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Abstract

Language models (LMs) proficiency in handling deterministic symbolic reasoning1

and rule-based tasks remains limited due to their dependency implicit learning2

on textual data. To enable fully rule comprehension ability, we explore how to3

incorporate compiled neural networks (CoNNs) which weight is specially designed4

into the architecture of LMs, to achieve high accuracy and robust performance.5

CoNNs are transformer-based neural networks that execute rules through artificially6

generated attention weights. Our method, which call "Neural Comprehension", by7

incorporating CoNN modules into the LM, the framework effectively tackles rule-8

intensive challenges. Our experiments on symbolic reasoning tasks and real-world9

arithmetic reasoning tasks demonstrate the superior performance of our method10

compared to existing techniques. Furthermore, our LM achieves flawless execution11

on symbolic operations tasks, highlighting the potential of our method in enabling12

LMs to possess true symbolic comprehension capabilities.13

1 Introduction14
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Figure 1: The length generalization of T5
(with fine-tune) [Raffel et al., 2020], GPT-
3.5 (with few-shot) [Ouyang et al., 2022] and
GPT-4 (with few-shot) on symbolic opera-
tions (Additional) tasks. The tasks included
examples such as "15673 + 3186" (length =
10). To evaluate the model’s proficiency, we
conducted tests on tasks ranging from 3 to
30 digits, with longer than 10 digits being
out-of-distribution of training data.

Language models (LMs), particularly large language15

models (LLMs), have exhibited impressive perfor-16

mance on complex reasoning tasks [Brown et al.,17

2020, Zhang et al., 2022a, Chowdhery et al., 2022,18

Wei et al., 2022d,a, Suzgun et al., 2022]. Despite this,19

the proficiency of LMs in tackling deterministic sym-20

bolic reasoning and rule-based tasks is still limited21

[Welleck et al., Razeghi et al., 2022]. For example,22

GPT-3’s arithmetic performance declines with higher23

digit numbers [Brown et al., 2020], and its mathe-24

matical accuracy is influenced by word frequency in25

training data [Razeghi et al., 2022]. Moreover, length26

generalization [Anil et al., 2022] remains a challenge27

even for 100-billion-parameter models, such as GPT-28

4 [Bubeck et al., 2023]. We hypothesize that these29

limitations stem from LMs’ dependency on implicitly30

learning rules from textual data. During the training31

process, the primary objective of implicitly learning32

based on gradient Updating is to minimize the loss associated with the given textual dataset. As33

illustrated in Figure 1, a simple length generalization experiment using addition tasks with varying34

numbers of digits highlights this limitation. Performance deteriorates as test length increases, indicat-35

ing that these models strongly rely on statistical patterns in the data rather than capturing fundamental36

logical structures. This reliance on implicit learning constrains LMs’ accuracy in executing symbolic37

operations tasks. As a result, their performance suffers when confronted with out-of-distribution and38

rule-intensive tasks that require a more profound understanding of abstract rules.39
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We propose a transformer-based language model framework, termed "Neu-40

ral Comprehension", which synergistically integrates a pre-trained LM [Li41

et al., 2021b] and compiled neural networks (CoNNs) [Weiss et al., 2021] to42

achieve high accuracy and robust performance. CoNNs are neural networks43

but the rules are explicitly coded through transformer-liked structures and44

attention. Therefore CoNN is human-controllable, executing rules through45

artificially generated attention weights, and can achieve perfect accuracy46

once compiled network is done. Neural Comprehension relying solely on47

neural networks without requiring additional tools. It employs a token-by-48

token generation method, analogous to GPT-3, where each token can be49

generated by either the pre-trained LM or one of the CoNNs. We comprises a pre-trained LM and50

multiple sets of CoNNs. The implementation of the Neural Comprehension framework facilitates51

the integration of rule-intensive abilities and reasoning capabilities into LMs, endowing them with52

genuine symbolic comprehension skills.53

In this work, we conduct extensive experiments to evaluate the performance of our proposed Neural54

Comprehension method on a variety of rule-intensive tasks. Our experimental results demonstrate the55

effectiveness of our approach in comparison with existing state-of-the-art techniques, such as vanilla56

fine-tuning, few-shot learning, and Chain-of-Thought reasoning. Specifically, Neural Comprehension57

outperforms these methods in terms of accuracy, efficiency, and interpretability, showcasing its58

superiority in handling rule-intensive tasks. Our study presents a strong case for the deployment of59

Neural Comprehension in language models, highlighting its potential to transform the landscape of60

symbolic reasoning and language understanding capabilities.61

Contributions Our main contributions are as follows:62

• We pioneer the development and implementation of flawless execution rule-intensive sym-63

bolic operations for language models that rely on neural networks. By employing a versatile64

and interpretable method, we successfully integrate CoNNs, which are explicitly coded and65

human-controllable, into the language model. Our method facilitates direct rule deduction66

without the need for learning from conditional probabilities, leading to a more robust and67

effective approach. (Section 3)68

• To expand the application field, we leverage the In-context learning ability of large language69

models to auto generate CoNN. Our method can be easily extended to various symbolic70

operations tasks. (Appendix C)71

• Our experimental results on controllable symbolic reasoning tasks and real-world numerical72

calculation tasks demonstrate the superior performance of our method in comparison to73

existing techniques. Notably, our language model achieves flawless execution on symbolic74

reasoning tasks. (Section 5.1 5.2 5.3)75

• We also studied the potential of combining multiple CoNNs and found that adding correlated76

CoNNs can continuously increase performance, while adding uncorrelated CoNNs rarely77

leads to performance degradation. This provides a new approach for model fusion, enabling78

the model to easily acquire new knowledge. (Section 5.4)79

2 Related Works80

As model parameters, training calculations, and dataset sizes have increased, language models have81

gained new capabilities [Srivastava et al., 2022, Wei et al., 2022a], such as coding [Li et al., 2022b,82

Nijkamp et al., 2022], medical diagnosis [Li et al., 2021a, Xia et al., 2022], complex question-83

answering [Zhu et al., 2022, Daull et al., 2023], cross-language translation [Fan et al., 2021, Li et al.,84

2022a], few-shot learning [Brown et al., 2020, Perez et al., 2021], and thought chaining [Wei et al.,85

2022c, Weng et al., 2022]. However, these models also exhibit limitations as they generally learn86

superficial patterns rather than the innate logic and rules of language. Consequently, humans often87

find it challenging to trust the results provided by language models [Sarker et al., 2021, Moore, 2022].88

Pre-trained Language Models encompass those trained on general-purpose corpora [Lewis et al.,89

2019, Scao et al., 2022] and specialized symbolic tasks [Geva et al., 2020, Lewkowycz et al., 2022].90

They primarily aim to capture statistical patterns in language, which limits their capacity for symbolic91
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reasoning. Symbolic reasoning involves manipulating abstract symbols and logical rules to derive92

new knowledge [Shindo et al., 2021, Yang and Deng, 2021] and necessitates the ability to extrapolate93

to novel situations and reason about concepts absent in the training data [Fujisawa and Kanai, 2022].94

Due to the constraints of gradient learning, neural networks face challenges in wholly solving95

symbolic reasoning problems.96

In-Context Learning has emerged as a promising approach to address these challenges [Dong et al.,97

2022] and closely approximate the predictors computed by gradient descent [Akyürek et al., 2022].98

By prompting the language model to generate an explanation before generating an answer, the chain99

of thought [Wei et al., 2022c, Kojima et al., 2022, Zhang et al., 2022b, Zhou et al., 2022a] encourages100

the model to think sequentially. This technique has been employed in various numerical and symbolic101

reasoning tasks, such as scratchpad prompting [Nye et al., 2021] for length generalization [Anil102

et al., 2022] and utilizing the chain of thought to perform arithmetic operations like summing pairs of103

single digits with carry [Zhou et al., 2022b]. However, this approach often necessitates substantial104

computational resources, and achieving perfect accuracy remains challenging.105

Augmented Language Models have been proposed as an alternative, supplementing language106

models with external tools [Mialon et al., 2023]. Examples include generating Python code for107

numerical reasoning [Gao et al., 2022, Chen et al., 2022] or incorporating tool usage as a pre-training108

task [Schick et al., 2023]. However, using external tools lacks a unified framework with language109

models and instead relies on the normativity of program generation. Consequently, if a task demands110

higher-level abstraction or intricate and robust capabilities, such as Redefine [Wei et al., 2022b],111

Autoformalization [Wu et al., 2022], and Theorem Proving [Wu et al., 2020], the language model112

may struggle to solve it, even if it possesses the ability to operate external tools [Zhou et al., 2022b].113

3 Methods114

3.1 Preliminaries115

In-Context Learning (ICL), Recent studies on ICL algorithms have shown that the learning process116

of language models within the ICL framework is analogous to gradient descent [Akyürek et al., 2022].117

Specifically, transformer-based in-context learners implicitly implement standard learning algorithms118

by encoding smaller models in their activations and updating these implicit models as new examples119

appear in the context. However, these models face challenges in rule-intensive questions, as the120

rules represent abstract, high-dimensional knowledge that cannot be directly learned from the data,121

resulting in difficulties with implicit learning.122

Compiled Neural Network (CoNN). The flexibility of neural networks to adjust their weights is123

a unique characteristic not found in the human brain. We propose incorporating CoNNs into LLM124

architectures to leverage this feature. The CoNN is a transformer-based neural network leveraging125

artificially compiled attention weights to execute rules. A transformer model comprises multiple126

attention layers and Multi-Layer Perceptron (MLP) layers. Each attention layer facilitates interactions127

between tokens, with the multiplication of query and key elements representing a "Select" operation128

in CoNN. Subsequent multiplication with value elements indicates an "Aggregate" operation. The129

MLP layer is responsible for the token itself and is referred to as the "Zipmap" operation [Weiss130

et al., 2021]. Utilizing the three operations (Select, Aggregate, and Zipmap) to represent the sequence-131

to-sequence process, we can convert this information into transformer weights [Lindner et al., 2023].132

By stacking multiple attention layers, CoNN can address various human-defined rule understanding133

problems, such as mathematical calculations and symbol operations 1.134

3.2 Neural Comprehension135

Language models excel in language understanding tasks, while CoNNs achieve absolut accuracy136

in rule-intensive operation tasks using attention weights guided by abstract rules. To combine the137

language understanding capabilities of existing language models with accurate problem-solving for138

rule-based tasks (e.g., computation), we propose the Neural Comprehension, which integrates the139

language model’s implicit learning parameters and CoNNs’ explicit learning parameters. In Neural140

1Appendix B provides a more detailed description of CoNN.
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Figure 2: The architecture of Neural Comprehension.

Comprehension, CoNNs represent high-dimensional rules explicitly using multiple attention matrices141

and incorporate these with the original LM’s attention matrix.142

As illustrated in Figure 2, we maintain the use of a decoder architecture to iteratively generate143

the subsequent context step by step. In particular, the language model encodes the context and144

produces the textual and reasoning process context D(x) step by step, while CoNNs handle sequence145

transformations involving rules. When a rule-required operation emerges, CoNN’s attention is utilized146

to calculate specific values. The structure of Neural Comprehension is similar to MoE [Shazeer147

et al., 2017]. For example, when calculating 364425-216582, the pre-trained language model output148

148843, which is incorrect. However, the Subtraction CoNN can correct the result to 147843 in149

the neural comprehension framework. This process encoded into context dynamically, improving150

intermediate results interpretability and final result accuracy.151

Neural Comprehension combines LM and CoNNs in a piecewise function to perform gradient update.152

LLM hidden state output is HL =
(
HL1 · · ·HLdL

)⊤
∈ RdL , HLi ∈ (0, 1), and CoNN output153

is HC =
(
HC1

· · ·HCdC

)⊤
∈ RdC , HCi

∈ (0, 1) 2. Specifically, we perform model fusion by154

adding the mapping from the last hidden layer representation to the vocabulary.155

î = argmax
i

[(
IdL

, 0
0, βIdC

)(
HL, 0
0, HC

)]
, β ∈ {0, 1} (1)

Within the Neural Comprehension, CoNNs manage sequence transformations involving rules. When156

the model encounters a rule-required operation, a gating mechanism determines whether to use157

CoNN’s attention for computation. The gating mechanism assesses whether to maintain the initial158

output, provided by the pretrained language model, or modify it using the CoNN. where the model159

corrects the answer by applying a gradient to the in-context learning function through β. In Equation160

1, since the hidden state output HCi
elements of CoNN are {0, 1}, when β = 0, the model adopts161

the original decoding token of LM. When encountering a rule calculation problem, β = 1, the162

model calculates the result by taking the maximum value of CoNN’s hidden layer output HC and163

decodes the result from CoNN’s vocabulary. Regarding the selection of β, since the CoNN involved164

in this paper is relatively simple, it is determined by the forward computation results of CoNN. For165

example, when we set up an Addition CoNN, we specify that the final result should be output when166

2It is worth noting that dL and dC here refer to the vocabulary size of the Model’s decode output. In this
paper, for ease of implementation, the output vocabulary size of CoNNs’ decode dC is generally less than 100
due to limitations in computing resources (detailed information is shown in Appendix Table 1). The Neural
Comprehension combines the Pre-trained LM’s hidden state output, HL, and CoNN’s output, HC , using identity
matrices IdL (for dL) and IdC (for dC ) to concatenate them for model fusion.
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encountering ’=’, so when encountering ’=’, β = 1. However, for larger-scale CoNN, we recommend167

that a learnable gating network determine β.168

3.3 Gradient Modification in Neural Comprehension169

To better appreciate the benefits of our method in handling rule-intensive tasks and improving170

accuracy, it is crucial to understand the gradient perspective of ICL. The optimization process in171

ICL can be viewed as a search for suitable gradients to minimize the loss function. Due to the172

implicit learning nature of standard ICL methods, gradients learned from data may not always be173

ideal for addressing rule-intensive tasks. Therefore, our proposed method introduces an explicit174

learning component to provide more appropriate gradient updates for such tasks, ultimately leading175

to enhanced overall performance. In this section, we focus on elucidating the changes in the gradient176

introduced by the Neural Comprehension model.177

The gradient of the model during the execution of ICL can be partitioned into two categories based178

on the origin of the gradients:179

Gradient =
{

Id1
Text

Id2
Rule (2)

Here, Id1
represents the gradients derived implicitly from the language model (LM) and corresponds180

to the text-based learning aspect of the model. Conversely, Id2
represents the gradients explicitly181

derived from the CoNNs, encoding rule-based knowledge. The Neural Comprehension model182

integrates both gradient sources to optimize the ICL process.183

In linear regression problems, the loss function can be expressed as a piecewise function according184

to 1, here P1(x) is the LLM and P2(x) is CONN, the In-context-learner can be separate into two185

process :186

L =
∥∥y − β⊤x

∥∥2 (3)

=

{ ∥∥y − β⊤
1 x

∥∥2 x ∈ P1(x)∥∥y − β⊤
2 x

∥∥2 x ∈ P2(x)
(4)

Based on the partitioned gradient as defined in Equation 2, the overall gradient of the Neural187

Comprehension model can be obtained by computing their individual gradients concerning the188

respective β:189

∂L

∂β︸︷︷︸
Gradient

=

{
∂L
∂β1

x ∈ P1(x)
∂L
∂β2

x ∈ P2(x)
(5)

This partitioning allows the Neural Comprehension model to specifically address the gradient require-190

ments of both implicit learning via LM and explicit learning via CoNNs. It is crucial to note that191

CoNNs are designed to minimize the loss associated with rule-based tasks, essentially providing an192

optimal gradient for tasks involving rule-intensive operations. This leads to a substantial improvement193

in the model’s accuracy for rule-based tasks, as the gradient updates provided by CoNNs are more194

suitable for rule learning compared to the initially available gradients from the LM. By amalgamating195

the both of gradient sources, the Neural Comprehension model achieves a more refined optimization196

of in-context learning. Additionally, from the perspective of gradients, our approach surpasses197

conventional data-driven implicit learning techniques as it integrates explicit rule-based learning198

mechanisms that exhibit more suitable gradient updates for rule-intensive questions. The Neural199

Comprehension model effectively balances the need for implicit and explicit learning within the ICL200

framework, leading to an enhanced overall performance in terms of accuracy and interpretability.201

4 Experimental Settings202

In this study, we primarily explore the capacity of language models to address symbolic reason-203

ing tasks, concentrating on three areas: symbolic operations, symbolic reasoning, and arithmetic204

reasoning.205
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Symbolic Operations Building upon the approaches developed by Anil et al. [2022] and Qian206

et al. [2022], we examine the following tasks: Parity, Reverse, Addition and Subtraction. These207

tasks do not require complex text understanding, but only require faithfully implementing symbolic208

operations and outputting the corresponding results.209

Symbolic Reasoning We employ the experimental framework of Wei et al. [2022c] for the two210

tasks, Last Letter Concatenation and Coin Flip. These tasks require a combination of language211

understanding and rule comprehension abilities.212

Arithmetic Reasoning To evaluate the method’s generalization ability from symbolic operations213

to arithmetic reasoning in addition and subtraction tasks, we use five established arithmetic reasoning214

datasets: AddSub [Hosseini et al., 2014], SingleEq [Koncel-Kedziorski et al., 2015], MultiArith [Roy215

and Roth, 2016], GSM8K [Cobbe et al., 2021], and SVAMP [Arkil et al., 2021]. Additionally, we216

introduce the AddSub+ dataset, containing tasks of varying complexity based on the number of digits217

involved in arithmetic operations, ranging from 1-digit addition to 20-digit addition/subtraction tasks.218

5 Ecperiment and Result219

5.1 Symbolic Tasks220
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Figure 3: Comparison of Neural Comprehension and other implicit learning-based methods in symbolic
operations tasks to test length generalization performance. In this, the T5 model uses the Vanilla Fine-tune
method for learning, and LLMs use the Few-shot learning method. In Neural Comprehension, each task has a
different CoNN, namely Parity, Reverse, Addition, and Subtraction.

Techniques In-distribution Out-of-distribution Time and Space Complexity Interpretability
Vanilla Fine-tune (For LM) ✓✓ ✗ ✓✓ ✗
Vanilla Few-shot (For LLM) ✓ ✓ ✓✓ ✗
Scratchpad [Anil et al., 2022] ✓✓ ✓ ✗ ✓
Algorithmic [Zhou et al., 2022b] ✓✓ ✓ ✗ ✓
Neural Comprehension (Ours) ✓✓ ✓✓ ✓✓ ✓✓

Table 1: Performance on Symbolic operations tasks of five techniques that language models admit: (1) Vanilla
Finetuning, (2) Vanilla Few-shot, (3) Scratchpad (Chain-of-Thought reasoning), (4) Algorithmic (Chain-of-
Thought reasoning) and (5) Neural Comprehension. We find that the first four learning-based methods have
different modes of failure regarding in and out-of-distribution coverage for symbolic operations. However,
Neural Comprehension has strong advantages in terms of length generalization, efficiency, and interpretability.
✗ signifies poor ✓ signifies nontrivial, ✓✓ signifies near-perfect performance. (*) Refers to task-dependency.

In this study, we conduct a length generalization experiment [Anil et al., 2022] to examine the221

distinctions between the Neural Comprehension and learning-based methods, as depicted in Figure 3.222

Our experimental design encompasses 1000× 40 independent test sets, comprising problems with223
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varying digit lengths from 1 to 40 digits. 10 to 20 digits within the range are provided by us for224

methods based on implicit learning for training; during the testing phase, this range is called In-Dist.225

Furthermore, we present results for both Scratchpad [Anil et al., 2022] and Algorithmic [Zhou et al.,226

2022b] approaches.227

The results of our experiment demonstrate that the Vanilla Fine-tune (red lines) method performs228

optimally on the in-domain (10-20 digit) training set, while its performance deteriorates for both229

more simplistic and more intricate. This finding suggests that the absence of relevant samples in the230

training set may cause gradient descent-based language models to underperform on both simpler and231

more complex tasks. As further discussed in the appendix D.1, this phenomenon can be attributed to232

the inherent generalization limitations of statistical models and the position bias of language models.233

Considering the Vanilla Few-shot method (green lines), we determine that its performance is less234

impacted by the prompt sample range compared to Vanilla Fine-tune. Large language models, which235

are trained on extensive text corpora, excel at solving more straightforward problems such as symbolic236

operations within a ten-digit range. Nevertheless, performance remains below par for test sets with237

more than ten digits, even when prompted with 10-20 digit samples.238

Observing CoT-like methods (we use GPT-3.5), including Scratchpad and Algorithmic, unveils their239

robust length generalization capabilities. Scratchpad works by requiring large language models240

to record intermediate steps, while Algorithmic employs a similar approach to record the carry241

operations involved in the addition process. This can be primarily attributed to their proficiency in242

decomposing complex problems into smaller incremental steps and maintaining intermediate states.243

However, these methods necessitate substantial computational resources, and extending the length244

beyond the input limit of the model becomes challenging.245

Our study reveals that Neural Comprehension attains remarkably high accuracy in symbolic operations.246

This implies that Neural Comprehension, unlike conventional methods, does not rely on training data247

and remains unaffected by discrepancies in input lengths for in-distribution and out-of-distribution248

data. Consequently, it alleviates the requirement for step-by-step work tracking, and language249

models with CoNNs only need relatively fewer computational steps to execute sequence operations250

directly. Encoding rules into neural network modules endows us with greater interpretability, enabling251

language models to flawlessly perform purely symbolic operation tasks.252

5.2 Symbolic Reasoning253
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Figure 4: In the iterative process of gradient descent
during training. The bleu line represents a language
model that incorporates neural comprehension, and the
red line represents the original language model. Addi-
tionally, we provide Direct, which is a direct prediction
of the final result, as a reference.

In this section, we investigate the performance254

of Neural Comprehension in terms of sym-255

bolic reasoning capabilities. Our hypothesis256

is that, although pretrained Language Models257

(LMs) demonstrate strong language understand-258

ing abilities, they lack the capacity to deduce259

and comprehend rules regarding symbolic rea-260

soning tasks. Thus, we aim to evaluate whether261

the incorporation of compiled neural networks262

in the form of CoNNs can address this limita-263

tion and improve the LM’s symbolic reasoning264

abilities.265

To assess the performance of the rule com-266

prehension component (CoNNs) in symbolic267

reasoning, we devise an experiment that mea-268

sures the model’s accuracy using intermediate269

processes and represents them in a "Chain of270

Thought"-like manner. In doing so, the experi-271

ment decomposes language understanding and272

rule comprehension explicitly into simpler out-273

puts, avoiding the complexities of reasoning and274

additional error propagation in the models. Ex-275

ample outputs from this approach can be found276

in Appendix F. We observed that neural com-277

7



prehension improves the symbolic reasoning capabilities of pre-trained language models in most278

cases (Neural Comprehension almost always outperforms Vanilla Fine-tune in Figure 4), and can fit279

faster. This observation suggests that the introduction of compiled neural networks has a positive280

impact on pretrained LMs, addressing rule comprehension limitations in symbolic reasoning tasks.281

5.3 Arithmetic Reasoning282
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Figure 5: We conducted simulations of the AddSub dataset with varying digits by modifying the "lEquations"
parameter. We then tested the performance of three LLMs with and without Neural Comprehension in generating
CoT outputs for AddSub+. And we reported the solve rates of three LLMs and compared the solve rates of
using additional tools (PAL [Gao et al., 2022]).

Arithmetic reasoning serves as a suitable testbed for evaluating language models and their ability to283

address real-world problems. In this study, we examine the AddSub+ dataset variants that involve284

different digit lengths, utilizing the Addition and Subtraction models from the CoNNs family.285

Notably, the capabilities of Neural Comprehension extend beyond these tasks, as CoNNs can also286

simulate calculators that support multiplication and division operations, and potentially perform287

linear algebra computations or even in-context learning algorithms that employ backpropagation288

[Giannou et al., 2023].289

To evaluate the impact of Neural Comprehension on arithmetic reasoning, we compare the output290

of vanilla CoT language models and those incorporating Neural Comprehension, using the vanilla291

CoT baseline as a reference. As demonstrated in Figure 5, the vanilla CoT model struggles to292

extrapolate and solve arithmetic problems involving longer digit lengths. However, integrating293

Neural Comprehension significantly improves the performance of language models on such complex294

arithmetic tasks. Since we only incorporated the Addition and Subtraction CoNNs, we attribute295

the observed performance enhancement to the increased computational accuracy of the language296

model. For further evidence, we present additional experimental results on widely-used arithmetic297

reasoning datasets in Appendix D.2, which reinforce the benefits of using Neural Comprehension298

over the vanilla CoT model.299

In comparison to language models employing external tools like PAL [Gao et al., 2022], our findings300

suggest that generating accurate code for the less code-trained GLM-130B model might be challenging301

for PAL, resulting in performance levels inferior to those of the vanilla CoT. This outcome indicates302

that language models offer greater flexibility, whereas external tools may have difficulties in more303

complex or unique situations. The integration of compiled neural networks appears to be a more304

promising approach, as evidenced by the performance improvements observed in our experiments.305

Specifically, when language models encounter intricate arithmetic tasks that involve nested operations306

or multi-step calculations, the integrated CoNNs can efficiently handle these operations, allowing the307

language model to focus on higher-level reasoning. In contrast, the use of external tools often requires308

explicit coding and may not generalize effectively to more complicated scenarios. In conclusion, our309

results demonstrate that incorporating compiled neural networks into language models provides a310

more robust and versatile solution for arithmetic reasoning and related challenges, underlining the311

superiority of this approach over external tools such as PAL.312

5.4 Ablation and Analyses: Module Combination for Neural Comprehension313

Efficiently deploying multiple CoNNs is crucial for achieving exceptional Neural Comprehension314

performance. As depicted in Figure 4, the amalgamation of distinct CoNNs, tailored for both symbolic315
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Figure 6: In Neural Comprehension framework, the performance of multiple different module combination is
demonstrated. The left side shows the effect of combining a pre-trained language model with a CoNN, while
the right side shows the impact of combining a language model with multiple CoNNs. For different tasks, we
categorize CoNNs as Correlated (green) and Uncorrelated (red), indicating whether the CoNN is related to the
current task or not.

and arithmetic reasoning tasks within the language model framework, can lead to remarkable benefits.316

It is observed that integrating pertinent CoNNs bolsters the performance of the initial language model,317

whereas the inclusion of unrelated language models rarely causes detrimental effects, regardless of318

whether single or multiple CoNNs are combined.319

This can be ascribed to the refined design of the Neural Comprehension framework, which ensures320

the precise execution of assigned tasks by CoNNs without interference from irrelevant modules. Each321

CoNN module is adept at generating the appropriate output when needed, thereby preventing the322

emergence of erroneous results from unrelated components. Importantly, as seen in Appendix B.3,323

the parameter count for each CoNN module ranges from 1/1000 to 1/1000000 of that for GPT-3,324

and the experiments in Appendix D.3 show that the inference latency in the neural understanding325

framework only increases by 1%-3% compared to Vanilla.326

This observation underscores the remarkable scalability of the Neural Comprehension framework,327

which possesses the capability to not only accommodate existing knowledge concepts but also328

assimilate novel ones as the number of CoNNs expands. Theoretically, the integration of tens of329

thousands of CoNN modules within language models holds the potential to foster a comprehensive330

understanding of concepts.331

6 Conclusion332

We have observed that pretrained language models lack an intrinsic comprehension of rule-based333

concepts and explored how Neural Comprehension can integrate compiled neural networks into the334

language model framework in a simple and generic manner. We demonstrated the superiority of our335

approach over existing learning-based method, Without external tools, our approach enables language336

models to perform nearly perfect symbolic operations and can be applied to more realistic arithmetic337

reasoning tasks.338

Our study opens new avenues for language models, such as the investigation of more complex CoNNs339

related to higher-order abstract reasoning, the development of more advanced gating mechanisms for340

smoother integration, and the exploration of other domains in which Neural Comprehension could341

exhibit significant advantages. Furthermore, our framework provides a foundation for future work on342

unifying both implicit and explicit learning in language models and facilitating the seamless.343
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