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ABSTRACT

Large language models (LLMs) have made significant progress in natural lan-
guage understanding and generation, driven by scalable pretraining and advanced
finetuning. However, enhancing reasoning abilities in LLMs, particularly via re-
inforcement learning from human feedback (RLHF), remains challenging due to
the scarcity of high-quality preference data, which is labor-intensive to annotate
and crucial for reward model (RM) finetuning. To alleviate this issue, we introduce
CodePMP, a scalable preference model pretraining (PMP) pipeline that utilizes
a large corpus of synthesized code-preference pairs from publicly available high-
quality source code. CodePMP improves RM finetuning efficiency by pretraining
preference models on large-scale synthesized code-preference pairs. We evaluate
CodePMP on mathematical reasoning tasks (GSM8K, MATH) and logical reason-
ing tasks (ReClor, LogiQA2.0), consistently showing significant improvements
in reasoning performance of LLMs and highlighting the importance of scalable
preference model pretraining for efficient reward modeling.

1 INTRODUCTION

Figure 1: Compared to directly finetuning reward models, CodePMP significantly improves the
sample efficiency and capability of reward models, which in turn boosts the generator’s reasoning
performance (Best-of-N accuracy) across both mathematical reasoning tasks (GSM8K and MATH)
and logical reasoning tasks (ReClor and LogiQA2.0).

Large language models (LLMs) have made remarkable progress in natural language understanding and
generation, benefiting from scalable pretraining and finetuning techniques like supervised finetuning
(SFT) (Wang et al., 2022; 2023a) and Reinforcement Learning from Human Feedback (RLHF) (Bai
et al., 2022a; Lightman et al., 2023b; Bai et al., 2022b; Gulcehre et al., 2023; Schulman et al., 2017;
Rafailov et al., 2024). However, enhancing LLMs’ reasoning abilities, particularly in complex logical
and mathematical tasks, remains a significant challenge (Wang et al., 2023b; Zhang et al., 2024b).
Although RLHF is effective, it relies heavily on high-quality preference data, which is costly and
labor-intensive to annotate (Cobbe et al., 2021b; Zheng et al., 2024). This limitation impedes the
scalability of reward model (RM) finetuning, which is essential for guiding LLMs toward optimal
outputs.
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Figure 2: An illustration of the CodePMP process. First, raw code collected from GitHub is cleaned
and summarized into code prompts (descriptions). Then, for each code prompt, a weak CodeLLM
generates a rejected response, while a stronger CodeLLM produces a chosen response. Finally, these
<chosen, rejected> pairs, accumulated in the millions, form the pretraining dataset for the preference
model. This pretraining process improves not only sample efficiency but also the performance for
downstream reasoning reward model finetuning.

To alleviate this issue, prior works like Anthropic’s Preference Model Pretraining (PMP) (Askell et al.,
2021) have proposed improving reward modeling data efficiency by pretraining preference models on
large-scale preference data from public sources like Reddit and Wikipedia, followed by an efficient
finetuning on limited high-quality human-annotated data. However, this approach is less effective for
reasoning tasks due to the scarcity of reasoning preference pairs available online. Compared to other
tasks, manually annotating preference data for reasoning is inherently more challenging and difficult
to scale (Zhang et al., 2024b; Zhou et al., 2023), highlighting the urgent need for a scalable PMP
approach for reasoning tasks.

In this paper, we propose CodePMP, a scalable preference model pretraining pipeline that enhances
LLM reasoning abilities using synthesized preference pairs derived from high-quality, publicly
available source code. Code, with its inherently logical and structured nature, provides rich data
suitable for reasoning tasks. Recent works (Zhang et al., 2024b; Aryabumi et al., 2024) also show a
strong correlation between code training and reasoning improvements in LLMs. By leveraging the
huge amount and diverse coverage of source code available on platforms like GitHub, CodePMP offers
a scalable solution for pretraining preference models, thereby improving RM finetuning efficiency
and enhancing LLMs reasoning performance.

Specifically, CodePMP generates preference pairs by synthesizing chosen and rejected code responses
for a given code-related prompt or description using CodeLLMs. A strong CodeLLM produces
higher-quality (chosen) responses, while a weaker model generates suboptimal or even low-quality
(rejected) responses. These <chosen, rejected> pairs, accumulated in the millions, form a large-scale
synthesized preference dataset. This dataset is then used to pretrain the preference model with
pairwise ranking objectives (Cobbe et al., 2021b; Charniak & Johnson, 2005), providing an good
initialization for further fine-tuning the reward models.

We evaluate CodePMP on widely studied reasoning tasks, including mathematical reasoning tasks
such as GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al., 2021), as well as logical
reasoning tasks like ReClor (Yu et al., 2020) and LogiQA2.0 (Liu et al., 2023). Our experiments
demonstrate that CodePMP significantly improves RM fine-tuning accuracy and Best-of-N perfor-
mance in reasoning tasks, outperforming direct RM fine-tuning, as highlighted in Figure 1. Moreover,
additional experimental results reveals that RMs initialized with CodePMP exhibit greater robustness
across different tasks. These results indicate that code-derived preference data provides a scalable,
cost-effective solution for enhancing LLM reasoning capabilities while reducing reliance on extensive
preference annotation, achieving more effective reward modeling for reasoning tasks.

In summary, our main contributions are:

1. We introduce CodePMP, a scalable method that uses code-derived preference pairs to pretrain
preference models, improving sample efficiency and robustness for downstream RM finetuning.

2. We validate that CodePMP significantly improves performance on reasoning tasks, demonstrating
that a scalable PMP process positively impacts LLM reasoning abilities.
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3. We provide a detailed analysis of key design elements in CodePMP, offering valuable insights for
future research in related areas.

2 PRELIMINARIES

Language Modeling Language modeling (LM) is a fundamental task in natural language process-
ing, aimed at modeling sequences of language. This is typically achieved through Causal Language
Models (Causal LM), where the model is trained to maximize the likelihood of predicting the next
word wt given the preceding words w1, w2, . . . , wt−1. The training process minimizes the negative
log-likelihood of the predicted word sequence:

LLM = −
T∑

t=1

logP (wt|w1, w2, . . . , wt−1)

This loss function LLM encourages the model to capture the underlying patterns in the data. Trans-
former architectures (Vaswani, 2017) have become the standard for Causal LM due to their ability to
handle long-range dependencies effectively.

Reward Modeling Reward modeling (RM) is crucial in reinforcement learning from human
feedback (RLHF), providing a scalar reward signal that guides the learning process based on output
quality. The reward model Rθ predicts the quality of an output y given a context x as s = Rθ(x, y),
where s is the scalar reward score. In preference modeling, RM predicts the relative quality of outputs
by comparing pairs. A common method is the Pairwise Ranking Loss, where the model assigns
higher scores to preferred (chosen) outputs:

LRM = − log (σ(schosen − srejected))

, where schosen = Rθ(x, ychosen) and srejected = Rθ(x, yrejected), and σ(·) is the sigmoid function.

Best-of-N Sampling Best-of-N (BoN) sampling improves LLM reasoning (Cobbe et al., 2021b;
Lightman et al., 2023b). In this approach, N candidate solutions {y1, y2, . . . , yN} are generated
by sampling from the LLM’s output distribution for a given problem. A reward model scores each
candidate and selects the highest-scoring one as the final answer:

ŷ = arg max
yi∈{y1,y2,...,yN}

Rθ(x, yi)

, where Rθ(x, yi) represents the reward score for each candidate yi. This technique is especially
effective in tasks like mathematical problem-solving and logical inference, where selecting the most
plausible solution from a diverse set of outputs improves overall accuracy (Wang et al., 2022).

3 CODE PREFERENCE MODEL PRETRAINING

3.1 MODEL DESIGN

Code Preference Model Pretraining (CodePMP) is designed to enhance the sample efficiency of reward
models, particularly for reasoning tasks where high-quality preference data is scarce. Traditionally,
reward models are finetuned on small, curated datasets, which limits their effectiveness in complex
tasks like mathematical reasoning or logical deduction. CodePMP mitigates this limitation by
introducing a pretraining phase between basic language model pretraining and finetuning on domain-
specific reasoning datasets. This phase leverages a large, diverse dataset of code-preference pairs,
enabling the model to learn generalizable patterns and ranking strategies.

CodePMP training involves two key components: Reward Modeling (RM) and Language Modeling
(LM). In RM, the model is trained on code-preference pairs, learning to assign higher scores to the
chosen code through a pairwise ranking loss. In LM, only the chosen code is used for autoregressive
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Algorithm 1 Code Preference Model Pretraining (CodePMP)

Require: Source code repository S, Strong CodeLLM Mstrong, Weak CodeLLM Mweak
Ensure: Pretrained Model

1: Input: Source code S
2: Summarize description D using Mstrong on S
3: for each Di ∈ D do
4: Generate Chosen Response using Mstrong
5: Generate Rejected Response using Mweak
6: end for
7: Calculate LM Loss LLM on Response
8: Calculate RM Loss Lrank using Chosen Response and Rejected Response
9: Train PMP Model using LPMP = Lrank + LLM

training to maintain the model’s general capabilities. The overall loss is a combination of the RM
and LM losses, ensuring the model enhances its ranking ability without sacrificing general language
modeling performance: LPMP = Lrank + LLM.

3.2 DATA CONSTRUCTION

To enable scalable preference model pretraining, we construct a dataset sourced from GitHub, which
includes a diverse range of repositories and associated metadata. The dataset consists of two primary
components: Repository Data comprises over 1.3 billion code files from GitHub repositories, while
GitHub Metadata includes information such as commit histories, discussions, pull requests, and
issues.

The CodePMP dataset is constructed through a systematic process. First, raw source code is processed
by a description summarizer, typically an instruction-tuned CodeLLM, to generate prompts that
describe the functionality of the code.

These prompts are then used by two CodeLLMs of different capabilities to generate code snippets:

• Chosen response: Generated by a more advanced CodeLLM (e.g., 6.7B parameters).

• Rejected response: Generated by a less capable CodeLLM (e.g., 1.3B parameters).

This process yields pairs of code responses—one chosen and one rejected—which are used for
preference modeling. This scalable approach significantly enhances pretraining efficiency, improving
performance on downstream tasks.

The steps of the CodePMP methodology are outlined systematically in Algorithm 1.

4 EXPERIMENTAL

In this section, we first outline the experimental setup, followed by the experimental results, high-
lighting that CodePMP is a highly scalable method.

4.1 EXPERIMENTAL SETTINGS

4.1.1 CODEPMP SETTINGS

Data Construction We generate code preference pairs following Algorithm 1, using the deepseek-
coder-6.7b-instruct model as the strong CodeLLM to generate chosen responses and the deepseek-
coder-1.3b-instruct model as the weak CodeLLM to generate rejected responses. The constructed
CodePMP dataset includes 28 million files and 19 billion tokens. The diverse datasets provide
sufficiently broad prompt coverage for preference model pretraining, which is conducive to the
generalization of preference models in reasoning tasks. In addition, the average lengths of the chosen
and rejected responses are similar, ensuring that response length does not bias the CodePMP learning
process. Details are provided in Appendix C and Table 4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

CodePMP Training By default, we initialize the preference models with the publicly available
Qwen models (Yang et al., 2024a), using different model sizes, specifically Qwen2-1.5B and Qwen2-
7B. Detailed hyperparameters for CodePMP training are provided in Appendix B.

4.1.2 REASONING FINETUNING SETTINGS

We validate CodePMP on reward models across two reasoning task types: mathematical and logical
reasoning. The reward model is finetuned on corresponding preference datasets for each task. For
mathematical reasoning, we use the MathShepherd-pair dataset, derived from MathShepherd (Wang
et al., 2023b), and evaluate the model on a holdout test set to assess RM accuracy.

Similarly, for logical reasoning, we use the ReClor-pair and LogiQA2.0-pair datasets, derived from
ReClor (Yu et al., 2020) and LogiQA2.0 (Liu et al., 2023), respectively. We train reward models
on these datasets, with holdout test sets used to evaluate model accuracy. Dataset construction and
finetuning hyperparameters are provided in Appendix D and B.

4.1.3 EVALUATION SETTINGS

Following (Zhang et al., 2024a), we adopt two evaluation metrics:

RM Accuracy This metric measures the accuracy of the reward model in distinguishing chosen
from rejected solutions on the holdout test sets. It provides insight into the model’s ability to classify
individual sequences.

Best-of-N (BoN) Accuracy This metric evaluates the proportion of correct solutions selected
by the finetuned RM from N candidate responses. It assesses the model’s group-wise ranking
performance, focusing on its ability to select the correct answer from a set of candidates. We use
MetaMath-Mistral-7B (Yu et al., 2023) as the generator for this evaluation.

For mathematical reasoning, we use the GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al.,
2021) test sets. For logical reasoning, we evaluate on the ReClor (Yu et al., 2020) and LogiQA2.0 (Liu
et al., 2023) test sets. Further details can be found in Appendix D.

Note that logical reasoning questions typically involve a paragraph followed by statements to be
judged true or false, making Best-of-N evaluation challenging. Therefore, we use multiple-choice
accuracy, where the reward model ranks four manually annotated options and selects the best one.
This metric is equivalent to Best-of-4, and thus, for logical reasoning tasks, multiple-choice accuracy
and Best-of-N are used interchangeably.

4.2 EXPERIMENTAL RESULTS

4.2.1 RM ACCURACY RESULTS

We first compare RM accuracy on the holdout test set with and without CodePMP initialization.
As shown in Table 1, RM finetuned with CodePMP initialization achieves higher accuracy on both
1.5B and 7B models across mathematical and logical reasoning tasks, demonstrating that CodePMP
enhances the model’s ability to differentiate correct from incorrect reasoning. Moreover, CodePMP
exhibits strong generalization, yielding significant improvements across different reasoning tasks.

4.2.2 BON ACCURACY RESULTS

We evaluate BoN accuracy across reasoning tasks with and without CodePMP initialization. As
shown in Figure 8a and Table 8b, RM finetuned with CodePMP initialization consistently achieves
higher BoN accuracy across both mathematical and logical reasoning tasks for 1.5B and 7B models.
This highlights CodePMP’s effectiveness in improving RM’s group-wise ranking performance.

Across different values of N, RM models initialized with CodePMP maintain their lead, showing
robust improvement even as N increases to 256. In contrast, RM without CodePMP shows a sharp
decline in accuracy as N increases, underscoring the stability CodePMP provides, likely due to the
diverse code-preference pairs used during training.
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Table 1: Comparison of RM accuracies: reward models finetuned with CodePMP initialization
achieve higher accuracies on the reasoning holdout test sets, demonstrating an improved ability to
distinguish chosen responses from rejected ones.

Model PMP MathShepherd-pair Reclor-pair LogiQA2.0-pair

1.5B ✗ 0.7226 0.758 0.7538
✓ 0.8186 0.794 0.7774

7B ✗ 0.8777 0.862 0.8263
✓ 0.9274 0.874 0.8441

(a) BoN accuracies on mathematical reasoning. (b) BoN (N=4) accuracies on logical reasoning.

Figure 3: Comparison of Best-of-N accuracies: reward models finetuned with CodePMP initialization
consistently perform better, with improvements remaining robust as N increases, demonstrating
CodePMP’s effectiveness in improving group-wise ranking capabilities.

For logical reasoning, the performance gap between CodePMP and non-PMP models is smaller, as
N is limited to 4, while in mathematical reasoning, N reaches 256. This suggests that increasing N
further in logical reasoning could amplify the advantages of CodePMP in future evaluations.

4.2.3 RM SAMPLE EFFICIENCY COMPARISON

One key advantage of CodePMP is its ability to improve the sample efficiency of RM finetuning.
To assess this, we conduct experiments with progressively larger sample sizes for RM finetuning.
As indicated by (Kaplan et al., 2020), optimal results are achieved when the learning rate scheduler
completes its decay at the end of training. Therefore, rather than evaluating intermediate checkpoints,
we retrain models with varying sample sizes for optimal results. Figure 4 and 10 (Appendix E)
show that as the sample size increases, RMs with CodePMP initialization consistently outperforms
others in both BoN and RM accuracy. Notably, RMs finetuned with CodePMP initialization using
just 0.5k samples surpasses RMs finetuned without CodePMP initialization using 40k samples on
mathematical tasks, demonstrating CodePMP’s significant advantage in sample efficiency. However,
as sample size increases, this advantage diminishes slightly, suggesting that with much larger datasets,
CodePMP’s benefit may become less pronounced, but the cost of manual labeling remains a key
consideration.

4.2.4 THE IMPORTANCE OF SCALABLE PMP

A key benefit of using code data for PMP is the vast availability of publicly accessible, high-quality
code-preference pairs, ensuring diversity. To validate scalability, we vary the number of training
pairs for CodePMP and retrain models with different amounts of data. As shown in Figure 5,
overall, increasing the number of code-preference pairs consistently improves BoN accuracy in both
mathematical and logical reasoning tasks across model sizes, with no sign of diminishing returns.
This indicates that further scaling the code-preference data would likely yield additional performance
gains, underscoring the importance of building a scalable PMP pipeline.
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(a) GSM8K / 1.5B (b) MATH / 1.5B (c) Reclor / 1.5B (d) LogiQA2.0 / 1.5B

(e) GSM8K / 7B (f) MATH / 7B (g) Reclor / 7B (h) LogiQA2.0 / 7B

Figure 4: Comparison of sample efficiency in RM finetuning: reward models finetuned with CodePMP
initialization consistently achieve substantially higher Best-of-N accuracy when finetuning on the
same amount of samples, demonstrating superior sample efficiency. Note that the horizontal axis
grows exponentially with

√
2. The green lines represent the settings with CodePMP, while the blue

lines represent the settings without CodePMP.

(a) GSM8K / 1.5B (b) MATH / 1.5B (c) Reclor / 1.5B (d) LogiQA2.0 / 1.5B

(e) GSM8K / 7B (f) MATH / 7B (g) Reclor / 7B (h) LogiQA2.0 / 7B

Figure 5: Increasing the number of code-preference pairs consistently improves Best-of-N accuracy
in both mathematical and logical reasoning tasks across model sizes, with no evident signs of
diminishing returns. Note that the horizontal axis is scaled by

√
2, and the gray dashed line represents

the results without CodePMP.

5 ABLATION STUDIES

In this section, we present a detailed analysis of CodePMP design. Unless otherwise stated, all
experiments used the 1B model due to resource limitations and present the results of mathematical
reasoning due to page limitation. Results of logical reasoning refers to Appendix E.2.

5.1 IMPACT OF PAIR CONSTRUCTION

Model-Generated Pairs Comparison We compare various pair construction methods generated
by different models. In Figure 6a, the samples before the “” are positive, and those after are negative.
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(a) Different construction methods. (b) Different pair sources.

Figure 6: Comparisons of BoN accuracy across different construction methods and pair sources.

(a) With or without EOC token. (b) Using WSD or WCD learning rate schedulers.

Figure 7: Comparisons of BoN accuracy for different settings: EOC token and lr schedulers.

“Source Code” refers to the original code snippet, while “1.3B-Des-Clip” indicates that 10% of the
code description is removed before being input into a 1.3B CodeLLM to generate a rejected response.
The green lines represent CodePMP’s choice. Results show that pairing positive samples from the
7B model with negative samples from the 1.5B model consistently delivers the best performance
across all test sets. Given that code execution can generate reliable outputs, future work will explore
incorporating execution feedback to create more accurate preference pairs.

Web-Crawled vs GitHub-Sourced Pairs We also compare GitHub-sourced code with web-crawled
code data( Askell et al. (2021)) from platforms such as StackExchange and Reddit. As shown in
Figure 7a, GitHub-sourced pairs (“Source Code”) consistently outperform those from web platforms
(“Webpage”), particularly as the number of solutions (N) increases. Moreover, the performance
improvement of GitHub-sourced pairs shows no sign of plateauing, highlighting the importance of
diverse, high-quality source code in building a scalable PMP pipeline.

5.2 IMPACT OF EOC TOKEN

Experiments by( Askell et al. (2021)) show that adding an end-of-context (EOC) token to each
sequence significantly improves overall performance. To explore its impact in the context of CodePMP,
we compared performance with and without the EOC token. As shown in Figure 7a, the EOC setting
(“w/ EOC”) consistently underperform the setting without EOC tokens (“w/o EOC”) across different
test tasks, which is opposed to ( Askell et al. (2021)) We attribute this discrepancy to the different
model, data and evaluation settings.

5.3 IMPACT OF LEARNING RATE SCHEDULERS

In the CodePMP experiments, we use the warmup-stable-decay (WSD) learning rate scheduler( Hu
et al. (2024)), which can effectively reduce the time required for scaling related experiments. Previous
studies mainly employ a learning rate schedule with linear warmup followed by cosine decay, known
as warmup-cosine decay (WCD). We compare the performance of WSD and WCD, as shown in

8
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(a) BoN accuracies on mathematical reasoning. (b) BoN (N=4) accuracies on logical reasoning.

Figure 8: CodePMP improves sample efficiency and Best-of-N performance of the Gemma-2B reward
models on reasoning tasks, highlighting its broad applicability across diverse LLM architectures.

Table 2: Performance gains on coding RM and general RM (RMBench) evaluations show that
CodePMP not only improves reasoning tasks but also generalizes well across various tasks.

RMBench
Model PMP Coding Summary Chat Chat Hard Safety Reasoning

1.5B ✗ 0.6841 0.4154 0.4804 0.5351 0.3665 0.2751
✓ 0.758 0.6126 0.9050 0.4364 0.3698 0.6041

7B ✗ 0.6912 0.5839 0.4972 0.5022 0.5240 0.6804
✓ 0.7619 0.7668 0.9413 0.5373 0.4906 0.9116

Table 7b, both schedulers yield similar results. Thus, to improve computational efficiency, we adopt
the WSD scheduler for all experiments.

5.4 VALIDATING CODEPMP ON OTHER LLMS

To further evaluate the generalizability of CodePMP, we validate its performance on the widely
adopted Gemma-2B model (Team et al., 2024). As illustrated in Figure 8, the application of
CodePMP results in significant performance gains in both mathemantical reasoning and logical
reasoning evaluations. This not only underscores the robustness of CodePMP but also demonstrates
its broad applicability in improving sample efficiency and overall performance across diverse LLM
architectures.

5.5 PERFORMANCE ON CODING AND GENERAL RM BENCHMARKS

We evaluate CodePMP on both code-specific and general reward modeling benchmarks. The CodeUl-
traFeedback_binarized test set serves as an in-domain evaluation, while RMBench provides an
out-of-domain assessment. As shown in Table 2, models finetuned with CodePMP initialization con-
sistently outperform those without CodePMP across various model sizes. These results demonstrate
that CodePMP not only enhances performance in reasoning tasks but also generalizes well across a
range of RM benchmarks.

6 RELATED WORKS

Reward Modeling Reward models (RMs) in RLHF have traditionally used ranking models like
Bradley-Terry and Plackett-Luce to capture human preferences (Bradley & Terry, 1952; Plackett,
1975; Cobbe et al., 2021b; Saunders et al., 2022; Lightman et al., 2023b; Wang et al., 2023b; Uesato
et al., 2022; Luo et al., 2024; Yu et al., 2024; Stiennon et al., 2020; Nakano et al., 2021). Recent
advancements introduced probability-based methods (Zhao et al., 2023; Jiang et al., 2023), offering
more refined predictions. Innovations such as the Critique-out-Loud model (Ankner et al., 2024)
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integrate natural language critiques to enhance RMs. Generative reward models (GRMs) (Yang
et al., 2024b) further improve sample efficiency. Preference Modeling Pretraining (PMP) (Askell
et al., 2021) introduces a pretraining phase, leveraging large-scale pairwise ranking data to boost RM
performance. However, many of these methods rely on costly manual annotations or limited data,
limiting scalability. CodePMP addresses this issue by automating preference data generation from
code, improving RM sample efficiency and reducing dependency on manual data collection.

Code Training Incorporating code into LLM pretraining has significantly improved performance in
tasks such as commonsense reasoning (Madaan et al., 2022) and mathematical reasoning (Liang et al.,
2022; Shao et al., 2024; Yang et al., 2024a). Code also enhances general reasoning abilities (Muen-
nighoff et al., 2023; Fu & Khot, 2022; Ma et al., 2023). Recent research (Dong et al., 2023; Ma
et al., 2023) shows that integrating code during supervised finetuning strengthens LLMs in complex
decision-making tasks. CodePMP pioneers the use of scalable, synthetically generated code prefer-
ence pairs, reducing reliance on manual annotations (Dubey et al., 2024; Gemini-Team et al., 2024;
Groeneveld et al., 2024; Bi et al., 2024). This approach improves sample efficiency and scalability in
reasoning-intensive tasks, opening new possibilities for LLM performance improvements.

LLM Reasoning Improving reasoning in LLMs remains a challenge, and various advanced tech-
niques have been proposed. Chain of Thought (CoT) prompting (Wei et al., 2022; Fu et al., 2023)
improves reasoning by generating intermediate steps, while supervised finetuning (SFT) with CoT
further boosts performance (Cobbe et al., 2021a; Liu et al., 2024; Yu et al., 2023). Other methods
focus on increasing inference time computation, such as problem decomposition (Zhou et al., 2022),
search-based approaches like MCTS (Xu, 2023), and using LLMs as verifiers (Huang et al., 2022;
Luo et al., 2023). Reward models, including outcome-based (ORM) and process-based (PRM), also
improve performance, with PRM showing stronger results (Lightman et al., 2023a; Wang et al.,
2023b). Unlike these approaches, CodePMP introduces a scalable preference model pretraining stage,
which is compatible with all the aforementioned methods.

7 CONCLUSION & FUTURE WORKS

This paper introduces CodePMP, a scalable pretraining approach that leverages code-preference
pairs to improve reasoning capabilities in large language models. Experimental results validate that
CodePMP significantly improves sample efficiency and boosts performance on reasoning tasks.

For future work, we aim to extend CodePMP in two key directions. CodePrMP will focus on utilizing
compiler and interpreter verifiability to provide low-cost process supervision signals. GenPMP
will explore how to improve sample efficiency and the performance of generative reward models by
integrating code data.
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A HYPERPARAMETERS

We outline key hyperparameters in this Table 3. In the tables, WSD refers to the warmup-stable-decay
learning rate scheduler( (Hu et al., 2024)), which has the benefit of reducing the time required for
scaling law experiments.

Table 3: Hyperparameters for CodePMP training, mathematical reasoning RM finetuning, and logical
reasoning RM finetuning.

CodePMP Mathematical RM Logical RM
HP 1.5B 7B 1.5B 7B 1.5B 7B
epoch 1 1 1 1 1 1
bs 1024 1024 64 64 64 64
lr 3e-6 1e-6 1e-6 3e-7 1e-5 1e-5
lr scheduler WSD WSD WCD WCD WCD WCD
warmup ratio 0.03 0.03 0.03 0.03 0.25 0.25
decay ratio 0.1 0.1 - - - -
weight decay 0.1 0.1 0 0 0 0
max length 1024 1024 1024 1024 1024 1024

B TRAINING PIPELINE

Figure B presents an overview of the complete training pipeline. The process begins with base
language model (LM) pretraining on trillions of tokens from general text, followed by a preference
model pretraining (PMP) phase using billions of tokens from code preference pairs. Finally, the model
is finetuned on a smaller, more specialized dataset relevant to reasoning tasks, typically consisting of
millions of tokens.

Figure 9: An overview of the complete training pipeline.

C CODEPMP DATASET

As shown in Table 4, the constructed CodePMP dataset consists of a total of 28 million files,
accounting for 19 billion tokens across various languages. The dataset is primarily composed of
Python files, with 20 million files and 13.1 billion tokens, followed by Notebook files, contributing 3
million files and 2.1 billion tokens, and other programming languages with 5 million files and 3.8
billion tokens. This diverse dataset supports the pretraining phase, aiding the model in generalizing
across multiple reasoning tasks.

The average length of chosen responses varies slightly between different languages. Python files
exhibit an average response length of 170 tokens for chosen responses and 167 tokens for rejected
responses, while Notebook files have slightly shorter average lengths of 158 and 155.5 tokens,
respectively. Other languages show the highest average response lengths, with 213.2 tokens for
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Table 4: Amount and average length statistics of CodePMP dataset.

Amount Statistics Average Length
Language Files (M) Tokens (B) Chosen Rejected
Python 20 13.1 170.0 167.0
Notebook 3 2.1 158.0 155.5
Other Languages 5 3.8 213.2 210.0
Total 28 19.0 194.5 189.9

chosen and 210 tokens for rejected responses. Overall, the average length of chosen responses across
the dataset is 194.5 tokens, while the average length of rejected responses is 189.9 tokens, indicating
minimal bias in the dataset based on response length.

D RM FINETUNING DATASET

D.1 MATHEMATICAL REASONING

The RM finetuning for mathematical reasoning uses the MathShepherd dataset( (Wang et al., 2023b)),
which contains 444k query-response samples, with some queries having multiple distinct responses.
We divide the dataset into a 400k training set and a 44k test set. For RM finetuning, we construct
preference pairs by selecting both correct and incorrect responses for the same query. To form the
4.3k test set, we combine one positive and negative sample for each query from the original test set.

We also create two training sets of different sizes: MathShepherd-preference-800k and MathShepherd-
preference-40k. The 800k training set is built by combining multiple positive and negative samples
for each query in the original training set, resulting in 800k samples. In contrast, the 40k training set
randomly selects one positive-negative pair for each query, totaling 40k samples.

D.2 LOGICAL REASONING

D.2.1 RECLOR

Reclor is a human-annotated reading comprehension reasoning dataset, where each sample consists
of a passage, a question, and multiple options. To create preference pairs, we combine the correct
and incorrect options for the same question. This process results in a total of 14.5k preference pairs,
with 14k pairs used for training and 1.5k for testing, forming the Reclor-preference dataset.

D.2.2 LOGIQA2.0

For logical reasoning finetuning scaling analysis, we synthesize a preference dataset based on
the logical reasoning dataset LogiQA2.0. LogiQA2.0 is a reading comprehension benchmark re-
quiring discrete reasoning over passages, with 96k crowdsourced, adversarially created questions.
To answer correctly, models must resolve references (which may point to multiple locations in
the input) and perform discrete operations like addition, counting, or sorting. We use four mod-
els (Qwen2-7B-Instruct1, Qwen2-72B-Instruct2, DeepSeek-V2-Chat3, and DeepSeek-Coder-V2-
Instruct4) to sample queries from the LogiQA2.0 dataset multiple times, with sampling topp = 1,
and topk ∈ {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Answer correctness is annotated
using DeepSeek-7B-Math-Compare-Answer5. Correct and incorrect answers are combined to create
preference pairs, resulting in 1,019k pairs, with 977k used for training and 42k for testing, forming
the LogiQA2.0 preference dataset for RM scaling analysis.

1https://huggingface.co/Qwen/Qwen2-7B-Instruct
2https://huggingface.co/Qwen/Qwen2-72B-Instruct
3https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat
4https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
5https://huggingface.co/Tianqiao/DeepSeek-7B-Math-Compare-Answer
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D.3 CODEULTRAFEEDBACK_BINARIZED

CodeUltraFeedback_binarized6 is a preference dataset in the code domain, consisting of 9.5k prefer-
ence pairs. We randomly split the dataset, using 90% of the samples for finetuning training and 10%
for testing RM accuracy.

E MORE EXPERIMENTAL RESULTS

Due to the length of the paper, we only report important experimental results in the experiment and
ablation sections. In this section, we present complementary results in more detail.

E.1 RM SAMPLE EFFICIENCY COMPARISON: RM ACCURACY RESULTS

(a) MathShepherd-pair / 1.5B (b) Reclor-pair / 1.5B (c) LogiQA2.0-pair / 1.5B

(d) MathShepherd-pair / 7B (e) Reclor-pair / 7B (f) LogiQA2.0-pair / 7B

Figure 10: Comparison of sample efficiency of RM finetuning: Trends of RM accuracy with sample
size increases. Note: The horizontal axis increases exponentially with

√
2. Therefore, the further the

data intervals, the more RM data is effectively saved. We use different colors to highlight the results
of different model sizes.

We use RM accuracy evaluation to compare the sample efficiency of RM finetuning, as shown in
Figure 10. Consistent with the conclusion from the main experiment, CodePMP improves sample
efficiency. Under the same sample conditions, it consistently delivers stable improvements, making
RM training more efficient.

E.2 ABLATION RESULTS ON LOGICAL REASONING

Table 5 shows the comparison of ReClor and LogiQA2.0 BoN accuracies for different Model-
generated pair construction methods for CodePMP. Overall, the 6.7B&1.3B setting is the best among
them.

Table 6 shows the comparison of the BoN accuracy performance of ReClor and LogiQA2.0 using
GitHub source code and web crawled code data to build CodePMP training pairs. The results verify
that Github code is a better source for pair construction.

Table 7 shows the comparison of ReClor and LogiQA2.0 BoN accuracies for CodePMP models with
and without EOC. In general, the setup without using EOC brings better results.

Table 8 shows the comparison of ReClor and LogiQA2.0 BoN accuracies for WCD and WSD lr
scheduler settings. The results below show that WSD lr scheduler brings better results than WCD.

6https://huggingface.co/datasets/coseal/CodeUltraFeedback_binarized
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Table 5: Comparison of ReClor and LogiQA2.0 BoN accuracies for different Model-generated pair
construction methods for CodePMP. Overall, the 6.7B&1.3B setting is the best among them.

Test Set
RM Finetune Constructions Method ReClor LogiQA2.0

ReClor-pair

Source Code & 1.3B 0.550 0.4464
Source Code & 1.3B-Des-Clip 0.600 0.4522
Source Code & 6.7B 0.578 0.4605
1.3B & 1.3B-Des-Clip 0.572 0.4745
6.7B & 1.3B-Des-Clip 0.564 0.4809
6.7B & 1.3B 0.608 0.5032

LogiQA2.0-pair

Source Code & 1.3B 0.708 0.5217
Source Code & 1.3B-Des-Clip 0.704 0.5268
Source Code & 6.7B 0.714 0.5198
1.3B & 1.3B-Des-Clip 0.738 0.5402
6.7B & 1.3B-Des-Clip 0.742 0.5274
6.7B & 1.3B 0.734 0.5415

Table 6: Comparison of the BoN accuracy performance of ReClor and LogiQA2.0 using GitHub
source code and web crawled code data to build CodePMP training pairs. The results below show
that Github code is a better source for pair construction.

Test Set
RM Finetune Data Source ReClor LogiQA2.0

ReClor-pair Webpage 0.574 0.4898
Github 0.582 0.4981

LogiQA2.0-pair Webpage 0.742 0.5293
Github 0.752 0.5504

E.3 CROSS-VALIDATIONS ON LOGICAL REASONING

We further conduct cross-dataset validation on logical reasoning. Specifically, we evaluate the RM
models finetuned on the ReClor-pairs dataset using the LogiQA2.0 test set. Similarly, we evaluate
the RM models finetuned on the LogiQA2.0-pairs dataset using the ReClor test set. As shown
in Table 9, CodePMP consistently improves RM evaluation performance, demonstrating that the
enhancements CodePMP brings to RM training are robust and generalizable. Note that the BoN
accuracies of the RM trained with LogiQA2.0-pair on the Reclor test set are higher than those of the
RM trained directly on the Reclor-pair, because the LogiQA2.0-pair dataset is three times larger than
the Reclor-pair dataset.

F LOGICAL REASONING EVALUATION EXAMPLES

We randomly select and present examples from the Reclor test set, which consists of multiple-choice
questions based on a given passage. While it is possible to have the model generate additional
candidate answers to create a Best-of-N test, it becomes difficult to ensure that the original correct
answer remains among the options after introducing new candidates, and to identify the new correct
answer. We attempt to use GPT-4o to annotate the correct answers for 32 responses, but the
consistency with manual inspection is low, as is the consistency of GPT-4o’s own multiple annotations.
It can be inferred that the consistency rate would worsen if expanded to 256 responses. Therefore, after
careful consideration, we decide to use RM to score only the original four manually annotated answer
options, match the top-ranked option with the manually annotated correct answer, and calculate
accuracy. In principle, this method is equivalent to the Best-of-4 test.
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Table 7: Comparison of ReClor and LogiQA2.0 BoN accuracies for CodePMP models with and
without EOC. In general, the setup without using EOC brings better results.

Test Set
RM Finetune Model ReClor LogiQA2.0

ReClor-pair w/o EOC 0.582 0.4981
w/ EOC 0.596 0.4617

LogiQA2.0-pair w/o EOC 0.752 0.5504
w/ EOC 0.686 0.4809

Table 8: Comparison of ReClor and LogiQA2.0 BoN accuracies for WCD and WSD lr scheduler
settings. The results below show that WSD lr scheduler brings better results than WCD.

Test Set
RM Finetune Model ReClor LogiQA2.0

ReClor-pair WCD 0.552 0.4828
WSD 0.582 0.4981

LogiQA2.0-pair WCD 0.748 0.5204
WSD 0.752 0.5504

Table 10: Examples from the Reclor test set, which consists of multiple-choice questions based on a
given passage.

ID Text Options Answer
12824 Mayor: Four years ago,

when we reorganized the
city police department in or-
der to save money, critics
claimed that the reorganiza-
tion would make the police
less responsive to citizens
and would thus lead to more
crime. The police have com-
piled theft statistics from the
years following the reorgani-
zation that show that the crit-
ics were wrong. There was
an overall decrease in reports
of thefts of all kinds, includ-
ing small thefts.
Question: Which of the fol-
lowing, if true, most seri-
ously challenges the mayor’s
argument?

1. In other cities where police depart-
ments have been similarly reor-
ganized, the numbers of reported
thefts have generally risen follow-
ing reorganization.

2. When city police are perceived as
unresponsive, victims of theft are
less likely to report thefts to the
police.

3. The mayor’s critics generally
agree that police statistics concern-
ing crime reports provide the most
reliable available data on crime
rates.

4. The mayor’s reorganization of the
police department failed to save as
much money as it was intended to
save.

1
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218 Jupiter is a gas giant planet
and the largest planet in the
solar system. Its mass is
2.5 times the total mass of
the other seven planets in
the solar system. Observa-
tions have found that most
of the more than 70 moons
surrounding Jupiter are com-
posed of water ice. There-
fore, Jupiter’s atmosphere
should contain a consider-
able amount of water.
Question: Which of the fol-
lowings, if true, can best sup-
port the above statement?

1. After hundreds of millions of
years, the satellite may slowly fall
onto the planet.

2. Many of the water in interstellar
space exists in gaseous form.

3. Uranus is also a gas giant planet,
and it has been confirmed that it
contains a lot of water ice.

4. The satellite and the planets
around it were formed from the
same gas and dust at the same
time.

3

10376 Lake Dali is a barrier lake
on the plateau formed by
volcanic eruptions. Like
salmon living in the sea, Hua
Zi fish-Leuciscus waleckii,
which lives in a brackish
lake, must migrate to the up-
per reaches of the Tanshui
River to spawn and breed,
although the four rivers cur-
rently flowing into Lake Dali
are inland rivers, and none
of them leads to the sea.
Scientists are still convinced
that the Huaziyu in Lake
Dali first migrated from the
ocean.
Question: Which of the fol-
lowing options, if true, pro-
vides the best explanation for
scientists’ beliefs?

1. The Leuciscus waleckii that lives
in the waters such as Heilongjiang
is twice as big as the Leuciscus
waleckii fish in Lake Dari.

2. The caught Hua Zi fish can only
survive for a day or two after being
put into sea water or fresh water,
and will decay quickly after death.

3. Melting glaciers will form Lake
Dali, and the overflowing lake was
once connected to the Liao River,
which flowed into the ocean.

4. The researchers put the fry of Hua
Zi fish in Dali Lake into Gainao
thousands of miles away, and the
culture was successful.

2

13334 It is repeatedly claimed that
the dumping of nuclear waste
poses no threat to people liv-
ing nearby. If this claim
could be made with certainty,
there would be no reason
for not locating sites in ar-
eas of dense population. But
the policy of dumping nu-
clear waste only in the more
sparsely populated regions
indicates, at the very least,
some misgiving about safety
on the part of those responsi-
ble for policy.
Question: Which one of
the following, if true, would
most seriously weaken the ar-
gument?

1. Until there is no shred of doubt
that nuclear dumps are safe, it
makes sense to situate them where
they pose the least threat to the
public.

2. There are dangers associated with
chemical waste, and it, too, is
dumped away from areas of dense
population.

3. In the event of an accident, it is
certain that fewer people would
be harmed in a sparsely populated
than in a densely populated area.

4. Dumping of nuclear waste poses
fewer economic and bureaucratic
problems in sparsely populated
than in densely populated areas.

3
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Table 9: Cross-validation evaluation: ReClor and LogiQA2.0 BoN accuracies, black numbers are
the results of cross-validation. In the cross-validation evaluation, CodePMP can still bring stable
improvements on different test sets.

Test Set
RM Finetune Model PMP ReClor LogiQA2.0

ReClor-pair
1.5B ✗ 0.534 0.4592

✓ 0.582 0.4981

7B ✗ 0.724 0.5453
✓ 0.756 0.5835

LogiQA2.0-pair
1.5B ✗ 0.710 0.5293

✓ 0.752 0.5504

7B ✗ 0.748 0.6371
✓ 0.794 0.6779
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