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Abstract—1In this paper, we address the online Navigation
Among Movable Obstacles (NAMO) problem by employing a
mobile manipulator. Unlike mobile robots, mobile manipulators
offer the advantage of effectively relocating obstacles out of the
driving path while tracking a global path. However, the high
degrees of freedom (DOF) of mobile manipulator complicates
whole-body control. To address these challenges, we propose
a Reinforcement Learning (RL) based Model Predictive Path
Integral (MPPI) framework. This strategy includes identifying
actions for stable pushing through RL, training robot-obstacle
kinodynamic interaction model from policy-generated data,
and applying this model in MPPI to maneuver obstacles while
tracking the global path. In our experiment, we demonstrated
that our method successfully pushes obstacles aside and
maintains adherence to the global path when it is obstructed.

Index Terms-Navigation Among Movable Obstacles

(NAMO), Mobile Manipulator, RL. based MPPI

I. INTRODUCTION

Robotic navigation in diverse real-world environments is
crucial for task execution, such as warehouse management
and delivery. Recent advances in mobile navigation field
have enabled robots to navigate successfully in challeng-
ing environments including narrow passages and dynamic
obstacles [1], [2]. Nonetheless, the predominant focus of
navigation research has been on collision avoidance. While
important, avoiding all obstacles can sometimes significantly
increase the travel distance and time. In addition, this ap-
proach may lead to immobility problems, where the robot
becomes stuck, surrounded by obstacles and unable to find
the path to reach the goal [3]. In such scenarios, the ability
of a robot to interact with obstacles to actively find a drivable
path is important for navigation, and this problem is called
Navigation Among Movable Obstacles (NAMO).

The NAMO problem is generally recognized as NP-hard
because of the extensive search space involving the robot’s
movement, obstacle manipulation, and evolving configura-
tion space over time [4]. Thus, many studies have relied
on assumptions such as the robot aligning itself axially
with obstacles to limit search space while pushing and
simplifying the class of obstacles into binary categories of
movable or immovable [5], [6]. However, such assumptions
reduce the maneuverability of obstacles during pushing and
do not capture their physical properties such as mass and
friction coefficient. Therefore, our objective is to employ
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Fig. 1. Mobile manipulator whole-body control for NAMO problem:
While tracking a global path (green), if the robot detects an obstacle with a
potential for collision, it actively pushes the obstructing obstacles, enabling
collision free navigation to the goal. The red arrow represents the movement
of the robot as it pushes the obstacle, and the blue arrow indicates the
movement of the obstacle. Left top is the global map and planned global
path using A* algorithm.

a mobile manipulator and robot-obstacle kinodynamic in-
teraction model to mitigate these limitations. Utilizing a
mobile manipulator, which enables the separation of arm
pushing from base movement, can significantly enhances
maneuverability (Fig. 1). Furthermore, we utilize estimated
physical properties from interactions to predict robot and
obstacles future trajectories with a kinodynamic interaction
model.

There are several challenges in using a mobile manipulator
to push obstacles. Maintaining contact is crucial for stable
pushing [7], yet this becomes difficult when executing whole-
body control with a mobile manipulator that possesses high
degrees of freedom (DOF). Additionally, the reachability
of the end-effector must be considered. To handle these
challenges, we propose Reinforcement Learning (RL) based
Model Predictive Path Integral (MPPI) approach. Through
RL, we first identify a set of actions that maintains stable
contact with obstacles while executing given command, and
train a robot-obstacle kinodynamic interaction model using
data obtained through a trained policy. Subsequently, we
utilize the trained models within the MPPI framework and
determine the finite-horizon optimal action sequence from
the given set of actions derived from RL to generate drivable
path when encountering obstacles.

Our contributions are summarized as follows:

e We propose an RL based MPPI approach to address
the complexities of whole-body control in mobile ma-



nipulators. It facilitates stable and effective obstacle
manipulation in the context of NAMO settings.

e We propose a physical properties informed robot-
obstacle kinodynamic interaction model for predicting
the future trajectory of robot and obstacles, which is
then utilized in planning.

II. RELATED WORK
A. Navigation Among Movable Obstacles (NAMO)

The Navigation Among Movable Obstacles (NAMO)
problem presents a major challenge in robotics, addressing
the complex task of reasoning through environments where
robots can strategically move obstacles to create free space
for driving. Wilfong initially demonstrated the NP-hard of
the NAMO problem, attributing its complexity to dynamic
configuration spaces and extensive search space, even under
simplified conditions [4]. Further research has aimed at
enhancing algorithmic efficiency, either by limiting the action
space or by developing composite planners that consist of
several task-specific sub-planners [8].

Aforementioned offline approaches traditionally presup-
pose complete prior environmental knowledge, prompting
recent research interest in online NAMO solutions that begin
with only partial knowledge. [9] first tackled the online
NAMO challenge within unknown environments character-
ized by both static and movable obstacles, where the robot
proactively learns obstacle mobility through interaction.
Meanwhile, [5] focused on real-world NAMO challenges,
leveraging a photorealistic simulator for efficient training
data generation, and facilitating sim2real transfer through
direct visual application on real robots.

However, these studies merely categorize obstacles mobil-
ity into binary states—movable or immobile—and confine
interactions to axis-aligned pushes. Such constraints notably
limit the robot’s maneuverability with obstacles and obsta-
cles’ physical properties. In contrast, our approach discerns
physical properties through active interactions, employing
a mobile manipulator to enhances obstacle maneuverability
through arm utilization, allowing the base to adhere to the
global path while displacing obstacles from the driving path.

B. RL based MPPI

Model Predictive Path Integral Control (MPPI) is a
sampling-based MPC approach where an agent determines
the optimal control sequence at each time step using on-
line rollouts. By leveraging the Feynman-Kac lemma [10],
the MPPI approach addresses non-linear Stochastic Optimal
Control (SOC) problems by replacing the Hamilton-Jacobi-
Bellman equation with evaluations of expected future tra-
jectories through Monte-Carlo sampling. Consequently, this
method enables the identification of the optimal control se-
quence based on these predictive assessments of trajectories.

Due to MPPI’s suitability for non-linear, non-convex dy-
namic systems, there has been significant interest in its ap-
plication for robotic control. [11] demonstrates the real-time
application on high-dimensional robots like manipulators
across various tasks. Meanwhile, [12] introduces a variant of

TABLE I
VARIABLE REPRESENTATION AND REWARD FUNCTIONS

Notation Components Dim | Total
darm 7
Vbase 2
observation {pose,p; }7o 4 23
ot {poseee}robot 4
state {velop; }mbot 3
8 {Uelee}'robot 3
Mobj 1
privileged COM,p; 3 7
P, friction coef fon; 2
restitutionqy; 1
target 2
command ¢t huese 3
push point 1
Reward Expression
rfmd follow target vel
rgmd follow push point
Tgonstr continue contact
7"20"5“ perpenticular contact
reconstr maintain ee height
Tgmooth smooth arm action
Tiot = k171 + kora + ksrs + kara + ksrs + kere

MPPI designed to react safely to static and dynamic obstacles
while executing tasks, leveraging a signed distance function
for enhanced safety and efficiency.

MPPI has advanced significantly in the domain of robotic
control, yet it encounters a challenge where the quality of
rollouts critically impacts its optimality [13]. Specifically,
in robots with a high degrees of freedom, such as mo-
bile manipulators, identifying the optimal action sequence
through random sampling within the large configuration
space is difficult. [14] suggests using offline reinforcement
learning for generating initial rollouts, leveraging learned
stochastic action distribution as starting parameters. This
approach has outperformed traditional MPPI methods in
UAV control tasks. We further develop this approach by
integrating commands into reinforcement learning, ensuring
compliance with certain constraints, and applying MPPI in
the command space. This adjustment not only allows for a
wider range of movements than traditional approaches but
also boosts the likelihood of identifying an optimal action
sequence within predefined constraints. It simultaneously
enhances the robot’s adaptability to dynamic environments
and unforeseen situations through a broader exploration of
potential scenarios.

III. METHOD

Our task focuses on driving a mobile manipulator through
obstacles, utilizing whole-body control to displace obstruc-
tions encountered while navigating the global path. We
assume that obstacles are uniform in size and shape but
differ in physical properties without any prior knowledge. We
employ a hierarchical strategy that first utilizes RL for both
stable pushing of obstacles without base collision and action
generation to execute given commands, and then applies
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Fig. 2. Overall framework: We first train a policy mg via reinforcement learning that enables the robot to stably push obstacles while executing given

commands. Subsequently, data collected using this policy is employed to train a robot-obstacle kinodynamics interaction model F,, which is then utilized

as the model for MPPI control.

MPPI control within the command space. Our system is
illustrated in Fig. 2 and we provide a detailed description
of each component in the following sections.

A. Training Whole-Body Stable Pushing Policy

We first utilize reinforcement learning to train the mobile
manipulator to follow given commands while stably pushing
obstacles during its movement. The definitions of commands
and variables, as well as the reward function, are detailed in
Table. I. The observation o, encompasses both proprioception
and exteroception, obtainable from the onboard sensors. Priv-
ileged information is derived from randomly sampling the
physical properties of obstacles within predetermined ranges.
Regarding commands, the target object push point, essential
for robot-obstacle maneuverability, indicates the point on the
obstacle’s surface to be pushed, chosen randomly within a
specified range. To simplify the end-effector’s movement,
we facilitate its maintenance of a consistent height. Stable
pushing of an obstacle necessitates maintaining contact, with
perpendicular alignment enhancing this stability. The reward
function is therefore tailored to ensure these conditions
are satisfied while executing the commands. To reduce the
sim2real gap, online adaptation approach is employed [15].

B. MPPI Control using Learned Kinodynamics Model

An policy network 7, trained via reinforcement learning,
is employed to collect data for training a robot-obstacle
kinodynamics interaction model. This model F' is designed
to predict the temporal derivative of observations o; based
on current observations oy, actions a;, and estimated physical
properties of obstacles hy. Subsequently, the trained model
is utilized as the forward model in the MPPI framework. It
generates random command sequences within the command
space and performs rollout for future observations corre-
sponding to each sequence. It then determines the optimal

command sequence based on the cost associated with each
rollout, subsequently executing the corresponding action. The
cost function utilized is specified as follows:

C(ot) = wySpeed(ot) + waTrack(ot) + wzPush(o) (1)

The Speed and T'rack terms encourage the robot to tracking
the global path at an fast speed, while the Push term aims to
push obstacles away from the robot’s driving path. Utilizing
these terms facilitates the generation of a path that allows the
robot to navigate to the next waypoint without collisions.

C. Navigation Strategy

We address an online NAMO task with the initial assump-
tion of possessing a global map for static obstacles, such as
walls. Utilizing this map, a global path is determined via
the A* algorithm. Upon encountering obstacles that could
potentially lead to collisions while following the global path,
the RL based MPPI is deployed to dynamically generate and
navigate a collision-free path to the next waypoint. In this
context, the next waypoint is set as the nearest position within
a fixed distance from the robot. This process is iterated until
the goal is reached.

IV. EXPERIMENT AND RESULT

As this research is currently on process, only qualitative
results will be discussed. The global map used for navigation
can be viewed in Fig. 1. This section addresses a scenario
where obstacles are present in the corridor through which the
robot must travel to reach its goal, known as the key-hole
problem. The robot navigates along the global path, and upon
detecting obstacles that may lead to collisions, it actively
generates a collision free path by displacing the obstacles.
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Fig. 3. Navigation Result: Left images depict the robot pushing obstacles
while following the global path. Right image illustrates the result of
navigation, with the green path representing the precomputed global path
and the blue path is the robot’s traveled path.

A. Environment Setting

To demonstrate the robot’s capability to create collision
free paths by pushing obstacles, they were strategically
placed within passages that the robot must traverse. In such
scenarios, methods solely focused on collision avoidance are
insufficient for reaching the goal. Additionally, to assess the
robot’s ability to evaluate collision risks, obstacles that do
not present a risk were also interspersed. As it conducted
in simulation, we assumed that the pose of boxes can be
precisely detected, although the physical properties of the
obstacles remain unknown.

B. Navigation Result

The navigation result is visualized in Fig. 3, where the
robot starts from the top left of the map and moves towards
the goal located at the bottom right. The images on the left
are indexed in chronological order, with images 1 and 4
depicting following the global path, while images 2, 3, 5
and 6 illustrates the pushing action. To navigate without base
collisions, the robot must push aside two obstacles, while the
remaining obstacles pose no collision risk. The green path
represents the global path derived solely from the global map,
whereas the blue path illustrates the robot’s traversed path.
Significantly, the robot exhibits behavior aimed at adhering
to the global path, actively displacing obstacles identified as
collision risks.

V. CONCLUSION anD FUTURE WORKS

We proposed a method to solve the online NAMO
problem in a partially known environment using a mobile
manipulator with RL based MPPI. The proposed method
mitigates the limited obstacle maneuverability caused by
the axis-aligned constraint in previous studies and enables
safe driving without collision of the base. In addition, the
problem of extensive search space when performing whole-
body control on a mobile manipulator was solved through
reinforcement learning. Using simulation, we show that the
proposed method can successfully navigate in the NAMO
setting. However, in practice, when the robot pushes the
obstacles, it may not be moved by a wall or other obstacles.
Also, it may be more efficient to bypass the obstacle if it
is not easily pushed. Addressing these issues as future work
will make online NAMO task works further in real world
scenarios.
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