
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC MIXTURE OF EXPERTS: AN AUTO-TUNING
APPROACH FOR EFFICIENT TRANSFORMER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Sparse Mixture of Experts (SMoE) has been widely employed to enhance
the efficiency of training and inference for Transformer-based foundational
models, yielding promising results. However, the performance of SMoE heavily
depends on the choice of hyper-parameters, such as the number of experts and
the number of experts to be activated (referred to as top-k), resulting in significant
computational overhead due to the extensive model training by searching over
various hyper-parameter configurations. As a remedy, we introduce the Dynamic
Mixture of Experts (DYNMOE) technique. DYNMOE incorporates (1) a novel
gating method that enables each token to automatically determine the number of
experts to activate. (2) An adaptive process automatically adjusts the number of
experts during training. Extensive numerical results across Vision, Language, and
Vision-Language tasks demonstrate the effectiveness of our approach to achieve
competitive performance compared to GMoE for vision and language tasks, and
MoE-LLaVA for vision-language tasks, while maintaining efficiency by activating
fewer parameters. Our code will be made publicly available.

1 INTRODUCTION

The scalable nature of Transformer models (Kaplan et al., 2020) has gained remarkable successes
across a spectrum of applications, ranging from language (Achiam et al., 2023; Touvron et al.,
2023a;b) and vision Kirillov et al. (2023); Peebles & Xie (2023) to cross-modality domains (Liu et al.,
2024; Li et al., 2022b; 2023b). To further enhance performance while maintaining high efficiency,
Sparse Mixture of Experts (SMoE) has emerged as a promising technique that significantly reduces
computation costs during both training and inference stages (Fedus et al., 2022; Lepikhin et al., 2020;
Zhang et al., 2022), and has been shown to achieve comparable or superior performance compared to
traditional dense models (Li et al., 2022a; Jiang et al., 2024; Dai et al., 2024).

Despite its success, SMoE has an unavoidable drawback: the performance of SMoE heavily relies on
the choice of hyper-parameters, such as the number of activated experts per token, referred as top-k,
and the number of experts (Clark et al., 2022; Fan et al., 2024; Yang et al., 2021), denoted as K. As
illustrated in Figure 1(a), the performance discrepancy of MoE models under various configurations
can be approximately 1%-3%. Notably, identifying the optimal hyper-parameter without a sufficient
number of ablation studies is challenging. As the size of the models continues to grow, this limitation
could result in a significant waste of computational resources, and in turn, could hinder the efficiency
of training MoE-based models in practice.

To tackle the above problems, the objective of this paper is to explore a novel training technique for
MoE models, with the aim of addressing the following core question:

Is it possible to develop a MoE training strategy that can automatically determine the number of
experts and the number of activated experts per token during the training process?

Hence, we introduce the Dynamic Mixture of Experts (DYNMOE) method, which addresses the
aforementioned question through the introduction of two innovative components: (1) a top-any gating
method that enables each token to autonomously determine the number of experts to activate, thereby
allowing different tokens to activate varying numbers of experts; (2) an adaptive training process that
dynamically adjusts the number of experts, increasing it when the current quantity is inadequate and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

63.5

64.0

64.5

65.0

65.5

A
cc

u
ra

cy
(%

)

MoE (Avg.): 64.30

DynMoE: 65.17

COLA

MoE w/ various (K, k)

DynMoE (Ours)

(a) Performance Fluctuation Illustration

2 4 6 8 10 12 14

Activated Parameters (Billions)

50

55

60

65

70

75

80

V
Q

A
v
2

T
es

t-
d

ev
A

cc
u

ra
cy

DynMoE-1.6B×4

MoE-LLaVA-1.8B×4

InternVL-C-14BQwen-VL-C-7B LLaVA-1.5-7B

BLIP-2-ViT-g-FlanT5-XL

LLaVA-Phi-2.7B

BLIP-2-12B

Shikra-13B

LLaVA-1.5-13B

BLIP-2-ViT-L-OPT

BLIP-2-ViT-g-OPT

IDEFICS-9B
KOSMOS-1-1.6B

(b) Performance-Efficiency Illustration

Figure 1: Illustration of performance and efficiency of DYNMOE. In Figure 1(a), we carried out experiments
on GLUE benchmark (Wang et al., 2018), employing BERT-large (Devlin et al., 2019) as backbone. In Figure1(b),
we follow the MoE-LLaVA (Lin et al., 2024) settings, the x-axis represents the number of activated parameters,
while the y-axis shows the performance on the Visual Question Answering (VQA) task.

removing redundant experts as necessary. Additionally, we introduce a new auxiliary loss function
specifically designed to encourage sparsity when employing the top-any gating approach. This loss
encourages different experts to be diverse, rather than mandating that all experts be activated with the
same frequency. We summarize the contributions of this paper as follows:

• Introducing DYNMOE, a novel method frees the burden of pivotal hyper-parameter selection for
MoE training, which is capable of autonomously determining the number of experts and the number
of experts to be activated per token. We provide Tutel and DeepSpeed-MoE implementations for
ease of practical usage.

• Conducting extensive empirical experiments across Vision, Language, and Vision-Language tasks.
The results illustrate that DYNMOE achieves comparable or superior performance and efficiency
compared to the well-tuned MoE settings (Figure 1(b)).

2 RELATED WORKS

The Sparse Mixture of Experts (SMoE) approach (Eigen et al., 2013; Shazeer et al., 2017; Lepikhin
et al., 2020) has been proven to effectively enhance the training and inference efficiency of founda-
tional models. Contemporary studies primarily modify the MLP layer of transformer models into
multiple expert models and employ a gating network to determine which expert to select. They only
choose a subset of experts for each token during both training and inference (Lepikhin et al., 2020;
Fedus et al., 2022). Recently, the SMoE structure has shown success in various research areas. For in-
stance, GMoE (Li et al., 2023a) has demonstrated that SMoE can enhance generalization performance
in vision tasks. Large Language Models (LLMs) have also employed MoE to simultaneously reduce
training and inference costs while improving model performance (Fedus et al., 2022; Jiang et al.,
2024; Dai et al., 2024; Ren et al., 2023; Lin et al., 2024). However, most of these models employ
standard SMoE structures and apply the SMoE to various tasks. Our paper focuses on improving the
MoE training process, which can be easily integrated with these methods.

Recently, some attempts have been made to improve the architecture of MoE models. For example,
researchers have investigated the benefits of sample-wise (Ramachandran & Le, 2018; Gross et al.,
2017) and token-wise (Shazeer et al., 2017; Riquelme et al., 2021; Fedus et al., 2022) routing. Some
studies introduce load balancing loss to ensure that the experts are activated an equal number of
times (Lepikhin et al., 2020; Fedus et al., 2022). Expert choice routing (Zhou et al., 2022) addresses
load balance by allowing experts to choose tokens; however, this approach also suffers from dropped
tokens. SoftMoE (Puigcerver et al., 2023) uses a slot mechanism to simultaneously resolve the
issues of load balance and dropped tokens. Nevertheless, these approaches also require pre-defined
hyperparameters, such as the number of experts or the number of experts to be activated. Some
studies enable tokens to activate a varying number of experts (Huang et al., 2024; Yang et al., 2024;
Huang et al., 2024; Yang et al., 2024). However, these approaches either rely on modifying the
routing mechanism from top-k to top-p (which introduces the additional hyperparameter p), or use
dense training during the initial stages, neither of which provide an optimal implementation. In this
paper, we tackle this problem by presenting DYNMOE, an algorithm that automatically determines

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the number of activated experts for each token and dynamically adds or removes experts during the
training process. Furthermore, we introduce a new auxiliary loss function that ensures sparsity when
utilizing the DYNMOE algorithm.

3 METHOD

Gating
Network Score 1 Score 2 Score n

Expert 1 Expert 2 Expert n

Gating
Network

Top-Any 
Gating

Input Tokens

Output Tokens

. . .

. . .

. . .

Figure 2: Illustration of the top-any gating
method. The input tokens pass through the gating
weights Wg,e corresponding to each expert e, ob-
taining the gating scores. The scores surpass gates
Ge will activate the subsequent expert. Finally, the
expert outputs are combined to produce the output
tokens.

In this section, we introduce the Dynamic Mixture of
Experts (DYNMOE), an algorithm capable of auto-
matically determining the number of experts and the
number of experts to be activated for both training
and inference stages. This is achieved through the
incorporation of two crucial components:

(1) The top-any gating method (Figure 2), which
models the gating mechanism as a multi-label
classification problem, allowing tokens to decide
the number of experts to be activated on their
own. This enables different tokens to activate
varying numbers of experts, including the option
to activate no experts.

(2) A carefully designed adaptive process that adds
new experts when tokens choose to not activate
any existing experts, and removes any surplus ex-
perts that have not been activated by any tokens.

The overall process is summarized in Algorithm 1.

3.1 TOP-ANY GATING

In this section, we present the superior gating method to eliminate the need for tuning the top-k value.
We further improve the test-time inference procedure and introduce an additional auxiliary loss to
prevent token dropping and boost efficiency.

Traditional top-k gating and the limitations. The traditional top-k gating method takes the token
embedding x as input and employs an additional gating network g to predict the gating scores.
These gating scores are then used to determine which experts will be activated for the input tokens.
Typically, given token x ∈ Rd as input, the gating process is defined as the follows Rajbhandari et al.
(2022); Hwang et al. (2023):

g(x) ∈ RK := softmax(WT
g x) , (1)

where Wg ∈ Rd×K is the parameter of the gating network, and K is the number of experts. Then
the output of the MoE layer is defined by

y =
1∑

e∈Top-k(g(x)) g(x)e

∑
e∈Top-k(g(x))

g(x)eEe(x) , (2)

where Ee(x) ∈ Rd is the output of e-th expert given input x, and g(x)e is the e-th entry of g(x).

Despite the considerable success of the top-k gating method in enhancing training and inference
efficiency, two limitations persist:

1. The value of k must be fine-tuned to optimize model performance. As demonstrated in Figure 1(a),
the performance of MoE models can vary significantly with different top-k values. This observation
has also been noted in recent studies (Clark et al., 2022; Fan et al., 2024; Yang et al., 2021).
Consequently, substantial computational resources are needed to identify the optimal value of k.

2. The top-k gating approach assumes that each token must activate the same number of experts,
which may not always hold in practice. For instance, when considering different tasks, there
could exist tokens shared by all tasks and those specific to certain tasks, i.e. different tokens could
activate different numbers of experts.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Addressing the limitations of top-k gating by tuning-free top-any gating. To address the
aforementioned limitations, we propose the top-any gating method, which does not require a pre-
defined value of k and allows different tokens to activate varying numbers of experts during both
training and inference stages.

The design of the top-any gating method draws inspiration from the multi-label classification problem.
We consider each expert as an individual class and calculate the classification (gating) score for each
class (expert) independently. Subsequently, all classes (experts) with scores exceeding the threshold
are deemed positive (activated). In detail, given the expert representation matrix Wg ∈ RK×d, where
the k-th row of Wg acts as the representation of expert k, and an input token x ∈ Rd, the key steps
of top-any gating can be formulated by the following equation:

s(x) =
⟨x,Wg⟩
∥x∥ ∥Wg∥

, (3)

g(x) = sign (σ (s(x))− σ(G)) , (4)

where Wg ∈ RK×d and G ∈ RK . To illustrate, we first compute the cosine similarities between
the token and the expert representation matrix Wg and obtain the similarity score s(x) ∈ RK .
Then the sigmoid function σ is applied to the similarity score s(x) to obtain the scores between 0
and 1. Finally, experts with similarity scores greater than the trainable per-expert threshold G are
considered to activate experts for the token x. It is important to note that the sign function does
not support back-propagation, and thus we customize the back-propagation process of this part by
directly copying the gradient of g(x) to σ (s(x))− σ(G) to effectively bypass the sign function.

Given the gating score g(x) ∈ RK , the number of activated experts is then defined by

k := sum (g(x)) , (5)

where k represents the number of experts to be activated for token x. The model output of the MoE
layer with the top-any gating method can be derived as follows

y =
1

k

∑
g(x)e>0

Ee(x) . (6)

Remark 3.1 (Discussion on not to consider the magnitude of scores when averaging the expert
outputs.). In our top-any gating approach, the scores of different experts are calculated independently.
As a result, the scores of different experts may have different scales and ranges. For instance, there
may be cases where the scores of Expert 1 are within the range of (0.1, 0.2), but the scores of Expert
2 are within the range of (0.8, 0.9). To avoid this mismatch, we have decided not to consider the
magnitude of scores in Equation 6.

Improving the top-any gating during test-time to prevent token dropping. To facilitate the
design of the adaptive expert number process, we did not impose a minimum value on k. Consequently,
some tokens may not activate any experts. To address this issue, during model performance evaluation,
we modify the top-any gating to enable top-1 gating for tokens that do not choose to activate any
experts. In detail, for the input token x with sum(g(x)) = 0, the modified gating score g̃(x) is
obtained by

g̃(x)k =

{
0 k ̸= argmaxk σ(s(x)) ,
σ(s(x)) k = argmaxk σ(s(x)) .

(7)

Guarding efficiency for top-any gating by auxiliary loss. The primary goal of using MoE models
is to improve the training and inference efficiency. However, in the absence of a cap on the maximum
number of activated experts, tokens might activate all experts, which is counterproductive to our
primary goal.

Using an auxiliary loss as a regularization over experts may alleviate our issue. However, existing
auxiliary loss methods (Lepikhin et al., 2020; Fedus et al., 2022; Wu et al., 2024) are primarily
designed to ensure load balancing across experts and thus cannot align with our objectives. While
activating all experts can indeed achieve load balancing, it contradicts our aim of improving efficiency
by limiting the number of activated experts. Therefore, we need a solution that not only ensures
load balancing but also restricts the number of activated experts.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudo code of DYNMOE on each iteration and MoE layer.
Require: Input data x, initial gating network parameters Wg , G, and τ , experts E1, · · · , EK , start record

routing flag flags, finish record routing flag flagf .
Ensure: MoE layer output y, auxiliary loss value.
1: if flags then
2: Set routing flag flagrout = 1.
3: Initialize routing records by Rrout = 0K .
4: Initialize non-activate sample records Rsam = 0d.
5: Get the gating outputs g(x) and k by Eq (4) and (5).
6: Get MoE layer output y by Eq (6).
7: Calculate auxiliary loss by Eq (8).
8: if flagrout = 1 then
9: RE = RE + sum(g(x), dim = 0).

10: RS = RS +
∑N

i=1 1ki=0xi

11: if flagf then
12: flagrout = 0.
13: if Exists e that Re

E = 0 then
14: Remove experts e.
15: if RS,e ̸= 0 then
16: Add new expert K + 1 with expert representation Wg,K+1 = RS/ ∥RS∥.

As a remedy, we propose a new auxiliary loss, namely sparse and simple gating loss, as shown in (8).
The diversity loss and simplicity loss in (8) work together to improve the efficiency of the model by
addressing different aspects of the expert representations. On one hand, the diversity loss encourages
independence among the Wg representations of various experts. It serves two purposes: First, it
prevents a high degree of similarity between experts, thereby enhancing the model’s representational
capacity; Second, it guides tokens to avoid simultaneous activation of all experts, thereby promoting
sparse gating for improved efficiency. On the other hand, the simplicity loss normalizes Wg to avoid
excessively large values within the matrix, which helps maintain numerical stability and prevents
overfitting due to extreme parameter values. The detailed loss function is defined as follows:

L =
∥∥WT

g Wg − IK
∥∥
2︸ ︷︷ ︸

diversity loss

+
1

K

K∑
e=1

∥wg,e∥2︸ ︷︷ ︸
simplicity loss

, (8)

where IK is the identity matrix with dimension K, and wg,e ∈ Rd is the e-th element of Wg,
indicating the representation of the e-th expert.

3.2 ADAPTIVE TRAINING PROCESS

In this section, we elaborate on the adaptive training process, which is designed to automatically
determine the number of experts. As illustrated in Figure 3, the adaptive process consists of three parts,
namely (1) Routing Recording: recording the routing results during training; (2) Adding Experts:
adding new experts when tokens choose not to activate any existing experts; and (3) Removing
Experts: removing experts that have not been chosen by any tokens. To promising efficiency and
avoiding burden communication, we only check if experts required to be added or removed every
100-300 iterations.

Routing Recording. To facilitate the removal and addition of experts, it is essential to track the
routing status. Specifically, we record two key pieces of information for each MoE layer: (1) For each
expert e, we record the time at which expert e is activated, denoted as RE ∈ RK (as shown in Line 9
of Algorithm 1). (2) For input data that does not activate any expert, we compute the sum of their
embeddings x as RS ∈ Rd (as outlined in Line 10 of Algorithm 1). Note that this approach simplifies
the expert addition process: by using the token embeddings to initialize the expert representation
Wg , we can achieve a high similarity score between these tokens and the new experts, ensuring that
the new expert will be activated by these tokens when added.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The

quick

fox

jumps

brown

Expert 1

Expert 2

Expert 4

No matching
expert!

Expert 2

Expert 1

Expert 4

load new
expert

Before Addition After Addition

Expert 2

Expert 1

Expert 3

After RemovalBefore Removal

Expert 3
unload
expert

Expert 1

Expert 2

Expert 3

over

the

dog

.

lazy

Expert 3 Expert 4

Expert 4

Several
Iterations

Activated
Experts

Inactivated
Experts

No matching
tokens!

pick new
expert

❌
❌

Stepm Stepn

Figure 3: Elaboration on the adaptive training process. We visualize the adaptive training process of
DYNMOE, including record routing, experts adding, and experts removing. The green strip connecting the token
and the expert indicates records of a token routing to an expert. The red arrow at the bottom part of the figure
shows where and when expert addition and removal happens.

As demonstrated in Algorithm 1, we utilize flags and flagf to determine when to start and stop
routing recording. Users can control these two flags as needed.

Adding Experts when there exist tokens that choose not to activate any experts. We add new
experts when the recorded RS ̸= 0, as some tokens do not activate any experts and RS is the
sum of these tokens. Therefore, given K activated experts and new expert K + 1, we initialize
Wg,K+1 = RS

∥RS∥ and GK+1 = 0. Moreover, due to the device constrain, the maximum number of
experts should be constrained. We set the maximum number of experts to 16 for vision and language
tasks, and 4 for vision-language tasks in practice.

Removing Experts when there exist experts not activated by any token. We remove experts
when there is an expert e such that Re

E = 0 (as shown in Line 13 in Algorithm 1), which indicates
that there is no token choose to activate the expert e.

4 EXPERIMENTS

In this section, we carry out experiments to address the following questions:
• Q1: Can DYNMOE achieve competitive performance among different MoE settings? See 4.2.
• Q2: Can DYNMOE handle tasks with varying modalities and scales? See 4.3.
• Q3: Will the model trained by DYNMOE maintain sparsity to ensure efficiency? See 4.4.
• Q4: Can DYNMOE offer insights that could guide the design of MoE models? See 4.5.

4.1 EXPERIMENT SETUP

To answer the above four questions, we conduct experiments on Vision, Language, and Vision-
Language tasks. The details are shown in the following.
• Vision Task. For the vision tasks, we follow the same settings as in GMoE (Li et al., 2023a).

We employ the pre-trained ViT-S/16 Dosovitskiy et al. (2020) model and evaluate it on the
DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark. Our experiments encompass four Do-
main Generalization datasets: PACS (Li et al., 2017), VLCS (Albuquerque et al., 2019), Office-
Home (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). All results are reported
using the train-validation selection criterion.

• Language Task. The language tasks adhere to the same settings as those in MoEfication (Zhang
et al., 2022) and EMoE (Qiu et al., 2023). The MoE models are built upon the BERT-large (Devlin
et al., 2019) architecture using the MoEfication method and are fine-tuned on GLUE (Wang
et al., 2018) tasks, which include COLA (Warstadt et al., 2019), QNLI (Wang et al., 2018),
RTE (Bentivogli et al., 2009), MNLI (Xu et al., 2020), and MRPC (Dolan & Brockett, 2005). For
each MoE setting, we tune the learning rates in {2e-5, 3e-5, 5e-5} and report the best results.

• Vision-Language Task. The vision-language tasks follows the setting in MoE-LLaVA (Lin et al.,
2024), where we use StableLM-2-1.6B (Bellagente et al., 2024), Qwen-1.8B (Bai et al., 2023) and
Phi-2-2.7B (Hughes) as backbone language models, and use clip-vit-large-patch14-336 (Radford
et al., 2021) as the vision encoder. The models are evaluated on image understanding benchmarks
including VQA-v2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VisWiz (Gurari et al.,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)
63.0

63.5

64.0

64.5

65.0

65.5

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 64.30

DynMoE: 65.17

COLA

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.5)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

89.0

89.5

90.0

90.5

91.0

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 89.94

DynMoE: 90.64

MRPC

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.7)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

90

92

94

96

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 92.49

DynMoE: 92.59

QNLI

MoE w/ various (K, k)

DynMoE (K=9, avg k=7.2)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

84

86

88

90

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 86.61
DynMoE: 86.37

MNLI

MoE w/ various (K, k)

DynMoE (K=9, avg k=8.0)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

72

73

74

75

76

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 74.07

DynMoE: 73.41

RTE

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.9)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

0

1

2

3

T
op

-2
A

cc
u

ra
cy

T
im

es

DynMoE: 3.00

Top-2 Accuracy Times

MoE w/ various (K, k)

DynMoE (Ours)

Figure 4: Performance of DYNMOE on language tasks. We conduct experiments on the GLUE benchmark.
The x-axis represents MoE settings with varying K and top-k values. The y-axis denotes the model’s
performance. Dashed lines indicate the average performance across different settings, as well as the performance
of DYNMOE. For all the MoE settings, we tune the learning rates in {2e-5, 3e-5, 5e-5} and report the best
results. We also report the times when each MoE setting attains the top-2 best results across all configurations.

2018), ScienceQA-IMG (Lu et al., 2022), TextVQA (Singh et al., 2019), POPE (Li et al., 2023c),
MME (Yin et al., 2023), MMBench (Liu et al., 2023), LLaVA-Bench (in-the-Wild) (Liu et al.,
2024), and MM-Vet (Yu et al., 2023). Furthermore, we keep routing records in our model during
testing time. For each benchmark, we collect the number of experts’ activations per MoE layer and
total processed tokens during testing. The hyper-parameter settings are the same to MoE-LLaVA
for fair comparision.

4.2 A1: DYNMOE ACHIEVES COMPETITIVE PERFORMANCE AMONG VARIOUS MOE
SETTINGS

In this section, we carry out experiments on the GLUE benchmark (Wang et al., 2018), varying the
number of experts (K) and the value of top-k. The results of these experiments can be observed
in Figure 4. More detailed results of each MoE setting can be found in Tables 6- 10 of Appendix.

The performance of DYNMOE surpasses the average performance among various MoE settings.
As seen in Figure 4, we can observe that
1. The DYNMOE outperforms the average performance for various K and top-k values in most tasks.

DYNMOE also achieves the highest number of top-1/2 best performances among all MoE settings,
demonstrating its competitive performance.

2. The performance fluctuates considerably with different K and top-k values, such as up to 3.0%
on the RTE task and 1.3% on the COLA task. DYNMOE overcomes this issue by not requiring
pre-defined K and top-k values.

3. The performance gain of specific K and top-k choice is not consistent among tasks. For instance,
the K = 16, k = 4 setting performs well on QNLI but poorly on MRPC. In contrast, the DYNMOE
always achieve competitive performance among tasks.

4.3 A2: DYNMOE CAN HANDLE VISION, LANGUAGE, AND VISION-LANGUAGE TASKS

In addition to Language tasks, we also conduct experiments on Vision and Vision-Language tasks to
verify the performance of DYNMOE on different modalities and task scales. The results can be found
in Tables 1, and 2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of DYNMOE on vision tasks: Our study investigates the performance of DYNMOE on
vision tasks using the DomainBed benchmark, with ViT-small serving as the backbone model. The effectiveness
of GMoE is elucidated based on meticulously tuned results as presented in the previous works Li et al. (2023a)
and Qiu et al. (2023). In our implementation of DYNMOE, we configure the maximum number of experts to 8,
with an initial setting of 6 experts. The number of experts is dynamically adjusted in each iteration for DYNMOE.
We also report the performance of DYNMOE using Gshard loss (Lepikhin et al., 2020) as the auxiliary loss.

Algorithms PACS VLCS OfficeHome DomainNet Average

GMoE (in Li et al. (2023a)) 88.1 80.2 74.2 48.7 72.8
GMoE (carefully tuned (Qiu et al., 2023)) 87.7 79.6 73.1 - -

GMoE (with DYNMOE, Gshard Loss) 88.4 79.4 73.6 47.4 72.2
GMoE (with DYNMOE, Diverse and Simple Gating Loss) 87.6 80.3 73.5 48.2 72.4

Table 2: Performance of DYNMOE on vision-language tasks: Our study investigates the performance of
DYNMOE-LLaVA on image understanding benchmarks. Evaluation Benchmarks include VQA-v2; GQA;
VisWiz; SQAI (ScienceQA-IMG); VQAT (TextVQA); POPE; MME; MMB (MMBench); LLaVAW (LLaVA-
Bench (in-the-Wild)); MM-Vet. For a fair comparison, we set the maximum number of experts to 4 for
DYNMOE-LLaVA (the same as the number of experts in MoE-LLaVA) and set the initial number of experts to 2.
NA indicates the number of activated parameters.

Algorithms NA VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB LLaVAW MM-Vet

Dense
LLaVA-1.5 (Vicuna-13B) 13B 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 67.7 70.7 35.4

LLaVA-1.5 (Vicuna-7B) 7B 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 63.4 30.5
LLaVA-Phi (Phi-2-2.7B) 2.7B 71.4 - 35.9 68.4 48.6 85.0 1335.1 59.8 - 28.9

Sparse (StableLM-1.6B)
MoE-LLaVA

(K = 4, k = 2) 2.06B 76.7 60.3 36.2 62.6 50.1 85.7 1318.2 60.2 86.8 26.9

DYNMOE-LLaVA
(avg k = 1.25) 1.75B 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2 86.4 28.1

Sparse (Qwen-1.8B)
MoE-LLaVA

(K = 4, k = 2) 2.24B 76.2 61.5 32.6 63.1 48.0 87.0 1291.6 59.7 88.7 25.3

DYNMOE-LLaVA
(avg k = 1.86) 2.19B 76.4 60.9 32.4 63.2 47.5 85.8 1302.4 61.3 89.2 24.2

Sparse (Phi-2-2.7B)
MoE-LLaVA

(K = 4, k = 2) 3.62B 77.6 61.4 43.9 68.5 51.4 86.3 1423.0 65.2 94.1 34.3

DYNMOE-LLaVA
(avg k = 1.68) 3.35B 77.9 61.6 45.1 68.0 51.8 86.0 1429.6 66.6 95.6 33.6

The effectiveness of DYNMOE remains consistent in both Vision and Vision-Language tasks.
Compared to the standard MoE, we can observe the following: A. DYNMOE outperforms standard
MoE with well-tuned learning rate, number of experts, and top-k (Qiu et al., 2023) in Vision
tasks. The performance difference between DYNMOE and another well-tuned MoE setting in (Li
et al., 2023a), falls within the range of random fluctuation. B. When using StableLM-1.6B and
Phi-2-2.7B as the backbone, the performance of DYNMOE-LLaVA surpasses that of MoE-LLaVA.
C. With Qwen-1.8B as the backbone, the performance of DYNMOE-LLaVA remains comparable
to MoE-LLaVA. In this setting, the average top-k of DYNMOE-LLaVA (avg k = 1.86) is also close
to the MoE-LLaVA setting (k = 2). D. In the BERT experiments (Figure 4), DYNMOE generally
activate more experts for each token compared to larger scale MoE-LLaVA experiments (Table 2).
This observation aligns with the BERT experiments results obtained when using a fixed k value,
i.e., k=4 generally performs better among the set {1,2,4,8}.

4.4 A3: DYNMOE MAINTAINS EFFICIENCY BY ACTIVATING LESS PARAMETERS

In this section, we aim to demonstrate that although we did not enforce sparsity on the DYNMOE
models, the trained DYNMOE models are still sparse, promising improved inference efficiency.

DYNMOE-LLaVA activates fewer parameters compared to MoE-LLaVA. In Table 2, we
display the number of activated parameters in the "NA" column. When using StabeLM-1.6B as the
backbone, DYNMOE-LLaVA activates approximately 15.0% fewer parameters than MoE-LLaVA.
For Qwen-1.8B, DYNMOE-LLaVA activates about 2.2% fewer parameters than MoE-LLaVA. For
Phi-2-2.7B, DYNMOE-LLaVA activates about 7.5% fewer parameters than MoE-LLaVA. In these
three cases, the reduction in activated parameters does not compromise the model’s performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.09

1.00

VQAv2

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.06

1.00

POPE

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.08

1.00

LLaVA-Bench

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.12

1.00

VisWiz

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.21

1.00

MMBench

DynMoE avg. top-k: 1.26

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.06

1.00

GraphQA

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.13

1.00

TextVQA

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.14

1.00

MME

DynMoE avg. top-k: 1.26

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.05

1.00

MM-Vet

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.07

1.00

ScienceQA

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

Figure 5: Average top-k activated experts of DYNMOE on vision-language benchmarks. We record average
top-k activated experts for each MoE layer when using StableLM-1.6B as the language model backbone.

Table 3: Ablation studies on the value of top-k during test. We train the models using DYNMOE and set
different values of top-k during the test. Training and evaluation settings are identical to that of Table 2.

Algorithms NA VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB LLaVAW MM-Vet

StableLM-1.6B
DYNMOE-LLaVA 1.75B 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2 86.4 28.1
DYNMOE-LLaVA (k = 2) 2.06B 76.9 61.0 39.1 62.1 49.2 85.7 1320.4 62.4 73.6 28.2
DYNMOE-LLaVA (k = 3) 2.47B 76.8 60.7 37.0 62.6 48.9 85.5 1306.9 62.5 74.0 26.8
DYNMOE-LLaVA (k = 4) 2.89B 76.8 60.5 34.8 61.9 49.0 85.8 1321.9 61.9 75.8 27.8

Qwen-1.8B
DYNMOE-LLaVA 2.19B 76.2 61.5 32.6 63.1 48.0 87.0 1291.6 59.7 88.7 25.3
DYNMOE-LLaVA (k = 2) 2.24B 76.2 60.8 33.8 62.2 47.7 87.5 1281.3 60.4 91.3 23.0
DYNMOE-LLaVA (k = 3) 2.65B 76.2 60.5 32.2 62.9 48.1 88.4 1263.7 60.7 87.8 23.4
DYNMOE-LLaVA (k = 4) 3.05B 75.7 60.0 31.6 62.8 48.3 88.1 1263.4 61.0 86.7 23.7

Phi-2-2.7B
DYNMOE-LLaVA 3.35B 77.9 61.6 45.1 68.0 51.8 86.0 1429.6 66.6 95.6 33.6
DYNMOE-LLaVA (k = 2) 3.62B 77.8 61.5 41.6 67.6 51.8 85.5 1433.5 66.8 95.1 32.7
DYNMOE-LLaVA (k = 3) 4.46B 77.7 61.8 42.0 68.0 52.3 86.3 1438.1 66.8 94.3 30.8
DYNMOE-LLaVA (k = 4) 5.30B 77.5 61.4 41.7 68.0 52.4 87.0 1431.5 66.5 95.8 32.8

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(a) Activation frequency (Qwen)

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(b) Activation frequency (StableLM)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(c) Activation frequency (Phi-2)

Figure 6: Statistics of expert activation frequency in different layers. We report the frequency of expert
activations in various layers for the VQA task. Larger circles indicate experts that are activated more frequently.

Ablation studies on the value of top-k during test. In Table 3, we examine the performance of
DYNMOE-LLaVA when using different top-k values during the testing phase. The results indicate
that (1) The original DYNMOE-LLaVA outperforms other settings in most cases while activating the
fewest number of parameters. (2) Compared to the StableLM-1.6B backbone, DYNMOE-LLaVA
trained with the Qwen-1.8B backbone sometimes favors activating two experts. This observation
aligns with the fact that DYNMOE-LLaVA also chooses to activate about 2 experts (see Table 2).

Inference efficiency of DYNMOE. To further evaluate the inference efficiency of DynMoE, we
have compared its FLOPs, MACs, speed, and memory usage to those of MoE-LLaVA. The results
in Table 4 show that: (1) DYNMOE exhibits lower FLOPs and MACs, and higher throughput
compared to MoE-LLaVA, which indicates the improved efficiency of DYNMOE. (2) In the current
implementation, all the experts in the expert pool (whether loaded or unloaded) occupy GPU memory.
Consequently, DynMoE has the same memory usage as MoELLaVA. To enhance efficiency in
practice, we can offload the unloaded experts from the GPU memory.

Training efficiency of DYNMOE. We present training FLOPs for Language (Figure 7) and Vision-
Language (Table 4) experiments. The results indicate that DYNMOE attains similar or lower FLOPs

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Efficiency evaluation of DYNMOE comparing to MoE-LLaVA. We conduct experiments on
single A100 GPU (80 GB) paired with 16 CPUs using identical environment and identical training/inference
configurations. To ensure a fair evaluation, MoE-LLaVA employs the expert dispatching implementation from
DYNMOE by fixing the top-k values. The symbols ↓ and ↑ indicate that lower and higher values, respectively,
denote better performance.

Model Training FLOPs ↓ Inference FLOPs ↓ Inference MACs ↓ Throughput ↑ Memory Usage ↓
(TFLOPs/step) (GFLOPs/token) (GMACs/token) (output token/s) (GB)

MoE-LLaVA (StableLM) 18.23 27.62 13.34 19 5.98
DynMoE-LLaVA (StableLM) 17.97 25.25 12.13 26 5.98
MoE-LLaVA (Qwen) 34.27 23.36 11.30 18 6.37
DynMoE-LLaVA (Qwen) 34.61 22.17 10.73 23 6.37
MoE-LLaVA (Phi-2) 63.43 46.87 22.73 14 10.46
DynMoE-LLaVA (Phi-2) 63.36 44.92 21.72 18 10.46

0 500 1000 1500 2000 2500 3000
TFLOPs

0

20

40

60

A
cc

u
ra

cy

COLA

Standard MoE

DynMoE

0 1000 2000 3000 4000 5000
TFLOPs

0

20

40

60

80

A
cc

u
ra

cy

MRPC

Standard MoE

DynMoE

Figure 7: Convergence curve w.r.t. training FLOPs. We present the convergence curve with respect to training
FLOPs for DYNMOE and the best-performance MoE setting on the GLUE benchmark.

compared to standard MoE, ensuring efficiency and performance without the need for extensive
parameter tuning.

4.5 A4: DYNMOE PROVIDE INSIGHTS ON MOE ARCHITECTURE DESIGN

MoE structure is required for bottom layer rather than top layer. In Figures 5 and 6, we
present the average top-k of DYNMOE-LLaVA and the frequency of expert activation across various
layers. Our observations indicate that: (1) In the top layer (the layer closest to the LM prediction
head), tokens tend to select the same expert, while in the bottom layer, tokens activate all experts
uniformly. This suggests that there is no need to convert the top layer to MoE layer, whereas the
bottom layer should be transformed into MoE layer. (2) Different LLM backbones may exhibit
distinct expert activation frequency patterns. For the StableLM backbone, most MoE layers activate
only one dominant expert, whereas for the Phi-2 backbone, experts are more likely to be activated
uniformly.

Shared experts exist in each MoE layer. Figures 18- 22 display the threshold G values for each
MoE layer. We notice that typically, one expert per layer has a significantly lower threshold, making
it more easier to be activated. This observation is consistent with Deepseek-MoE’s (Dai et al., 2024)
design of incorporating shared experts for all tokens in each MoE layer.

5 CONCLUSION AND FUTURE WORKS

In this paper, we introduce DYNMOE, which automatically determines the number of experts and the
number of experts to be activated. Our results demonstrate that DYNMOE achieves comparable or
even superior performance across various MoE model settings while maintaining efficiency. This
highlights DYNMOE’s potential to save researchers’ time and computational resources when tuning
these hyperparameters. Furthermore, our visualization results reveal interesting observations, such as
the reduced number of experts required for the top layers. We believe these insights may inspire future
advancements in MoE model design. However, due to computational resource constraints, we did not
test larger scale models. Additionally, the current adaptive process implementation keeps removed
experts in a candidate pool, occupying GPU storage. Developing more efficient implementations in
the future would be valuable. Moreover, as discussed in Han et al. (2021), MoE can be considered a
dynamic model because different tokens may activate different experts, thereby enabling adaptive
computation and enhancing the model’s ability to adapt to input data. While DYNMOE addresses
dynamic challenges through adaptive top-k selection and an adaptive number of experts, exploring
integration with other dynamic techniques, such as layer skipping (Zhao et al., 2024), would also be
valuable.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H Falk, and Ioannis Mitliagkas.
Generalizing to unseen domains via distribution matching. arXiv preprint arXiv:1911.00804, 2019.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. 2023.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth
Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee, Emad
Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel, Niccolo
Zanichelli, and Carlos Riquelme. Stable lm 2 1.6b technical report. 2024.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

Dongyang Fan, Bettina Messmer, and Martin Jaggi. Towards an empirical understanding of moe
design choices. arXiv preprint arXiv:2402.13089, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
weakly supervised vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6865–6873, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7436–7456, 2021.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
models. arXiv preprint arXiv:2403.07652, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Alyssa Hughes. Phi-2: The surprising power of small language mod-
els. URL https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings of
Machine Learning and Systems, 5, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2020.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In The Eleventh International
Conference on Learning Representations, 2022a.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=RecZ9nB9Q4.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022b.

12

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://openreview.net/forum?id=RecZ9nB9Q4
https://openreview.net/forum?id=RecZ9nB9Q4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023b.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023c.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
Li Yuan. Moe-llava: Mixture of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures of
experts. arXiv preprint arXiv:2308.00951, 2023.

Zihan Qiu, Zeyu Huang, and Jie Fu. Emergent mixture-of-experts: Can dense pre-trained transformers
benefit from emergent modular structures? arXiv preprint arXiv:2310.10908, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Prajit Ramachandran and Quoc V Le. Diversity and depth in per-example routing models. In
International Conference on Learning Representations, 2018.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu-{\Sigma}: Towards trillion
parameter language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845,
2023.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018–5027, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Xun Wu, Shaohan Huang, Wenhui Wang, and Furu Wei. Multi-head mixture-of-experts. arXiv
preprint arXiv:2404.15045, 2024.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian
Yu, Cong Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng,
Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou,
Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle
Richardson, and Zhenzhong Lan. CLUE: A Chinese language understanding evaluation benchmark.
In Proceedings of the 28th International Conference on Computational Linguistics, pp. 4762–
4772, Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.419. URL https://aclanthology.org/
2020.coling-main.419.

An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Jiamang Wang, Yong Li, et al. M6-t: Exploring sparse expert models and beyond. arXiv preprint
arXiv:2105.15082, 2021.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Xmoe:
Sparse models with fine-grained and adaptive expert selection. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 11664–11674, 2024.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. In Findings of the Association for
Computational Linguistics: ACL 2022, pp. 877–890, 2022.

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang, Gao Huang, Fan Wang, and
Yang You. Dynamic tuning towards parameter and inference efficiency for vit adaptation. arXiv
preprint arXiv:2403.11808, 2024.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

14

https://aclanthology.org/2020.coling-main.419
https://aclanthology.org/2020.coling-main.419


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS OF APPENDIX

6 Experiment Settings 15

7 Additional Experiments 15

8 Additional Visualization Results 15
8.1 Activation Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 Average Top-k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.3 Layer-wise Expert Similarity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.4 Visualization of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 EXPERIMENT SETTINGS

We conduct experiments on Vision, Language, and Vision-Language tasks. The detailed experiment
settings are shown in the following.
• Vision Task. For the vision tasks, we follow the same settings as in GMoE (Li et al., 2023a).

We employ the pre-trained ViT-S/16 Dosovitskiy et al. (2020) model and evaluate it on the
DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark. Our experiments encompass four Do-
main Generalization datasets: PACS (Li et al., 2017), VLCS (Albuquerque et al., 2019), Office-
Home (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). All results are reported
using the train-validation selection criterion. We conduct all experiments on a single RTX 3090
GPU, and the reported results are averaged over three random seeds. For DYNMOE, we set the
maximum number of experts to 8 and the initial number of experts to 6. The adaptive process is
executed for each iteration.

• Language Task. The language tasks adhere to the same settings as those in MoEfication (Zhang
et al., 2022) and EMoE (Qiu et al., 2023). The MoE models are built upon the BERT-large (Devlin
et al., 2019) architecture using the MoEfication method and are fine-tuned on GLUE (Wang
et al., 2018) tasks, which include COLA (Warstadt et al., 2019), QNLI (Wang et al., 2018),
RTE (Bentivogli et al., 2009), MNLI (Xu et al., 2020), and MRPC (Dolan & Brockett, 2005).
We conduct all experiments on a single RTX 3090 GPU, and the reported results are averaged
over three random seeds. For DYNMOE, we set the maximum number of experts to 8 and the
initial number of experts to 6. For each epoch, we begin recording routing at 1/3 of the epoch and
complete recording routing and execute the adaptive process at 2/3 of the epoch.

• Vision-Language Task. The vision-language tasks follows the setting in MoE-LLaVA (Lin et al.,
2024), where we use StableLM-2-1.6B (Bellagente et al., 2024), Qwen-1.8B (Bai et al., 2023) and
Phi-2 (Hughes) as backbone language models, and use clip-vit-large-patch14-336 (Radford et al.,
2021) as the vision encoder. We conduct model training on 8 A100 (80G) GPUs, completing
within 2 days, detailed hyper-parameters setting are shown in Table 5. The models are evaluated
on image understanding benchmarks including VQA-v2 (Goyal et al., 2017), GQA (Hudson &
Manning, 2019), VisWiz (Gurari et al., 2018), ScienceQA-IMG (Lu et al., 2022), TextVQA (Singh
et al., 2019), POPE (Li et al., 2023c), MME (Yin et al., 2023), MMBench (Liu et al., 2023),
LLaVA-Bench (in-the-Wild) (Liu et al., 2024), and MM-Vet (Yu et al., 2023). Furthermore, we
keep routing records in our model during testing time. For each benchmark, we collect the number
of experts’ activations per MoE layer and total processed tokens during testing.

7 ADDITIONAL EXPERIMENTS

In this section, we present the detailed results of our experiments on the GLUE benchmark (Wang
et al., 2018) in Table 11 and on the DomainNet dataset in Table 12. These results demonstrate that
incorporating the specially designed diversity and simplicity loss significantly enhances the model’s
performance.
Moreover, we present the detailed results using different learning rates on the GLUE benchmark in
Tables 6- 10.

8 ADDITIONAL VISUALIZATION RESULTS

8.1 ACTIVATION FREQUENCY

We present the activation frequency of experts across various MoE layers and evaluation tasks using
different backbones: StableLM-1.6B (Figures 9 and 10), Qwen-1.8B (Figures 11 and 12), and Phi-2-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Detailed training hyper-parameters and configuration.

Config Models

StableLM Qwen Phi-2

Maximum experts 4

Deepspeed Zero2 Zero2 Zero2_offload
Data LLaVA-Finetuning
Image resolution 336 × 336
Image encoder CLIP-Large/336
Feature select layer -2
Image projector Linear layers with GeLU
Epoch 1
Learning rate 2e-5
Learning rate schedule Cosine
Weight decay 0.0
Batch size per GPU 8 8 4
GPU 4 × A100 (80G) 8 × A100 (80G) 8 × A100 (80G)
Precision Bf16

Table 6: Detailed performance of DYNMOE and various MoE settings on COLA dataset

COLA K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 64.10 64.51 64.94 43.00 63.63 64.71 64.12 64.37 65.17
lr = 3e-5 63.86 62.10 64.73 64.03 61.76 22.04 63.42 63.13 62.80
lr = 5e-5 41.83 39.68 62.63 0.00 (fail) 37.26 38.30 20.24 25.79 40.68

Table 7: Detailed performance of DYNMOE and various MoE settings on MRPC dataset

MPRC K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 89.74 89.63 89.74 89.36 88.07 89.02 89.74 89.56 89.57
lr = 3e-5 90.14 90.19 89.50 88.67 89.81 90.18 89.38 90.35 90.64
lr = 5e-5 88.70 84.62 88.72 84.48 88.30 89.08 87.40 79.95 90.09

Table 8: Detailed performance of DYNMOE and various MoE settings on QNLI dataset

QNLI K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 92.48 84.94 92.52 92.46 92.39 92.51 92.65 92.49 92.39
lr = 3e-5 92.45 92.39 92.01 78.39 78.22 92.53 92.50 92.31 92.59
lr = 5e-5 50.54 64.46 78.13 64.43 50.54 50.54 64.27 64.43 75.50

Table 9: Detailed performance of DYNMOE and various MoE settings on MNLI dataset

MNLI K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 86.56 86.70 86.57 86.61 86.63 86.73 86.55 86.51 86.37
lr = 3e-5 86.46 52.40 69.40 69.35 69.57 68.47 86.59 69.47 52.34
lr = 5e-5 51.44 35.45 35.45 35.45 35.45 34.54 35.45 34.24 51.68

Table 10: Detailed performance of DYNMOE and various MoE settings on RTE dataset

RTE K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 73.04 70.52 74.13 74.37 74.01 66.19 75.33 72.56 72.80
lr = 3e-5 72.44 74.85 75.09 73.53 73.16 72.32 75.21 73.53 73.41
lr = 5e-5 58.48 54.39 62.45 65.10 63.78 63.06 58.84 63.66 65.22

2.7B (Figures 13 and 14). The results suggest that compared to the StableLM-1.6B backbone, experts
are more uniformly activated for models utilizing Qwen-1.8B and Phi-2-2.7B as backbone LLMs.

8.2 AVERAGE TOP-k
In Figures 15 and 16 , we illustrate the average top-k of DYNMOE models using Qwen and Phi-2 as
backbone LLMs.

8.3 LAYER-WISE EXPERT SIMILARITY MATRIX

In Figures 17, 19, and 21, we illustrate the similarities between various expert representations,
specifically, different rows of Wg across multiple MoE layers. These comparisons utilize StableLM-
1.6B, Qwen-1.8B, and Phi-2-2.7B as the backbone LLMs. The findings demonstrate that these expert

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Performance of DYNMOE on language tasks: Our study investigates the performance of DYNMOE
on language tasks using the GLUE (Wang et al., 2018) benchmark, with BERT-large serving as the backbone
model. The baselines including traditional MoE methods with different number of experts K and top-k. In
our implementation of DYNMOE, we configure the maximum number of experts to 16, with an initial setting
of 8 experts. The number of experts is dynamically adjusted in each epoch for DYNMOE. The − represents
experiment failure, final results could not be obtained using Gshard loss.

Algorithms COLA MRPC QNLI MNLI RTE Average

MoE (K = 8, k = 1) 64.10 90.14 92.48 86.56 73.04 81.26
MoE (K = 8, k = 2) 64.51 90.19 92.39 86.70 74.85 81.73
MoE (K = 8, k = 4) 64.94 89.74 92.52 86.57 75.09 81.77
MoE (K = 8, k = 8) 64.03 89.36 92.46 86.61 74.37 81.37
MoE (K = 16, k = 1) 63.63 89.81 92.39 86.63 74.01 81.29
MoE (K = 16, k = 2) 64.71 90.18 92.53 86.73 72.32 81.29
MoE (K = 16, k = 4) 64.12 89.74 92.65 86.59 75.33 81.69
MoE (K = 16, k = 8) 64.37 90.35 92.49 86.51 73.53 81.45

DYNMOE, Gshard Loss 64.88 89.85 92.42 - 73.41 -
DYNMOE 65.17 90.64 92.59 86.37 73.41 81.64

Table 12: Detailed results on DomainNet dataset: We report the detailed test results on each domain of the
DomainNet dataset.

Algorithms clip info paint quick real sketch Average

GMoE (with DYNMOE, Gshard Loss) 66.8 23.8 54.1 15.9 68.7 54.9 47.4
GMoE (with DYNMOE, Diverse and Simple Gating Loss) 68.0 24.4 55.4 16.6 69.5 55.1 48.2

2 4 6 8 10 12 14

Activated Parameters (Billions)

50

55

60

65

70

75

80

V
Q

A
v
2

T
es

t-
d

ev
A

cc
u

ra
cy

DynMoE-1.6B×4

MoE-LLaVA-1.8B×4

InternVL-C-14BQwen-VL-C-7B LLaVA-1.5-7B

BLIP-2-ViT-g-FlanT5-XL

LLaVA-Phi-2.7B

BLIP-2-12B

Shikra-13B

LLaVA-1.5-13B

BLIP-2-ViT-L-OPT

BLIP-2-ViT-g-OPT

IDEFICS-9B
KOSMOS-1-1.6B

Figure 8: Comparing the performance efficiency of models. The x-axis represents the number of activated
parameters, while the y-axis shows the performance on the Visual Question Answering (VQA) task.

representations are nearly orthogonal, suggesting that different experts capture diverse features, which
could potentially enhance the model’s capacity.

8.4 VISUALIZATION OF G

In Figures 18, 20, and 22, we present the values of the learned threshold G, employing StableLM-
1.6B, Qwen-1.8B, and Phi-2-2.7B as the backbone LLMs. The results reveal that for each MoE layer,
there is one expert that is more readily activated. This observation is consistent with the design of
Deepseek-MoE (Dai et al., 2024).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID
Experts Activations by Layer (POPE)

(f) POPE

Figure 9: Activation frequency of experts on various MoE layers and evaluation tasks using StableLM as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 10: Activation frequency of experts on various MoE layers and evaluation tasks using StableLM as
backbone.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID
Experts Activations by Layer (POPE)

(f) POPE

Figure 11: Activation frequency of experts on various MoE layers and evaluation tasks using Qwen as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 12: Activation frequency of experts on various MoE layers and evaluation tasks using Qwen as
backbone.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID
Experts Activations by Layer (POPE)

(f) POPE

Figure 13: Activation frequency of experts on various MoE layers and evaluation tasks using Phi-2 as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 14: Activation frequency of experts on various MoE layers and evaluation tasks using Phi-2 as
backbone.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.50

1.01

VQAv2

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.51

1.01

POPE

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.49

1.02

LLaVA-Bench

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.70

1.02

VisWiz

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.02

MMBench

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.02

GraphQA

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.02

TextVQA

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.55

1.02

MME

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.50

1.02

MM-Vet

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.03

ScienceQA

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

Figure 15: Average top-k activated experts of DYNMOE on vision-language benchmarks, using Qwen as
language backbone.

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.01

VQAv2

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.01

POPE

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.54

1.01

LLaVA-Bench

DynMoE avg. top-k: 1.66

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.57

1.01

VisWiz

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.64

1.01

MMBench

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.51

1.01

GraphQA

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.63

1.01

TextVQA

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.63

1.01

MME

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.60

1.01

MM-Vet

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.73

1.01

ScienceQA

DynMoE avg. top-k: 1.69

MoE-LLaVA top-k: 2

Figure 16: Average top-k activated experts of DYNMOE on vision-language benchmarks, using Phi-2 as
language backbone.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.000 -0.004 -0.004

0.000 1.000 -0.001 0.005

-0.004 -0.001 1.000 -0.002

-0.004 0.005 -0.002 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.030 -0.027 0.036

0.030 1.000 -0.043 0.035

-0.027 -0.043 1.000 -0.041

0.036 0.035 -0.041 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.001 0.000 0.004

0.001 1.000 -0.014 -0.016

0.000 -0.014 1.000 0.025

0.004 -0.016 0.025 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 -0.009 -0.022

-0.011 1.000 0.011 0.026

-0.009 0.011 1.000 0.010

-0.022 0.026 0.010 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.006 -0.006 0.005

0.006 1.000 -0.013 -0.008

-0.006 -0.013 1.000 -0.002

0.005 -0.008 -0.002 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.014 -0.027 0.012

0.014 1.000 -0.012 0.019

-0.027 -0.012 1.000 -0.017

0.012 0.019 -0.017 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.025 -0.028 0.018

0.025 1.000 -0.031 0.011

-0.028 -0.031 1.000 -0.015

0.018 0.011 -0.015 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.015 0.016 -0.013

0.015 1.000 0.005 -0.001

0.016 0.005 1.000 -0.008

-0.013 -0.001 -0.008 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.048 -0.021 -0.021

-0.048 1.000 0.018 0.021

-0.021 0.018 1.000 0.027

-0.021 0.021 0.027 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.021 -0.029 -0.035

-0.021 1.000 0.028 0.033

-0.029 0.028 1.000 0.035

-0.035 0.033 0.035 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.024 -0.026 -0.023

-0.024 1.000 0.029 0.033

-0.026 0.029 1.000 0.032

-0.023 0.033 0.032 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.044 -0.057 -0.050

-0.044 1.000 0.044 0.050

-0.057 0.044 1.000 0.049

-0.050 0.050 0.049 1.000

Layer 22

Figure 17: Layer-wise expert similarity matrix (StableLM). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

-0.001

-0.020

0.000

0.010

Layer 0

0.024

0.024

-0.050

0.027

Layer 2

-0.003

-0.018

0.015

0.024

Layer 4

-0.027

0.014

0.011

0.018

Layer 6

0.003

-0.003

-0.002

0.003

Layer 8

0.015

0.018

-0.032

0.021

Layer 10

0.022

0.016

-0.034

0.016

Layer 12

0.018

0.015

0.018

-0.027

Layer 14

-0.033

0.015

0.015

0.023

Layer 16

-0.050

0.028

0.027

0.024

Layer 18

-0.058

0.028

0.027

0.033

Layer 20

-0.042

0.023

0.022

0.022

Layer 22

Figure 18: Layer-wise expert activation threshold (StableLM). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.001 0.004 -0.001

0.001 1.000 -0.004 -0.002

0.004 -0.004 1.000 0.001

-0.001 -0.002 0.001 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.023 0.012 -0.021

0.023 1.000 0.017 -0.021

0.012 0.017 1.000 -0.020

-0.021 -0.021 -0.020 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 0.006 0.007

0.002 1.000 -0.011 -0.009

0.006 -0.011 1.000 0.009

0.007 -0.009 0.009 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.026 -0.008 -0.012

0.026 1.000 -0.020 -0.028

-0.008 -0.020 1.000 0.018

-0.012 -0.028 0.018 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.016 -0.047

0.002 1.000 0.007 0.003

-0.016 0.007 1.000 0.010

-0.047 0.003 0.010 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 0.001 -0.012

0.003 1.000 -0.000 -0.011

0.001 -0.000 1.000 -0.009

-0.012 -0.011 -0.009 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.018 -0.014 -0.015

-0.018 1.000 0.004 0.008

-0.014 0.004 1.000 0.009

-0.015 0.008 0.009 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.010 0.008 0.012

-0.010 1.000 -0.011 -0.005

0.008 -0.011 1.000 0.010

0.012 -0.005 0.010 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 0.016 0.013

-0.011 1.000 -0.018 -0.019

0.016 -0.018 1.000 0.016

0.013 -0.019 0.016 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.003 -0.006 0.001

-0.003 1.000 0.000 0.014

-0.006 0.000 1.000 0.002

0.001 0.014 0.002 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 -0.010 -0.008

-0.011 1.000 0.003 0.007

-0.010 0.003 1.000 0.015

-0.008 0.007 0.015 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.017 -0.028 -0.026

-0.017 1.000 0.019 0.020

-0.028 0.019 1.000 0.025

-0.026 0.020 0.025 1.000

Layer 22

Figure 19: Layer-wise expert similarity matrix (Qwen). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

0.001

0.001

0.001

-0.001

Layer 0

0.004

0.010

0.011

-0.017

Layer 2

0.003

-0.017

0.008

0.010

Layer 4

-0.004

-0.012

0.006

0.008

Layer 6

-0.015

0.006

0.008

0.007

Layer 8

-0.004

0.001

0.003

-0.000

Layer 10

-0.013

0.003

0.005

0.007

Layer 12

0.008

-0.016

0.005

0.010

Layer 14

0.012

-0.024

0.010

0.016

Layer 16

-0.009

0.005

-0.003

0.008

Layer 18

-0.009

-0.004

0.008

0.014

Layer 20

-0.023

0.013

0.012

0.011

Layer 22

Figure 20: Layer-wise expert activation threshold (Qwen). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.005 -0.001

0.003 1.000 0.004 -0.005

-0.005 0.004 1.000 -0.001

-0.001 -0.005 -0.001 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.004 0.005 0.003

-0.004 1.000 -0.002 0.002

0.005 -0.002 1.000 0.001

0.003 0.002 0.001 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 0.002 0.004

-0.002 1.000 0.001 -0.005

0.002 0.001 1.000 -0.003

0.004 -0.005 -0.003 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 -0.001 0.004

-0.002 1.000 -0.002 -0.001

-0.001 -0.002 1.000 -0.002

0.004 -0.001 -0.002 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 0.002 -0.001

0.002 1.000 0.000 -0.002

0.002 0.000 1.000 -0.000

-0.001 -0.002 -0.000 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.004 0.002

0.003 1.000 -0.002 0.002

-0.004 -0.002 1.000 -0.002

0.002 0.002 -0.002 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.000 0.001 -0.002

-0.000 1.000 0.002 0.001

0.001 0.002 1.000 0.000

-0.002 0.001 0.000 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 -0.002 -0.001

-0.002 1.000 0.001 0.002

-0.002 0.001 1.000 0.002

-0.001 0.002 0.002 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.004 0.002 0.001

-0.004 1.000 -0.005 -0.001

0.002 -0.005 1.000 -0.001

0.001 -0.001 -0.001 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.003 0.001 0.000

-0.003 1.000 -0.002 -0.003

0.001 -0.002 1.000 0.003

0.000 -0.003 0.003 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 0.001 0.002

-0.002 1.000 -0.004 0.002

0.001 -0.004 1.000 -0.001

0.002 0.002 -0.001 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.000 0.001 -0.002

-0.000 1.000 -0.002 -0.001

0.001 -0.002 1.000 0.001

-0.002 -0.001 0.001 1.000

Layer 22

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.003 -0.003

0.003 1.000 0.003 0.002

-0.003 0.003 1.000 0.001

-0.003 0.002 0.001 1.000

Layer 24

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.000 -0.001

0.002 1.000 -0.001 0.002

-0.000 -0.001 1.000 0.002

-0.001 0.002 0.002 1.000

Layer 26

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.006 -0.005 -0.003

0.006 1.000 -0.002 0.001

-0.005 -0.002 1.000 -0.001

-0.003 0.001 -0.001 1.000

Layer 28

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.003 0.001

0.002 1.000 -0.002 -0.003

-0.003 -0.002 1.000 0.001

0.001 -0.003 0.001 1.000

Layer 30

Figure 21: Layer-wise expert similarity matrix (Phi-2). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

-0.017

0.005

0.005

0.008

Layer 0

0.014

-0.037

0.015

0.022

Layer 2

-0.002

0.007

-0.000

-0.007

Layer 4

-0.024

0.021

-0.000

0.022

Layer 6

-0.008

0.010

-0.000

-0.002

Layer 8

0.014

0.015

-0.040

0.025

Layer 10

-0.026

0.007

0.017

0.006

Layer 12

0.014

0.008

-0.033

0.017

Layer 14

0.024

-0.048

0.016

0.028

Layer 16

0.014

-0.052

0.025

0.036

Layer 18

0.012

-0.000

-0.021

0.028

Layer 20

0.013

-0.028

0.023

0.002

Layer 22

-0.022

0.010

-0.001

0.020

Layer 24

-0.031

0.006

0.013

0.025

Layer 26

0.003

0.009

-0.029

0.026

Layer 28

0.020

-0.042

0.023

0.025

Layer 30

Figure 22: Layer-wise expert activation threshold (Phi-2). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (StableLM)

1 times

2 times

3 times

4 times

0 2 4 6 8 10 12 14 16 18 20 22
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (Qwen)

1 times

2 times

3 times

4 times

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (Phi-2)

1 times

2 times

3 times

4 times

Figure 23: Distribution of number of activated experts in each layer. We report the results of StableLM,
Qwen, and Phi-2 models, respectively.

0 3 6 9 12 15 18
Epoch

82

83

84

85

86

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

TinyImageNet

DynMoE (Original)

DynMoE (Average)

DynMoE (W-Average)

DynMoE (Most Activated)

MoE (K=8, k=1)

MoE (K=8, k=2)

MoE (K=8, k=4)

MoE (K=8, k=8)

25 50 75 100 125 150 175 200
Epoch

50

55

60

65

70

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

CIFAR-10

DynMoE (Original)

DynMoE (Average)

DynMoE (W-Average)

DynMoE (Most Activated)

MoE (K=8, k=1)

MoE (K=8, k=2)

MoE (K=8, k=4)

MoE (K=8, k=8)

Figure 24: Convergence curve on CIFAR10 and TinyImageNet datyasets.

25


	Experiment Settings
	Additional Experiments
	Additional Visualization Results
	Activation Frequency
	Average Top-k
	Layer-wise Expert Similarity Matrix
	Visualization of G


