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ABSTRACT

The general-purpose robots need to continuously acquire new skills in life-
long spans without revisiting past experiences, known as Rehearsal-free Lifelong
Learning, which remains significantly challenging. Recent advances learn a sep-
arate adapter along pretrained policy for each new skill to address catastrophic
forgetting problem, ignoring the shared knowledge between old skills and new
ones. To tackle these issues, we propose Primitive-level Skill Prompt Learn-
ing (PSPL), to achieve lifelong robot manipulation via reusable and extensible
primitives. Within our two stage learning scheme, we first learn a set of prefix
skill prompts to extract shared knowledge through multi-skills pre-training stage,
where motion-aware skill prompts are learned to capture semantic and motion
shared primitives across different skills. Secondly, when acquiring new skills in
lifelong span, new prefix skill prompts are added and learned via cross-attention
between prefix prompts of old skills, boosting the new skills learning via shared
knowledge transfer. For evaluation, we construct a large-scale skill dataset and
conduct extensive experiments in both simulation and real-world tasks, demon-
strating PSPL’s superior performance over state-of-the-art methods. Code and
dataset will be released upon acceptance.

1 INTRODUCTION

(a)  Place block (b)  Place banana

(c) Grasp banana (d)  Place pot

Figure 1: Optical flow captures primitive-level
motion patterns, revealing latent shared knowl-
edge between semantically similar skills (a, b)
and distinct skills (c, d).

Learning continuously without forgetting is an
essential aspect of intelligence. As humans, we
can effortlessly acquire and retain a vast repos-
itory of skills throughout our lives, all with-
out explicitly revisiting past experiences. How-
ever, unlike humans, robotic agents often strug-
gle with severe catastrophic forgetting, where
learning new skills interferes with what was
learned before. To alleviate this issue, previous
approaches rely on storing and replaying pre-
vious data to maintain prior knowledge (Rol-
nick et al. (2019); Sodhani et al. (2020)), but
this can be impractical in the real world due to
memory limitations or privacy concerns. Be-
yond these methods, we direct our attention
to a specific problem known as Rehearsal-
free Lifelong Learning (RfLL). In this setting,
agents must learn from a continuous stream of
expert data without employing memory mecha-
nisms to revisit past demonstrations.

To deal with RfLL, some work attempts to
leverage regularization or dynamic architecture
to achieve more efficient knowledge transfer
compared to rehearsal-based counterparts Kirkpatrick et al. (2017); Zenke et al. (2017); Li & Hoiem
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(2017). These methods, primarily based on penalizing parameter changes and compartmentalizing
model components, often struggle with poor performance as indirect knowledge-retrain strategies,
especially scaling to the complex vision-based manipulations domain Aljundi et al. (2018); Serra
et al. (2018). More recently, Liu et al. (2023) demonstrated the potential of using Low-Rank Adap-
tation (LoRA Hu et al. (2021)) and adapts skill-specific LoRA for each new skills, allowing for
efficient parameter updates without interfering with previously learned skills. As shown in Fig. 1,
skills like ”Grasp banana” and ”Place pot”, while semantically different, may share common under-
lying motion primitives. Recognizing and leveraging these shared primitives is crucial for effective
knowledge transfer and lifelong learning across diverse robotic skills.

To use these shared primitives in robotic manipulation, skill-based learning methods learn a set
of primitive skills and reuse them for the acquisition of new skills Yin et al. (2023); Mandlekar
et al. (2020); Xu et al. (2018b). These methods decompose complex robotic tasks into fundamental
reusable skills, according to the hierarchical nature of human skill acquisition Kroemer et al. (2021);
Peters & Schaal (2008), which requires sophisticated skill discovery and decomposition algorithms.
The key advantage lies in the potential for knowledge transfer and scalability: as robots acquire a
repertoire of primitive skills, they can combine and reuse them to tackle novel tasks Kober et al.
(2013); Gao et al. (2022). More recently, LOTUS Wan et al. (2024) have attempted to integrate
skill-based learning with lifelong robotic learning. However, it still requires experience replay to
develop its skill library, posing substantial memory challenges as the number of tasks increases.
Our research reveals that while existing methods employ various techniques for skill discovery and
knowledge sharing, they have not fully explored how to effectively utilize shared knowledge for
learning new skills.

In this paper, we propose Primitive-level Skill Prompt Learning (PSPL) for lifelong robot manipu-
lation, a novel two-stage framework that transfers the knowledge across skills via reusable and ex-
tensible primitives. Our framework first learns a set of shared skill prompts to model shared knowl-
edge through primitive-level multi-skills pre-training. Specifically, we introduce motion-aware skill
prompt learning that adopt a text-flow query mechanism to capture semantic and motion shared
primitives across skills. For individual skill learning, skill-specific motion-aware skill prompt is
represented by weighted-sum of shared skill prompts and prepended into the keys and values of
multi-head self-attention layers of diffusion transformer-based policy. In this way, the primitive-
level shared knowledge learned and stored into the shared skill prompts. For new skill learning
lifelong span, we add new prefix skill prompts into previous learned shared skill prompts, and learn
them together with new skill demonstrations via cross-attention between old and new skill prompts.
This intuitively enables knowledge transfer between old and new skills, without redundant new pa-
rameters and complex skill decomposition. To evaluate PSPL, we construct a large-scale skill dataset
and conduct extensive experiments in both simulation and real-world tasks, demonstrating signifi-
cant performance improvements over state-of-the-art methods. Our contributions are as follows:

• We propose Primitive-level Skill Prompt Learning (PSPL), tailored for achieving lifelong robot
manipulation via reusable and extensible primitives.

• Motion-aware skill prompts and text-flow query mechanism are designed to capture shared se-
mantic and motion knowledge between multiple skills and effectively transfer them to new skill
acquisition.

• We construct a large-scale skill dataset and conduct extensive experiments in both simulated and
real-world environments, demonstrating significant performance improvements over state-of-the-
art methods in lifelong robotic manipulation.

2 RELATED WORK

Lifelong Learning. Lifelong learning for decision-making aims to develop an agent that can con-
tinuously learn and adapt to new tasks from a stream of data while retaining previous knowledge
to avoid catastrophic forgetting Parisi et al. (2019); Lesort et al. (2020); Khetarpal et al. (2020).
Prior rehearsal-based approaches involve storing and replaying past experiences to maintain the
learned knowledge Rolnick et al. (2019); Shin et al. (2017); van de Ven et al. (2020). However, as
the number of tasks increases, the memory requirements grow significantly, limiting their scalabil-
ity for robot manipulation. Alternatively, another line of rehearsal-free work attempts to leverage
regularization or dynamic architecture to achieve more efficient knowledge transfer compared to
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rehearsal-based counterparts Kirkpatrick et al. (2017); Zenke et al. (2017); Li & Hoiem (2017).
These methods, primarily based on penalizing parameter changes and compartmentalizing model
components, often struggle with poor performance as indirect knowledge-retrain strategies, espe-
cially scaling to the complex vision-based manipulations domain Aljundi et al. (2018); Serra et al.
(2018). Most recently, inspired by the advancements of parameter-efficient fine-tuning in language
domains, TAIL Liu et al. (2023) with LoRA Hu et al. (2021) obtain state-of-the-art performance
with a few trainable parameters in lifelong learning scenarios. However, TAIL requires maintain-
ing specific parameters for each task and does not leverage learned knowledge to boost novel skill
acquirement, making it inefficient in the real world.

Skill-based Imitation Learning. Skill-based imitation learning focuses on leveraging temporally
abstract representations from sensory-motor data (termed skills) and learning a skill-conditional
policy to accelerate the imitation process for some long-horizon manipulation tasks. A series of
research segment expert demonstrations into sub-trajectories to learn these skill representations,
employing unsupervised strategy Shankar et al. (2020); Abi-Farraj et al. (2020); Sharma et al. (2022)
or relying on auxiliary supervised information Kipf et al. (2019); Lynch et al. (2020); Xu et al.
(2018a). Additional work has shown promise for embedding fixed-length sub-trajectories without
supervision through generative models such as variational auto-encoder Pertsch et al. (2020); Wang
et al. (2021); Köhler et al. (2020) or diffusion model Janner et al. (2022); Chi et al. (2023); Xu et al.
(2023). Furthermore, LISA Garg et al. (2022) incorporates skill learning with language instructions
by sampling multiple skills per trajectory and uniquely integrating language conditioning. In this
work, we adopt a similar setting due to its relative simplicity and scalability.

3 PROBLEM FORMULATION

Within our multi-skill pre-training, we consider a set of robot tasks C = {Tj}Jj=1. For each task j,
we have N expert demonstrations {τj,i}Ni=1, where each demonstration τj,i is a sequence of state-
action pairs. We formulate robot imitation learning as an action sequence prediction problem, aiming
to minimize the error in future actions conditioned on historical states. The standard behavioral
cloning loss is used to optimize the agent’s policy π over these demonstrations:

θ̂ = min
θ

K∑
k=1

Est,at∼Dk

[
lk∑
t=0

L
(
π(a|st, Tk; θ), a

t
k

)]
. (1)

where L is a supervised action prediction loss (e.g., mean squared error or negative log likelihood),
lk is the length of demonstrations for task Tk, and θ refers to the learnable parameters of the network.

In lifelong learning span, we leverages the pre-trained model from the first stage, which not only
showcases the model’s scalability but also demonstrates the reusability of multitask pre-training in
benefiting subsequent lifelong learning. Our objective remains to incrementally learn new skills
while retaining performance on previously learned ones. The pre-trained agent continues to en-
counter a sequence of tasks, denoted as T1, ..., TK . For each task Tk, the agent receives N demon-
strations Dk = τ1k , ..., τ

N
k . A key characteristic of this stage, relevant to equation 1, is that after

learning task Tk, the agent cannot access additional data from preceding tasks. In this context, Dk

only contains data from the current task, and st should be interpreted as s≤t. This constraint creates
a rehearsal-free lifelong learning scenario, emphasizing the importance of transferring knowledge
across tasks without risking catastrophic forgetting.

4 METHOD

4.1 OVERVIEW

The overview of our method is shown in Fig. 2. Given an input demonstration stream {Di}Ji=1 and
a skill description T, we aim to leverage human demonstrations and task information to learn a set
of reusable and extensible primitive-level skill prompts. In Sec. 4.2, we introduce motion-aware
prompting to capture semantic and motion shared primitives across different skills, combining opti-
cal flow with task-conditional semantic information. Then, a two-stage training scheme is presented
in Secs. 4.2 and 4.3, where we first learn prefix skill prompts to model shared knowledge through
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Figure 2: The overview of Primitive-level Skill Prompt Learning (PSPL). In pre-training stage,
given a large-scale dataset with numerous primitive-level skill demonstrations, the input consist
of proprioception, image observation, optical flow and language instruction and a set of shared
primitive skill prompts are queried via motion-aware query module to obtained a weighted-sum skill-
specific prefix prompt, which is preprend to each layer of diffusion-transformer policy. For new skill
acquisition with expert demonstrations, two new shared skill prompts are added and optimized with
pretrained shared primitive skill prompts, following the same input/output flow as the pre-training.

multi-skills pre-training, followed by a lifelong learning phase that adds and learns new prefix skill
prompts via cross-attention between old and new skill prompts. Finally, our method iteratively
optimizes the skill representation by minimizing the reconstruction loss between observed demon-
strations and generated motions, enabling primitive-level knowledge transfer across different skills
and finally implementing lifelong skill acquisition.

4.2 PRIMITIVE-LEVEL SKILL PROMPT LEARNING

As shown in Fig. 2, in the first stage of our method, we utilize a diffusion transformer policy with
our constructed skill dataset to perform multi-skill pre-training.

Specifically, we apply prefix-prompt learning to the diffusion transformer policy, instead of aug-
menting the input tokens, prepending prompts to the keys and values of the MSA layers, with dis-
tinct prompting parameters for each layer. We define our prompt parameter as p ∈ RLp×D, where
Lp represents the prompt length and D denotes the embedding dimension. In a typical MSA layer
with input h ∈ RL×D, the query, key, and value are represented as hQ, hK , and hV respectively.
The layer’s output is computed as follows:

MSA(hQ, hK , hV ) = Concat(h1, . . . , hm)WO

where hi = Attention
(
hQW

Q
i , hKWK

i , hV W
V
i

)
where WO, WQ

i , WK
i , and WV

i are projection matrices, and m denotes the number of attention
heads. Our approach involves splitting the prompt p into {pK , pV } ∈ R(Lp/2)×D and prepending
these to hK and hV using the prefix-prompt method:

fP−T (p,h) = MSA(hQ, [pK ;hK ], [pV ;hV ])

However, there is a key limitation of approaches that heavily rely on high-level representations such
as skill IDs or semantic information, which often face challenges in facilitating mutual improvement
between tasks that are not semantically similar, potentially overlooking the rich temporal and motion
information inherent in robotic actions. For example, while effective for knowledge transfer between
semantically similar tasks like ”grasp cube” and ”grasp mug”, these methods fall short in capturing
shared primitives across semantically distinct but motion-related tasks. This limitation can result
in sub-optimal knowledge transfer between seemingly unrelated tasks like ”grasp mug” and ”place
banana”, which, despite their semantic differences, may share common underlying primitives.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To address these limitations and capture semantic and motion shared primitives across differ-
ent skills, we propose Motion-Aware Prompting (MAP). MAP combines optical flow with task-
conditional semantic information, allowing us to capture and leverage common primitives across
seemingly disparate tasks. Specifically, motion-aware optical flow information provides a rich rep-
resentation of motion dynamics within the scene, capturing the essential kinematic properties of
primitive actions. This motion-centric approach allows us to identify and learn common move-
ment patterns across tasks, even when the high-level semantics differ. For instance, while ”grasp
cube” and ”place mug” may seem semantically unrelated, they both involve the primitive of arm
lowering. To capture these motion dynamics, we employ the Recurrent All-Pairs Field Transforms
(RAFT) Teed & Deng (2020) model for optical flow estimation. In RAFT, the optical flow is com-
puted iteratively:

fk+1 = fk +∆fk (2)

where fk is the flow estimate at iteration k, and ∆fk is the flow update computed as:

∆fk, hk+1 = GRU(C(fk), hk) (3)

Here, C is a correlation volume, hk is a hidden state, and GRU is a gated recurrent unit. Optical
flow effectively captures these shared motion primitives, enabling more granular knowledge trans-
fer. Secondly, optical flow offers a degree of invariance to appearance changes, focusing instead on
the underlying motion structure. This property is particularly valuable in robotics, where the same
primitive-level manipulation might be performed on objects with vastly different visual characteris-
tics.

I(x, y, t) = I(x+ u∆t, y + v∆t, t+∆t) (4)

where I is the image intensity, (u, v) is the optical flow vector, and ∆t is the time step. This
allows optical flow to capture motion information while being relatively insensitive to the specific
appearance of the scene. Concurrently, we embed conditional descriptions of tasks into a shared
latent space using a pre-trained CLIP model. This allows us to leverage rich semantic understanding,
providing a powerful representation of task semantics. By combining optical flow features with
these task-conditional semantic embeddings, our Motion-Aware Prompting (MAP) achieves a dual
purpose. We can represent this as:

MAP(T, F ) = fprompt(ECLIP(T ),Φ(F )) (5)

where T is the task description, F is the optical flow from RAFT, ECLIP(T ) is the CLIP-based
semantic embedding function, Φ(F ) is a flow feature extraction function, and fprompt is a learned
function that combines semantic and motion information. The CLIP-based semantic embedding
ensures task-specificity, guiding the model towards relevant skills, while the flow feature enables
fine-grained decomposition of skills into primitives. This approach enables our model to learn and
transfer knowledge at the primitive level, thereby facilitating mutual improvement and lifelong ex-
pansion across diverse skills.

4.3 LIFELONG SKILL ACQUISITION

Parameter-efficient methods have shown remarkable success in mitigating catastrophic forgetting.
However, current state-of-the-art approaches exhibits limitations in expanding learning capacity
across tasks. They learn a single adapter for each new task, failing to leverage shared knowledge
across different tasks. Therefore, we propose a novel lifelong skill acquisition method that during
lifelong span, new prefix skill prompts are added and learned via cross-attention between prefix
prompts of old skills, achieving helpful shared knowledge transfer from old skills to new ones.

Specifically, we introduce a new dimension to our learning capacity: a set of prompt compo-
nents. Our method combines these components through weighted summation, forming a decom-
posed prompt that is subsequently fed into the corresponding MSA layer. This enables us to expand
our prompting capacity to arbitrary depths while maintaining a fixed prompt length. Notably, when
prompting for new tasks in lifelong learning contexts, our method reuses previously acquired knowl-
edge from past tasks, rather than initializing a new task prompt from scratch. Formally, we replace
the learnable prompt parameter p with a weighted summation over the prompt components:

p =
∑
m

αmPm (6)

5
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Here, P ∈ RM×D represents our set of prompt components, where M denotes the length of this set,
introducing an additional axis of capacity. The critical aspect of this formulation is determining the
appropriate weighting vector (α) for each task.

To achieve dynamic prompt generation, we propose an innovative approach that computes the weight
vector α based on the similarity between a primitive-based query θ(x) and a set of keys associated
with the prompt components. This method allows for the production of primitive-based prompts
without relying on the fixed task index. Specifically, the weighting vector is derived from the cosine
similarity between the query and a set of keys:

α = γ(q(x),K) = {γ(q(x),K1), γ(q(x),K2), . . . , γ(q(x),KM )} (7)

where K ∈ RM×D represents keys corresponding to the prompt components. This formulation en-
sures that each prompt component Pm contributes to the final prompt p in proportion to the similarity
between the query q(x) and its corresponding key Km.

The challenge inherent in this prompt-query matching lies in its similarity to high-dimensional clus-
tering, a notoriously difficult problem. To address this issue, the authors introduce an attention mech-
anism to the key-query matching process. Each Pm is paired with both a key Km and an attention
vector Am. This addition enables the query to focus on specific features within the high-dimensional
query q(x) output, potentially capturing more primitive-based features while disregarding less rele-
vant information. The implementation involves a straightforward feature-selection attention scheme.
An element-wise multiplication between the query vector and the attention vector produces an at-
tended query, which is then used for key-similarity matching. The refined approach to generating
the weighting vector is expressed as:

α = γ(q(x)⊙A,K) = γ(q(x)⊙A1,K1), . . . , γ(q(x)⊙AM ,KM ) (8)

Here, A ∈ RD×M comprises learnable parameters (attention vectors) corresponding to the prompt
components, and (⊙) denotes the Hadamard (element-wise) product. Notably, these attention vec-
tors function as learnable feature weightings rather than input-conditioned modules.

Algorithm 1 PSPL: Primitive-level Skill Prompt Learning

Require: Visual demonstrations {Di}Ji=1, Skill descriptions T
Ensure: Learned primitive-level skill prompts

1: Initialize p ∈ RLp×D ▷ Initialize prefix skill prompts
2: for each skill j in {1, . . . , J} do
3: fk+1 = fk +∆fk ▷ Compute optical flow using RAFT
4: MAP(T, F ) = fprompt(ECLIP(T ),Φ(F )) ▷ Motion-Aware Prompting
5: fP−T (p, h) = MSA(hQ, [pK ;hK ], [pV ;hV ]) ▷ Apply prefix-prompt learning
6: Compute diffusion loss L ▷ Using diffusion transformer policy
7: Update p and model parameters to minimize L
8: end for
9: for each new skill k do

10: Initialize P ∈ RM×D ▷ Initialize new prompt components
11: Compute MAPk ▷ Compute MAP for new skill
12: α = γ(q(x)⊙A,K) ▷ Compute attention-based weighting
13: p =

∑
m αmPm ▷ Generate new prompt

14: Compute diffusion loss L for new skill ▷ Using diffusion transformer policy
15: Update p and model parameters to minimize L
16: Add p to existing prompts ▷ Expand prompt set
17: end for
18: return Learned prompts

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Simulation tasks. We conduct our simulation experiments using a large-scale skill dataset that we
constructed based on MimicGen and LIBERO. In our skill dataset, each skill is associated with its
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Lifelong New Skill 3: 
Place the drink on cutting board

Pre-Trained Skill 2: 
Place the banana to the basket.

Pre-Trained Skill 3: 
Grasp the block.

Pre-Trained Skill 1: 
Grasp the banana.

Lifelong New Skill 2: 
Grasp the croissant

Pre-Trained Skill 4:
Place the block to the blanket.

Lifelong New Skill 3: 
Push down the teapot handle.

Figure 3: Real-world robot setting. We proposed 9 real-world skills, 4 of which are used in the
pre-training stage and 5 in the lifelong stage, covering a variety of action spaces such as grasp, place,
push, and a variety of different objects and distributions.

own natural language description. For example, a skill might be described as “Grasp the mug” or
”Open the drawer”. As shown in fig. 4, our dataset incorporates 24 skills from MimicGen, each
containing 1K human demonstrations and with broad initial state distributions, effectively showing
the generalization for multitask evaluation. We also include tasks from LIBERO, a lifelong robotic
manipulation benchmark. Specifically, we utilize LIBERO-Goal, which focuses on the same scene
with different goals. From LIBERO-Goal, we extract 11 skills, each comprising 50 human demon-
strations. By building our large-scale skill dataset, we ensure a comprehensive range of robotic
manipulation scenarios, enabling our policy on diverse and challenging tasks.

Real-world experiments. The real-robot experiments are conducted on the Franka Panda robotic
arm. As shown in fig. 3, we perform multitask pre-training on four distinct skills, each comprising
200 human demonstrations with broad initial state distributions. To evaluate our policy’s ability
for lifelong learning, we conduct training and validation on four additional skill tasks. The objects
involved in these tasks, such as banana, block, and various utensils, are randomly placed to assess
position generalization. All metrics are evaluated with 10 independent runs for each skill, ensuring
robust performance assessment across different initial conditions and task variations.

Evaluation Metrics. Following Liu et al. (2023), we employ Forward Transfer Weight (FWT)
and Backward Transfer Weight (BWT) to evaluate the performance of lifelong learning. FWT is
computed by the maximum success rate our policy can achieve when adapting to a new task. We
denote FWT at task k as Fk. Meanwhile, BWT measures the success rate increase on previous tasks.
Specifically, when adapting to the k-th task, we first record the best FWT model on this task and
then evaluate this model on all previous k− 1 tasks, obtaining success rate Si, 1 ≤ i ≤ k− 1. Then
we compute the success rate difference between the new model and the best FWT of the previous
k − 1 tasks and then average among them to obtain the BWT metric:

B =
1

k − 1

k−1∑
i=1

(Si − Fi), (9)

For both FWT and BWT metrics, higher values indicate better performance in terms of knowledge
transfer and retention across tasks.
5.2 MULTI-SKILL PRE-TRAINING

As shown in Table 3, our PSPL achieves the highest success rates across all pre-training tasks in the
LIBERO-GOAL environment. Compared to the MOE, our method improves the average success
rate across all tasks by 17%. We further evaluate our method’s ability to learn generalizable cross-
skill information in real-world scenarios. Table 3 presents the results of real-world experiments,
where our policy consistently outperforms existing approaches. These results validate our method’s
effectiveness in both simulated and real-world environments.

5.3 LIFELONG LEARNING

For lifelong learning tasks, we conducted a comparative analysis of our method against traditional
sequential learning approaches, experience replay-based methods, and task-specific LoRA. As il-
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Grasp the red cube. Place the red cube. Grasp the green cube. Place the green cube. Grasp the block. Place the square.

Grasp the coffee mug. Place the coffee mug. Close the machine lid. Open the drawer. Grasp the mug. Place the mug.

Figure 4: Illustration of our primitive-level skill dataset. The primitive-level skill dataset is
constructed based on MimicGen benchmark with diverse action spaces and scene variations.

lustrated in Tables 1 and 3 , our method demonstrated superior performance in simulated environ-
ments, achieving state-of-the-art performance in both FWT and BWT metrics. Furthermore, Table
3 presents evidence that in real-world scenarios, our approach not only facilitates the acquisition of
cross-skill premitives during the pre-training phase but also effectively leverages this premitives in
the new skill learning stage. Notably, our method surpasses existing approaches without requiring
access to replay experiences.

Task

Conventional Methods Adapter-based Methods
Sequential ER LoRA PSPL (Ours)

FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ FWT ↑
Task 1 0.87 ± 0.07 - 0.79 ± 0.12 - 0.89 ± 0.02 0.88 ± 0.00
Task 2 0.73 ± 0.07 -0.57 ± 0.08 0.71 ± 0.07 -0.23 ± 0.08 0.79 ± 0.01 0.75 ± 0.12
Task 3 0.79 ± 0.04 -0.48 ± 0.12 0.67 ± 0.07 -0.37 ± 0.11 0.81 ± 0.07 0.83 ± 0.03
Task 4 0.77 ± 0.03 -0.62 ± 0.17 0.64 ± 0.07 -0.44 ± 0.19 0.78 ± 0.00 0.79 ± 0.02
Task 5 0.49 ± 0.07 -0.69 ± 0.24 0.35 ± 0.14 -0.57 ± 0.23 0.62 ± 0.12 0.60 ± 0.09
Task 6 0.64 ± 0.12 -0.66 ± 0.24 0.52 ± 0.19 -0.61 ± 0.23 0.61 ± 0.12 0.73 ± 0.14
Task 7 0.32 ± 0.05 -0.69 ± 0.18 0.11 ± 0.00 -0.58 ± 0.24 0.43 ± 0.26 0.54 ± 0.11
Average 0.65 ± 0.06 -0.56 ± 0.16 0.61 ± 0.09 -0.46 ± 0.18 0.78 ± 0.09 0.83 ± 0.03

Table 1: Lifelong Performances with MimicGen. PSPL achieved the best success rate in both
multi-skill pre-training and lifelong learning, as well as demonstrating superior lifelong learning
capabilities.

Task Methods
Diffusion-Transformer MOE Ours
Multi-Skill Policy Pre-Training

Pretrain Task 1 0.60 ± 0.05 0.82 ± 0.04 0.99 ± 0.03
Pretrain Task 2 0.25 ± 0.06 0.78 ± 0.05 0.62 ± 0.02
Average 0.42 ± 0.09 0.73 ± 0.08 0.84 ± 0.05

Lifelong Learning
Task Sequential ER Ours
Lifelong Task 1 0.60 ± 0.08 0.65 ± 0.07 0.72 ± 0.04
Lifelong Task 2 0.55 ± 0.09 0.58 ± 0.08 0.68 ± 0.05
Lifelong Task 3 0.50 ± 0.10 0.52 ± 0.09 0.63 ± 0.06
Average 0.55 ± 0.09 0.58 ± 0.08 0.68 ± 0.05

Table 2: Performances with real-world robot tasks. PSPL achieved the best success rate in both
multi-skill pre-training and lifelong learning, as well as demonstrating superior lifelong learning
capabilities.
5.4 ABLATION STUDIES

Effect of Motion-Aware Prompt Query To validate the effectiveness of our motion-aware text-
flow query, we visualize the weight distributions when using only text as the query and when using
our text-flow query. As shown in the figure 6, if only text is used as the prompt query, the weight
responses will only exhibit similarities in semantically related tasks, and within a single task, the
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Task Methods
Diff-T MOE PSPL (Ours)

Multi-Skill Pre-Training
Pretrain Task 1 0.79 ± 0.05 0.83 ± 0.04 0.85 ± 0.03
Pretrain Task 2 0.83 ± 0.11 0.85 ± 0.03 0.86 ± 0.02
Pretrain Task 3 0.84 ± 0.07 0.86 ± 0.08 0.86 ± 0.01
Pretrain Task 4 0.63 ± 0.08 0.74 ± 0.07 0.80 ± 0.03
Average 0.55 ± 0.09 0.58 ± 0.08 0.68 ± 0.05

Lifelong Learning
Task Sequential ER Ours
Lifelong Task 1 0.77 ± 0.08 0.73 ± 0.04 0.78 ± 0.04
Lifelong Task 2 0.65 ± 0.03 0.61 ± 0.12 0.68 ± 0.09
Lifelong Task 3 0.74 ± 0.11 0.62 ± 0.08 0.71 ± 0.06
Average 0.72 ± 0.04 0.65 ± 0.03 0.73 ± 0.03
Table 3: Performances with LIBERO-GOAL.
When dealing with different tasks in the same
scene, PSPL still achieves the best performance.

Figure 5: Simulation setting of
LIBERO-GOAL.
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Figure 6: Impact of Motion-Aware Prompt Query on Prompt Weights. This figure illustrates
the weight distributions when using only text as the query (left) and when using our text-flow query
(right). When only text is used as the prompt query, the weight responses exhibit similarities only in
semantically related tasks. In contrast, our text-flow query enables the policy to have similar weight
responses even in semantically different skills, allowing different skills to learn primitives in the
latent space.

weights remain the same at each time step. In contrast, our text-flow query enables the policy to
have similar weight responses even in semantically different skills, allowing different skills to learn
primitives in the latent space.

Effect of Skill Prompt Count We conducted a comprehensive investigation into the optimal se-
lection of prompt count during the multi-skill learning. As various skills undergo joint optimization,
primitives are encoded and stored within prompts. For any specific task, only a subset of prompts
responds and matches to extract relevant prior knowledge, while unmatched prompts may introduce
noise. Consequently, as illustrated in Figure 7, an increase in the number of prompts does not neces-
sarily correlate with improved performance. Simultaneously, an insufficient number of prompts may
fail to encompass all primitives, underscoring the importance of achieving an appropriate balance in
prompt count.

Effect of Primitive Skill Prompt As illustrated in Figure 7, significant performance degradation
is observed when learning new skills under two conditions: (1) when prompt learning of primitives
is omitted during the pre-training phase, or (2) when pre-trained prompts are not utilized in the
acquisition of new skills. These findings substantiate the effectiveness of our proposed prompt
mechanism in extracting common knowledge from pre-trained skills. Moreover, they demonstrate
the mechanism’s capacity to repurpose this knowledge during the lifelong learning phase, thereby
enhancing the performance of newly acquired skills.
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Figure 7: Illustration of ablation studies. We conducted ablation analysis on the effect of skill
prompt count, the effect of primitive skill prompt, and comparisons with MoE and LoRA.

5.5 DISCUSSION ON OUR METHOD V.S. LORA AND MOE

Recently, some studies have explored the effectiveness of LoRA Liu et al. (2023) and MOE Wang
et al. (2024) in enhancing lifelong robot learning. However, as illustrated in Figure 7, our exper-
iments demonstrate that although MOE excels in terms of average success rate, its training speed
is slower due to the additional computational overhead introduced by its gating network and multi-
ple expert networks. MOE’s training time is approximately twice that of LoRA and our proposed
method. LoRA, on the other hand, emerges as the frontrunner in terms of training speed, while its
overall performance falls short of its competitors. Notably, our method achieves performance sur-
passing that of MOE while maintaining comparable training speed. This balance of efficiency and
efficacy enables our approach to effectively combine the strengths of LoRA and MOE, facilitating
faster skill knowledge acquisition while preserving high performance.

6 CONCLUSION AND LIMITATION

In this work, we present Primitive-level Skill Prompt Learning for lifelong robotic skill learning.
Motion-aware skill prompts and text flow query mechanism are proposed to learn reusable and
extensible primitive-level knowledge across multiple skills and achieve superior results in multi-
task policy learning. Moreover, for new skill acquisition, new skill propmts are easily added and
learned for knowledge transfer between old and new skills, without redundant new parameters and
complex skill decomposition. Finally, we construct a large-scale primitive-level skill dataset and
demonstrate the superior perform of our method in multi-task policy learning and lifelong new skill
acquisition.

Limitations: Our method requires the pre-processed primitive-level skill dataset for pre-training
stage, which is difficult to do for various human daily tasks. Moreover, motion-aware prompts relies
on optical flow estimators, which is unstable in lighting variation interactive environments. Future
work will focus on scaling our method to more daily tasks and extending the method to handle more
challenging lighting scenarios.
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