
Published as a conference paper at ICLR 2025

DO VISION-LANGUAGE MODELS HAVE INTERNAL
WORLD MODELS?
TOWARDS AN ATOMIC EVALUATION

Qiyue Gao1∗, Xinyu Pi1∗, Kevin Liu1, Junrong Chen1, Ruolan Yang1, Xinqi Huang1
Xinyu Fang2, Lu Sun1, Gautham Kishore1, Bo Ai1, Stone Tao1, Mengyang Liu1

Jiaxi Yang3, Chao-Jung Lai1, Chuanyang Jin2, Jiannan Xiang1, Benhao Huang1
David Danks1, Hao Su1, Tianmin Shu2, Ziqiao Ma4, Lianhui Qin1, Zhiting Hu1

1University of California, San Diego, 2Johns Hopkins University, 3Cornell Tech,
4University of Michigan
{q3gao, xpi, zhh019}@uscd.edu

Given the top, side, front views of two objects above 
the table, which one appears to be larger in size? 

GPT-4o:   sphere

Gemini 1.5: cube

Qwen-VL:   cone

Answer: cylinder

Which of the 
following is most 
likely to be the 
final state after 
the car turns left? 

Which object moves faster?

GPT-4o:      blue sphere

Gemini 1.5: blue sphere

Qwen-VL: blue sphere

Answer:   orange cube

Two spheres with equal 
mass and same velocity 
move towards the central 
object. Which is the most 
likely state after collision?
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Figure 1: WM-ABench overview. Grounded in comparative psychology and cognitive science, our
framework delineates the functioning of world models into two distinct stages: (1) perception stage,
encompassing visual, spatial, temporal, quantitative, and motion perceptions, and (2) prediction stage,
involving mechanistic simulation, transitive inference, and compositional inference. Large-scale
evaluation reveals VLMs’ limitations as WMs.

ABSTRACT

Internal world models (WMs) enable agents to understand the world’s state and
predict transitions, serving as the basis for advanced deliberative reasoning. Recent
large Vision-Language Models (VLMs), such as GPT-4o and Gemini, exhibit
potential as general-purpose WMs. While the latest studies have evaluated and
shown limitations in specific capabilities such as visual understanding, a systematic
evaluation of VLMs’ fundamental WM abilities remains absent. Drawing on
comparative psychology and cognitive science, we propose a two-stage framework
that assesses perception (visual, spatial, temporal, quantitative, and motion) and
prediction (mechanistic simulation, transitive inference, compositional inference)
to provide an atomic evaluation of VLMs as WMs. Guided by this framework,
we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained
evaluation dimensions across 6 diverse simulated environments with controlled
counterfactual simulations. Through 517 controlled experiments on 11 latest
commercial and open-source VLMs, we find that these models exhibit striking
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limitations in basic world modeling abilities. For instance, all models perform at
near-random accuracy when distinguishing motion trajectories. Additionally, they
lack disentangled understanding—e.g., they tend to believe blue objects move faster
than green ones. More rich results and analyses reveal significant gaps between
VLMs and human-level world modeling.

1 INTRODUCTION

World models (WMs) in agents provide internal representations of the external world (Johnson-Laird,
1983; Wooldridge & Jennings, 1995). They simulate how the current state transforms to the next
(Kappes & Morewedge, 2016; Russell & Norvig, 2016), enabling agents to perform deliberative
planning by predicting probable future states and choosing the most favorable one (Ha & Schmidhuber,
2018a; LeCun, 2022; Hu & Shu, 2023). Different environments operate under distinct mechanisms
and dynamics—for example, the transition mechanics of autonomous vehicles, surgical robots, and
rover-based spacecraft vary significantly. Prior work handled this diversity by building environment-
specific world models, but they failed to adapt across various real applications.

Recent large-scale Vision-Language Models (VLMs; Google, 2023; OpenAI et al., 2024; Anthropic,
2024; Li et al., 2024b, inter alia) enhance generalist LLMs with visual semantics and encapsulate
extensive knowledge of world dynamics, making them promising potential world models for general
domains. Unlike video generative world models which directly generate the next states, VLMs
can reason in their latent representation space and forecast via language. However, their language
grounding and world simulation capabilities may still be insufficient in various aspects. For example,
existing benchmarks have revealed their vulnerability in visual or spatiotemporal perception (Goyal
et al., 2020; Shangguan et al., 2024; Fu et al., 2024b; Zhang et al., 2025) and future state prediction
driven by intuitive physics (Bakhtin et al., 2019; Yi et al., 2020a; Bear et al., 2022). These limitations
underscore the need for a more systematic evaluation. A robust world model must integrate multiple
fundamental abilities in perception and prediction, yet previous studies that assess these aspects in
isolation provide only a partial view. To address this, we propose an atomic evaluation framework,
systematically testing the essential aspects (and their interactions) of a VLM’s internal world model
from first principles.

With theories and evidence from comparative psychology and cognitive science (Spelke, 2000; Knill
& Pouget, 2004; Olmstead & Kuhlmeier, 2015), we first present a systematic conceptual framework
to formalize the functioning of world models (Figure 1). We decompose the process into two stages:
(1) perception stage, which involves visual, spatial, temporal, quantitative, and motion perceptions
(Baillargeon et al., 1985; Merleau-Ponty, 2004; Coren et al., 2004; Hoffmann et al., 2011); and (2)
prediction stage, which involves mechanistic simulation, transitive inference, and compositional
inference (Hegarty, 2004; Barsalou, 2008; Prystawski et al., 2023).

Following this framework, we create WM-ABench, the World Model Atomic Benchmark that covers
23 fine-grained dimensions (Figure 2) of world modeling and over 100,000 instances curated from
6 different simulators (Dosovitskiy et al., 2017a; Gan et al., 2021; Szot et al., 2021c; Tao et al.,
2024; Bear et al., 2022; Gu et al., 2023). By systematically manipulating environmental factors and
simulating counterfactual actions, we generate incorrect states for models to differentiate from the
correct ones to ensure controlled studies. We also measure human performance to verify the fairness
and solvability of our problems.

We conduct 517 experiments on 11 state-of-the-art VLMs and find that, while they excel in certain
aspects of visual and quantitative perception, they are surprisingly limited in many other dimensions
(Figure 1). Specifically, VLMs exhibit (1) weak perception of space, time, and motion; (2) insufficient
knowledge of physical causality in intuitive physics and agentic actions; (3) limited transitive and
compositional reasoning capabilities, showing near-random accuracy. Our further analyses reveal a
lack of independent and robust world representations in VLMs, e.g., mistakenly associating color
with speed. These findings reveal significant gaps between current VLMs and human-level world
modeling, shedding light on the need for deeper understanding, grounding, and reasoning over the
perceptual world and its transition mechanisms before VLMs can truly serve as generalist world
models.
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2 THE DUAL-STAGE CONCEPTUAL FRAMEWORK

We view world modeling as a two-stage process of perception and prediction (Knill & Pouget,
2004; Ha & Schmidhuber, 2018a). In the first stage, agents form internal representations of the
current state by sensing and encoding environmental stimuli. In the second stage, agents use these
internal representations to extrapolate future states, refining their model whenever new ground-truth
observations arrive. This dual-stage framework explains (1) how raw sensory signals are converted
into compact world representations; and (2) how these representations then guide forward simulations.
The two stages of WMs are core functions in agents’ advanced planning an decision-making. We
brief our formulation here and leave the in-depth discussion in Appendix A.

2.1 PERCEPTION STAGE

Perception involves extracting and organizing essential information from multi-sensory cues (Merleau-
Ponty, 2004; Coren et al., 2004). It is not just bottom-up signal processing but also top-down
inference grounded in prior knowledge. For instance, many intelligent animals (e.g., crows, dolphins,
chimpanzees) grasp object permanence by maintaining accurate representations of hidden or partially
occluded objects (Baillargeon et al., 1985; Hoffmann et al., 2011). While real-world perception
spans multitudinous modalities (time, vision, temperature, humidity, audition, proprioception, etc.),
we only focus on a limited number of perceptual dimensions. From an epistemic perspective, we
design these dimensions to maximize the information captured about the external world while
minimizing representational dimensions, ensuring they remain mutually orthogonal. From the
practical perspective, we only cover the dimensions that modern VLMs can access. In this work, we
consider 5 perceptual dimensions in our framework: space, time, motion, quantity, and vision. To
make models’ perceptual competency empirically testable along each dimension, we further break
the major 5 perceptual dimensions into sub-dimensions:

Space and Time. All entities in spacetime must be located at some position and occupy some room
or period, i.e., extension. Any pair of entities to exist in spacetime necessarily have spatiotemporal
relations (e.g., front, left, before, after). Thus, we break spacetime down into position, extension, and
relations (Reichenbach, 2012).

Motion. At every moment, motion can be described as a vector with speed and direction. The
integration of motion along time forms a trajectory. Thus we consider direction, speed, and trajectory
(Johansson, 1975).

Quantity. Axiomatically, quantities can either be discrete or continuous. For any pair of quantities,
there could be quantitative relations (e.g., more, less, n-times) (Kaufman et al., 1949; Hurst &
Piantadosi, 2024). We consider discrete, continuous, and relations (Kadosh & Dowker, 2015)
quantities in this study.

Vision. In contrast with the previous four dimensions, the vision channel is extremely broad and
hard to enumerate, including orientation, density, edge, color, shape, to name a few (Marr, 2010).
We consider salient features like color, shape, and material (i.e., texture and reflexivity).

2.2 PREDICTION STAGE

Once current-state representations are established, the agent must predict how future states evolve in
response to both natural dynamics and possible actions. We distinguish 3 primary sub-dimensions:

Mechanistic Simulation. Agents should understand the causality of intuitive physical dynamics
(e.g., motion, collisions) and intentional actions to simulate the next state (Hegarty, 2004; Barsalou,
2008). For example, predicting how one ball bounces off a wall or another ball depends on basic
principles like momentum or elasticity.

Transitive Inference. Multi-step forecasts are often needed for tasks requiring long-horizon
planning (Prystawski et al., 2023). Rather than only predicting the immediate next state, robust world
models should extrapolate further into the future by chaining intermediate predictions.

Compositional Inference. Real-world scenarios usually involve multiple interacting objects and
agents (e.g., two incoming balls hitting a third one from different directions). Agents must merge
known mechanisms to predict novel outcomes, even if that specific combination has not been
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Q: Where is the black sphere relative to the 
purple cube from the front view? Q: Given the front view and side view of the two objects, select the correct top view.

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

Spatial Relation (SR)Spatial Positioning (SP)

Q : Which object appears to be larger in size? 

sphere
cube
cone

cylinder

Q : Can the cylinder be placed 
into the ring from the top?

No
No
No
Yes

Spatial

Temporal

Visual

Q: Which object starts moving first based on the trajectory? 

same time
red cube
red cube

yellow cube

Temporal Positioning (TP)

Q: Which object appears to move for a longer duration? 

same duration
purple cone
purple cone
yellow cube

Temporal Extension (TE)

5
5
5
6

Q: How many orange objects are there?

Discrete Quantity (DQ)

cylinder
sphere

cylinder
cylinder

Q: Which object has a deeper color?
Continuous Quantity (CQ)

white
white
white

gray

Q: What color is the object?
Color (V-C)

Q: What is the shape of the object?
cylinder
sphere
sphere

cone

Shape (V-S)

No
No
No
Yes

Q: Do they share the same material?
Material (V-M)

Q: Towards which object is the cyan sphere moving?
Motion Direction (MD)

orange
none

orange
yellow

Q: Which object is moving?
Motion Identification (MI)

blue
orange

blue
purple

Q: Which object is moving faster?
Motion Speed (MS)

green
green

gray
same

Q: What is the moving trajectory of the cyan sphere?
Motion Trajectory (MT)

circle
line
line

square

Q: Given a sequence of images showing consecutive states of the environment, 
which of the following images is most likely to be the next state after?

Mechanistic Simulation, Intuitive Physics (M-IP)

Q: Given the start state, which is most likely to be the final state 
after the robot arm pushes the object? 

Mechanistic Simulation, Agent Manipulation (M-Man)

Q: Given the start state, which is most likely to be the final state 
after the robot moves backward? 

Mechanistic Simulation, Agent Navigation (M-Nav)

Q: Two spheres with equal mass and same velocity move towards 
the central object. Select the most likely state after the collision.

Compositionality, Multi-Object Intuitive Physics (C-IP)
Q: Given the start state, predict the final state after both robotic 

arms successfully and simultaneously lift the object.

Compositionality, Multi-Agent Manipulation (C-Man)

Q: Given the start state, which is most likely to be the final state 
after the robot arm pushes and picks up the object? 

Transitivity, Agent Manipulation (T-Man)

Q: Given the start state, which is most likely to be the final state 
after the vehicle turns left and moves forward? 

Transitivity, Agent Navigation (T-Nav)

purple
purple
purple

same

Q: Which color has more objects?
Relative Quantity (RQ)

Transitive

Quantity

Motion

WM-ABench

Compositional

Mechanistic

Pe
rc

ep
tio

n Prediction
Spatial Occupancy (SE-O) Spatial Vacancy (SE-V)

behind
left

bottom
front

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

GPT-4o:
Gemini 1.5:
Qwen-VL:
Answer:

Figure 2: Overview of WM-ABench tasks. The Perception stage (top) covers Spatial, Temporal,
Visual, Quantity, and Motion dimensions, each shown with example questions and outputs. The
Prediction stage (bottom) includes Mechanistic Simulation, which covers Intuitive Physics (e.g.,
drop), Agent Navigation (e.g., turn left), and Agent Manipulation (e.g., push), plus Transitivity and
Compositionality tasks that build on these transitions.
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observed (Xu & Denison, 2009; Eckert et al., 2021; Gweon et al., 2010). This requires compositional
reasoning, where partial pre-conditions (e.g., “hit from the left” plus “hit from the right”) merge into
an overall post-condition (e.g., “moves straight up”).

3 THE WM-ABench BENCHMARK

Following the above taxonomy, we design and implement corresponding tasks for benchmarking
VLMs as WMs. Figure 2 presents a visual overview of our complete benchmark tasks, offering
readers a high-level understanding of the framework.

Controlled Experiment and Causal Analysis. For each dimension mentioned above, we design
a separate experiment where the focused dimension serves as the dependent variable. To ensure
controlled evaluation, we exhaustively iterate over all dimensions, keep all other dimensions fixed
as independent variables, and allow only one to vary at each data point. This methodology, which
holds all variables constant except the independent ones across data points, allows us to draw causal
conclusions (e.g., changing color causes the model to misperceive size). Rather than claiming
generality or complete coverage (Raji et al., 2021; Saxon et al., 2024), this benchmark aims to provide
a precise, atomic diagnosis of models’ perception and prediction, establishing a clear checklist for
VLMs as world models.

Fighting Shortcuts and Spurious Correlations. Pre-trained models such as VLMs are known to
rely on shortcuts and spurious correlations (Ye et al., 2024; Steinmann et al., 2024). To test whether
VLMs can truly simulate and extrapolate into the next states, rather than relying on some spurious
correlations, we generate hard negative options in our benchmark. We consider 2 methodologies to
generate counterfactual states: counterfactual action and counterfactual previous states. Consider a
ground truth transition triplet (S∗

t , a
∗, S∗

t+1). For counterfactual action-based option generation, we
fix the ground-truth previous state and perturb the action, and the transition becomes (S∗

t , a
′, S′

t+1).
For counterfactual state-based option generation, we keep the ground-truth action, and perturb the
previous state, so that the transition becomes (S′

t, a
∗, S′′

t+1). False options generated under these
methodologies often exhibit high visual similarity to the ground truth state, requiring models to
possess a genuine understanding of world dynamics to distinguish and eliminate counterfactual states.

Data Collection. To rigorously evaluate models, a large and diverse dataset of test cases is essential.
While manual data collection is possible, it is costly and often impractical for obtaining images where
only a single factor varies for controlled studies. Therefore, we utilize compute-scalable simulation
frameworks to synthetically generate a substantial number of test cases, minimizing human labor
while ensuring precise control over variations. To avoid bias towards one single environment, we
use a wide variety of simulation frameworks to create data, including ThreeDWorld (TDW; Gan
et al., 2021), ManiSkill (Tao et al., 2024; Gu et al., 2023), Habitat 2.0 (Szot et al., 2021c), Physion
(Bear et al., 2022), and Carla (Dosovitskiy et al., 2017a). Our diverse set of simulators allows the
benchmark to incorporate various world dynamics that align with human intuition while leveraging a
broad range of assets to address diverse questions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluated Models. We evaluate a range of state-of-the-art VLMs on WM-ABench, including
closed-source models: Gemini-1.5-pro, Gemini-1.5-mini (Google et al., 2024), GPT-4o
(gpt-4o-2024-08-06), GPT-4o-mini (OpenAI et al., 2024), Claude 3.5 Sonnet (Anthropic, 2024),
and open-source models: Qwen2-VL (72B) (Bai et al., 2023), Qwen2.5-VL (72B) (Team, 2024),
InternVL2.5 (78B) (Chen et al., 2024), LLaVA-OneVision (72B) (Li et al., 2024a), NVILA (15B)
(Liu et al., 2024c), and Llama 3.2-Vision (90B) (Meta AI). We used the same system prompt (see
Appendix E.2) and greedy decoding for all questions to maintain consistent output formatting. We
evaluate model performance by comparing the parsed labels from model outputs to the ground-truth
labels.

Human Evaluation. For each subtask, we randomly sample 50 questions and employ Amazon
Mechanic Turk for human evaluations. We asked 3 evaluators for each question and finalized the
labels via majority voting. The inter-rater agreement is measured by Fleiss’ kappa on 50 samples
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for each task. All tasks are above moderate agreement (Fleiss’ k > 0.4). Detailed instructions are
available in Appendix E.1).

Qwen2 VL

Qwen2.5 VL

InternVL 2.5

LLaVA-OneVision

Gemini 1.5 Pro

GPT-4o

Claude 3.5 Sonnet

68.8 68.5 67.5 65.8
59.8 59.1 56.7

Perception
0

20

40

60

80

100

Human

Space Time
Model SR SE-V SE-O SP TP TE

Mani. TDW Mani. TDW Mani. TDW Mani. TDW Mani. TDW Mani. TDW
Open-source Models
NVILA 53.7 40.4 55.0 74.4 84.9 92.9 35.4 26.9 35.5 59.1 32.7 9.0
QWen2-VL-72b 42.2 72.6 42.6 57.0 87.6 93.6 58.9 47.1 46.5 75.5 36.4 53.4
QWen2.5-VL-72b 57.8 70.6 49.5 57.7 97.5 93.5 36.1 45.5 48.4 52.9 35.0 53.5
InternVL2.5-78b 44.2 65.8 51.3 73.5 98.4 93.0 31.3 30.9 43.5 63.6 43.9 59.7
Llama 3.2 vision-90b 50.7 47.5 50.0 43.8 78.6 25.2 25.0 24.6 33.4 16.8 38.0 37.2
LLaVA-OneVision 71.0 61.8 56.6 53.1 96.5 90.9 24.8 22.7 38.5 31.1 32.2 25.8

Closed-source Models
Claude 3.5 Sonnet 54.6 59.9 64.2 58.0 73.2 72.6 41.7 31.9 42.0 49.1 32.2 43.7
Gemini-1.5-flash 54.5 59.1 50.0 50.0 80.6 79.6 34.0 21.8 37.5 50.9 33.4 56.1
Gemini-1.5-pro 49.1 65.0 64.0 68.5 83.6 92.9 44.7 43.4 42.8 60.1 77.0 42.2
GPT-4o 55.1 58.7 66.1 70.4 96.6 78.9 47.4 47.5 37.5 45.7 35.0 25.0
GPT-4o-mini 37.6 37.7 61.3 69.1 98.2 35.3 37.0 38.1 31.7 47.1 29.0 40.6

Random 25.0 25.0 50.0 50.0 50.0 50.0 25.0 25.0 33.3 33.3 33.3 33.3
Human 90.0 100.0 98.0 100.0 100.0 86.0 92.0 92.0 80.0 82.0 86.0 90.0

Vision Motion Quantity
Model V-C V-S V-M MS MD MI MT DQ CQ RQ

Mani. TDW TDW TDW Mani. TDW Mani. TDW Mani. TDW Mani. TDW Mani. TDW TDW Mani. TDW
Open-source Models
NVILA 94.6 88.0 98.2 56.3 44.2 51.6 52.6 53.5 33.3 35.3 24.4 14.8 57.8 81.4 63.9 73.5 58.0
QWen2-VL-72b 97.2 88.6 99.0 63.7 52.6 63.5 85.4 85.4 71.1 84.4 29.5 21.5 75.7 83.1 75.5 75.5 74.2
QWen2.5-VL-72b 94.7 89.4 91.5 51.4 54.7 75.8 69.8 71.9 59.7 66.8 28.9 27.7 73.1 84.7 88.0 75.9 71.3
InternVL2.5-78b 95.4 89.3 95.7 53.9 60.7 66.9 88.5 92.1 72.2 85.6 31.3 25.6 76.4 81.4 76.7 72.1 69.2
Llama 3.2 vision-90b 95.2 87.0 99.6 50.0 38.4 46.6 51.4 36.1 23.7 23.8 23.8 25.9 66.5 70.8 72.0 70.6 67.4
LLaVA-OneVision 95.2 88.8 98.4 71.2 46.7 35.6 54.1 53.1 33.7 25.5 26.1 14.5 67.5 76.9 81.1 74.0 76.8

Closed-source Models
Claude 3.5 Sonnet 42.1 62.4 96.2 50.0 46.6 63.0 55.7 83.8 43.9 52.6 24.3 41.7 76.3 73.9 43.3 65.0 49.6
Gemini-1.5-flash 98.3 88.0 98.7 50.0 36.9 65.3 49.4 76.2 25.2 34.4 24.3 14.5 76.1 81.8 80.6 69.2 66.2
Gemini-1.5-pro 99.1 86.8 89.2 50.0 43.3 70.2 56.0 66.1 30.0 35.2 24.2 33.8 84.9 83.1 79.8 73.0 69.1
GPT-4o 98.6 88.0 98.7 55.6 33.3 59.7 39.6 69.4 34.7 38.8 29.9 28.9 57.0 61.3 87.3 64.6 57.8
GPT-4o-mini 98.1 87.8 99.7 50.0 26.9 46.2 32.5 37.8 53.9 51.4 26.6 17.1 31.3 60.1 73.9 60.1 54.5

Random 25.0 25.0 25.0 50.0 33.3 33.3 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0 33.3 33.3
Human 100.0 88.0 100.0 84.0 84.0 90.0 100.0 98.0 96.0 98.0 76.0 100.0 98.0 100.0 98.0 98.0 100.0

Table 1: Results on the Perception tasks in our WM-ABench, reported as accuracies (%). Models are
evaluated in two simulators ManiSkill and ThreeDWorld). Cell shades indicate different performance
levels (dark red indicates proficient performance; dark blue indicates performance close to random,
and the lighter intermediate shades represent levels in between). Random and Human provide
reference baselines.

4.2 MAIN RESULTS ON PERCEPTION TASKS

Table 1 presents the results for perception tasks. Across the 5 dimensions, Gemini-1.5-pro achieves the
highest overall performance with an average accuracy of 68.8%. However, closed-source VLMs do
not exhibit an overwhelming advantage over open-source models in terms of perceptual capabilities.
All models still fall behind human-level perception, which is near-perfect or substantially more
accurate across all the perception tasks.

Recommendation 1: Improve 3D Perception. Spatial tasks require grounding and reasoning over
3D semantics, including constructing robust scene representations from limited views. Even the
most advanced models achieve less than 60% accuracy in spatial positioning tasks. These results
suggest that current VLMs struggle to form robust internal 3D representations, in line with previous
findings (El Banani et al., 2024; Zhang et al., 2025). We recommend future VLMs transition from
relying solely on 2D semantics to incorporating 3D priors or explicit 3D representations.

Recommendation 2: Improve Temporal and Motion Understanding. We found that models
struggle with coherent temporal representations across consecutive frames, as reflected in their low
performance on temporal extension (TE). In contrast, they perform much better on tasks relying on a
subset of frames, such as temporal positioning (TP). Similarly, while models perform relatively well
on motion detection (MD), they exhibit near-random performance on motion trajectory (MT), which
demands a thorough understanding of consecutive states. These results suggest that current VLMs
still struggle to perceive and form dynamic scene representations. We recommend future VLMs
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incorporate temporal and motion priors by leveraging the rich visual dynamics in videos (Song et al.,
2024; Ko et al., 2024).

Qwen2 VL

Qwen2.5 VL

InternVL 2.5

LLaVA-OneVision

Gemini 1.5 Pro

GPT-4o

Claude 3.5 Sonnet

47.5 46.6 45.2 43.7 42.5
37.3

25.2

Prediction
0

20

40

60

80

100

Human

Model
Mechanistic Simulation Transitivity Compositionality

Car. Hab. Phys. Phys. Phys. Mani. Mani. Mani. Car. Hab. Mani. Mani. TDW Mani. Mani.
nav nav coll slide drop drop lift push nav nav pu-pi pi-ro coll push lift

Open-source Models
NVILA 31.2 16.7 28.4 44.6 44.7 48.9 33.8 26.4 32.4 4.2 29.1 26.4 26.6 25.5 31.8
Qwen2-VL-72b 62.0 65.3 30.4 40.3 59.2 95.3 91.9 20.0 50.1 43.8 55.7 31.2 24.3 51.3 41.8
Qwen2.5-VL-72b 76.6 70.9 36.5 51.9 55.0 88.9 85.5 31.9 61.1 34.7 24.4 30.9 21.6 34.8 35.2
InternVL2.5-78b 57.9 54.6 24.9 41.3 51.3 73.7 60.3 28.1 51.1 31.9 35.6 34.7 40.1 47.0 27.8
Llama-3.2-90b 24.7 33.3 24.0 25.4 24.7 23.7 26.3 23.1 23.9 33.6 25.6 20.8 25.9 24.1 25.3
LLaVA-OneVision 19.0 57.9 25.8 20.5 19.4 26.1 30.8 25.1 22.6 26.7 25.4 22.4 22.4 25.0 28.2

Closed-source Models
Claude-Sonnet 36.3 39.6 15.0 22.1 36.7 86.3 57.7 28.0 35.3 27.5 36.3 37.5 39.0 41.9 51.0
Gemini-1.5-flash 36.8 41.1 27.3 30.2 42.2 75.7 65.8 18.4 40.7 39.0 42.7 37.0 40.2 30.8 46.2
Gemini-1.5-pro 44.3 57.6 47.5 37.6 60.1 79.4 76.8 33.5 48.1 43.3 46.2 35.9 34.1 36.8 49.6
GPT-4o 61.6 69.6 39.2 37.6 49.4 83.9 71.2 30.3 42.6 43.2 42.4 45.5 22.8 33.8 35.6
GPT-4o-mini 45.8 34.0 25.8 32.9 49.9 77.7 68.2 30.9 41.6 24.4 32.9 39.4 37.2 40.8 30.8

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Human 98.0 98.0 100.0 98.0 86.0 100.0 100.0 100.0 78.0 90.0 80.0 82.0 84.0 88.0 100.0

Table 2: Results of the Prediction tasks in WM Benchmark (%). Our mechanistic simulation tasks
cover three categories: intuitive physics (e.g., drop, slide collision), agent manipulation (e.g., lift,
push), and navigation (e.g., turn left, move forward). Transitivity tasks cover two types of actions

4.3 MAIN RESULTS ON PREDICTION TASKS

Table 2 presents the results for prediction tasks, which generally pose greater challenges for VLMs
than perception tasks. Qwen2-VL achieves the highest average accuracy of 47.5%. Similar to
perception tasks, open-source VLMs perform on par with closed-source ones, and all VLMs fall
behind human performance by a large margin.

Recommendation 3: Improve Cause-and-Effect Understanding. Our prediction tasks cover
intuitive physics (e.g., drop, collision) and agent-initiated actions like navigation (e.g., turn left,
move forward), and manipulation (e.g., lift, push). We find that VLMs struggle with predicting
the post-condition of physical transitions and manipulation actions. For instance, on the ManiSkill
simulator, Qwen2-VL achieves 95.3% accuracy in predicting the outcomes of dropping and 91.4% in
lifting. However, its performance on pushing objects in the same environment is close to random, and
its accuracy in predicting dropping outcomes on Physion decreases to 59.2%. These results suggest
that current VLMs still struggle to reliably predict the cause and effect of physical processes and
actions (Gao et al., 2018).

Recommendation 4: Improve Transitive and Compositional World Modeling. Our results also
reveal that VLMs do poorly in transitive and compositional inference when reasoning over sequential
or concurrent actions. In transitive inference tasks, models consistently underperform, with even the
best achieving only 43.8% on the multi-step navigation task in Habitat, which is far below the human
accuracy of 90.0%. Similarly, in compositional inference tasks, the gap remains substantial: the best
models reach only 40.2% on the collision prediction task in TDW and 51.3% on the manipulation
task in ManiSkill, compared to the human performance of 84.0% and 88.0%.

5 FURTHER ANALYSES AND DISCUSSIONS

5.1 VLMS FAIL TO REPRESENT DIFFERENT WORLD ATTRIBUTES ROBUSTLY AND
INDEPENDENTLY

World models should learn disentangled representations of key perceptual dimensions, like
color or spatial position, for flexible compositional reasoning and categorical distinctions.1 To
assess entanglement, we perturb one dimension while keeping others constant and define the
standardized Relative Entanglement (s-RE) as the normalized performance deviation between
different perturbations: s-RE = 1

N

∑N
i=1

∣∣∣ p̄−pi

p̄

∣∣∣, where pi is model performance under the ith

1Human perception also relies on interdependent encoding of visual properties, e.g., object attributes are
represented as statistical summaries rather than in isolation (Whitney & Yamanashi Leib, 2018). However,
unlike VLMs, human cognition can differentiate these summaries into discrete symbolic states, as evident in our
evaluations, enabling precise world representation despite potential interdependencies.
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perturbation and p̄ is the average performance over all perturbations. Essentially, s-RE calculates
the average relative deviation from the mean performance, reflecting model sensitivity to changes in
that particular dimension. We control 5 perceptual dimensions (color, shape, size, position, material)
and present the entanglement matrix in Table 3. Our results show that VLMs’ representations of
orthogonal world attributes have significant entanglement. Color and Shape are major sources of
entanglement in multiple tasks. For example, color entangles with the Discrete Quantity (DQ) task,
where s-RE ranges from 5% (Gemini-1.5 Pro) to 17% (Qwen-2.5 VL). Other dimensions like size
and absolute position also exhibit relatively modest entanglement effects.

Dim. Space Time Vision Motion Quantity

SR SE-O SE-V SP TE TP V-S V-M V-C MS MD MT DQ CQ RQ

Pos. (+) (+) - + (+) (+) – + (+) – +
Size (+) (+) + + + – – – - + – + + +
Color + + (+) + + + (+) (+) + + + + + +
Shape – + + + + – – (+) + (+) + (+) +
Mater. – (+) + + – – –

* +: there exists an effect (s-RE ≥ 5%); –: there does not exist an effect (s-RE ≤ 2.5%); (+): there
exists a marginal effect (2.5% < s-RE < 5%).

* The grey cells mark the case when variables were not controlled (where only one parameter varies
at a time), we could not compute Standardized Relative Entanglement values in the entanglement
matrix.

Table 3: Entanglement matrix for perception dimensions averaged across two simulators. Pos., Size,
Color, Shape, Mater. are the absolute position to the camera, size, color, shape, and material of the
object(s), respectively.
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Figure 3: Model performance with respect to increasing stimulus differences, as discussed in
Section 5.2. Here, ∆Object Num., ∆Size, ∆Speed, and ∆Time represent the differences in the number of
objects, object sizes, object speeds, and object movement durations, respectively.

5.2 VLMS ARE SENSITIVE TO STIMULUS DIFFERENCES, BUT NOT FINE DETAILS

As shown in Figure 3, we find that VLM performance is positively correlated with the physical
differentiability of stimuli, such as differences in size, speed, or moving duration. This aligns with the
previously reported “myopia” in model perception (Rahmanzadehgervi et al., 2024). Our observation
implies that VLMs can, to some degree, properly ground language to corresponding physical attributes.
This is evidenced by their strong performance in scenarios with large stimulus differences, which
would otherwise be inexplicable. On the other hand, VLMs’ perception capabilities are strongly
influenced by the magnitude of the stimulus, irrespective of specific physical attributes. This suggests
that while they perform well when distinctions are pronounced, they struggle with fine-grained,
high-resolution perception, highlighting a significant gap in modeling subtle physical variations.

5.3 VLMS STRUGGLE WITH INTUITIVE PHYSICS EVEN UNDER ACCURATE STATE PERCEPTION

Accurate next-state prediction relies on two key factors: correctly representing the current state, and
possessing sufficient mechanistic knowledge for transition simulation. Since our analysis shows
that models frequently make perception mistakes, their underperformance in prediction tasks may
stem from limited world modeling capabilities or accumulated errors from perception failures. To
disentangle perception from prediction, we present a further analysis of the mechanistic simulation

8
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from intuitive physics (collide, slide, drop). We retrieve instances where all models correctly answer
all relevant perception questions, ensuring an accurate state representation (details provided in
Appendix D.2). As Table 4 shows, performance on predicting the next state of slide and drop
increases only marginally or even decreases for collide, indicating that limited perception capability
is not the only cause. Rather, models lack the foundational physical knowledge to simulate object
interactions accurately.

GPT-4o Gemini-1.5 Qwen2-VL InternVL 2.5

∆collide -1.13 -0.65 -0.66 -0.28
∆slide 1.63 3.60 1.34 1.15
∆drop 3.59 1.49 1.98 2.92

Table 4: Accuracy differences (∆(·)%) between filtered (correct state perception) and unfiltered
inputs across physical transition tasks.

6 RELATED WORK

World Models. World models (WMs) predict how the current state transitions to the next, based on
prior states and actions (Tolman, 1948; Battaglia et al., 2013). Traditionally, people train frame-level
video-generative models specializing in some narrow domains. For instance, in robotics, WMs enable
model-based reinforcement learning and trajectory prediction (Yang et al., 2023; Zhou et al., 2024);
in autonomous driving (Wang et al., 2023; Hu et al., 2023), they facilitate path planning; and in
gaming (Hafner et al., 2019; Bruce et al., 2024; Ha & Schmidhuber, 2018b;c), they power interactive
simulations. Meanwhile, recent work (Brooks et al., 2024; Kang et al., 2024) has explored whether
video-generation models can serve as world simulators that go beyond mere pixel-level synthesis. We
instead investigate whether Vision-Language Models can capture world dynamics from large-scale
training data, enabling them to function as generalist world models.

Benchmarks for Vision Language Models. Previous VLM benchmarks typically take a
reductionist approach, measuring a wide range of perceptual capabilities while giving limited attention
to how these perceptual dimensions interact and influence one another. For instance, there are works
focusing on visual semantics perception, e.g., object categories, attributes, actions, agent-object
interactions, emotions (Liu et al., 2024b; Li et al., 2024d; Liu et al., 2023), whereas others emphasize
low-level visual perception, e.g., basic attributes, line segments, optical flow (Johnson et al., 2016;
Fu et al., 2024b; Shiono et al., 2025), spatiotemporal and motion, e.g., geometry, event ordering,
trajectories (Goyal et al., 2020; Mirzaee et al., 2021; Shangguan et al., 2024), or next-state prediction
(often limited to intuitive physics) (Bear et al., 2022; Yi et al., 2020b). Compared to these efforts,
our framework decomposes world modeling into atomic dimensions, offering a precise diagnosis
of models’ perception and prediction capabilities while establishing a clear checklist for VLMs as
world models. Due to the page limit, we leave the comprehensive comparison between WM-ABench
and existing benchmarks in Table 5 and Appendix B.2.

7 CONCLUSION

Our study provides the first atomic evaluation of VLMs’ internal world modeling abilities with a
cognitively inspired framework. While VLMs excel in scenarios with pronounced differences, they
struggle with 3D and dynamic perception, fail to differentiate subtle physical distinctions, and exhibit
failures in understanding world transitions of transitive and compositional scenarios.

LIMITATIONS

While simulators enable compute-scalable and cheap generation of dataset questions and answers,
most simulators are difficult to tune or are incapable of photo-realistic image generation. As a result,
we may be evaluating VLMs on somewhat out-of-distribution data as the images do not look realistic
and the majority of the image data used to train VLMs likely come from real-world videos/images.
While ray tracing is used in some of the ManiSkill-generated problems, better photo-realism can be
achieved if higher quality assets are used and lighting is tuned better.

9



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We would like to thank Angela Shen, Kai Kim, Reventh Sharma, and Prathish Murugan for their
contribution to early data collection, and Yi Gu, Yuheng Zha for assistance with setting up simulation
environments.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 39–48, 2016. doi:
10.1109/CVPR.2016.12.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Renée Baillargeon, Elizabeth S Spelke, and Stanley Wasserman. Object permanence in five-month-old
infants. Cognition, 20(3):191–208, January 1985.

Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick. Phyre:
A new benchmark for physical reasoning, 2019. URL https://arxiv.org/abs/1908.05656.

Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian Wolf. Cophy:
Counterfactual learning of physical dynamics, 2020. URL https://arxiv.org/abs/1909.
12000.

Lawrence W Barsalou. Grounded cognition. Annu. Rev. Psychol., 59(1):617–645, 2008.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical
scene understanding. PNAS, 2013.

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R. T. Pramod,
Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B.
Tenenbaum, Daniel L. K. Yamins, and Judith E. Fan. Physion: Evaluating physical prediction
from vision in humans and machines, 2022.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAI,
https://openai.com/research/video-generation-models-as-world-simulators, 2024.

Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. arXiv preprint arXiv:2402.15391, 2024.

Peter E. Bryant and Tom Trabasso. Transitive inferences and memory in young children. Nature,
232:456–458, 1971. URL https://api.semanticscholar.org/CorpusID:4218085.

Haoran Chen, Jianmin Li, Simone Frintrop, and Xiaolin Hu. The msr-video to text dataset with
clean annotations. Computer Vision and Image Understanding, 225:103581, December 2022.
ISSN 1077-3142. doi: 10.1016/j.cviu.2022.103581. URL http://dx.doi.org/10.1016/j.
cviu.2022.103581.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
and Sifei Liu. SpatialRGPT: Grounded spatial reasoning in vision-language models. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=JKEIYQUSUc.

10

https://arxiv.org/abs/1908.05656
https://arxiv.org/abs/1909.12000
https://arxiv.org/abs/1909.12000
https://openai.com/research/video-generation-models-as-world-simulators
https://api.semanticscholar.org/CorpusID:4218085
http://dx.doi.org/10.1016/j.cviu.2022.103581
http://dx.doi.org/10.1016/j.cviu.2022.103581
https://openreview.net/forum?id=JKEIYQUSUc
https://openreview.net/forum?id=JKEIYQUSUc


Published as a conference paper at ICLR 2025

Stanley Coren, Lawrence M Ward, and James T Enns. Sensation and perception. John Wiley & Sons
Hoboken, NJ, 2004.

Carl Craver, James Tabery, and Phyllis Illari. Mechanisms in Science. In Edward N. Zalta and Uri
Nodelman (eds.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Fall 2024 edition, 2024.

Arnaud Delorme, Guillaume A Rousselet, Marc J-M Macé, and Michele Fabre-Thorpe. Interaction
of top-down and bottom-up processing in the fast visual analysis of natural scenes. Cognitive
Brain Research, 19(2):103–113, 2004.

Stephanie Denison, Pallavi Trikutam, and Fei Xu. Probability versus representativeness in
infancy: Can infants use naïve physics to adjust population base rates in probabilistic inference?
Developmental psychology, 50(8):2009, 2014.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning,
pp. 1–16, 2017a.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning,
pp. 1–16, 2017b.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality, 2023.

Johanna Eckert, Hannes Rakoczy, Shona Duguid, Esther Herrmann, and Josep Call. The ape
lottery: Chimpanzees fail to consider spatial information when drawing statistical inferences.
Animal Behavior and Cognition, 2021. URL https://api.semanticscholar.org/CorpusID:
226666071.

Mohamed El Banani, Amit Raj, Kevis-Kokitsi Maninis, Abhishek Kar, Yuanzhen Li, Michael
Rubinstein, Deqing Sun, Leonidas Guibas, Justin Johnson, and Varun Jampani. Probing the 3d
awareness of visual foundation models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21795–21806, 2024.

Sagi Eppel. Do large language vision models understand 3d shapes?, 2024. URL https://arxiv.
org/abs/2412.10908.

Chris Frith and Raymond J Dolan. Brain mechanisms associated with top-down processes in
perception. Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, 352(1358):1221–1230, 1997.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024a. URL https://arxiv.org/abs/2306.
13394.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A. Smith,
Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not
perceive, 2024b.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De
Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias
Wang, Michael Lingelbach, Aidan Curtis, Kevin T. Feigelis, Daniel Bear, Dan Gutfreund, David D.
Cox, Antonio Torralba, James J. DiCarlo, Josh Tenenbaum, Josh H. McDermott, and Dan Yamins.
Threedworld: A platform for interactive multi-modal physical simulation. In Joaquin Vanschoren
and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
735b90b4568125ed6c3f678819b6e058-Abstract-round1.html.

11

https://api.semanticscholar.org/CorpusID:226666071
https://api.semanticscholar.org/CorpusID:226666071
https://arxiv.org/abs/2412.10908
https://arxiv.org/abs/2412.10908
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/735b90b4568125ed6c3f678819b6e058-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/735b90b4568125ed6c3f678819b6e058-Abstract-round1.html


Published as a conference paper at ICLR 2025

Qiaozi Gao, Shaohua Yang, Joyce Chai, and Lucy Vanderwende. What action causes this? towards
naive physical action-effect prediction. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 934–945, 2018.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pp.
3354–3361. IEEE, 2012.

Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and temporal
reasoning, 2020. URL https://arxiv.org/abs/1910.04744.

E Bruce Goldstein. Sensation and perception. Wadsworth/Thomson Learning, 1989.

Google. Gemini: A family of highly capable multimodal models. Technical report, Google, 2023.

Google, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context, 2024. URL https://arxiv.org/abs/2403.05530.

Ankit Goyal, Kaiyu Yang, Dawei Yang, and Jia Deng. Rel3d: A minimally contrastive benchmark
for grounding spatial relations in 3d. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 10514–10525.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/76dc611d6ebaafc66cc0879c71b5db5c-Paper.pdf.

Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
Making the v in vqa matter: Elevating the role of image understanding in visual question answering.
International Journal of Computer Vision, 127(4):398–414, September 2018. ISSN 1573-1405.
doi: 10.1007/s11263-018-1116-0. URL http://dx.doi.org/10.1007/s11263-018-1116-0.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Xianda Guo, Ruijun Zhang, Yiqun Duan, Yuhang He, Chenming Zhang, Shuai Liu, and Long Chen.
Drivemllm: A benchmark for spatial understanding with multimodal large language models in
autonomous driving, 2024. URL https://arxiv.org/abs/2411.13112.

Hyowon Gweon, Joshua B. Tenenbaum, and Laura E. Schulz. Infants consider both the sample
and the sampling process in inductive generalization. Proceedings of the National Academy of
Sciences, 107(20):9066–9071, 2010. doi: 10.1073/pnas.1003095107. URL https://www.pnas.
org/doi/abs/10.1073/pnas.1003095107.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018a.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31, 2018b.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018c.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Mary Hegarty. Mechanical reasoning by mental simulation. Trends in cognitive sciences, 8(6):
280–285, 2004.

Almut Hoffmann, Vanessa Rüttler, and Andreas Nieder. Ontogeny of object permanence and object
tracking in the carrion crow, corvus corone. Animal behaviour, 82(2):359–367, 2011.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

12

https://arxiv.org/abs/1910.04744
https://arxiv.org/abs/2403.05530
https://proceedings.neurips.cc/paper_files/paper/2020/file/76dc611d6ebaafc66cc0879c71b5db5c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/76dc611d6ebaafc66cc0879c71b5db5c-Paper.pdf
http://dx.doi.org/10.1007/s11263-018-1116-0
https://arxiv.org/abs/2411.13112
https://www.pnas.org/doi/abs/10.1073/pnas.1003095107
https://www.pnas.org/doi/abs/10.1073/pnas.1003095107


Published as a conference paper at ICLR 2025

Zhiting Hu and Tianmin Shu. Language models, agent models, and world models: The law for
machine reasoning and planning, 2023.

Michelle A Hurst and Steven T Piantadosi. Continuous and discrete proportion elicit different
cognitive strategies. Cognition, 252:105918, 2024.

Gunnar Johansson. Visual motion perception. Scientific American, 232(6):76–89, 1975.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning, 2016.

P.N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Language, Inference, and
Consciousness. Cognitive science series. Harvard University Press, 1983. ISBN 9780674568822.
URL https://books.google.com/books?id=FS3zSKAfLGMC.

C. Kadosh and A. Dowker. The Oxford Handbook of Numerical Cognition. Oxford handbooks.
Oxford University Press, 2015. ISBN 9780199642342. URL https://books.google.com/
books?id=BsADCgAAQBAJ.

Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi
Feng. How far is video generation from world model: A physical law perspective. arXiv preprint
arXiv:2411.02385, 2024.

Immanuel Kant, John Miller Dow Meiklejohn, Thomas Kingsmill Abbott, and James Creed Meredith.
Critique of pure reason. JM Dent London, 1934.

Heather Barry Kappes and Carey K Morewedge. Mental simulation as substitute for experience.
Social and Personality Psychology Compass, 10(7):405–420, 2016.

Edna L Kaufman, Miles W Lord, Thomas Whelan Reese, and John Volkmann. The discrimination of
visual number. The American journal of psychology, 62(4):498–525, 1949.

Bruce E Kendall, Cheryl J Briggs, William W Murdoch, Peter Turchin, Stephen P Ellner, Edward
McCauley, Roger M Nisbet, and Simon N Wood. Why do populations cycle? a synthesis of
statistical and mechanistic modeling approaches. Ecology, 80(6):1789–1805, 1999.

Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. Habitat synthetic scenes
dataset (hssd-200): An analysis of 3d scene scale and realism tradeoffs for objectgoal navigation,
2023. URL https://arxiv.org/abs/2306.11290.

David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding
and computation. TRENDS in Neurosciences, 27(12):712–719, 2004.

Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B. Tenenbaum. Learning to act
from actionless videos through dense correspondences. In The Twelfth International Conference
on Learning Representations, 2024.

Alexander Kuhnle and Ann Copestake. Shapeworld - a new test methodology for multimodal
language understanding, 2017. URL https://arxiv.org/abs/1704.04517.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench:
Benchmarking multimodal llms with generative comprehension, 2023. URL https://arxiv.
org/abs/2307.16125.

13

https://books.google.com/books?id=FS3zSKAfLGMC
https://books.google.com/books?id=BsADCgAAQBAJ
https://books.google.com/books?id=BsADCgAAQBAJ
https://arxiv.org/abs/2306.11290
https://arxiv.org/abs/1704.04517
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125


Published as a conference paper at ICLR 2025

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
Chen, Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video
understanding benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 22195–22206, June 2024c.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping
Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video understanding
benchmark, 2024d.

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the Association
for Computational Linguistics, 11:635–651, 2023.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model
an all-around player? In Computer Vision – ECCV 2024: 18th European Conference, Milan,
Italy, September 29–October 4, 2024, Proceedings, Part VI, pp. 216–233, Berlin, Heidelberg,
2024a. Springer-Verlag. ISBN 978-3-031-72657-6. doi: 10.1007/978-3-031-72658-3_13. URL
https://doi.org/10.1007/978-3-031-72658-3_13.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model
an all-around player?, 2024b.

Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
Shiyi Cao, Yuxian Gu, Dacheng Li, Xiuyu Li, Yunhao Fang, Yukang Chen, Cheng-Yu Hsieh,
De-An Huang, An-Chieh Cheng, Vishwesh Nath, Jinyi Hu, Sifei Liu, Ranjay Krishna, Daguang
Xu, Xiaolong Wang, Pavlo Molchanov, Jan Kautz, Hongxu Yin, Song Han, and Yao Lu. Nvila:
Efficient frontier visual language models, 2024c. URL https://arxiv.org/abs/2412.04468.

Francesco Mannella and Giovanni Pezzulo. Transitive inference as probabilistic preference
learning. Psychonomic Bulletin amp; Review, October 2024. ISSN 1531-5320. doi:
10.3758/s13423-024-02600-6. URL http://dx.doi.org/10.3758/s13423-024-02600-6.

David Marr. Vision: A computational investigation into the human representation and processing of
visual information. MIT press, 2010.

Brendan O McGonigle and Margaret Chalmers. Are monkeys logical? Nature, 267(5613):694–696,
1977.

Andrea Mechelli, Cathy J Price, Karl J Friston, and Alumit Ishai. Where bottom-up meets top-down:
neuronal interactions during perception and imagery. Cerebral cortex, 14(11):1256–1265, 2004.

Maurice Merleau-Ponty. The world of perception. Routledge, 2004.

Meta AI. Llama 3.2: Revolutionizing edge AI and vision with open, customizable models. https:
//ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/. [Online;
accessed 15-February-2025].

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang Ning, and Parisa Kordjamshidi. SPARTQA:
A textual question answering benchmark for spatial reasoning. In Kristina Toutanova, Anna
Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4582–4598, Online, June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.364. URL https://aclanthology.org/2021.naacl-main.
364/.

14

https://doi.org/10.1007/978-3-031-72658-3_13
https://arxiv.org/abs/2412.04468
http://dx.doi.org/10.3758/s13423-024-02600-6
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://aclanthology.org/2021.naacl-main.364/
https://aclanthology.org/2021.naacl-main.364/


Published as a conference paper at ICLR 2025

Stephen R Mitroff and Brian J Scholl. Seeing the disappearance of unseen objects. Perception, 33
(10):1267–1273, 2004.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems (RSS), 2024.

Mary C Olmstead and Valerie A Kuhlmeier. Comparative cognition. Cambridge University Press,
2015.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan, Anette Frank, Iacer Calixto, and Albert Gatt.
VALSE: A task-independent benchmark for vision and language models centered on linguistic
phenomena. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings

15



Published as a conference paper at ICLR 2025

of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 8253–8280, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.567. URL https://aclanthology.org/2022.acl-long.567/.

Maitreya Patel, Tejas Gokhale, Chitta Baral, and Yezhou Yang. Cripp-vqa: Counterfactual reasoning
about implicit physical properties via video question answering, 2022. URL https://arxiv.
org/abs/2211.03779.

Xinyu Pi, Mingyuan Wu, Jize Jiang, Haozhen Zheng, Beitong Tian, Chengxiang Zhai, Klara Nahrstedt,
and Zhiting Hu. Uouo: Uncontextualized uncommon objects for measuring knowledge horizons
of vision language models. arXiv preprint arXiv:2407.18391, 2024.

Ben Prystawski, Michael Y. Li, and Noah D. Goodman. Why think step by step? reasoning emerges
from the locality of experience, 2023. URL https://arxiv.org/abs/2304.03843.
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Ernő Téglás, Edward Vul, Vittorio Girotto, Michel Gonzalez, Joshua B Tenenbaum, and Luca L
Bonatti. Pure reasoning in 12-month-old infants as probabilistic inference. science, 332(6033):
1054–1059, 2011.

Susan P Thompson and Elissa L Newport. Statistical learning of syntax: The role of transitional
probability. Language learning and development, 3(1):1–42, 2007.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Joshua B. Tenenbaum,
Daniel LK Yamins, Judith E Fan, and Kevin A. Smith. Physion++: Evaluating physical scene
understanding that requires online inference of different physical properties, 2023. URL https:
//arxiv.org/abs/2306.15668.

17

https://aclanthology.org/P17-2034/
https://aclanthology.org/P19-1644/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2306.15668
https://arxiv.org/abs/2306.15668


Published as a conference paper at ICLR 2025

Martijn Van Otterlo and Marco Wiering. Reinforcement learning and markov decision processes. In
Reinforcement learning: State-of-the-art, pp. 3–42. Springer, 2012.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into
the future: Multiview visual forecasting and planning with world model for autonomous driving.
arXiv preprint arXiv:2311.17918, 2023.

Ziyue Wang, Chi Chen, Fuwen Luo, Yurui Dong, Yuanchi Zhang, Yuzhuang Xu, Xiaolong Wang,
Peng Li, and Yang Liu. Actiview: Evaluating active perception ability for multimodal large
language models, 2024. URL https://arxiv.org/abs/2410.04659.

Michael Weisberg. Simulation and Similarity: Using Models to Understand the World. Oxford
University Press, 01 2013. doi: 10.1093/acprof:oso/9780199933662.001.0001. URL https:
//doi.org/10.1093/acprof:oso/9780199933662.001.0001.

David Whitney and Allison Yamanashi Leib. Ensemble perception. Annual review of psychology, 69
(1):105–129, 2018.

Susan Wood, Kathleen M Moriarty, Beatrice T Gardner, and R Allen Gardner. Object permanence in
child and chimpanzee. Anim. Learn. Behav., 8(1):3–9, March 1980.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. The knowledge
engineering review, 10(2):115–152, 1995.

Barlow C. Wright and Jennifer Smailes. Factors and processes in children’s transitive deductions.
Journal of Cognitive Psychology, 27(8):967–978, 2015. doi: 10.1080/20445911.2015.1063641.
URL https://doi.org/10.1080/20445911.2015.1063641. PMID: 26635950.

Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. Star: A benchmark for
situated reasoning in real-world videos, 2024.

Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms,
2023. URL https://arxiv.org/abs/2312.14135.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of question-answering
to explaining temporal actions, 2021. URL https://arxiv.org/abs/2105.08276.

Fei Xu and Stephanie Denison. Statistical inference and sensitivity to sampling in 11-month-
old infants. Cognition, 112(1):97–104, 2009. ISSN 0010-0277. doi: https://doi.org/10.
1016/j.cognition.2009.04.006. URL https://www.sciencedirect.com/science/article/
pii/S0010027709000912.

Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking
in space: How multimodal large language models see, remember, and recall spaces, 2024. URL
https://arxiv.org/abs/2412.14171.

Kaiyu Yang, Olga Russakovsky, and Jia Deng. Spatialsense: An adversarially crowdsourced
benchmark for spatial relation recognition, 2019. URL https://arxiv.org/abs/1908.02660.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 2023.

Wenqian Ye, Guangtao Zheng, Yunsheng Ma, Xu Cao, Bolin Lai, James Matthew Rehg, and Aidong
Zhang. MM-spubench: Towards better understanding of spurious biases in multimodal LLMs.
In Workshop on Responsibly Building the Next Generation of Multimodal Foundational Models,
2024.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
Tenenbaum. Clevrer: Collision events for video representation and reasoning, 2020a.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
Tenenbaum. Clevrer: Collision events for video representation and reasoning, 2020b. URL
https://arxiv.org/abs/1910.01442.

18

https://arxiv.org/abs/2410.04659
https://doi.org/10.1093/acprof:oso/9780199933662.001.0001
https://doi.org/10.1093/acprof:oso/9780199933662.001.0001
https://doi.org/10.1080/20445911.2015.1063641
https://arxiv.org/abs/2312.14135
https://arxiv.org/abs/2105.08276
https://www.sciencedirect.com/science/article/pii/S0010027709000912
https://www.sciencedirect.com/science/article/pii/S0010027709000912
https://arxiv.org/abs/2412.14171
https://arxiv.org/abs/1908.02660
https://arxiv.org/abs/1910.01442


Published as a conference paper at ICLR 2025

Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa Kordjamshidi, Joyce Chai, and Ziqiao
Ma. Do vision-language models represent space and how? evaluating spatial frame of reference
under ambiguities. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=84pDoCD4lH.

Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
Jianwei Yin. Vl-checklist: Evaluating pre-trained vision-language models with objects, attributes
and relations, 2023. URL https://arxiv.org/abs/2207.00221.

Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
Learning compositional world models for robot imagination, 2024.

19

https://openreview.net/forum?id=84pDoCD4lH
https://arxiv.org/abs/2207.00221


Published as a conference paper at ICLR 2025

APPENDIX

A CONCEPTUAL FRAMEWORK EXPLAINED

A.1 THE DUAL-STAGE MODEL

In general, world models (WMs) predict the future states of the world (based on observations of the
past and current states) and the next action to be taken.2 Formally, a WM θ recursively models the
transition distribution: Pθ(St | S1, a1, . . . , St−1, at−1).

With theoretical consistency with previous research (Knill & Pouget, 2004; Ha & Schmidhuber,
2018a; Smith et al., 2024), we decouple the world modeling process into two stages. In the first
stage, an agent encodes environmental stimuli from sensory signals into internal representations of
the external world. In the second stage, the agent performs an extrapolation into possible future
states. As time progresses and future states come into embodiment, the agent acquires ground truth
data and updates its WM based on the divergence between prediction and reality. Unlike model-free
RL, where the agent optimizes its action policy to maximize utility, world modeling is primarily a
supervised learning problem, optimized through error reduction.

Given this dual-stage framework, world modeling can fail for two different reasons:

• Perceptual limitations that leads to problematic representations of external states. For example, an
agent may encode different colors identically or conflate object size with speed.

• Prediction limitations that arise from insufficient mechanistic knowledge and lead to inaccurate
simulations. For example, an agent may fail to grasp momentum conservation or struggle with
complex multi-object collisions.

Our framework addresses these challenges by considering both perception competency and prediction
competency. We discuss how we further decompose the two stages to make this benchmark
empirically possible.

A.2 PERCEPTION PROCESS

Accurate prediction of future states relies on constructing precise representations of the current
environment, a process known as perception (Goldstein, 1989). Perceptions have multitudinous
dimensions: force, motion, temperature, sound, magnetics, space, time, quantity, and other agents, to
name a few (Merleau-Ponty, 2004; Coren et al., 2004). Agents detect physical signals from external
stimuli through their physiological sensors, converting multimodal raw inputs into physio-electronic
signals. These signals then undergo complex bottom-up processing and functional transformations
until they become recognizable to higher cognitive faculties involved in semantics and reasoning.
Subsequently, top-down processing refines and hypothesizes representations of the world state. This
bidirectional interaction continues iteratively until convergence. Such top-down processing enables
more reliable and robust representations of the world. (Rao & Ballard, 1999; Frith & Dolan, 1997;
Delorme et al., 2004; Mechelli et al., 2004) For example, animals such as crows, dolphins, and
chimpanzees exhibit an understanding of object permanence, allowing them to maintain stable
representations of objects even after they become obscured or disappear (Baillargeon et al., 1985;
Hoffmann et al., 2011; Wood et al., 1980; Mitroff & Scholl, 2004). Due to the sensory capabilities
of current VLMs, we keep spatial, temporal, quantitative, visual, and motion perceptions in our
framework only to accommodate their status quo.

A.3 PREDICTION PROCESS

To formalize how next-state prediction is processed, we draw on the compositional generalization
framework from Dziri et al. (2023) and consider next-state predictions as a topologically sorted
computational graph. Given a world environment, each state can be hierarchically decomposed into a
structured sequence of nodes, where a node intuitively represents an object as a vector of attributes
(e.g., speed, mass, direction, color). The underlying rationale is as follows:

2We regard the corner case of “inaction” as an element of the action space
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1. Any valid program can be expressed as an equivalent topologically sorted computational graph
based on dependency structures;

2. All world simulators function as programs;
3. Therefore, all world simulators have equivalent graphs. The topological order of the graph is

determined by time and world dynamics.

Within this framework, future state prediction involves computing values for future nodes based
on historical nodes, using the current time step as a cutoff. We then identify three necessary and
collectively sufficient conditions.

Atomic Mechanistic Simulation. Mechanism simulation refers to the process of predicting a
system’s future states via representing and modeling the dynamic interactions among its component
parts (Weisberg, 2013; Hegarty, 2004; Barsalou, 2008). This is to be contrasted with statistical
predictions, which typically rely on correlational shortcuts and bypass explicit simulations of
component behaviors over time (Kendall et al., 1999). Mechanistic knowledge about natural laws
and object-specific properties, functions, behavioral patterns, and interactive dynamics are the fuel
of mechanistic simulation (Craver et al., 2024), and are mostly learned in a posterior manner (Kant
et al., 1934). Here we especially emphasize the atomicity of mechanistic simulation, i.e., single
object motion or minimally viable object interactions. More complicated world dynamics are left to
the compositional inference part. In terms of computational graphs, extrapolation based on atomic
mechanistic knowledge corresponds to predicting the immediate next state based on the current
observations and intended action. Formally, the inference process can be expressed as predicting

St ∼ P (St | St−1, at−1, . . . , St−h, at−h),

where h denotes the window size of historical states. All of St−1 . . . St−h are observed.

Transitive Prediction. A WM that only predicts the immediate next state is hardly useful for
complex planning in long-horizon tasks. Given a long hypothetical action sequence generated from
any policy, a competent WM should accurately predict the corresponding future state. The statistically
less biased way is to perform a step-by-step extrapolation into distant future states (Prystawski et al.,
2023). Known as transitive inference, this ability is exhibited by many intelligent animals, including
rats, monkeys, and human infants (Wright & Smailes, 2015; Thompson & Newport, 2007; Mannella
& Pezzulo, 2024; Bryant & Trabasso, 1971; McGonigle & Chalmers, 1977). Formally, the inference
process can be expressed as:

(Ŝt+q, Ŝt+q−1, . . . , Ŝt)

∼ Pθ(Ŝt+q, Ŝt+q−1, . . . , Ŝt |
at, . . . , at+q−1, at+q,

St−1, at−1, . . . , St−h, at−h),

and the most natural chain of thoughts (CoT) paradigm can be expressed recursively with:

Ŝt+i ∼ Pθ(Ŝt+i | at+i, Ŝt+i−1, at+i−1, . . . ,

Ŝt, at, St−1, at−1, . . . , St−h, at−h).

All Ŝi are inferred, not observed. In terms of computational graphs, the transitive extrapolation
through time takes the form of a forward chain.

Compositional Prediction. Previous research in cognitive psychology provides strong evidence that
humans and intelligent animals can adjust their statistical expectations of outcome distributions when
domain-specific mechanisms (e.g., agentic preferences, intuitive physics, or sampling procedures)
conflict with the base rates of the population (Xu & Denison, 2009; Eckert et al., 2021; Denison
et al., 2014; Gweon et al., 2010; Téglás et al., 2011). Extending from sampling processes to general
next-state predictions, we identify another advanced inference mechanism: integrating two or more
known conflicting or synergistic mechanisms into a unified effect.

We provide a motivating example to demonstrate what we mean by compositional inference: Consider
a 2D plane with three balls, A, B, and C, each of equal weight.
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• Observation 1: Ball A strikes Ball C from the lower left at a specific speed and angle, causing C
to move upper right.

• Observation 2: Ball B strikes Ball C from the vertically symmetric lower right at the same speed,
causing C to move upper left.

Now, suppose the agent has never observed a scenario where a single ball is simultaneously struck
by two others. However, with basic physical intuition, the agent should infer that the leftward and
rightward motion components cancel each other out, leading to a prediction that Ball C will move
vertically upward.

Formally expressing compositional inference under the standard Markov Decision Process will
be tricky (Van Otterlo & Wiering, 2012), because the monolithic state denotation S in the MDP
formalism fails to capture a crucial fact that complex states can be decomposed into multiple
atomic states. To bridge the gap, we define a conceptual-level composition function (Marr, 2010)
St = Compose

[
S
(1)
t , . . . S

(n)
t

]
to denote the whole relationship between n component states and

complex states. Then compositional inference can be expressed as:

St ∼ Compose
[
S
(1)
t , . . . S

(n)
t )

where S
(i)
t ∼ Pθ(S

(i)
t | S(i)

t−1, at−1, . . . S
(i)
t−h, at−h

]
. The compositional extrapolation through time

takes the form of a collider with two or more parent node.

A.4 FINAL REMARKS

In this work and the conceptual framework section, we adopt a specific interpretation of a world
model, which we refer to as a mechanistic world model. For example, a statistical model (e.g.,
multi-linear regression, XGBoost) used to predict a client’s risk of loan default based on features like
yearly income, number of children, ethnicity, and medical history is undeniably a form of future-state
prediction. However, such a model does not faithfully simulate world dynamics, as it lacks any
representation of temporal progression. While it may provide useful predictive insights, it does not
qualify as a mechanistic model because it blackboxes causal mechanisms and interactive kinetic
dynamics. Thus, it is important to recognize that mechanistic simulation is not the only approach to
extrapolating future states.

B BENCHMARK DETAILS AND COMPARISONS

B.1 BENCHMARK STATISTICS

B.1.1 PERCEPTION

Spatial Perception

1. Spatial Relation (SR): Given the front and top view of two objects on a table, let the model infer
the relative position of one object with respect to the other. This task evaluates whether the model
can accurately discern spatial relationships based on visual cues.

2. Spatial Vacancy (SE-V): Given an object and a structure with a hollow space in the middle, let the
model infer whether the object can fit into the hollow space. Thus testing the model’s understanding
of spatial constraints.

3. Spatial Occupancy (SE-O): Given an object and a structure with a hollow space in the middle, let
the model infer which object is larger. Thus testing the model’s understanding of object size.

4. Spatial Positioning (SP): Given the front and side view of a set of object arrangements, let the
model infer the top view of the objects.

These multi-view tasks emphasize the model’s ability to synthesize distinct viewpoints into a coherent
three-dimensional representation of object arrangements.

Temporal Perception

1. Temporal positioning (TP): Compare two episodes of object motions from different views, and let
the model differentiate which motion started first.
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2. Temporal extension (TE): Compare two episodes of object motions from different perspectives,
and let the model differentiate which motion lasts longer.

Collectively, these tasks investigate the aptitude of a model to maintain consistent temporal
representations, estimate durations, and infer the correct order of events.

Visual Perception

1. Color (V-C): Differentiating whether two objects have the same color, or identifying which color
the object is.

2. Shape (V-S): Determine the object’s shape; another task involves differentiating whether two
objects have the same shape.

3. Material (V-M): Differentiating whether the two objects have the same material or the model
determine the material of the given object.

By isolating these fundamental visual features, the tasks provide targeted evaluations of how
effectively a model can parse and differentiate basic object attributes, separate from any contextual or
motion-based confounding factors.

Motion Perception

1. Motion Identification (MI): Given an episodes of motions of an object and a set of static objects,
let the model decide which object is moving. This setup tests the model’s capacity to identify the
moving action of objects.

2. Motion Speed (MS): Given episodes of motions of two objects, let the model decide which object
moves faster. This setup tests the model’s capacity to track position changes over time and estimate
relative velocity.

3. Motion Direction (MD): Given one moving object and a set of static objects, let the model
determine which static object the moving object is heading towards. This setup tests the model’s
capacity to track position changes over time and estimate relative moving direction.

4. Motion Trajectory (MT): Given two episodes of object motions, let the model decide whether
their motion trajectories are the same, assessing its aptitude for higher-level spatiotemporal pattern
recognition and object-specific path tracking across multiple frames.

Quantitative Perception

1. Discrete Quantity (DQ): Given the top view of objects on the table, let the model count the objects.
This setup evaluates the model capacity for discrete numerical estimation.

2. Continuous Quantity (CQ): Given the top view of two objects with the same color theme, let the
model determine which object has a darker shade.

3. Relative Quantity (RQ): Given the top view of objects with different colors, determine which color
group has more objects. This setup probes counting skills, numerical reasoning, and perceptual
comparisons in a visual context.

B.1.2 PREDICTION

Mechanistic Knowledge

1. Intuitive Physics (M-IP): Given a sequence of images showing consecutive states of the environment
in which two objects move towards each other, let the model choose the most probable prediction
of the next state. This setup evaluates the model capacity in physical reasoning.

2. Agent Navigation (M-Nav): Given an image of the start state, let the model choose what is most
likely to be the final state after the robot/vehicle moves in a certain direction. This setup evaluates
the model capacity in predictive reasoning.

3. Agent Manipulation (M-Man): Given an image of the start state, let the model choose what is most
likely to be the final state after the robot arm does certain movements toward the object. This setup
evaluates the model capacity in predictive reasoning for robot manipulation.

Transitivity
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Benchmark Spatial Temporal Quantity Visual Motion Mechanistic Transitivity Compositionality
SP MV SO SE TP TE DQ CQ RQ AR-S AR-M AR-C MD DI SC MT IP Nav Mani Nav Mani IP Mani

BLINK (2024b) ✔ ✔ ✔ ✔ ✔
SpatialRGPT (2024) ✔ ✔
VSI-Bench (2024) ✔ ✔ ✔

VL-CheckList (2023) ✔ ✔ ✔ ✔
CLEVR (2016) ✔ ✔ ✔ ✔ ✔ ✔

CLEVRER (2020a) ✔ ✔ ✔ ✔ ✔ ✔ ✔
NLVR (2017) ✔ ✔ ✔ ✔

NLVR2 (2019) ✔ ✔
ShapeWorld (2017) ✔ ✔ ✔ ✔

VALSE (2022) ✔ ✔ ✔
MVBench (2024c) ✔ ✔ ✔ ✔ ✔
MMBench (2024a) ✔ ✔ ✔ ✔ ✔

MME (2024a) ✔ ✔ ✔
VQA(v2) (2018) ✔ ✔ ✔
NExT-QA (2021) ✔ ✔

V* (2023) ✔ ✔ ✔ ✔
ActiView (2024) ✔ ✔

SEED-Bench (2023) ✔ ✔ ✔ ✔ ✔
Perception Test (2023) ✔ ✔ ✔ ✔

BlindTest (2024) ✔ ✔
SHAPES (2016) ✔ ✔
TOMATO (2024) ✔ ✔ ✔ ✔

STAR (2024) ✔ ✔

Ours ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 5: Comparison between different benchmarks.

1. Agent Navigation (T-Nav): Given an image of the start state, let the model choose what is most
likely to be the final state after the robot/vehicle moves through multiple directions in sequence.
This setup evaluates the model capacity in predictive reasoning for autonomous navigation.

2. Agent Manipulation (T-Man): Given an image of the start state, let the model choose what is
most likely to be the final state after the robot arm performs two actions in sequence. This setup
evaluates the model capacity in multi-step predictive reasoning for robotic manipulation.

Compositionality

1. Multi-Object Intuitive Physics (C-IP): Given several images of two balls colliding with a third
object at the same time, let the model predict the state after the collision occurred. This task
evaluates the model’s ability to perform compositional inferences about physical causality and
object behavior.

2. Multi-Agent Manipulation (C-Man): Given an image of the start state, let the model choose what is
most likely to be the final state after two robot arms do certain actions on one object simultaneously.
This setup evaluates the model capacity in concurrent action predictive reasoning for robotic
manipulation.

B.2 RELEVANT BENCHMARKS

We summarize and compare WM-ABench to existing benchmarks in Table 5, and provide more
descriptive details below.

Visual semantics perception benchmark. This line of work primarily tests multimodal models’
static (image) and dynamic (video) recognition competency of object class, object existence, object
components, object properties, postures, actions, agent-object interactions, activities, emotions, social
relations, functions, image quality, image style, scene, OCR, layouts. Such competency requires
models to have diverse schematic knowledge and common sense about the anthropocentric world,
and strong pattern recognition capability (i.e., recognize unobserved instances of known categories).
However, the foundational perceptual and cognitive functions as enumerated in our work are out of
coverage. Representative works in this line includes MMBench(Liu et al., 2024b), MvBench (Li
et al., 2024d), VSR(Liu et al., 2023), VQA v2 (Goyal et al., 2018), UOUO (Pi et al., 2024), MME
(Fu et al., 2024a), STAR (Wu et al., 2024), Perception Test (Pătrăucean et al., 2023), MSRVTT-QA
(Chen et al., 2022), NExT-QA (Xiao et al., 2021).

Visual perception Benchmark. This line of work primarily focuses on testing models’ competency
of low-level, semantic-scarce visual perceptions, such as elementary visual attributes recognition (e.g.
color, material, shape, size, texture), line segments, lighting, optical flow, insection, segmentation,
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overlapping area, corresponding points across different perspectives. CLEVR (Johnson et al., 2016),
BLINK (Fu et al., 2024b), BlindTest (Rahmanzadehgervi et al., 2024), V* (Wu & Xie, 2023), KITTI
(Geiger et al., 2012), ActiView (Wang et al., 2024), Shitsukan-eval (Shiono et al., 2025) .

Spatiotemporal and motion perception Benchmark. This spatial perception tasks focus on
evaluating models’ ability to understand spatial relationships, configurations, and arrangements
within static and dynamic contexts. Spatial perception tasks require recognizing geometric and
topological relationships between objects, including proximity, alignment, containment, intersection,
adjacency, relative positions, orientation, and distances, as well as multi-perspective alignment and
integration. Rel3D (Goyal et al., 2020), SPARTQA (Mirzaee et al., 2021), SpatialSense (Yang et al.,
2019), 3D-Shape-Test (Eppel, 2024), DriveMLLM (Guo et al., 2024), VSI-Bench (Yang et al., 2024).

Temporal and motion perception go hand-in-hand. Since perception of time typically relies on changes
and motions, temporal and motion perception tasks lack clear boundaries. Temporal perceptions
typically involve: action count, attribute change, action sequence and procedure understanding, event
order, scene transition, character order, and action antonym. Motion perception typically involves:
direction (e.g. left, clockwise, up, outward), speed, and trajectory. Representative works includexw:
TOMATO (Shangguan et al., 2024), CATER (Girdhar & Ramanan, 2020).

Next state prediction benchmark. Next-state prediction is different from the perception, visual-
semantic inference (typically about static, state-intrinsic specifications, such as categories, properties,
functions, relations, emotions, and intentions), and verbal-logical reasoning (e.g. comparison, logic
operations) tasks introduced above. Emphasizing extrapolating objective world states, next-state
prediction requires grounded knowledge (in contrast with verbal knowledge) of world mechanics
and dynamics. That is, how the environment changes and transits. The agent-centric next-state
prediction would additionally emphasize action-transition and interactive dynamics. Representative
works includes: Physion (Bear et al., 2022), Physion++ (Tung et al., 2023), Phyre (Bakhtin et al.,
2019), CLEVRER (Yi et al., 2020b), IntPhys (Riochet et al., 2020), CoPhy (Baradel et al., 2020),
CRIPP-VQA(Patel et al., 2022), SEED-Bench (Li et al., 2023).

C SIMULATOR SETUP

We describe how we set up each simulator for generating test cases for the proposed world model
benchmark.

C.1 THREEDWORLD

We use the ThreeDWorld simulator (Gan et al., 2021) to generate images for the perception tasks,
with intuitive physics (e.g., collisions) modeled using the Physion framework (Bear et al., 2022).
We first select a curated set of pre-packaged scenes, objects, and materials from ThreeDWorld. For
most questions, we spawn selected objects like cubes and spheres onto the floor or a table within
one of the selected scenes, then randomly varying their color, size, position, and material to ensure
diversity across samples. We then render images of the scene from multiple viewing angles, including
top-down, front, and side views, to ensure diverse perspectives for question generation. For tasks
requiring a sequence of images to demonstrate object movement, we first render an initial image
capturing the objects in their original spawned positions. We then teleport the objects to new locations,
rendering an image after each movement until the desired movement is complete. After generating
all images for a given scene, we clear the scene by removing all objects. We then repeat the process
in a newly selected scene, beginning with the random selection of object color, size, position, and
material to ensure diversity across scenes.

C.2 MANISKILL

We use both ManiSkill framework version 2 (Gu et al., 2023) and 3 (Tao et al., 2024)) and we do
the following to generate the images used in the dataset. For most questions, we spawn objects
such as cubes and spheres onto a table in the ReplicaCAD apartment scene (Szot et al., 2021b)
and render an image of the scene. For tasks requiring before-and-after images, we first render
the scene, then teleport objects to new locations, and render again. For static tasks, following a
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Figure 4: Heatmap showing s-RE scores that quantify the relative impact of different physical
dimensions on perception task performance. Higher values (darker red) indicate stronger entanglement
between a physical dimension and task performance, while lower values (lighter colors) suggest
weaker relationships.

similar approach to ThreeDWorld, we place several cubes and spheres on a table within the provided
background. To ensure sample diversity, these objects vary randomly in color, size, and position.
We then render images from multiple viewpoints (e.g., top-down, front, and side angles) to provide
diverse perspectives for subsequent question generation For tasks requiring a sequence of images
to capture object movements (similar to ThreeDWorld), we first render an initial image depicting
the objects in their original positions. We then relocate the objects, rendering an image after each
repositioning, until the intended motion is complete. For agent manipulation questions, we use
the RoboCasa dataset (Nasiriany et al., 2024). One scene features two Franka Panda arm robots,
while another includes only one. Using ManiSkill, we randomize several dimensions in our test
cases, including object geometry, object color, apartment layout, and visual style. Teleoperation
tools collect demonstrations of both successful and failed trajectories for each object geometry, with
physics simulation enabled. Other randomized dimensions are synthetically generated. For the
question-answer pairs, we render the first and last frames of each demonstration

C.3 PHYSION

We use various setups (e.g. collide, slide, drop) provided by Physion (Bear et al., 2022) and instantiate
various objects and run the physics simulation to simulate various physical effects such as dropping
or rolling, testing mechanistic state transition knowledge. An image is captured before the simulation
starts and frames are iteratively being captured after a simulation has run.

C.4 CARLA

Using Carla (Dosovitskiy et al., 2017b) simulator we do the following to generate the images used
in the dataset. We first select a curated set of pre-packaged towns, weather, and car agents from
Carla. For the majority questions we spawn a car agent at a random position onto one of the selected
scenes, instantiated with a random weather from the selected weathers. We refined the control
mechanisms of the car agent to enhance realism, ensuring that actions such as moving forward and
turning exhibit natural and physically plausible behavior that aligns with their corresponding natural
language descriptions. We then provide commands instructing the car to move in a specified direction
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or make a turn at an intersection. The simulator subsequently renders and captures a sequence of
images depicting the car’s actions, which are used to construct our dataset.

C.5 HABITAT

We use Habitat 2 (Szot et al., 2021a) to render the HSSD (Khanna et al., 2023) dataset, which includes
a large number of simulated indoor scenes, to create navigational transition action-state pairs. We use
discrete actions that enable the agent in the simulation to move around and change viewing directions.
Pre-condition and post-condition images are generated for the dataset.

D ADDENDUM TO RESULTS

D.1 ENTANGLEMENT IN PERCEPTION TASKS

Figure 4 provides a heatmap showing Relative Entanglement (s-RE) scores. These scores represent
the average performance deviation (s-RE) across a subset of the highest-performing models (GPT-4o,
Gemini-1.5 Pro, Qwen2-VL, Qwen2.5-VL, and InternVL-2.5).

D.2 EVALUATION VIA PERCEPTUAL QUERIES

We devised three targeted perceptual queries to rigorously assess the models’ understanding of
dynamic scene attributes:

• Does the scene contain a moving object?
• What is the observed color of the moving object?
• What is the observed shape of the moving object?

These queries are intended to verify that the models accurately detect and interpret the moving
object—a critical prerequisite for successful task performance. Notably, this stringent evaluation
protocol resulted in the exclusion of approximately 30% of the test instances, thereby underscoring
the robustness and effectiveness of our filtering approach.

E EVALUATION AND REPRODUCIBILITY

E.1 HUMAN EVALUATION

We recruited Mechanical Turk Masters on Amazon Mechanical Turk. Annotators were required to
have a 98% HIT approval rate, at least 100 approved HITs, and reside in the United States. Each
problem was evaluated by three annotators, with the final label determined by majority vote (ties were
resolved by randomly selecting an answer). Workers were paid $1 per HIT (10 examples per HIT,
where each example took about 20 to 30 seconds). For each task, we provide brief task instructions.
Here is an example:

You will be provided with six images, each representing evenly spaced frames from a video.
Two moving objects are visible in the frames. Your task is to determine which object started
moving first, $object_name1 or $object_name2?

E.2 VLM EVALUATION

We develop a general prompt framework to support both open-source and closed-source models
under a unified design. The system is built around a general evaluator class capable of loading and
executing multiple model types. Our data management strategy involves categorizing datasets and
assigning each task a unique identifier. This allows seamless retrieval of the corresponding datasets
for varied evaluation scenarios. To streamline prompt creation and ensure consistency, we maintain
prompt template files containing different formats for a wide range of question types. Below is the
system prompt that we use to regularize the output format from the models:
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You are a helpful assistant. You will be given a question to answer. If it is a multichoice question,
return the index of your choice 1,2,3,4 or A,B,C,D depending on the question, and then followed
by any explanation necessary. If it is a yes/no question, clearly answer “yes” or “no” at first, and
then follow with your explanation if needed. If you are asked to choose the images, please note
that the last four images of all the given images are your choices. And your answer should be 1
or 2 or 3 or 4 pointing to these last four images.

E.3 COMPUTATIONAL RESOURCE

We use H100 GPUs to run the experiments, with an estimated total runtime of 200 GPU hours for
model inference.

E.4 LICENSE AND RESEARCH ARTIFACTS

Simulators. Regarding the licenses or terms for the use and distribution of artifacts, our paper
utilizes the following simulation environments: ThreeDWorld (Gan et al., 2021), ManiSkill (Tao
et al., 2024), Physion (Bear et al., 2022), Carla (Dosovitskiy et al., 2017b), and Habitat 2 (Szot et al.,
2021a). Detailed documentation on these artifacts is provided in Appendix C. Their corresponding
licenses are listed in table 6.

Simulators URL License

ThreeDWorld (TDW) Link BSD-2-Clause
ManiSkill Link Apache v2.0
Physion Link MIT license
Carla Link MIT license
Habitat 2 Link MIT license

Table 6: License information for the simulators used.

Having reviewed the rights and terms of these licenses, we confirm that we have fully complied with
their requirements. Our work will be released under the MIT License, ensuring no legal issues arise.
Our benchmark is designed to provide a fundamental evaluation of the core world modeling abilities
in VLMs, which generally do not involve social aspects or social reasoning. We stipulate that our
work should be used strictly for academic purposes. Since our data is collected from simulators,
it is fully anonymized, does not contain personally identifiable information, and does not require
additional measures to verify the absence of sensitive information relevant to individuals.
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https://github.com/threedworld-mit/tdw
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