhao, Hongming Zhang, Xiaoman Pan, Wenlin Yao, Dong Yu, and Jianshu Chen. Thrust:
Adaptively propels large language models with external knowledge. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=x9FOu3W6iy.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. Natural plan: Benchmarking
llms on natural language planning. arXiv preprint arXiv:2406.13094, 2024. URL https://
arxiv.org/abs/2406.04520.

Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka, and Joshua B Tenenbaum. Pragmatic instruction
following and goal assistance via cooperative language-guided inverse planning. arXiv preprint
arXiv:2402.17930, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and Ryan
Cotterell. A formal perspective on byte-pair encoding. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 598–614, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.38. URL https://aclanthology.org/2023.
findings-acl.38.

14

https://aclanthology.org/2022.emnlp-main.622
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=x9FOu3W6iy
https://openreview.net/forum?id=x9FOu3W6iy
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2406.04520
https://aclanthology.org/2023.findings-acl.38
https://aclanthology.org/2023.findings-acl.38


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 STATISTICS, EXAMPLES, AND PROMPT TEMPLATES

Statistics. With the benchmark from Valmeekam et al. (2023a); Bohnet et al. (2024), we construct
the exemplar candidate pool with 28,000 examples for Blocksworld, 8,400 examples for Minigrid,
82,000 examples for Logistics, and 2,400 examples for Tetris, which covers the cases with either
a small or large number of exemplar candidates. Each example typically contains 400 tokens on
average, which varies with the complexity of the problems. For natural language planning, we
follow Zheng et al. (2024) to use 1,300 candidate exemplars to conduct trip planning. Please refer
to the original papers for further analysis of the statistics. You can also refer to Höller et al. (2020)
for extra information about the relevant PDDL domains and corresponding problem generation.

Examples. Each example written in PDDL contains a task description that describes the initial
conditions, e.g., block b1 is on b2, and goals, e.g., block b2 is on b1. For the exemplar candidate,
there is a reference plan that shows one potential way to operate from the initial condition to the
goal, e.g., unstack b1 from b2, put b1 on the table, and stack b2 on b1. All the descriptions, goals,
and plans are written in a predicate format that can be parsed by PDDL VAL. For natural language
planning, descriptions and plans are written in English.

We present the action space and an example for each task as follows:

Blocksworld: (actions: pick-up, put-down, stack, unstack)
TASK: (define (problem BW-rand-4) (:domain blocksworld-4ops) (:objects b3 b2 b1 b4) (:init (on b4 b1)
(clear b4) (clear b2) (on b2 b3) (handempty) (ontable b3) (ontable b1) )
GOAL:(:goal (and (on b2 b3) (on b1 b2) (on b4 b1) )) )
PLAN: (unstack b4 b1) (put-down b4) (pick-up b1) (stack b1 b2) (pick-up b4) (stack b4 b1)

Minigrid: (actions: unlock, move, pickup, pickup-and-loose)
TASK: (define (problem grid_room2) (:domain grid) (:objects p0 p1 p2 p3 ) (:init ; Object types (place p0)
(place p1) (place p2) (place p3) ; Open/locked cells (open p0) (open p1) (open p2) (open p3) ; Connected
cells (conn p0 p1) (conn p0 p2) (conn p1 p0) (conn p1 p3) (conn p2 p0) (conn p2 p3) (conn p3 p2) (conn
p3 p1) ; Lock and key shapes ; Key placement ; Robot placement (at-robot p3) (arm-empty) )
GOAL: (:goal (at-robot p2))
PLAN: (move p3 p2)

Logistics: (actions: load-truck, load-airplane, unload-truck, unload-airplane, drive-truck, fly-airplane)
TASK: (define (problem logistics-c1-s2-p1-a1) (:domain logistics-strips) (:objects a0 c0 t0 l0-0 l0-1
p0 ) (:init (AIRPLANE a0) (CITY c0) (TRUCK t0) (LOCATION l0-0) (in-city l0-0 c0) (LOCATION
l0-1) (in-city l0-1 c0) (AIRPORT l0-0) (OBJ p0) (at t0 l0-0) (at p0 l0-0) (at a0 l0-0))
GOAL: (:goal(and(at p0 l0-1))))
PLAN: (load-truck p0 t0 l0-0) (drive-truck t0 l0-0 l0-1 c0) (unload-truck p0 t0 l0-1)

Tetris: (actions: move-square, move-two, move-l-left/right/up/down
INPUT (define (problem Tetris-4-4) (:domain tetris) (:objects f0-0f f0-1f f0-2f f0-3f f1-0f f1-1f f1-2f f1-3f
f2-0f f2-1f f2-2f f2-3f f3-0f f3-1f f3-2f f3-3f - position nothing- one_square nada- two_straight rightl0
rightl1 - right_l ) (:init (connected f0-0f f0-1f) (connected f0-1f f0-0f) (connected f0-1f f0-2f) (connected
f0-2f f0-1f) ... (connected f3-1f f2-1f) (connected f2-2f f3-2f) (connected f3-2f f2-2f) (connected f2-3f
f3-3f) (connected f3-3f f2-3f) (clear f0-0f) (clear f0-1f) (clear f0-2f) (clear f0-3f) (clear f1-1f) (clear f1-3f)
(clear f3-0f) (clear f3-1f) (clear f3-2f) (clear f3-3f) (at_right_l rightl0 f1-2f f2-2f f2-3f) (at_right_l rightl1
f1-0f f2-0f f2-1f) )
GOAL:(:goal (and (clear f0-0f) (clear f0-1f) (clear f0-2f) (clear f0-3f) (clear f1-0f) (clear f1-1f) (clear
f1-2f) (clear f1-3f) ) ) )
PLAN: (move_l_down f1-0f f2-0f f2-1f f3-0f f3-1f rightl1) (move_l_down f1-2f f2-2f f2-3f f3-2f f3-3f
rightl0)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Representation Token Sentence-T5-base Sentence-T5-large Gecko

Correlation 0.17 0.25 0.25 0.29

Table 1: Pearson correlation between task similarity and plan similarity (i.e., AS) with different
ways to represent the tasks. Token denotes capturing the similarity between task descriptions with
token overlap.

Trip planning:
Task and Goal: You plan to visit 3 European cities for 14 days in total. You only take direct flights
to commute between cities. You would like to visit Florence for 6 days. You want to meet a friend in
Florence between day 9 and day 14. You would like to visit Barcelona for 5 days. You would like to visit
Helsinki for 5 days. Here are the cities that have direct flights: Barcelona and Florence, Helsinki and
Barcelona. Find a trip plan of visiting the cities for 14 days by taking direct flights to commute between
them.
Plan: Here is the trip plan for visiting the 3 European cities for 14 days:
**Day 1-5:** Arriving in Helsinki and visit Helsinki for 5 days.
**Day 5:** Fly from Helsinki to Barcelona.
**Day 5-9:** Visit Barcelona for 5 days.
**Day 9:** Fly from Barcelona to Florence.
**Day 9-14:** Visit Florence for 6 days.

Prompt Templates: We use the simplest prompt to show clearly present the effect of exemplars
in ICL. In detail, our prompt is (“Please solve the problem:{task}; Your plan as plain text without
formatting:{plan}; done.”). For exemplars, we fill in the task and plan and put them into the context.
For text examples, we fill in the task and remove the parts after ...without formatting:. During writing
the exemplars in the context, we start with exemplars with the highest similarity. In our pilot study,
the order of starting with the highest or the lowest will not have a huge impact on the performance.

A.2 IMPLEMENTATION DETAILS

Metric. The detailed computation of QA-F1 is as follows: denoting a pair of tasks t1 (test exam-
ple) and t2 (exemplar candidate) with uni-gram tokens of each task pairs as Tt1 and Tt2 , the QA-F1
score can then be written as QA-F1 = |(Tt1 ∩ Tt2)|/|(Tt1 ∪ Tt2)|.

ICL with LLMs. For LLMs, we use the API systems, as mentioned in Section 3.3. If applicable,
we set the max output token to be 1,600. We also tested our model performance with backbone
LLMs with less than 70B parameters. We conduct our experiments on a machine with 8 Nvidia
A6000 (40G) GPUs with CUDA 12 installed with inference structure built upon vLLM (Kwon
et al., 2023). However, we do not observe performance over 3% planning accuracy on Blocksworld
with small-sized models. In these cases, ICL only helps improve the plan validity (i.e., the actions
are allowed in the current states).

MLP. As a sanity check, we first experiment on how much Gecko understands planning. We com-
pare the Pearson correlation between task similarity and plan similarity (AS) across different ways
to capture the similarity between 100 test examples and 400 exemplar candidates. From Table 1,
we can observe that using cosine similarity with task description embeddings from Sentence-T5 (Ni
et al., 2022) shows a 0.25 correlation coefficient, which surpasses token overlap. Gecko (Lee et al.,
2024) achieves a 0.29 correlation, which suggests that Gecko has a good understanding of the po-
tential plans that are relevant to the task descriptions beyond the token level. We also note one
direction to explore in the future: LLM embeddings may achieve higher correlation or better MLP
performance with increased cost in the trade-off compared to Gecko.

For the MLP in the main paper, we initialize the network with 2 hidden layers with 400 neurons per
layer. We use Adam as the optimizer with a learning rate 1e-5. The whole training process is not
sensitive to hyperparameter settings in our experiments. We train our MLP for Blocksworld with
400 exemplar candidates, which leads to 400 x 400 pairs as data points.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 4 10 20 40 100

30

40

50

60

70

Pl
an

ni
ng

 A
cc

 (%
) w

ith
 G

RA
SE

PDDL Planning: Blocksworld
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

20

30

40

50

60

70

80

PDDL Planning: Minigrid
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

0

10

20

30

40

50

PDDL Planning: Tetris
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

5

10

15

20

25

30

35

40

45

Error Bars represent a 70% CI

PDDL Planning: Logistics
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100

Number of Exemplars (log-scale)

30

40

50

60

70

80

90

Pl
an

ni
ng

 A
cc

 (%
) w

ith
 G

RA
SE

-D
C

GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

1 4 10 20 40 100

Number of Exemplars (log-scale)

20

30

40

50

60

70

80
GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

1 4 10 20 40 100

Number of Exemplars (log-scale)

0

10

20

30

40

50

60
GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

1 4 10 20 40 100

Number of Exemplars (log-scale)

0

10

20

30

40

50

Error Bars represent a 70% CI

GRASE-DC
GRASE-DC+VAL

GRASE-DC*
GRASE-DC*+VAL

Random
AS

Figure 8: PDDL planning accuracy on various tasks with Gemini 1.5 Pro. BaselineAS denotes the
use of Oracle test plans to compute the similarity between test examples and exemplars. BaselineAS

and Random lines are the anchors across rows. GRASE denotes the use of model output plans
from random exemplars. VAL denotes the use of the plan validator. GRASE-DC∗ denotes the
performance after applying GRASE-DC for another iteration with the model outputs from GRASE-
DC.

BPE-Proxy. We wrote a standard Python program to conduct BPE. We conduct the action-level
character merging for 500 iterations. We cut off the learned tokens (short action sequences) that
appear less than 200 times. In total, we collect 220 tokens to compute the SimAS with all exemplar
candidates before conducting inference with test examples.

A.3 DETAILS ABOUT FLOPS COMPARISON

In the main paper, we compare the efficiency of the proposed methods with estimated floating-point
operations per second (FLOPs) needed for exemplar selection and plan generation for each test
example. Here we provide details about the statistics presented. In general, there are three stages of
computation: preparation, exemplar selection, and inference. We denote that there are on average
k tokens per task description/plans for either exemplar candidate or test example (k is around 200).
Similarly, we assume the use of N candidates, LLama 3.1 (405B) for inference, and Gecko (1B) for
embeddings with dimension d (d=768).

Then, during preparation, MLP requires processing the embeddings for all exemplar candidates
(both task description and plans) once, which requires 2N ∗ k ∗ 1B FLOPs. For BPE-Proxy, the
computation of the frequent tokens (each is an action sequence) can be neglected. Similarly, it
requires processing the embeddings of the frequent tokens, which requires 200 ∗ k ∗ 1B FLOPs.
Since N is typically larger than 1,000, BPE-Proxy achieves fast preparation compared to MLP.
BaselineAS and GRASE require no preparation before observing the test example. For BPE-Proxy,
we additionally pre-compute and store the LCAS between frequent tokens and original candidates,
which costs 200 ∗N ∗ k2.

During exemplar selection, MLP and BPE-Proxy both require acquiring the embedding of the task
description of the test example, which takes k ∗ 1B FLOPs. The task description embedding will be
compared with all candidates/tokens for MLP/BPE-Proxy, which requires N ∗d / 200∗d FLOPs for
cosine similarity, respectively. GRASE requires one additional prompt, with typically 10 randomly
selected exemplars in the context, the FLOPs will then be (10 + 1) ∗ k ∗ 405B. BaselineAS and
GRASE require the computation of LCAS, which costs N ∗ k2, which can be done by CPU in
parallel and neglected compared to the scales of other methods. For GRASE∗, it requires double
FLOPs compared to GRASE since it requires another round of LLM prompting.

Finally, during inference, with |D| exemplars selected, all methods require |D| ∗ k ∗ 405B FLOPs
for inference. In the original paper, we compare methods with the sum of the exemplar selection
and the inference cost, since the preparation is only done once before streaming the test examples.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 4 10 20 40 100
Number of Exemplars (log-scale)

30

40

50

60

70

80

Pl
an

ni
ng

 A
cc

 (%
) w

ith
 G

RA
SE

PDDL: Blocksworld (Iteration 0: GRASE)
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100
Number of Exemplars (log-scale)

PDDL: Blocksworld (Iteration 1: GRASE*)
Random
AS

GRASE GRASE+VAL

1 4 10 20 40 100
Number of Exemplars (log-scale)

PDDL: Blocksworld (Iteration 2: GRASE**)
Random
AS

GRASE GRASE+VAL

Figure 9: PDDL Planning on Blocksworld with different iterations of GRASE and numbers of ex-
emplars. The Random and BaselineAS lines are the same as Figure 3. Error bars in each figure
represent a 70% confidence interval. VAL denotes the use of the plan validator and only iterating
over the test examples with wrong plans. Iteration 1,2 (*, **) denote the performance after (itera-
tively) applying GRASE for 1, 2 times, respectively.

1 4 10 20 40 100
Number of Exemplars (log-scale)

10

15

20

25

30

35

Pl
an

ni
ng

 A
cc

 (%
)

Error Bars represent a 70% CI

Natural Planning: Calendar
Random
AS
Task

Figure 10: Natural language planning performance on Calendar Planning with Gemini 1.5 Pro with
different numbers of exemplars and signals for exemplars sampling. BaselineAS denotes computing
action sequence similarity with Oracle test plans.

A.4 MAIN RESULTS ON OTHER PDDL PLANNING TASKS (FULL).

We show the full performance of both GRASE-DC and the iterated version (GRASE-DC∗) without
zoom-in in Figure 8 (lower row). Similar to our findings in the main paper, we can observe signifi-
cant and consistent performance improvement with varying numbers of exemplars with GRASE-DC
and its iteration.

A.5 GRASE*: ITERATING GRASE ONLY

In Section 3.2, we present how we leverage GRASE-DC to improve LLM performance on vari-
ous planning tasks with ICL. We show that the iterative application of GRASE-DC (GRASE-DC∗)
leads to significant performance improvement with fewer exemplars required. As described in Sec-
tion 2.2.1, we can also iteratively apply the GRASE step only to have an overview of the perfor-
mance with a different number of exemplars and make an easy comparison between GRASE and
other baselines.

As shown in Figure 9, we can observe that, through iteration, GRASE achieves significant perfor-
mance improvement compared to Random across different numbers of exemplars. Each iteration
offers an additional ~5 points for absolute planning accuracy improvement. In the second iteration
(prompt the model four times in total), GRASE achieves better overall performance compared to
BaselineAS that utilizes the Oracle test plans. When GRASE is based on model-generated plans
with high accuracy, we can observe less decrease in gains with an increasing number of exemplars.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 2 4 10 20 40
Number of exemplars (log-scale)

20

30

40

50

60

70

80

Pl
an

ni
ng

 A
cc

 (%
)

Error Bars represent a 70% CI

PDDL Planning: Blocksworld
Random
AS

OAS
ES

OES

Figure 11: PDDL planning performance on Blocksworld (100 test examples) with different repre-
sentation methods of plans, where all methods use the Oracle test plans for analysis.

A.6 PERFORMANCE ON NATURAL PLAN (EXTENDED)

Calendar planning:
Task and Goal: You need to schedule a meeting for Harold and Patrick for half an hour between work hours of
9:00 to 17:00 on Monday.
Harold’s calendar is wide open the entire day. Patrick is busy on Monday during 9:00 to 9:30, 10:30 to 12:00,
12:30 to 13:30, 14:00 to 14:30, 15:00 to 16:30; Find a time that works for everyone’s schedule and constraints.
Solution: Here is the proposed time: Monday, 9:30 - 10:00

In Section 3.4, we present the performance improvement with AS and GRASE on trip planning. In
this section, we further extend our pipeline for other planning tasks in natural language. We notice
that the calendar planning task in Natural Plan (Zheng et al., 2024) has a different feature with
common planning problems, where the output is not a plan with various actions, but a time slot that
is available for all the participants of a meeting. The calendar planning problem can be considered
as a constraint-following problem over the given slots of a week (as shown above).

We further implement an elastic AS to test if AS also helps capture constraints in the task description.
Similar to the vanilla AS, we represent the constraint as “actions” of each participant with all the
available slots in a day with the half an hour interval, e.g, if the available time is 10:30 to 12:00, the
corresponding action sequence will be {10:30, 11:00, 11:30}. Except for the changed definition of
actions, the whole pipeline remains unchanged.

As shown in Figure 10, we can observe that similar to our findings on PDDL planning tasks and trip
planning, Task similarity at the token level shows similar performance as random exemplar selection.
BaselineAS performs well when there is a sufficiently large number of exemplars selected, which
validates the extensibility of AS on tasks with (ordered) temporal or logical constraints.

A.7 HOW TO REPRESENT A PLAN, CONSIDERING THE AFFORDANCE AND GRANULARITY?

In our main experiments, we show how representing plans as action sequences (AS) can show great
capability in sampling the exemplars. However, AS is not equivalent to the original plan nor uses
leveraging the information of the actual context (i.e., domains in PDDL). For example, consider two
steps in the plan: unstack block A from block B, put-down block A. AS will represent the plans as
unstack, put down, with no context of the blocks (e.g., which block is operated?) or the overall
situation (e.g., if hands are empty at this step).

To investigate this problem, we first extend AS by adding object affordance information: which
object does the action apply to? We first propose to track the AS for each object. When computing
the similarity, we consider the average of max AS-based similarly for each object. We denote the
use of this similarity to rank exemplars as Object-centric Action Sequences (OAS). For each object,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Method/# Exemplars 1 4 10 20 40 100

Random 36 39 43 37 37 35
GRASE 51 58 55 53 50 49
Random-RS 52 53 54 52 49 49
GRASE-RS 64 64 59 57 55 54
Random-RS∗ 59 59 59 49 49 54
GRASE-RS∗ 70 66 66 67 69 69

Table 2: The comparison of planning accuracy (%) between rejection sampling (-RS) with random
sampling (Random) and GRASE on Blocksworld. RS∗ denotes the iterative application of RS.

we consider its affordance over the specific action if the action is relevant to multiple objects, e.g.,
for unstack block A from block B, for the AS of block A, we add unstack_0, for B, we add unstack_1
to distinguish the affordance with the order of appearance.

Besides the object relevance, another perspective is the granularity of the actions. For PDDL tasks,
VAL can help acquire the actual change of the states with the understanding of the model. For exam-
ple, when executing put-down block A, this action results in the following changes in the state: delete
block A in hand, add hand empty, add block A on the table, which is a close view on the changes in
the problem. We extend our definition of action to execution, i.e., each atomic change on the states.
We denote the use of this similarity to rank exemplars as Execution-based action Sequences (ES).
Similarly, we also consider Object-centric Execution-based action Sequences (OES) as one kind of
representation of plans. A detailed example is as follows:

Given a PDDL plan:{(unstack b1 b6), (put-down b1), (unstack b3 b4), (put-down b3)...}, the action
sequence of the plan will be {unstack, put-down, unstack, put-down...}, which ignores the objects
as well as their affordance. For Object-centric Action Sequence Similarity (OAS), we first initialize
an action sequence for each object, e.g., {b1: unstack-0, put-down, b6: unstack-1 ...}. During
comparing two plans written in an object-centric action sequence, for the action sequence of each
object in the test example, we find the object with the highest AS in the exemplar candidate. Then
we use the macro-average across blocks as the overall OAS similarity.

For Execution-based action sequence Similarity (ES), we maintain the same overall structure but
decompose the actions with their actual execution operations on the current states, for example,
unstack is rewritten to {delete on, delete clear, delete handempty}. Object-centric Execution-based
action sequence Similarity (OES) is a combination of OAS and ES.

We further conduct pioneer experiments by comparing these different methods to represent a plan
with the first 100 examples of the test set. As shown in Figure 11, we can observe that: except
OAS, all methods conducting ICL with plan similarity achieve significantly better performance than
random exemplar selection (+15-20 absolute points for the planning accuracy). One reason can be
that the action sequence of each object is short, which makes the planning similarity computation
unstable. Representing the plans in a detailed way (ES and OES) achieves overall improved per-
formance compared to AS. Above results motivate future work investigating what granularity or if
mixed granularity can achieve improved performance over the current pipeline. In our work, to keep
the potential generalizability of AS beyond PDDL tasks, we us AS as the representation of a plan in
our main experiments.

A.8 REJECTION SAMPLING: RANDOM VS. GRASE

In Section 2.2.1, we describe how +VAL is akin to rejection sampling (RS). In this section, we
compare the difference between RS with GRASE or random sampling. As shown in Table 2, we can
observe that rejection sampling (assuming we have the gold VAL) helps both random and GRASE.
However, GRASE-RS shows a 5-12 point accuracy improvement over Random-RS. On the second
iteration, the gap between Rand and GRASE becomes larger, which validates our performance gain.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 QUALITATIVE EXAMPLES OF PAIRS WITH HIGH INPUT SIMILARITY VS. PLAN
SIMILARITY

To qualitatively illustrate the differences between exemplars with high task similarity and plan sim-
ilarity, we present a test example as follows with the exemplars with the highest task/plan similarity
as follows. From the comparison, we can observe that, although plan similarity captures an exemplar
with the same number of blocks and similar conditions from the appearance. The required plan can
be different and unrelated. On the other hand, despite the different block sizes, the exemplar with
high plan similarity is similar to the original problem from the essence: e.g., b5, b4 in the original
problem are dealt in a similar way with b3, b2, respectively in the exemplar. As a result, putting the
high-task-similarity exemplars in the context results in a wrong plan, while the high-plan-similarity
example leads to a correct plan, which is also different from the Oracle test plan.

Original
(define (problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects b1 b5 b2 b4 b3 b6)
(:init (on b2 b5)
(clear b3)
(on b4 b2)
(handempty)
(on b3 b4)
(ontable b1)
(on b5 b1)
(ontable b6)
(clear b6) )
(:goal (and
(on b5 b4)
(on b3 b5) )))
PlAN:
(unstack b3 b4)
(put-down b3)
(unstack b4 b2)
(put-down b4)
(unstack b2 b5)
(put-down b2)
(unstack b5 b1)
(stack b5 b4)
(pick-up b3)
(stack b3 b5)

High-Task-Similarity
(define (problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects b5 b4 b6 b3 b2 b1)
(:init(on b3 b6)
(handempty)
(clear b4)
(clear b1)
(on b1 b2)
(on b4 b5)
(ontable b5)
(ontable b6)
(on b2 b3) )
(:goal (and
(on b6 b1) )))
PlAN:
(unstack b1 b2)
(put-down b1)
(unstack b2 b3)
(put-down b2)
(unstack b3 b6)
(put-down b3)
(pick-up b6)
(stack b6 b1)
Gemini Output:
(unstack b3 b4)
(put-down b3)
(pick-up b3)
(stack b3 b5)
(pick-up b5); wrong
(stack b5 b4)

High-Plan-Similarity
(define (problem BW-rand-5)
(:domain blocksworld-4ops)
(:objects b1 b3 b5 b2 b4)
(:init (clear b4)
(on b5 b3)
(on b2 b5)
(handempty)
(on b3 b1)
(on b4 b2)
(ontable b1))
(:goal (and
(on b3 b2)
(on b1 b3) )))
Plan:
(unstack b4 b2)
(put-down b4)
(unstack b2 b5)
(put-down b2)
(unstack b5 b3)
(put-down b5)
(unstack b3 b1)
(stack b3 b2)
(pick-up b1)
(stack b1 b3)
Gemini Output:
(unstack b4 b2)
(put-down b4)
(unstack b2 b5)
(put-down b2)
(unstack b3 b4)
(stack b3 b2)
(pick-up b5)
(stack b5 b4)
(pick-up b3)
(stack b3 b5) ; correct

A.10 PERFORMANCE SCORES IN A TABLE

In the main paper, we present our results in line charts to capture the trends with varying numbers
of exemplars. We further present the performance of baselines and the proposed GRASE-DC in
Table 3. From the table, we can observe that GRASE+DC performs well on various tasks. The
-DC step helps achieve the best performance under most scenarios, when it is not, it helps achieve
comparable performance with fewer exemplars.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

# of Exemplars with -DC (Nc)
Method 1 4 10 20 40 100 1 2 3 Best

Blocksworld
Random 36 39 43 37 37 35 43
Task 25 36 40 39 41 36 41
AS 43 57 61 64 67 66 67
GRASE 50.7 58 54.7 53 49.3 49 51.3 (6.6) 56.3 (9.6) 59.3 (12.2) 59.3
GRASE+VAL 64 64 59 56.7 54.7 54 67.3 (6.6) 70 (9.6) 72.3 (12.2) 72.3
GRASE∗ 55.7 61.7 61.7 63.7 63.7 62.3 52.3 (6.6) 57.3 (9.6) 60.7 (14.7) 63.7
GRASE∗+VAL 69.7 66.3 66 67.3 69.3 69 74 (6.6) 77.6 (9.6) 80 (14.7) 80
GRASE∗∗ 57 62.3 67.3 68 65.5 63 68
GRASE∗∗+VAL 73.7 72.3 71.3 70.7 67.7 68.3 73.7

Minigrid
Random 24 46 52 54 52 58 58
Task 26 32 37 48 48 49 49
AS 31 57 67 69 72 75 75
GRASE 31.3 53 61.3 62.3 60.3 64.3 60.7 (9.7) 60.7 (12.9) 62.7 (15.7) 64.3
GRASE+VAL 61 66 67.3 69.7 65 69.7 68 (9.7) 66 (12.9) 67.7 (15.7) 69.7
GRASE∗ 54 (5.9) 59.7 (9.7) 68 (12.9) 68
GRASE∗+VAL 74.7 (5.9) 73.7 (9.7) 74.7 (12.9) 74.7

Tetris
Random 0.7 2.0 4.3 4.3 5.7 4.0 5.7
Task 0.7 4.0 5.3 7.0 6.0 5.7 7.0
AS 12.3 30.0 38.0 47.0 46.7 39.3 47.0
GRASE 2 6 8.3 11.3 14.6 16 35.7 (7.8) 39 (12.8) 43.7 (17.4) 43.7
GRASE+VAL 6.3 8.7 10.7 12.7 16.7 16.7 37.7 (7.8) 40.7 (12.8) 46 (17.4) 46
GRASE∗ 38 (8.7) 40 (13.7) 46 (17.4) 46
GRASE∗+VAL 46.7 (8.7) 47 (13.7) 54.7 (17.4) 54.7

Logistics
Random 7.0 16.3 16.3 15.7 20.7 18.0 20.7
Task 20.3 30.0 32.7 38.7 36.0 35.0 38.7
AS 21.3 30.7 33.3 38.3 37.3 40.0 40.0
GRASE 22.3 26 24 23.6 21.6 20.7 29.3 (12.3) 37 (16.1) 35 (19.7) 37
GRASE+VAL 26 27.3 26 26.3 25 23.3 38.7 (12.3) 42.7 (16.1) 41 (19.7) 42.7
GRASE∗ 30 (7.8) 37.3 (10) 37 (15.1) 37.3
GRASE∗+VAL 42 (7.8) 44.3 (10) 44.3 (15.1) 44.3

Trip
Random 8.3 22.3 37.3 39.7 37.7 33.3 39.7
Task 3.7 23.0 32.3 38.0 37.0 38.0 38.0
AS 4.3 27.0 42.3 44.3 43.7 50.0 50.0
GRASE 17.0 35.0 40.7 45.0 45.0 51.3 51.3

Blocksworld - OOD
Random 7.7 16.0 13.7 15.3 11.0 7.7 16.0
AS 11.3 18.0 20.3 18.0 19.7 19.7 20.3
GRASE 25 35.3 35.7 39.6 40 38.3 38 (9.5) 40.7 (13.9) 39.7 (17.3) 40.7

Table 3: PDDL Planning Performance in planning accuracy (%) on various tasks with Gemini 1.5
Pro. With -DC the use of dynamic clustering in the pipeline, where changing Nc typically leads to
7-20 exemplars selected. For entries under -DC, numbers in brackets denote the averaged number of
exemplars across the test data. ∗∗ denotes the iterative application of GRASE on the model-generated
plans form GRASE* (Figure 9). Blocksworld - OOD denotes the performance on out-of-distribution
problems in Figure 6. Best entries per row for each variant of GRASE or GRASE-DC are in bold.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Abbr. Term Description

Random Random Selec-
tion

We use Random in the figures to denote the baseline with randomly
selected exemplars.

AS Action-sequence
Similarity

AS denotes the action sequence similarity, which we capture with
SimAS based on LCAS. We use BaselineAS to denote the proposed
method of ranking the exemplar candidates with their action sequence
similarity with the Oracle test plans.

VAL PDDL Validator We use VAL to denote the validator of the plans. +VAL in the figures
denotes the variant in our pipeline, where we only operate on examples
that LLMs failed in the last round.

ICL In-Context
Learning

We use ICL to refer to the classic ICL pipeline where we put each ex-
emplar in the templates and sequentially list them as the context for
prompting.

GRASE Generative Re-
sampling of
Action sequence
Similar Exem-
plars

We propose GRASE as the first stage of our pipeline that utilizes the
model-generated plans to help re-sample the exemplars.

DC Dynamic Clus-
tering

We propose DC as the second stage of our pipeline that resamples the
exemplars from the GRASE stage by their mutual relevance calculated
by AS.

∗ Iteration We use ∗ to refer to the iterative application of our pipeline, where the
number of ∗ denotes the number of iterations.

MLP Multi-Layer Per-
ceptron

We use MLP to denote the specific MLP we trained to approximate AS
between the test example and a candidate exemplar with the exemplar
task, exemplar plan, and test example task.

BPE-
Proxy

Byte Pair Encod-
ing as the Proxy

We use BPE to refer to the specific method to acquire tokens for plan-
ning, where each “character” is an action. BPE-Proxy denotes the
method to only calculate the similarity between the tokens and the test
examples so that the cost at inference time does not scale linearly with
an increasing number of exemplar candidates.

Table 4: Referential explanations to all the terms

A.11 REFERENCE FOR COMMON TERMS

To improve the readability of the paper, we wrote an explanation for a set of important abbreviated
terms we used in Table 4.

23


	Introduction
	Methodology
	Task Formation
	GRASE-DC: ICL with Action Sequence Similarity
	GRASE: Generative Re-sampling of Action Sequence Similar Exemplars
	DC: Dynamic Clustering with Action Sequence Similarity


	Experiments and Analysis
	Experimental Setup
	Performance on PDDL tasks
	Performance with other LLMs
	Performance on Natural Language Trip Planning
	Analysis: Out-of-Distribution Generalization
	Analysis: How to approximate AS, considering the efficiency trade-offs?

	Related Work
	Conclusion
	Appendix
	Statistics, Examples, and Prompt Templates
	Implementation Details
	Details about FLOPs Comparison
	Main results on other PDDL planning tasks (Full).
	GRASE*: Iterating GRASE only
	Performance on Natural Plan (Extended)
	How to represent a plan, considering the affordance and granularity?
	Rejection Sampling: Random vs. GRASE
	Qualitative Examples of pairs with high input similarity vs. plan similarity
	Performance scores in a Table
	Reference for common terms


