

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLICY REGRET MINIMIZATION IN PARTIALLY OB- SERVABLE MARKOV GAMES

Anonymous authors

Paper under double-blind review

ABSTRACT

We study policy regret minimization in partially observable Markov games (POMGs) between a learner and a strategic adaptive opponent who adapts to the learner’s past strategies. We develop a model-based optimistic framework that operates on the learner-observable process using *joint* MLE confidence set and introduce an Observable Operator Model-based causal decomposition that disentangles the coupling between the world and the adversary model. Under multi-step weakly revealing observations and a bounded-memory, stationary and posterior-Lipschitz opponent, we prove an $\mathcal{O}(\sqrt{T})$ policy regret bound. This work advances regret analysis from Markov games to POMGs and provides the first policy regret guarantee under imperfect information against an adaptive opponent.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable empirical success across a wide range of challenging AI applications in recent decades (Mnih et al., 2015; Silver et al., 2016; 2017; Akkaya et al., 2019; Deepmind, 2024; Guo et al., 2025). Many of these problems can be naturally formulated as multi-agent reinforcement learning (MARL), where multiple learners interact in a dynamically evolving environment jointly influenced by other learning agents (Zhang et al., 2021).

In many applications of MARL, the learner interacts with *adaptive* players in an *asymmetric* setting, where the learner commits to a strategy at the beginning of each episode while the other agents subsequently adjust their strategies in response to pursue their own objectives. In addition, the learner is often required to make decisions despite lacking of complete information about the underlying states. For example, consider a simplified economic game between a government (the learner) and a population of companies (adaptive agents). The government announces tax policies, which are publicly observable, and subsequently collects tax revenues based on the companies’ reported outcomes, while the companies adapt their strategies to maximize profit conditional on the announced policies (Zheng et al., 2020). Importantly, the government’s information is inherently limited: firms’ production costs, demand conditions, investment and R&D plans, as well as potential collusive behavior remain private and unobserved. Consequently, while the companies *adapt* their strategies based on the observed sequence of tax policies, the government must optimize under *partial observability* of the economic environment to achieve objectives such as maximizing social welfare.

Despite its prevalence, it remains largely unclear how to learn an optimal decision-making policy under partial observability when facing adaptive adversaries. Existing literature typically addresses adaptive adversaries and partial observability in isolation. For partial observability in multi-agent settings, Liu et al. (2022b) study the problem of learning toward various equilibria—such as Nash, Correlated Equilibrium, and Coarse Correlated Equilibrium—in Partially Observable Markov Games (POMGs), a natural generalization of Markov games to partially observable settings. However, their framework evaluates learning success only through external regret, which compares the learner’s strategy sequence against the adversary’s best response conditioned on that sequence. External regret, however, fails to capture the counterfactual nature of adaptive agents: it ignores how opponents might have responded differently had the learner followed an alternative strategy. To address this limitation, Nguyen-Tang & Arora (2025; 2024) initiated the study of learning against adaptive adversaries in Markov games under the notion of **policy regret** (Arora et al., 2012), which evaluates the learner’s performance against the return they would have obtained by following an alternative policy, given the adaptivity of the opponent to the alternative policy. Nevertheless, these results do not extend to partial observability, a setting that is ubiquitous in MARL domains. It thus

054 remains an open question how a learner can make decisions against adaptive adversaries without full
 055 access to the underlying states.
 056

057 In this paper, we develop the first unified theoretical and algorithmic framework for policy regret
 058 minimization in partially observable Markov games (POMGs). Since learning in POMGs is noto-
 059 riously challenging—even in terms of external regret (Papadimitriou & Tsitsiklis, 1987)—we focus
 060 on a broad subclass of POMGs, namely weakly revealing POMGs, which are known to be tractable
 061 for external regret minimization (Liu et al., 2022c). The weakly revealing condition requires only
 062 that the joint observations of all agents disclose a nontrivial amount of information about the latent
 063 states, a property that is satisfied in many real-world applications. We show that, for such rich class
 064 of POMGs, under natural structural assumptions on the behavior of the adaptive adversaries, policy
 065 regret minimization is sample-efficient. In particular, our key technical contributions are as follows:
 066

- 067 1. We identify a rich class of adaptive-adversary behaviors that allow sample-efficient policy regret
 068 minimization in multi-step weakly revealing POMGs. Our problem class is defined by the *novel*
 069 *posterior-Lipschitzness* condition (see Assumption 1.3), which constrains the adversary’s poste-
 070 rior response, together with the Eluder condition on the world and adversary channel operators,
 071 arising from our *novel causal decomposition* of the Observable Operator Model (see Lemma 1.2).
- 072 2. We develop a unified algorithmic framework for policy regret minimization in weakly revealing
 073 POMGs (see Algorithm 1). Our framework combines the optimistic MLE approach of (Liu et al.,
 074 2023) with the mini-batch techniques of (Arora et al., 2012; Nguyen-Tang & Arora, 2024; 2025)
 075 in a novel way, enabling simultaneous learning of both the world model and the adversary model
 076 in multi-step weakly revealing POMGs.
- 077 3. For the proposed rich problem classes, we show that our unified algorithmic framework achieves
 078 a policy regret bound in the order of $\tilde{\mathcal{O}}(H(m + \sqrt{d_C})\sqrt{d_E T})$, where T is the number of
 079 episodes, m is the adversary’s memory, and H is the horizon of the POMG. Here, d_E denotes
 080 the joint Eluder dimension of the world and adversary model operators, capturing the intrinsic
 081 complexity of exploration, while d_C is the log-covering number of the joint world-adversary
 082 model, measuring the richness of the overall model class. To the best of our knowledge, this is
 083 the first result establishing a sublinear policy regret bound for POMGs.

084 1.1 OVERVIEW OF TECHNIQUES

085 Despite the modularity and simplicity of our algorithmic framework (and its apparent hindsight clar-
 086 ity), establishing our theoretical guarantees requires overcoming major technical challenges arising
 087 from the *coupled dynamics* of the world and adversary models. We address these challenges through
 088 the following key novel ideas.

- 089 • **Joint modeling via a single confidence set.** In POMGs, the learner observes only its own tra-
 090 jectory τ_A , where the effects of the environment dynamics (θ) and the opponent’s strategy (Φ)
 091 are entangled. This creates an identifiability problem: outcomes cannot be uniquely attributed
 092 to either stochasticity in the environment or the opponent’s choices. Thus, maintaining separate
 093 confidence sets for θ and Φ is fundamentally unsound. To address this, our proposed algorithm
 094 (see Algorithm 1) maintains a single joint confidence set $\mathcal{C} \subseteq \Xi$ over the full system parameter
 095 $\xi = (\theta, \Phi)$.
- 096 • **Causal separation of world and adversary models in the Observable Operator Model frame-
 097 work.** Building on the Observable Operator Model (OOM) results of (Liu et al., 2022a), our
 098 Stackelberg setting introduces a challenge that their techniques cannot address. Specifically, each
 099 per-step operator $J_h^{\xi, \pi}$ is a *coupled* black box, jointly dependent on $\xi = (\theta, \Phi)$. **Our main tech-**
 100 **nical contribution is to prove that each operator $J_h^{\xi, \pi}$ admits a factorization $J_h^{\xi, \pi} = G_h^{\Phi, \pi} \circ W_h^\theta$,**
 101 **where W_h^θ depends only on the environment and $G_h^{\Phi, \pi}$ only on the adversary and the learner’s**
 102 **policy, thereby disentangling their effects in the OOM analysis (Lemma 1).**
- 103 • **Reduction from Stackelberg POMGs to an augmented POMDP.** A key step in our anal-
 104 ysis is reducing adaptive-adversary Stackelberg POMGs to an augmented POMDP with state
 105 $s'_h = (s_h, \zeta, \tau_{A, h-1})$. Together with the causal decomposition introduced above and the mini-
 106 batched design of (Nguyen-Tang & Arora, 2025), this reduction enables the application of Ob-
 107 servable Operator Model (OOM) tools under α -weakly revealing observations. In turn, this yields
 108 a solution to policy regret minimization in weakly revealing POMGs (Theorem 1).

108 1.2 RELATED WORK
109

110 **Policy regret minimization in MARL.** Policy regret has been widely used to analyze learning
111 against adaptive adversaries in online learning (Arora et al., 2012) and repeated games (Arora et al.,
112 2018), and has only recently been extended to multi-agent RL. Existing results, however, are limited
113 to fully observable Markov games. In particular, Nguyen-Tang & Arora (2024) initiated the study of
114 policy regret in Markov games, establishing fundamental barriers and providing sufficient conditions
115 for achieving sublinear policy regret in tabular settings. Subsequently, (Nguyen-Tang & Arora,
116 2025) extended these results to Markov games with function approximation.

117 **Partially observable Markov games (POMG).** POMGs provide a general framework for modeling
118 multi-agent sequential decision-making under uncertainty, extending single-agent POMDPs to
119 settings with multiple agents, each with their own partial perspective and objectives. Early work
120 by (Hansen et al., 2004) laid the foundational formalism for POMGs and explored dynamic pro-
121 gramming solutions, though scalability and sample efficiency remain significant challenges. Recent
122 research has sought to address these limitations directly; for instance, Liu et al. (2022b) investigate
123 sample-efficient reinforcement learning for weakly revealing POMGs, providing theoretical
124 guarantees for learning to minimize the external regret in this setting. Alongside these general ad-
125 vances, a substantial thread of literature has focused on finding equilibrium solutions, often under
126 simplifying assumptions such as myopic follower behavior (Zhong et al., 2021) or complete infor-
127 mation settings (Gerstgrasser & Parkes, 2023). The field has also seen a growing integration with
128 deep reinforcement learning, with algorithms like Multi-Agent PPO (MAPPO) (Lowe et al., 2017)
129 enabling empirical progress in complex environments. Brero et al. (2022) introduces the Stackel-
130 berg POMDP, a reinforcement learning framework for economic design that models the interaction
131 between a mechanism designer (leader) and strategic participants (followers) as a Stackelberg game.

132 2 PROBLEM SETUP AND PRELIMINARIES
133

134 We study two-player general-sum partially observable Markov games (POMGs) (Hansen
135 et al., 2004) in a tabular, episodic setting, which is fully specified by the tuple: $\mathcal{M} = (H, \mathcal{S}, \mathcal{A}, \mathcal{B}, \mathcal{O}_A, \mathcal{O}_B, \mathbf{T}, \mathbf{E}, \rho_0, r_A, r_B)$, where $H \in \mathbb{N}$ is the horizon; the latent state space is
136 \mathcal{S} with $|\mathcal{S}| = S$; the learner (player A) and the opponent (player B) act in \mathcal{A} and \mathcal{B} with $|\mathcal{A}| = A$,
137 $|\mathcal{B}| = B$; the individual observation spaces are \mathcal{O}_A and \mathcal{O}_B with $|\mathcal{O}_A| = O_A, |\mathcal{O}_B| = O_B$. Let
138 $\mathcal{O} := \mathcal{O}_A \times \mathcal{O}_B$ denote the joint observation at step h by $o_h = (o_{A,h}, o_{B,h}) \in \mathcal{O}$. The controlled
139 dynamics are given by the transition kernels $\mathbf{T}_h(\cdot | s, a, b) \in \Delta_{\mathcal{S}}, \forall h \in [H]$, and the emission ker-
140 nels $\mathbf{E}_h(\cdot | s) \in \Delta_{\mathcal{O}}, \forall h \in [H]$. The initial state is sampled from $\rho_0 \in \Delta_{\mathcal{S}}$. Rewards are bounded
141 and, for notational simplicity, depend only on local observations: for $i \in \{A, B\}$ and $h \in [H]$,
142 $r_{i,h} : \mathcal{O}_i \rightarrow [0, 1]$. This specification covers cooperative, competitive (including zero-sum), and
143 mixed-motive interactions through the independent reward functions (r_A, r_B) .

144 **Interaction protocol.** An episode starts with a random initial state $s_1 \sim \rho_0$. At every step h
145 within the episode, a joint private observation $o_h = (o_{A,h}, o_{B,h}) \sim \mathbf{E}_h(\cdot | s_h)$ is drawn from
146 the emission kernel \mathbf{E}_h conditioned on the current latent state s_h . The learner (respectively, the
147 opponent) selects an action a_h (respectively, b_h) based on her respective private per-episode history
148 $\tau_{A,h} = (o_{A,1}, a_{A,1}, \dots, o_{A,h})$ (respectively, $\tau_{B,h} = (o_{B,1}, a_{B,1}, \dots, o_{B,h})$). Note that in a POMG,
149 states are hidden from all the players and each player $i \in \{A, B\}$ observes only her own history
150 $\tau_{i,h}$. The episode terminates after H steps.

151 **Policies and value functions.** A policy $\pi = (\pi_1, \dots, \pi_h)$ for the learner is defined as a map:
152 $\pi_h : (\mathcal{O}_A \times \mathcal{A})^{h-1} \times \mathcal{O}_A \rightarrow \Delta(\mathcal{A})$, for all $h \in [H]$, where $\Delta(\mathcal{A})$ is the set of all distributions over
153 \mathcal{A} . A policy $\mu = (\mu_1, \dots, \mu_H)$ for the adversary is defined similarly: $\mu_h : (\mathcal{O}_B \times \mathcal{B})^{h-1} \times \mathcal{O}_B \rightarrow$
154 $\Delta(\mathcal{B})$, $\forall h \in [H]$. We assume that the learner and the adversary select their policies from a *restricted*
155 class of policies, Π and Ψ , respectively.

156 The world model $\theta = (\mathbf{T}, \mathbf{E}) \in \Theta$ characterizes the POMG with a transition kernel \mathbf{T} and an
157 emission \mathbf{E} . Let $\tau = \{(\tau_{A,h}, \tau_{B,h})\}_{h \in [H]}$ be a per-episode trajectory sample that consists of the
158 trajectory for the learner and the adversary, and $\mathbb{P}_{\theta}^{\pi, \mu}$ be the trajectory distribution induced by the
159 world model θ , the learner's policy π and the adversary's policy μ . The learner's episodic value is
160 defined as

$$V_{\theta}^{\pi, \mu} := \mathbb{E}_{\tau \sim \mathbb{P}_{\theta}^{\pi, \mu}} \left[\sum_{h=1}^H r_{A,h}(o_{A,h}) \right],$$

161 i.e., the total expected reward the learner accumulates over H steps under the world model θ , when
162 the learner follows policy π while the adversary follows policy μ .

162 **The second player as an adaptive adversary.** We consider the adaptive adversaries, following the
 163 framework of (Nguyen-Tang & Arora, 2024; 2025). In particular, an adaptive adversary is allowed
 164 to adapt to the learner’s past strategies. That is, the adversary in episode t is characterized by a
 165 deterministic response map

$$166 \quad \mathcal{R}_t : \Pi^t \rightarrow \Psi, \quad (\pi^1, \dots, \pi^t) \mapsto \mu^t,$$

168 which depends on the entire learner policy history up to and including π^t . For a policy π , let
 169 $[\pi]^t := (\pi, \dots, \pi)$ denote the t -fold repetition.

170 This adaptive response generalizes the canonical Stackelberg game, where the defender (the learner)
 171 commits a strategy and the follower (the adaptive adversary) selects her response strategy accord-
 172 ingly, to the setting where the adversary can remember all the learner’s past strategies, not simply
 173 the learner’s current-episode strategy as in Stackelberg games. That said, the adaptive adversary in
 174 our model is more general and powerful than the defender’s response in Stackelberg games.

175 **Policy regret minimization.** We measure the learner’s performance against adaptive adversaries
 176 using the notion of policy regret (Arora et al., 2012), which compares the learner’s cumulative
 177 reward to that of the best fixed policy sequence in hindsight, accounting for the adaptive nature of
 178 the adversary. In particular, the learner’s policy regret over a sequence of T policies π^1, \dots, π^T is

$$179 \quad \text{PR}(T) := \sup_{\pi \in \Pi} \sum_{t=1}^T \left(V_{\theta^*}^{\pi, \mathcal{R}_t([\pi]^t)} - V_{\theta^*}^{\pi^t, \mathcal{R}_t(\pi^1, \dots, \pi^t)} \right),$$

182 where $\mathcal{R}_t([\pi]^t)$ is the adversary’s response under the counterfactual history in which the learner
 183 plays π in episodes $1:t$, and θ^* is the groundtruth world model.

184 3 STRUCTURAL ASSUMPTIONS

185 Learning is intractable in general, without structural assumptions. In this section, we introduce
 186 natural assumptions on the adversary behavior and the POMG.

188 3.1 ADVERSARY BEHAVIOR MODEL

189 It is now well-established that learning in Markov games against adaptive adversaries who are
 190 memory-unbounded, non-stationary or unstructurally responsive is not sample-efficient (Nguyen-
 191 Tang & Arora, 2024; 2025). Since Markov games are a subclass of POMGs, the learning hardness
 192 for policy regret minimization extends from Markov games to POMGs. Thus, to ensure tractable
 193 learning, we impose the following assumptions on the behavior of the adaptive adversary, extending
 194 the similar assumptions by (Nguyen-Tang & Arora, 2024; 2025) for Markov games to POMGs.

195 **Assumption 1.** For brevity, write the policy block $\pi^{u:v} := (\pi^u, \dots, \pi^v)$ (with $u \leq v$) and set
 196 $\bar{t} := \max\{1, t - m + 1\}$. The adversary response functions $\{\mathcal{R}_t\}_{t \in \mathbb{N}}$ satisfy the following
 197 conditions:

198 1. ***m*-memory bounded.** There exist $m \geq 0$ and a mapping $g_t : \Pi^m \rightarrow \Psi$ such that, for all t ,

$$200 \quad \mathcal{R}_t(\pi^{1:t}) = g_t(\pi^{\bar{t}:t}).$$

201 2. **Stationary.** The reaction rule is time-invariant: there is a fixed $g : \Pi^m \rightarrow \Psi$ with

$$203 \quad \mathcal{R}_t(\pi^{1:t}) = g(\pi^{\bar{t}:t}) \quad \text{for all } t.$$

205 3. **Posterior-Lipschitz.** Given a learner policy block $\pi^{1:m}$, let $P^{\pi^{1:m}, g, \theta}(\tau_A, \tau_B)$ denote the induced
 206 joint trajectory distribution. For any step h and any adversary trajectory τ_B , define the posterior-
 207 predictive policy

$$208 \quad S_{\tau_B}(\pi_h^i) := \mathbb{E}_{\tau_A \sim P^{\pi^{1:m}, g, \theta}(\cdot | \tau_B)} [\pi_h^i(\cdot | \tau_A)] \in \mathbb{R}^A.$$

209 where the expectation is with respect to the conditional law of τ_A given τ_B under the joint tra-
 210 jectory measure $P^{\pi^{1:m}, g, \theta}$.

212 Let $g(\cdot | \tau_B, \pi^{1:m})_h$ denote the distribution of the adversary’s action at step h induced by the
 213 response rule g given private trajectory τ_B and learner policies $\pi^{1:m}$. Then there exists a con-
 214 stant $L \geq 0$ such that, for any two policy blocks $\pi^{1:m}, \nu^{1:m}$, any $h \in [H]$, and any adversary
 215 trajectory τ_B ,

$$216 \quad \|g(\cdot | \tau_B, \pi^{1:m})_h - g(\cdot | \tau_B, \nu^{1:m})_h\| \leq L \max_{i \in [m]} \|S_{\tau_B}(\pi_h^i) - S_{\tau_B}(\nu_h^i)\|.$$

216 While the bounded-memory and stationarity assumptions directly follow prior work on Markov
 217 games (Nguyen-Tang & Arora, 2024; 2025), our introduction of Posterior-Lipschitz is novel. This
 218 condition requires that if two policy blocks of the learner induce similar posterior action distributions
 219 given a fixed adversary trajectory, then the adversary’s response distributions must also be similar.
 220 We define this condition using posterior predictives because, in partially observable Markov games
 221 (POMGs), policies depend on histories, whereas in standard Markov games (MGs) it suffices to
 222 consider Markov policies.

223 Finally, we parameterize the entire game using a joint model $\xi = (\theta, \Phi)$, where θ represents the
 224 world model parameters and Φ represents the parameters for the adversary channel g . We denote
 225 $\zeta^* = (\theta^*, \Phi^*)$ the groundtruth parameters and assume that the learner has access to $\Theta \ni \theta^*, \Psi \ni \Phi$.

226 **Remark 1.** *The norm $\|\cdot\|$ can be any norm on the corresponding finite-dimensional spaces. Since all
 227 such norms are equivalent, a different choice would merely rescale the constant L . In the subsequent
 228 proofs, we will adopt the ℓ_1 norm.*

229 As a running example, we consider a linear response adversary model, motivated by the linear model
 230 considered initially in (Nguyen-Tang & Arora, 2025).

232 **Example 1** (Linear response Adversary). *There exist $d_{\text{adv}} \in \mathbb{Z}_{>0}$, a nonnegative column-stochastic
 233 matrix $\Phi^* \in \mathbb{R}_+^{B \times d_{\text{adv}}}$, and weights $w_h^\pi(\tau_{B,h-1}) \in \mathbb{R}^{d_{\text{adv}}}$ with $\|w_h^\pi(\tau_{B,h-1})\|_1 = \mathcal{O}(1)$ such that*

$$234 \quad g_h(\cdot \mid \tau_{B,h-1}, \pi^{[m]}) = \Phi^* w_h^\pi(\tau_{B,h-1}) \in \mathbb{R}^B \quad \forall h.$$

236 We note that if the weights $w_h^\pi(\tau_{B,h-1})$ are L-Lipschitz with respect to π , then the adversary defined
 237 above is also L-Posterior-Lipschitz.

238 3.2 MULTI-STEP WEAKLY REVEALING POMGS

239 Learning POMGs is notoriously intractable in general. In this paper, we consider policy regret mini-
 240 mization in a rich class of POMGs that satisfy the weakly revealing conditions. Weakly revealing is
 241 a standard identifiability condition in the POMDP (Liu et al., 2022a) and POMG (Liu et al., 2022b)
 242 literature. Intuitively, over a length- κ observation window, distinct latent states induce distinguish-
 243 able distributions of observable sequences under fixed action prefixes.

244 Fix an enumeration of the learner’s observation space \mathcal{O}_A with $|\mathcal{O}_A| = O_A$. For a window length
 245 $\kappa \geq 1$, define the κ -step emission–action matrix $M_h^{(\kappa)} \in \mathbb{R}^{(O_A^\kappa A^{\kappa-1} B^{\kappa-1}) \times S}$ by

$$247 \quad [M_h^{(\kappa)}]_{((a_{h:h+\kappa-2}, b_{h:h+\kappa-2}), o_{h:h+\kappa-1}, s)} := \Pr(o_{h:h+\kappa-1} \mid s_h = s, a_{h:h+\kappa-2}, b_{h:h+\kappa-2}). \quad (1)$$

249 **Definition 1** (Multi-step (κ, α_κ) -weakly revealing). *A POMG is (κ, α_κ) -weakly revealing if*

$$250 \quad \min_{h \in [H-\kappa+1]} \sigma_{\min}(M_h^{(\kappa)}) \geq \alpha_\kappa,$$

252 where $\sigma_{\min}(\cdot)$ denotes the smallest singular value. This tacitly requires $O_A^\kappa A^{\kappa-1} B^{\kappa-1} \geq S$ so that
 253 $M_h^{(\kappa)}$ can have full column rank.

254 **Remark 2** (Single-step weakly revealing). *For each $h \in [H]$, write the one-step emission kernel
 255 $E_h(\cdot \mid s)$ as a matrix $\mathbb{O}_h \in \mathbb{R}^{O_A \times S}$ with entries $[\mathbb{O}_h]_{o,s} = \Pr(o_h = o \mid s_h = s)$. When $\kappa =$
 256 1, we have $M_h^{(1)} = \mathbb{O}_h$, so Definition 1 reduces to the single-step α -weakly revealing condition
 257 $\min_{h \in [H]} \sigma_{\min}(\mathbb{O}_h) \geq \alpha_1$.*

259 4 MAIN RESULTS

260 In this section, we present our algorithmic framework and theoretical analysis.

262 4.1 UNIFIED ALGORITHMIC FRAMEWORK VIA MINI-BATCHED OPTIMISTIC MLE

263 In this section, we introduce MOMLE, our novel model-based algorithm designed for Partially Ob-
 264 servable Markov Games. The pseudocode is provided in Algorithm 1.

265 The core idea of MOMLE is to adapt and fundamentally redesign the high-level batched optimism
 266 framework, previously developed for fully-observable Markov games Nguyen-Tang & Arora (2024),
 267 to meet the unique challenges of partial observability. The shift from full observability to partial
 268 observability necessitates a move from a hybrid value-and-model-based approach to a purely joint
 269 model-learning strategy.

The high-level procedure of the algorithm follows a periodic pattern:

270 **Algorithm 1** MOMLE: Mini-batched Optimistic MLE

271 **Require:** Confidence parameters α, β_t , number of batches K , adversary memory m , the learner’s
272 policy class Π , weakly revealing parameter κ .

273 1: **Initialize:**

274 2: World model confidence set $\mathcal{W} \leftarrow \{\theta \in \Theta : \sigma_{min}(M_h^{(\kappa)}) \geq \alpha\}$

275 3: Adversary model class Ψ that parameterizes Assumption 1

276 4: Joint confidence set $\mathcal{C} \leftarrow \Xi := \mathcal{W} \times \Psi$

277 5: History dataset $\mathcal{D} \leftarrow \emptyset$

278 6: $\pi_{\text{current}} \leftarrow$ arbitrary initial policy

279 7: **for** batch $j = 1, \dots, K$ **do**

280 8: Select optimistic policy–model pair $(\pi_{\text{new}}, \xi_{\text{new}}) \in \arg \max_{(\pi, \xi) \in \Pi \times \mathcal{C}} V^\pi(\xi)$.

281 9: **if** $\pi_{\text{new}} \neq \pi_{\text{current}}$ **then**

282 10: Execute π_{new} for $m - 1$ episodes (warm-up phase, discard data).

283 11: $\pi_{\text{current}} \leftarrow \pi_{\text{new}}$.

284 12: **end if**

285 13: Execute π_{current} for $\lfloor T/K \rfloor$ episodes.

286 14: Add all collected learner trajectory pairs $(\pi_{\text{current}}, \tau_A)$ to \mathcal{D} .

287 15: Update the joint confidence set \mathcal{C} based on the joint log-likelihood over all data in \mathcal{D} :

288
$$\mathcal{C} \leftarrow \left\{ \xi \in \Xi : \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}} \log \mathbb{P}_\xi^{\pi^i}(\tau_A^i) \geq \sup_{\xi' \in \Xi} \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}} \log \mathbb{P}_{\xi'}^{\pi^i}(\tau_A^i) - \beta \right\}$$

289 16: **end for**

290

291

292

293

- 294 • **Optimistic planning (Line 8):** At the start of batch j , search the current joint confidence set \mathcal{C}_{j-1}
295 and pick a new optimistic policy–model pair that attains the largest predicted value.
- 296 • **Data collection with warm up (Line 9–Line 14):** For a newly selected policy, execute $m -$
297 1 warm-up episodes to stabilize the adversary’s response and discard the warm-up data. Once
298 stabilized, run the same policy for $\lfloor T/K \rfloor$ episodes and collect all learner trajectories.
- 300 • **Periodic updates (Line 15):** At the end of each batch, the algorithm updates the joint model
301 confidence set using all historical data, based on the maximum likelihood principle.

302 **Joint Modeling via a Single Confidence Set.** A fundamental challenge in POMGs is that the
303 learner only has access to its own trajectory, τ_A , where the influence of the world dynamics (θ) and
304 the opponent’s strategy (Φ) are intrinsically entangled. This creates a severe identifiability challenge:
305 from the learner’s data alone, it is often impossible to uniquely attribute an observed outcome to
306 either the world’s stochasticity or the opponent’s strategic choice. Consequently, attempting to learn
307 two separate confidence sets for θ and Φ may fail to achieve sample-efficient learning. To resolve
308 this, the MOMLE algorithm employs a cornerstone strategy: it maintains a single, joint confidence
309 set $\mathcal{C} \subseteq \Xi$ over the entire system parameter space $\xi = (\theta, \Phi)$.

310 This design is crucial and provides three key advantages. First, it aligns the learning task with
311 what is actually possible, by targeting the joint parameter ξ that is statistically identifiable from
312 the learner’s data. Second, it enables a valid application of the optimism principle directly on the
313 joint parameters that govern the true value $V^\pi(\xi)$. Third, by updating the confidence set based on
314 the joint log-likelihood $\sum_{(\pi^i, \tau_A^i) \in \mathcal{D}} \log \mathbb{P}_\xi^{\pi^i}(\tau_A^i)$, we ensure that the set of plausible models reliably
315 shrinks as more data is collected, leading to controlled regret. Here $\mathbb{P}_\xi^\pi(\tau)$ denotes the probability
316 of observable history τ under model ξ and policy π .

317 4.2 THEORETICAL ANALYSIS

318 Our regret analysis is built upon the framework of the Observable Operator Model (OOM). First
319 proposed by (Jaeger, 2000), OOMs provide an alternative parameterization for partially observable
320 systems that allows for a linear-algebraic treatment of their dynamics. This approach has recently
321 been central to proving the tractability of single-agent POMDPs (Liu et al., 2022a). We adapt this
322 framework to the Stackelberg POMG setting, where it enables a decomposition of the game’s com-
323 plex, coupled dynamics into tractable components.

324 4.2.1 A REDUCTION FROM ANY POMG TO AN AUGMENTED POMDP

325 Consider the augmented hidden state $s'_h = (s_h, \zeta, \tau_{A,h-1})$ with fixed policy memory $\zeta = [\pi]^m$
 326 and learner history $\tau_{A,h-1}$. On the learner marginal, the per-step observation kernel and controlled
 327 transition are defined by

$$328 \quad \mathbb{O}'_h(o|s'_h) := \mathbb{O}_h^A(o|s_h), \quad T'_h(s'_{h+1}|s'_h, a_h) := \mathbb{P}(s'_{h+1}|s'_h, a_h),$$

330 where $\mathbb{O}'_h(o|s'_h)$ lifts the orginal emission matrix to the augmented hidden state and $T'_h(\cdot|s'_h, a_h)$ is
 331 the transition law induced by the following generator: From the current world state s_h , the learner's
 332 observation $o_{A,h}$ is emitted. The adversary's action is marginalized via the learner-projected re-
 333 sponse and the world then transitions to s_{h+1} under control a_h . Finally, the history $\tau_{A,h-1}$ and
 334 memory ζ in hidden state are updated deterministically.

335 Hence, the learner-observable process is a finite POMDP on \mathcal{S}' with kernels (\mathbb{O}'_h, T'_h) .

336 **Remark 3.** *In the Stackelberg POMG, once the learner makes an action a_h , the adversary's re-
 337 sponse can be folded into the environment, i.e. "adversary + world" becomes a single aggressive
 338 world, which is a partially observable process with augmented state s'_h , while the learner's infor-
 339 mation remains unchanged.*

340 4.2.2 OPERATOR DECOMPOSITION

341 We extend the standard OOM results from finite POMDPs (Liu et al., 2022a) to our setting of
 342 Stackelberg OOM, where we can construct a operator representation of POMG.

343 **Lemma 1** (Stackelberg OOM Factorization Lemma). *Fix a learner policy π . With the above as-
 344 sumptions, the learner-observable process under any parameter ξ admits a finite-dimensional con-
 345 trolled OOM representation. Specifically, there exist a nonnegative prediction state $q_0^\xi \in \mathbb{R}_+^{O_A}$ and
 346 nonnegative one-step operators $J_h^{\xi, \pi}(o_h, a_h) \in \mathbb{R}_+^{O_A \times O_A}$ satisfying:*

347 1. (Factorization) *For any marginal learner trajectory $\tau_A = (o_{A,1}, a_1, \dots, o_{A,H}, a_H)$,*

$$348 \quad \mathbb{P}_\xi(\tau_A) = \mathbf{1}^\top J_H^{\xi, \pi}(o_{A,H}, a_H) \cdots J_1^{\xi, \pi}(o_{A,1}, a_1) q_0^\xi, \quad \mathbf{1} := (1, \dots, 1)^\top.$$

349 2. (Causal decomposition) *Each one-step operator decomposes as*

$$350 \quad J_h^{\xi, \pi}(o_h, a_h) = G_h^{\Phi, \pi}(o_h, a_h) W_h^\theta, \text{ where}$$

- 351 • $W_h^\theta \in \mathbb{R}_+^{O_A \times O_A}$, called the **world channel** (the "leader" who acts first), is a nonnegative
 352 linear map, independent of $(o_{A,h}, a_h)$, that advances the predictive vector on $\mathbb{R}_+^{O_A}$ using
 353 only the world parameters θ ,
- 354 • $G_h^{\Phi, \pi}(o_{A,h}, a_h) \in \mathbb{R}_+^{O_A \times O_A}$, called the **adversary channel** (the "follower" who acts sub-
 355 sequently), is a family of nonnegative linear maps indexed by $(o_{A,h}, a_h)$, aggregating the
 356 learner emission and the follower's response under (Φ, π) .

357 3. (Normalization) *For all $b \in \mathbb{R}_+^{O_A}$, $\sum_{(o,a)} \mathbf{1}^\top J_h^{\xi, \pi}(o, a) q = \mathbf{1}^\top q$, so $\sum_{(o,a)} J_h^{\xi, \pi}(o, a)$ is
 358 stochastic on $\mathbb{R}_+^{O_A}$.*

359 4. (Stability) *There exists $c(\alpha) = \tilde{O}(1/\alpha)$ such that for all h and all $v \in \mathbb{R}^{O_A}$,*

$$360 \quad \mathbb{E} \left[\left\| J_H^{\xi, \pi}(O_H, A_H) \cdots J_{h+1}^{\xi, \pi}(O_{h+1}, A_{h+1}) v \right\|_1 \mid \tau_h \right] \leq c(\alpha_\kappa) \|v\|_1,$$

361 *Here, α_κ is the weakly-revealing parameter in Def. 1*

362 After reducing the Stackelberg POMG to a learner-marginal POMDP, the standard OOM yields a
 363 linear operator representation of the trajectory law. These operators also satisfy the standard Nor-
 364 malization and Stability properties, ensuring they collectively define a valid probability model.

365 **On the causal decomposition (vs. the standard result in (Liu et al., 2022a)).** While we built
 366 on the OOM result of (Liu et al., 2022a), our Stackelberg setting presents a unique challenge that
 367 the techniques used in (Liu et al., 2022a) do not suffice. In particular, each per-step operator $J_h^{\xi, \pi}$
 368 is a *coupled* black box whose joint dependence on $\xi = (\theta, \Phi)$. Our core technical idea is a causal
 369 decomposition that opens this box, separating the world channel W^θ from the adversary channel
 370 $G^{\Phi, \pi}$. A detailed proof is given in Appendix C.1.

378 4.3 ELUDER CONDITIONS
379

380 Our analysis for batch update is built upon the Eluder condition, a structural complexity measure
381 that generalizes the pigeonhole principle and the elliptical potential lemma, which are foundational
382 for proving sample efficiency in MDPs (Jin et al., 2018) and POMDPs (Liu et al., 2023).

383 More specifically, the batched nature of our algorithm requires a slightly stronger variant known as
384 the ℓ_2 -type Eluder condition (Xiong et al., 2023), and we refer the reader to Nguyen-Tang & Arora
385 (2025, Sec. 5.1) for additional background, examples, and a comparison with the standard Eluder
386 dimension.

387 **Definition 2** (Eluder dimensions for the κ -length world operator class and the adversary operator
388 classes). *Let $\kappa \in \mathbb{N}$ that represents the window length of the history, we define two classes of
389 scalar-valued functions that characterize the κ -length history-conditioned distribution errors:*

390 • The world model operator class $\mathcal{F}_\Theta^{[\kappa]} := \{(\pi, \tau_{h-1}) \mapsto \sum_{t=h}^{h+\kappa-1} \|(W_t^\theta - W_t^{\theta^*}) q_{t-1}^{\xi^*}\|_1^2 : \theta \in \Theta\}$
391

392 • The adversary model operator class $\mathcal{G}_\Psi^{[\kappa]} := \{(\pi, \tau_{h-1}, o, a) \mapsto \sum_{t=h}^{h+\kappa-1} \mathbb{E}_{(o_t, a_t) \sim p^*(\cdot | \tau_{t-1}; \pi)} \|(G_t^{\Phi, \pi}(o_t, a_t) - G_t^{\Phi^*, \pi}(o_t, a_t)) q_t^{\text{mid}, \star}\|_1^2 : \Phi \in \Psi\}$
393

394 where $G_h^{\Phi, \pi}$ and W_h^θ are the causal decomposition of $J_h^{\xi, \pi}$, i.e., $J_h^{\xi, \pi}(o, a) = G_h^{\Phi, \pi}(o, a) W_h^\theta$ (see
395 Lemma 1), and
396

$$397 q_{h-1}^{\xi^*}(\pi, \tau_{h-1}) := \frac{J_{h-1}^{\xi^*, \pi}(o_{h-1}, a_{h-1}) \cdots J_1^{\xi^*, \pi}(o_1, a_1) b_0^{\xi^*}}{\mathbf{1}^\top (J_{h-1}^{\xi^*, \pi}(o_{h-1}, a_{h-1}) \cdots J_1^{\xi^*, \pi}(o_1, a_1) b_0^{\xi^*})}, \quad q_h^{\text{mid}, \star} := W_h^{\theta^*} b_{h-1}^{\xi^*}.$$

398 Let $\dim_E(\mathcal{F}_\Theta^{[\kappa]})$ and $\dim_E(\mathcal{G}_\Psi^{[\kappa]})$ be the Eluder dimension (Definition 3) of $\mathcal{F}_\Theta^{[\kappa]}$ and $\mathcal{G}_\Psi^{[\kappa]}$.
399

400 **Definition 3** (ℓ_2 -type Eluder dimension). *Let F be a class of nonnegative scalar functions. We say
401 F has ℓ_2 -type Eluder dimension $\dim_E(F) = d$ if d is the smallest integer such that for any input
402 sequence $x^{1:T}$, any model sequence $\{f^i\}_{i=1}^T \subset F$, and any $\lambda > 0$, the following holds:*
403

$$404 \text{if } \forall t \in [T] : \sum_{i=1}^{t-1} f^i(x^i) \leq \lambda, \text{ then } \sum_{i=1}^t f^i(x^i) \leq C d \lambda \log t,$$

405 where $C > 0$ is a universal constant.

406 Intuitively, if functions in F fit the past data well on average, then large squared errors can occur on
407 at most $\mathcal{O}(d \log T)$ rounds, so the total prediction error can be controlled by the Eluder dimension.
408

409 Similar to Example 1, we consider a linear world model as a running example to concretize the
410 discussions on our Eluder dimensions.

411 **Example 2 (Linear World Model).** *There exist a nonnegative column-stochastic matrix $W^* \in$
412 $\mathbb{R}_+^{O_A^\kappa \times d_w}$, and weights $u_h^\pi(\tau_{A, h-1}) \in \mathbb{R}^{d_w}$ with $\|u_h^\pi(\tau_{A, h-1})\|_1 \leq 1$ such that*
413

$$414 q_h^{\text{mid}, \star}(\pi, \tau_{A, h-1}) = W^* u_h^\pi(\tau_{A, h-1}) \in \mathbb{R}^{O_A^\kappa} \quad \forall h.$$

415 **Lemma 2** (Eluder dimension for linear operator classes). *Under Examples 1 and 2, the world and
416 adversary operator classes satisfy: $\dim_E(\mathcal{F}_\Theta^{[\kappa]}) = \tilde{\mathcal{O}}(d_w O_A^\kappa)$, and $\dim_E(\mathcal{G}_\Psi^{[\kappa]}) = \tilde{\mathcal{O}}(d_{\text{adv}} B)$,*
417

418 *Proof see Appendix F.2.*

419 4.4 POLICY REGRET BOUNDS
420

421 We now present the main theoretical contribution of this paper. The following theorem provides
422 an upper bound on the policy regret for the MOMLE algorithm (Algorithm 1) operating under the
423 key assumptions detailed in the problem setup. The theorem establishes that as long as the learning
424 problem satisfies the single step α -weakly revealing and the adversary is m -memory, stationary, and
425 posterior-Lipschitz, our algorithm can achieve sublinear policy regret.

426 **Covering number.** Let (\mathcal{X}, d) be a pseudometric space. For any $\varepsilon > 0$, an ε -cover is a finite
427 subset $\mathcal{X}_\varepsilon \subseteq \mathcal{X}$ such that $\sup_{x \in \mathcal{X}} \inf_{x' \in \mathcal{X}_\varepsilon} d(x, x') \leq \varepsilon$. The ε -covering number is $N(\varepsilon; \mathcal{X}, d) :=$
428 $\min\{|\mathcal{X}_\varepsilon| : \mathcal{X}_\varepsilon \text{ is an } \varepsilon\text{-cover of } (\mathcal{X}, d)\}$.

429 We are now ready to state our main theorem.
430

432 **Theorem 1** (Policy Regret Bound for MOMLE). *Fix any $\delta \in (0, 1)$. Set the joint confidence radius*
 433 *in Algorithm 1 as follows:*

434
$$\beta = c(\log N(1/T; \Xi, d_\Xi) + \log(K/\delta)), \text{ where } d_\Xi(\xi, \xi') := \sup_{\pi \in \Pi} \|\mathbb{P}_\xi^\pi - \mathbb{P}_{\xi'}^\pi\|_1$$

 435 *for an absolute constant $c > 0$. With probability at least $1 - \delta$, choosing $K = \lceil \sqrt{d_{E,[\kappa]} T} \rceil$*
 436 *batches in Algorithm 1 yields a total policy regret*

$$437 \quad PR(T) = \tilde{\mathcal{O}}(H(m + \sqrt{\beta}) \sqrt{d_{E,[\kappa]} T}),$$

438 *where $d_{E,[\kappa]} := \dim_E(\mathcal{F}_\Theta^{[\kappa]}) + \dim_E(\mathcal{G}_\Psi^{[\kappa]})$ is the total Eluder dimension of the world and adversary*
 439 *classes.*

440 **Corollary 1 (Instantiation for linear world & adversary).** *Under the linear model in Exam-*
 441 *ples 1 and 2, choosing the $K = \lceil \sqrt{d_{E,[\kappa]} T} \rceil$ batches in Algorithm 1 yields a total policy regret:*
 442
$$PR(T) = \tilde{\mathcal{O}}(H(m + \sqrt{\beta}) \sqrt{(d_w O_A^\kappa + d_{\text{adv}} B) T}).$$

443 **Comparison with prior work.** Specializing our POMG framework to the fully observable
 444 Markov game setting yields the regret bound $PR(T) = \tilde{\mathcal{O}}(H(m + \sqrt{\beta}) \sqrt{d_E T})$. The bound
 445 preserves its mathematical structure, while the Eluder dimension d_E simplifies to reflect the less
 446 complex environment. We compare this result to the bound for the BOVL algorithm presented
 447 in Nguyen-Tang & Arora (2025), which reports the policy-regret bound $PR(T) = \tilde{\mathcal{O}}(\bar{V}(H +$
 448 $m) \sqrt{d_E \gamma T \log^3 T})$. The apparent difference in our results stems from two accounting choices: we
 449 normalize the value scale such that $\bar{V} = 1$ and include the $(m - 1)K$ warm-up episodes within the
 450 total time horizon T . If we adopt the same conventions as Nguyen-Tang & Arora (2025) by retaining
 451 the scale \bar{V} and excluding the warm-up period with an effective horizon of $T_{\text{eff}} = T - (m - 1)K$,
 452 our bound reduces to the same order as theirs.

453 **Proof overview of Theorem 1.** Our proof consists of the main four steps.

454 1. **Optimism in Joint Confidence Sets (Appendix A and B)** In each batch j , we maintain a joint
 455 Maximum Likelihood Estimation (MLE) confidence set \mathcal{C}_j for the world and adversary models.
 456 On the high-probability event that the true model parameters ξ^* are within \mathcal{C}_j for all batches, our
 457 optimistic policy selection reduces the per-batch regret to a value difference. This difference is
 458 further bounded by the Total Variation distance between the process distributions induced by the
 459 optimistic model ξ_j and the true model ξ^* .

460 2. **Regret Decomposition via Causal Telescoping (Appendix C)** We represent the learner-
 461 observable process using OOMs, which permit a causal factorization of the one-step transition
 462 operator into a world operator (G_h) and an adversary operator (W_h). A novel telescoping sum
 463 decomposition then breaks down the TV distance into a sum of horizon-step errors stemming
 464 from the world model estimation and the adversary model estimation.

465 3. **From Likelihood Bounds to Quadratic Constraints (Appendix D)** We translate the statistical
 466 log-likelihood bound that defines the confidence set \mathcal{C}_j into a powerful analytical tool. Leveraging
 467 the weakly-revealing property of the environment, this bound is converted into a set of crucial
 468 quadratic constraints on the ℓ_1 -norms of the operator errors.

469 4. **Bounding Regret via a Batched Eluder Argument (Appendix E)** Finally, we bound the cu-
 470 mulative regret by summing the decomposed errors. We define a batch as “bad” if its operator
 471 estimation error is large. The quadratic constraints ensure that a “bad” batch is highly informa-
 472 tive. An ℓ_2 -Eluder dimension argument then bounds the total number of possible “bad” batches.
 473 This, combined with a simple bound for “good” batches, yields the final $\tilde{\mathcal{O}}(\sqrt{T})$ policy regret.

474 5 CONCLUSION AND DISCUSSION

475 In this work, we develop the first algorithmic framework and theoretical analysis for policy
 476 regret minimization in multi-step weakly revealing partially observable Markov games. We establish
 477 the first $\mathcal{O}(\sqrt{T})$ policy regret bound through a novel analysis framework that builds upon a joint
 478 maximum likelihood estimation (MLE) algorithm and a decoupling argument based on the causal
 479 decomposition of world and adversary models. Future research directions include extending our
 480 framework to incorporate function approximation and expanding the class of learnable partially ob-
 481 servable environments for policy regret minimization.

486 ETHICS STATEMENT
487488 This paper presents a purely theoretical study of multi-agent reinforcement learning. Our work does
489 not involve any datasets, human subjects, or the deployment of physical systems. As such, there are
490 no direct ethical issues concerning data privacy, algorithmic bias, or immediate societal harm.
491492 REPRODUCIBILITY STATEMENT
493494 This paper is of a purely theoretical nature. To ensure the reproducibility of our results, we have pro-
495 vided detailed and self-contained proofs for all theorems, propositions, and lemmas in the appendix.
496 We believe the provided proofs are sufficient for an expert in the field to verify the correctness of
497 our claims.
498499 REFERENCES
500501 Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
502 Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
503 robot hand. *arXiv preprint arXiv:1910.07113*, 2019.504 Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
505 from regret to policy regret. In *Proceedings of the 29th International Conference on International
506 Conference on Machine Learning*, pp. 1747–1754, 2012.508 Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, and Mehryar Mohri. Policy regret in
509 repeated games. *Advances in Neural Information Processing Systems*, 31, 2018.510 Gianluca Brero, Alon Eden, Darshan Chakrabarti, Matthias Gerstgrasser, Amy Greenwald, Vincent
511 Li, and David C Parkes. Stackelberg pomdp: A reinforcement learning approach for economic
512 design. *arXiv preprint arXiv:2210.03852*, 2022.514 Google Deepmind. Ai achieves silver-medal standard solving international mathematical
515 olympiad problems, 2024. URL [https://deepmind.google/discover/blog/
516 ai-solves-imo-problems-at-silver-medal-level/](https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/).517 Matthias Gerstgrasser and David C Parkes. Oracles & followers: Stackelberg equilibria in deep
518 multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp.
519 11213–11236. PMLR, 2023.521 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
522 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
523 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.524 Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
525 observable stochastic games. In *AAAI*, volume 4, pp. 709–715, 2004.527 Herbert Jaeger. Observable operator models for discrete stochastic time series. *Neural computation*,
528 12(6):1371–1398, 2000.529 Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
530 cient? *Advances in neural information processing systems*, 31, 2018.532 Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforce-
533 ment learning not scary? In *Conference on Learning Theory*, pp. 5175–5220. PMLR, 2022a.534 Qinghua Liu, Csaba Szepesvári, and Chi Jin. Sample-efficient reinforcement learning of partially ob-
535 servable markov games. *Advances in Neural Information Processing Systems*, 35:18296–18308,
536 2022b.538 Qinghua Liu, Yuanhao Wang, and Chi Jin. Learning Markov games with adversarial opponents:
539 Efficient algorithms and fundamental limits. In *International Conference on Machine Learning*,
pp. 14036–14053. PMLR, 2022c.

540 Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari, and Chi Jin. Optimistic mle: A generic model-
 541 based algorithm for partially observable sequential decision making. In *Proceedings of the 55th*
 542 *Annual ACM Symposium on Theory of Computing*, pp. 363–376, 2023.

543

544 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 545 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-*
 546 *tion processing systems*, 30, 2017.

547 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 548 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 549 control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

550

551 Thanh Nguyen-Tang and Raman Arora. Learning in markov games with adaptive adversaries: Policy
 552 regret, fundamental barriers, and efficient algorithms. In *The Thirty-eighth Annual Conference on*
 553 *Neural Information Processing Systems*, 2024.

554 Thanh Nguyen-Tang and Raman Arora. Policy-regret minimization in markov games with function
 555 approximation. In *Forty-second International Conference on Machine Learning*, 2025. URL
 556 <https://openreview.net/forum?id=eZ5QyZV7zi>.

557 Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
 558 *Mathematics of operations research*, 12(3):441–450, 1987.

559

560 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
 561 exploration. *Advances in Neural Information Processing Systems*, 26, 2013.

562

563 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 564 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 565 the game of Go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

566

567 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 568 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
 569 without human knowledge. *nature*, 550(7676):354–359, 2017.

570

571 Nuoya Xiong, Zhaoran Wang, and Zhuoran Yang. A general framework for sequential decision-
 572 making under adaptivity constraints. In *Forty-first International Conference on Machine Learn-*
 573 *ing*, 2023.

574

575 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 576 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–
 577 384, 2021.

578

579 Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C Parkes,
 580 and Richard Socher. The AI economist: Improving equality and productivity with AI-driven tax
 581 policies. *arXiv preprint arXiv:2004.13332*, 2020.

582

583 Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Can reinforcement learning find
 584 stackelberg-nash equilibria in general-sum markov games with myopic followers? *arXiv preprint*
 585 *arXiv:2112.13521*, 2021.

586

587

588

589

590

591

592

593

594	CONTENTS	
595		
596		
597	1 Introduction	1
598	1.1 Overview of Techniques	2
599	1.2 Related Work	3
600		
601		
602	2 Problem Setup and Preliminaries	3
603		
604	3 Structural Assumptions	4
605	3.1 Adversary Behavior Model	4
606	3.2 Multi-step Weakly Revealing POMGs	5
607		
608		
609	4 Main Results	5
610	4.1 Unified Algorithmic Framework via Mini-batched Optimistic MLE	5
611	4.2 Theoretical Analysis	6
612	4.2.1 A Reduction from any POMG to an Augmented POMDP	7
613	4.2.2 Operator Decomposition	7
614		
615	4.3 Eluder Conditions	8
616	4.4 Policy Regret Bounds	8
617		
618		
619	5 Conclusion and discussion	9
620		
621		
622	A Validity of Confidence Sets	13
623	A.1 Optimistic ε -net and MGF bound	13
624	A.2 Markov + Union Bound and Batched Validity	13
625		
626		
627	B Policy Regret and Optimism	14
628	B.1 Optimism Replacement in the Batched Framework	14
629	B.2 Same-Policy Value–Distribution Bound	15
630		
631		
632	C POMG Telescoping via Operator Decomposition	15
633	C.1 Controlled OOM Representability and Stability	15
634	C.2 Two-stage telescoping bound	17
635		
636	C.3 From signatures to operators	18
637		
638		
639	D Constraints for Operator Estimates from Batched OMLE	19
640		
641	E Bounding Cumulative Regret via Batched Eluder Argument	21
642	E.1 Transporting historical operator constraints to the current batch	21
643	E.2 Bounding the number of bad batches via Eluder dimension	22
644		
645	E.3 Final Regret Bound	23
646		
647	F Supplementary Explanations for Assumptions and Lemmas	24

648	F.1 Explanations for Posterior-Lipschitz	24
649		
650	F.2 Proofs of Supporting Lemmas	26
651		

652 LLM USAGE STATEMENT

654 We utilized a large language model to assist with the writing and polishing of this manuscript.
 655 Its role was strictly limited to improving the linguistic quality of the text by refining language,
 656 enhancing readability, and ensuring clarity. All scientific contributions, including the core ideas,
 657 research methodology, and proofs, were developed exclusively by the authors.

659 A VALIDITY OF CONFIDENCE SETS

661 We use the joint parameter $\xi = (\theta, \Phi)$ and define, for each batch j ,

$$663 L_j(\xi) := \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_j} \log \mathbb{P}_\xi^{\pi^i}(\tau_A^i), \quad \mathcal{C}_j(\beta) := \{\xi \in \Xi : L_j(\xi) \geq \sup_{\xi' \in \Xi} L_j(\xi') - \beta\}.$$

665 Planning at the start of batch $j+1$ uses the projections

$$667 \mathcal{W}_{j+1} := \{\theta : \exists \Phi \text{ s.t. } (\theta, \Phi) \in \mathcal{C}_j(\beta)\}, \quad \Psi_{j+1} := \{\Phi : \exists \theta \text{ s.t. } (\theta, \Phi) \in \mathcal{C}_j(\beta)\}.$$

669 A.1 OPTIMISTIC ε -NET AND MGF BOUND

671 Let $d(\xi, \xi') := \sup_\pi \|\mathbb{P}_\xi^\pi - \mathbb{P}_{\xi'}^\pi\|_1$ be the TV metric over learner-observable trajectory laws and let
 672 $N(\varepsilon; \Xi, d)$ be the covering number. We take an optimistic ε -net $\bar{\Xi} \subset \Xi$ with $\varepsilon = T^{-1}$ and set

$$674 \beta = c \left(\log N(T^{-1}, \Xi, d) + \log(K/\delta) \right),$$

675 which is the confidence radius used in Theorem 1.

677 **Lemma 3** (Joint MGF bound under optimistic discretization). *Let $\mathcal{D}_N = \{(\pi^i, \tau_A^i)\}_{i=1}^N$ be any
 678 (possibly adaptive) sequence of policies and observed learner trajectories. Fix any $\xi \in \Xi$ such that
 679 $\sup_\pi \|\mathbb{P}_\xi^\pi - \mathbb{P}_{\xi^*}^\pi\|_1 \leq T^{-1}$. Then*

$$681 \mathbb{E} \left[\exp \left(\sum_{i=1}^N \log \frac{\mathbb{P}_\xi^{\pi^i}(\tau_A^i)}{\mathbb{P}_{\xi^*}^{\pi^i}(\tau_A^i)} \right) \right] \leq e.$$

684 *Proof.* Identical in structure to Liu et al. (2022a, Prop. 13), replacing the single parameter θ
 685 with the joint parameter $\xi = (\theta, \Phi)$ and full trajectories by the learner-observable marginals τ_A
 686 (marginalization preserves normalization). Let \mathcal{F}_i be the history up to episode $i-1$ and define
 687 $r_i := \mathbb{P}_\xi^{\pi^i}(\tau_A^i) / \mathbb{P}_{\xi^*}^{\pi^i}(\tau_A^i)$. By the tower property, $\mathbb{E}[r_i | \mathcal{F}_i] = \sum_{\tau_A} \mathbb{P}_\xi^{\pi^i}(\tau_A) \leq 1 + T^{-1}$, hence
 688 $\mathbb{E}[\exp(\sum_{i=1}^N \log r_i)] = \mathbb{E}[\prod_{i=1}^N \mathbb{E}[r_i | \mathcal{F}_i]] \leq (1 + T^{-1})^N \leq e$. \square

690 A.2 MARKOV + UNION BOUND AND BATCHED VALIDITY

692 **Proposition 1** (Validity of Batched Confidence Sets). *Let the confidence parameter β be a constant
 693 defined as $\beta := c(\log |\bar{\Xi}| + \log(K/\delta))$. With probability at least $1 - \delta$, the true parameter ξ^* is
 694 contained in the confidence set $\mathcal{C}_j(\beta)$ for all batches $j \in \{1, \dots, K\}$.*

696 *Proof.* Let $N_j = |\mathcal{D}_j|$ be the number of episodes collected up to the end of batch j . We apply
 697 Lemma 3 to the dataset \mathcal{D}_j for a fixed $\bar{\xi} \in \bar{\Xi}$ and a fixed batch $j \in \{1, \dots, K\}$. By Markov's
 698 inequality,

$$699 \mathbb{P} \left(\sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_j} \log \frac{\mathbb{P}_\xi^{\pi^i}(\tau_A^i)}{\mathbb{P}_{\xi^*}^{\pi^i}(\tau_A^i)} > \log(K|\bar{\Xi}|/\delta) \right) \leq \frac{\mathbb{E}[\exp(\dots)]}{K|\bar{\Xi}|/\delta} \leq \frac{e \cdot \delta}{K|\bar{\Xi}|}.$$

Taking a union bound over all $j \in \{1, \dots, K\}$ and all $\bar{\xi} \in \bar{\Xi}$, the probability that the bound is violated for any pair $(j, \bar{\xi})$ is at most $K \cdot |\bar{\Xi}| \cdot \frac{e \cdot \delta}{K|\bar{\Xi}|} = e \cdot \delta$. Rescaling δ appropriately, we have that with probability at least $1 - \delta$, for all $j \in \{1, \dots, K\}$ and all $\bar{\xi} \in \bar{\Xi}$:

$$\sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_j} \log \frac{\mathbb{P}_{\xi}^{\pi^i}(\tau_A^i)}{\mathbb{P}_{\xi^*}^{\pi^i}(\tau_A^i)} \leq c(\log |\bar{\Xi}| + \log(K/\delta)).$$

By the optimistic property of the discretization ($\mathbb{P}_{\xi} \leq \mathbb{P}_{\bar{\xi}}$), the bound also holds for all $\xi \in \Xi$. The proposition's claim then follows directly from the definition of $\mathcal{C}_j(\beta)$. \square

Corollary 2 (Validity for Planning on the Joint Confidence Set). *Under the high-probability event of Proposition 1, we have*

$$\xi^* \in \mathcal{C}_j(\beta) \quad \text{for all } j \in \{1, \dots, K\}.$$

Proof. Hence any planning step at the beginning of batch $j+1$ that optimizes an objective over the joint confidence set $\mathcal{C}_j(\beta)$ is valid in the sense that the true parameter ξ^* is feasible. \square

B POLICY REGRET AND OPTIMISM

We fix the true joint parameter $\xi^* = (\theta^*, \Phi^*)$. Let $\mathcal{R}_t(\pi^1, \dots, \pi^t)$ denote the realized adversary in round t , and let $\mathcal{R}_t([\pi]^t)$ denote the counterfactual response had the learner played the comparator policy π for all the first t episodes. Per-step rewards lie in $[0, 1]$ and the horizon is H .

B.1 OPTIMISM REPLACEMENT IN THE BATCHED FRAMEWORK

At the beginning of each batch $j \in \{1, \dots, K\}$, the algorithm selects a fixed optimistic pair (π_j, ξ_j) from the confidence set $\mathcal{C}_{j-1}(\beta)$:

$$(\pi_j, \xi_j) \in \arg \max_{\pi \in \Pi, \xi \in \mathcal{C}_{j-1}(\beta)} V^{\pi, \mathcal{R}(\pi)}(\xi),$$

and keeps $(\pi_t, \xi_t) = (\pi_j, \xi_j)$ for all $t \in \text{Batch}_j$.

Lemma 4 (Optimism per Batch). *On the high-probability event that $\xi^* \in \mathcal{C}_{j-1}(\beta)$ for all batches $j \in \{1, \dots, K\}$, it holds for every batch j and every comparator policy π that, for all data-collection rounds $t \in \text{Batch}_j$,*

$$V^{\pi, \mathcal{R}_t([\pi]^t)}(\xi^*) \leq V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j).$$

Proof. Fix j and π . Consider any $t \in \text{Batch}_j$ belonging to the data-collection part of batch j (i.e., after the $(m-1)$ -episode warm-up under π_j). Along the counterfactual path $[\pi]^t$, the last m policy blocks are π . Along the counterfactual path $[\pi]^t$, the last m policy blocks are all equal to π , so by stationarity and m -memory the opponent's response depends only on this repeated block and we have $\mathcal{R}_t([\pi]^t) = \mathcal{R}(\pi)$. Therefore $V^{\pi, \mathcal{R}_t([\pi]^t)}(\xi^*) = V^{\pi, \mathcal{R}(\pi)}(\xi^*)$. Since $\xi^* \in \mathcal{C}_{j-1}(\beta)$ and (π_j, ξ_j) maximizes $V^{\pi, \mathcal{R}(\pi)}(\xi)$ over $\Pi \times \mathcal{C}_{j-1}(\beta)$, we have $V^{\pi, \mathcal{R}(\pi)}(\xi^*) \leq V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j)$. This holds for every such t . \square

Consequently, for $t \in \text{Batch}_j$ the executed policy is π_j and the realized adversary is $\mathcal{R}_t(\pi^1, \dots, \pi^t)$; thus

$$\text{PR}(T) \leq \sum_{j=1}^K \sum_{t \in \text{Batch}_j} \left(V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j) - V^{\pi_j, \mathcal{R}_t(\pi^1, \dots, \pi^t)}(\xi^*) \right). \quad (2)$$

Remark 4 (Within-batch stationarity). *Each batch j begins with an $(m-1)$ -episode warm-up under π_j . By stationarity, m -memory, and SLC, the opponent stabilizes to the fixed response $\mathcal{R}_{\xi^*}(\pi_j)$ on all data-collection rounds of batch j . Let n_j denote the number of data-collection episodes in batch j (excluding warm-up). Then*

$$\text{PR}(T) \leq \sum_{j=1}^K n_j \left(V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi_j) - V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi^*) \right).$$

756 where $n_j := |\text{Batch}_j| = \lfloor T/K \rfloor$ denotes the number of data-collection episodes in batch j . If
 757 warm-up rounds are included in regret, they add at most $H(m-1)K$.
 758

759 B.2 SAME-POLICY VALUE–DISTRIBUTION BOUND 760

761 **Lemma 5.** Assume per-episode returns satisfy $0 \leq R(\tau_H) \leq H$. For any fixed policy π , any two
 762 joint models ξ_1, ξ_2 , and their corresponding opponent responses $\mathcal{R}_1, \mathcal{R}_2$,

$$763 \quad V^{\pi, \mathcal{R}_1}(\xi_1) - V^{\pi, \mathcal{R}_2}(\xi_2) \leq H \|\mathbb{P}_{\xi_1}^{\pi, \mathcal{R}_1} - \mathbb{P}_{\xi_2}^{\pi, \mathcal{R}_2}\|_1.$$

766 *Proof.* Write $V^{\pi, \mathcal{R}}(\xi) = \sum_{\tau_H} \mathbb{P}_{\xi}^{\pi, \mathcal{R}}(\tau_H) R(\tau_H)$ with $R(\tau_H) \in [0, H]$. Let $\Delta(\tau_H) = \mathbb{P}_{\xi_1}^{\pi, \mathcal{R}_1}(\tau_H) -$
 767 $\mathbb{P}_{\xi_2}^{\pi, \mathcal{R}_2}(\tau_H)$. Then
 768

$$769 \quad V^{\pi, \mathcal{R}_1}(\xi_1) - V^{\pi, \mathcal{R}_2}(\xi_2) = \sum_{\tau_H} \Delta(\tau_H) R(\tau_H) \leq \sum_{\tau_H} |\Delta(\tau_H)| \|R\|_{\infty}$$

$$771 \quad \leq H \sum_{\tau_H} |\Delta(\tau_H)| = H \|\mathbb{P}_{\xi_1}^{\pi, \mathcal{R}_1} - \mathbb{P}_{\xi_2}^{\pi, \mathcal{R}_2}\|_1.$$

□

775 Applying Lemma 5 to the inner term of equation 2 and using Remark 4 (i.e., $\mathcal{R}_t = \mathcal{R}_{\xi^*}(\pi_j)$ on
 776 data-collection rounds) gives
 777

$$778 \quad PR(T) \leq H \sum_{j=1}^K n_j \cdot \|\mathbb{P}_{\xi_j}^{\pi_j, \mathcal{R}_{\xi_j}(\pi_j)} - \mathbb{P}_{\xi^*}^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}\|_1. \quad (3)$$

782 C POMG TELESCOPING VIA OPERATOR DECOMPOSITION 783

784 Fix a learner policy π and work with marginal learner–trajectory prefixes $\tau_h = (o_1, a_1, \dots, o_h, a_h)$.
 785 Within the *data-collection* rounds (i.e., after the $(m-1)$ -episode warm-up), the response faced by
 786 a fixed π is time-invariant by Remark 4. Thus the learner-observable process under π is time-
 787 homogeneous on these rounds.

789 C.1 CONTROLLED OOM REPRESENTABILITY AND STABILITY

790 *Proof of Lemma 1.* The proof proceeds by establishing the equivalence of the POMG with a finite-
 791 state POMDP, then leveraging this equivalence to derive the existence, causal decomposition, and
 792 stability of its OOM/PSR representation.
 793

794 **Proof of Part 1 (Factorization)** Consider the augmented hidden state $s'_h = (s_h, \zeta, \tau_{A,h-1})$, where
 795 $s_h \in \mathcal{S}$ is the world state, $\zeta = [\pi]^m \in \mathcal{Z}_{\text{pol}}$ is the fixed policy memory within the batch, and
 796 $\tau_{A,h-1} \in (\mathcal{O}_A \times \mathcal{A})^{h-1}$ is the learner-side within-episode history. Within a batch, the learner uses
 797 a fixed policy π and the adversary is stationary and posterior-Lipschitz. At step h :
 798

- 799 1. (Adversary response) $b_h \sim \mu^*(\cdot | \zeta, \tau_{A,h-1})$.
- 800 2. (Observation) $o_h \sim \mathbb{O}_h^A(\cdot | s_h)$ (lift of the original emission to the augmented state).
- 801 3. (World transition) $s_{h+1} \sim T_h(\cdot | s_h, a_h, b_h)$.
- 802 4. (Memory update) $\tau_{A,h} = (\tau_{A,h-1}, o_h, a_h)$ and $\zeta' = \zeta$ deterministically.

803 Define the *joint* one-step kernel of the learner observation and the next augmented state:

$$804 \quad \mathbb{P}(o_h, s'_{h+1} | s'_h, a_h) = \sum_{b_h \in \mathcal{B}} \mu^*(b_h | \zeta, \tau_{A,h-1}) \mathbb{O}_h^A(o_h | s_h) T_h(s_{h+1} | s_h, a_h, b_h) \quad (4)$$

$$805 \quad \times \mathbf{1}\{\zeta' = \zeta, \tau_{A,h} = (\tau_{A,h-1}, o_h, a_h)\}.$$

810 On the learner marginal, the per-step observation kernel and the controlled transition are the
 811 marginals of equation 4:

$$813 \quad O'_h(o_h | s'_h) := \mathbb{O}_h^A(o_h | s_h) = \sum_{s'_{h+1}} \mathbb{P}(o_h, s'_{h+1} | s'_h, a_h), \quad (5)$$

$$815 \quad T'_h(s'_{h+1} | s'_h, a_h) := \mathbb{P}(s'_{h+1} | s'_h, a_h) = \sum_{o \in \mathcal{O}_A} \mathbb{P}(o, s'_{h+1} | s'_h, a_h). \quad (6)$$

817 With observation-based rewards $r_{A,h} : \mathcal{O}_A \rightarrow [0, 1]$,

$$819 \quad R'_h(s'_h, a_h) = \sum_{o \in \mathcal{O}_A} \mathbb{O}_h^A(o | s_h) r_{A,h}(o). \quad (7)$$

822 Therefore, within a batch the learner–observable process is a finite POMDP on

$$823 \quad \mathcal{S}' = \mathcal{S} \times \mathcal{Z}_{\text{pol}} \times \bigcup_{k=0}^{H-1} (\mathcal{O}_A \times \mathcal{A})^k,$$

826 and the joint law of (o_h, s'_{h+1}) depends only on (s'_h, a_h) . By standard OOM results for finite
 827 POMDPs in (Liu et al., 2022a), there exist a dimension d , an initial vector $q_0^\xi \in \mathbb{R}_+^d$, and nonnegative
 828 one-step operators $J_h^{\xi, \pi}(o_h, a_h)$ such that, for any learner trajectory $\tau_A = (o_1, a_1, \dots, o_H, a_H)$,

$$830 \quad \mathbb{P}_\xi^\pi(\tau_A) = \mathbf{1}^\top J_H^{\xi, \pi}(o_H, a_H) \cdots J_1^{\xi, \pi}(o_1, a_1) q_0^\xi. \quad (8)$$

832 **Proof of Part 2 (Causal Decomposition)** Work on the augmented space of Part 1 with the step- h
 833 distribution η_h over $s'_h = (s_h, \zeta, \tau_{h-1})$.

834 **(i) World channel \widehat{W}_h^θ .** Given η_h and learner action a_h , define a nonnegative kernel that propagates
 835 the world state while *indexing* by a hypothetical opponent action b_h :

$$837 \quad (\widehat{W}_h^\theta \eta_h)(s'_h, s_{h+1}, b_h; a_h) := \eta_h(s'_h) T_h(s_{h+1} | s_h, a_h, b_h).$$

838 This map depends only on the world kernel T_h and carries forward (s_h, ζ, τ_{h-1}) for downstream
 839 use.

840 **(ii) Adversary channel $\widehat{G}_h^{\Phi, \pi}(o_h, a_h)$.** Acting on $m_h := \widehat{W}_h^\theta \eta_h$, it marginalizes b_h using the adver-
 841 sary response and emits the learner-side observation, while deterministically updating the history:

$$842 \quad (\widehat{G}_h^{\Phi, \pi}(o_h, a_h)m_h)(o_h, s'_{h+1}) \\ 843 \quad := \sum_{s'_h} \sum_{b_h} \mu^\Phi(b_h | \zeta, \tau_{h-1}) \mathbb{O}_h^A(o_h | s_h) \mathbf{1}\{\zeta' = \zeta, \tau_h = (\tau_{h-1}, o_h, a_h)\} m_h(s'_h, s_{h+1}, b_h; a_h), \\ 845 \quad (9)$$

847 where $s'_{h+1} = (s_{h+1}, \zeta', \tau_h)$. This map carries all dependence on (Φ, π) through $\mu^\Phi(\cdot | \zeta, \tau_{h-1})$
 848 and (ζ, τ_{h-1}) embedded in s'_h .

849 Define the hidden-layer one-step joint kernel as the composition

$$851 \quad \widehat{K}_h^{\xi, \pi}(o_h, a_h) := \widehat{G}_h^{\Phi, \pi}(o_h, a_h) \widehat{W}_h^\theta,$$

853 so that for any s'_h it yields $\mathbb{P}_\xi^\pi(o_h, s'_{h+1} | s'_h, a_h)$ (cf. equation 4 with μ^* and \mathbb{O}_h^A).

854 **Transport to the predictive-state space.** By finite-rank realization, there exist parameter-
 855 independent linear maps $\mathcal{L}_h : \mathbb{R}^d \rightarrow \mathbb{R}^{|\mathcal{S}'|}$ and $\mathcal{P}_h : \mathbb{R}^{|\mathcal{S}'|} \rightarrow \mathbb{R}^d$ such that

$$856 \quad J_h^{\xi, \pi}(o_h, a_h) = \mathcal{P}_h \widehat{K}_h^{\xi, \pi}(o_h, a_h) \mathcal{L}_h.$$

858 Insert an identity factorization $I = \mathcal{Q}_h \mathcal{R}_h$ on the hidden space with $\mathcal{Q}_h, \mathcal{R}_h$ linear and parameter-
 859 independent, and set

$$860 \quad W_h^\theta := \mathcal{R}_h \widehat{W}_h^\theta \mathcal{L}_h, \quad G_h^{\Phi, \pi}(o_h, a_h) := \mathcal{P}_h \widehat{G}_h^{\Phi, \pi}(o_h, a_h) \mathcal{Q}_h.$$

862 Then

$$863 \quad J_h^{\xi, \pi}(o_h, a_h) = G_h^{\Phi, \pi}(o_h, a_h) W_h^\theta. \quad (10)$$

864 which is the desired causal factorization.

864 **Proof of Part 3 (Normalization)** Because the operators arise from conditional probability kernels
 865 of a finite controlled POMDP, they are nonnegative and mass-preserving. Concretely, (Liu et al.,
 866 2022a) shows that probabilities of histories and next-observations can be written as operator products
 867 (their Eq. (36)), which for any fixed action a implies

$$868 \sum_{o \in \mathcal{O}_A} \mathbf{1}^\top J_h^{\xi, \pi}(o, a) q = \mathbf{1}^\top q \quad \text{for all } q \in \mathbb{R}_+^d.$$

871 Equivalently, $\sum_o J_h^{\xi, \pi}(o, a)$ is stochastic on \mathbb{R}_+^d for every a . If the learner randomizes actions
 872 according to $\pi(\cdot | \tau_{h-1})$, then
 873

$$874 \sum_{a \in \mathcal{A}} \pi(a | \tau_{h-1}) \sum_{o \in \mathcal{O}_A} \mathbf{1}^\top J_h^{\xi, \pi}(o, a) q = \mathbf{1}^\top q.$$

877 **Proof of Part 4 (Stability)** Under the κ -step α_κ -weakly revealing assumption, the block OOM
 878 telescoping argument of Liu et al. (2022a, Appx. F.1 and Lemma 31) applies verbatim to $J_h^{\xi, \pi} =$
 879 $G_h^{\Phi, \pi} W_h^\theta$. Hence there exists $C(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ such that, for any $h \in \{1, \dots, H-1\}$, any
 880 $v \in \mathbb{R}^d$, and any prefix τ_h ,

$$882 \mathbb{E} \left[\left\| J_H^{\xi, \pi}(O_H, A_H) \cdots J_{h+1}^{\xi, \pi}(O_{h+1}, A_{h+1}) v \right\|_1 \middle| \tau_h \right] \leq C(\alpha_\kappa) \|v\|_1. \quad \square$$

884 C.2 TWO-STAGE TELESCOPING BOUND

886 We derive a two-stage telescoping bound that separates, at each step, the world and adversary con-
 887 tributions to the same-policy distributional gap. Let
 888

$$889 T_H^{\xi, \pi}(\tau_A) := J_H^{\xi, \pi}(o_H, a_H) \cdots J_1^{\xi, \pi}(o_1, a_1).$$

890 Define unnormalized predictive states

$$892 q_{h-1}^{\xi^*}(\tau_{h-1}) := J_{h-1}^{\xi^*, \pi}(o_{h-1}, a_{h-1}) \cdots J_1^{\xi^*, \pi}(o_1, a_1) q_0^{\xi^*}, \quad q_h^{\text{mid}, \xi^*}(\tau_{h-1}) := W_h^{\theta^*} q_{h-1}^{\xi^*}(\tau_{h-1}).$$

894 **Lemma 6** (κ -step two-stage telescoping under weakly revealing). *Fix a policy π and two joint
 895 models $\xi = (\theta, \Phi)$ and $\xi^* = (\theta^*, \Phi^*)$. Assume per-step factorization $J_t^{\xi, \pi} = G_t^{\Phi, \pi} W_t^\theta$ with
 896 normalization (all maps are nonnegative and ℓ_1 -nonexpansive after summing over emitted sym-
 897 blets), and assume the model is κ -step α_κ -weakly revealing so that the κ -step controlled tail is
 898 ℓ_1 -stable with constant $C(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$. Partition the horizon into consecutive blocks
 899 $I_r = \{h_r, \dots, \min(h_r + \kappa - 1, H)\}$ with $h_r = (r-1)\kappa + 1$. Let $q_{t-1}^{\xi^*}$ be the normalized predictive
 900 state under (ξ^*, π) and $q_t^{\text{mid}, \xi^*} := W_t^{\theta^*} q_{t-1}^{\xi^*}$. Then the total-variation distance between trajectory
 901 laws satisfies*

$$902 \begin{aligned} \|\mathbb{P}_\xi^\pi - \mathbb{P}_{\xi^*}^\pi\|_1 &\leq \|q_0^\xi - q_0^{\xi^*}\|_1 \\ 903 &\quad + C(\alpha_\kappa) \sum_r \sum_{t \in I_r} \left\{ \|(W_t^\theta - W_t^{\theta^*}) q_{t-1}^{\xi^*}\|_1 \right. \\ 904 &\quad \left. + \mathbb{E}_{(o_t, a_t) \sim p_{\xi^*}^\pi(\cdot | \tau_{t-1})} \left\| (G_t^{\Phi, \pi} - G_t^{\Phi^*, \pi})(o_t, a_t) q_t^{\text{mid}, \xi^*} \right\|_1 \right\}. \end{aligned}$$

909 *Proof.* For integers $u \leq v$ write $J_{u:v}^\xi := J_v^\xi \cdots J_u^\xi$ and $J_{u:u-1}^\xi := I$. For each block I_r , the product-
 910 difference identity gives
 911

$$912 J_{h_r:h_r+\kappa-1}^\xi - J_{h_r:h_r+\kappa-1}^{\xi^*} = \sum_{t \in I_r} \left(J_{t+1:h_r+\kappa-1}^\xi \right) \left(J_t^\xi - J_t^{\xi^*} \right) \left(J_{h_r:t-1}^{\xi^*} \right). \quad (11)$$

915 Using the per-step split

$$916 J_t^\xi - J_t^{\xi^*} = \underbrace{(G_t^{\Phi, \pi} - G_t^{\Phi^*, \pi}) W_t^{\theta^*}}_{\text{adversary}} + \underbrace{G_t^{\Phi, \pi} (W_t^\theta - W_t^{\theta^*})}_{\text{world}}, \quad (12)$$

918 and applying the above to the nonnegative state $q_{h_r-1}^{\xi^*}$, we obtain by the triangle inequality
919

$$920 \quad 921 \quad \left\| (J_{h_r:h_r+\kappa-1}^{\xi} - J_{h_r:h_r+\kappa-1}^{\xi^*}) q_{h_r-1}^{\xi^*} \right\|_1 \leq \sum_{t \in I_r} (T_{t,r}^{\text{adv}} + T_{t,r}^{\text{world}}), \quad (13)$$

922 where
923

$$924 \quad T_{t,r}^{\text{adv}} := \left\| J_{t+1:h_r+\kappa-1}^{\xi} (G_t^{\Phi,\pi} - G_t^{\Phi^*,\pi}) W_t^{\theta^*} \times J_{h_r:t-1}^{\xi^*} q_{h_r-1}^{\xi^*} \right\|_1, \\ 925 \quad T_{t,r}^{\text{world}} := \left\| J_{t+1:h_r+\kappa-1}^{\xi} G_t^{\Phi,\pi} (W_t^{\theta} - W_t^{\theta^*}) \times J_{h_r:t-1}^{\xi^*} q_{h_r-1}^{\xi^*} \right\|_1.$$

928 Normalization implies $\sum_{(o_t, a_t)} \|G_t^{\Phi,\pi}(o_t, a_t) x\|_1 \leq \|x\|_1$ for all $x \geq 0$ (and similarly for $G_t^{\Phi^*,\pi}$).
929 By κ -step weakly revealing, there is $C(\alpha_\kappa)$ such that for any $v \geq 0$,
930

$$931 \quad \mathbb{E} \left[\|J_{t+1:h_r+\kappa-1}^{\xi^*} v\|_1 \mid \tau_t \right] \leq C(\alpha_\kappa) \|v\|_1, \quad \|J_{h_r:t-1}^{\xi^*} v\|_1 \leq \|v\|_1. \quad (14)$$

933 For the world term, set $x := J_{h_r:t-1}^{\xi^*} b_{h_r-1}^{\xi^*} = q_{t-1}^{\xi^*}$. Then
934

$$935 \quad \mathbb{E} [T_{t,r}^{\text{world}}] \leq C(\alpha_\kappa) \|G_t^{\Phi,\pi}(W_t^{\theta} - W_t^{\theta^*}) x\|_1 \leq C(\alpha_\kappa) \|(W_t^{\theta} - W_t^{\theta^*}) q_{t-1}^{\xi^*}\|_1. \quad (15)$$

937 For the adversary term, with $q_t^{\text{mid},\xi^*} := W_t^{\theta^*} x$,
938

$$939 \quad \mathbb{E} [T_{t,r}^{\text{adv}}] \leq C(\alpha_\kappa) \|(G_t^{\Phi,\pi} - G_t^{\Phi^*,\pi}) q_t^{\text{mid},\xi^*}\|_1 \leq C(\alpha_\kappa) \sum_{(o_t, a_t)} \|(G_t^{\Phi,\pi} - G_t^{\Phi^*,\pi})(o_t, a_t) q_t^{\text{mid},\xi^*}\|_1. \quad (16)$$

942 Moreover, κ -step weakly revealing implies a lower bound on the conditional mass over supported
943 (o_t, a_t) , hence
944

$$945 \quad \sum_{(o_t, a_t)} \|(G_t^{\Phi,\pi} - G_t^{\Phi^*,\pi})(o_t, a_t) q_t^{\text{mid},\xi^*}\|_1 \\ 946 \quad \leq C(\alpha_\kappa) \mathbb{E}_{(o_t, a_t) \sim p_{\xi^*}(\cdot | \tau_{t-1})} \|(G_t^{\Phi,\pi} - G_t^{\Phi^*,\pi})(o_t, a_t) q_t^{\text{mid},\xi^*}\|_1,$$

949 absorbing this factor into $C(\alpha_\kappa)$.
950

Finally, taking expectations in the block bound, summing over $t \in I_r$ and over all r , and adding the
951 initial-state discrepancy yields the claimed inequality. \square
952

953 C.3 FROM SIGNATURES TO OPERATORS

955 **Lemma 7** (Lipschitz Transfer). *Assume Posterior-Lipschitz and the factorization $J_h^{\xi,\pi} = G_h^{\Phi,\pi} W_h^{\theta}$
956 with normalization (Lemma 1). Then there exists $L_G = \mathcal{O}(L)$ such that for any h , policies π, ν , and
957 $v \in \mathbb{R}_+^d$,*

$$958 \quad 959 \quad \sum_{(o,a)} \|(G_h^{\Phi,\pi} - G_h^{\Phi,\nu})(o, a) v\|_1 \leq L_G \Delta_\sigma(\pi, \nu) \|v\|_1, \quad \Delta_\sigma(\pi, \nu) := \max_{i \in [m]} \|S_{\tau_B}^i(\pi) - S_{\tau_B}^i(\nu)\|_1.$$

961 The same bound holds with Φ replaced by Φ^* .
962

963 *Proof.* By the causal factorization equation 10 and the adversary channel equation 9, together with
964 the finite-rank realization in Sec. C.1, there exist nonnegative linear maps $\tilde{R}_h(o, a, b) : \mathbb{R}_+^d \rightarrow \mathbb{R}_+^d$
965 (independent of (Φ, π)) such that equation 18 holds.

$$966 \quad 967 \quad G_h^{\Phi,\pi}(o, a) v = \sum_b g_h(b \mid \tau_B; \pi) \tilde{R}_h(o, a, b) v \quad (\forall v \in \mathbb{R}_+^d). \quad (18)$$

969 Since $\sum_{(o,a)} J_h^{\xi,\pi}(o, a)$ is stochastic for every π , taking g_h as a point mass gives
970

$$971 \quad \sum_{(o,a)} \tilde{R}_h(o, a, b) \text{ is stochastic on } \mathbb{R}_+^d \Rightarrow \sum_{(o,a)} \|\tilde{R}_h(o, a, b) v\|_1 \leq \|v\|_1 \quad (\forall v \in \mathbb{R}_+^d). \quad (19)$$

972 By equation 18,
973

$$974 (G_h^{\Phi, \pi} - G_h^{\Phi, \nu})(o, a) v = \sum_b \left[g_h(b | \tau_B; \pi) - g_h(b | \tau_B; \nu) \right] \tilde{R}_h(o, a, b) v. \\ 975$$

976 Summing over (o, a) and using equation 19,
977

$$978 \sum_{(o, a)} \|(G_h^{\Phi, \pi} - G_h^{\Phi, \nu})(o, a) v\|_1 \leq \left(\sum_b |g_h(b | \tau_B; \pi) - g_h(b | \tau_B; \nu)| \right) \|v\|_1. \\ 979$$

981 By Posterior-Lipschitz, $\sum_b |g_h(b | \tau_B; \pi) - g_h(b | \tau_B; \nu)| \leq L \Delta_\sigma(\pi, \nu)$, which proves the claim
982 with $L_G := L$. The case Φ^* is identical. \square
983

984 D CONSTRAINTS FOR OPERATOR ESTIMATES FROM BATCHED OMLE

985 This section converts the high-probability joint-likelihood guarantee (Proposition 1) into quantitative
986 constraints on per-step operator errors.

987 Fix an arbitrary batch $j \in \{1, \dots, K\}$. Work on the high-probability event where the optimistic
988 model $\xi_j = (\theta_j, \Phi_j)$ chosen for batch j satisfies $\xi_j \in \mathcal{C}_{j-1}(\beta)$. Hence, for the historical dataset
989 \mathcal{D}_{j-1} ,

$$990 \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \log \frac{\mathbb{P}_{\xi^*}^{\pi^i}(\tau_A^i)}{\mathbb{P}_{\xi_j}^{\pi^i}(\tau_A^i)} \leq \beta. \\ 991$$

992 For any episode i and step h , let $p_{\xi}(\cdot | \tau_{h-1}; \pi^i) \in \Delta(\mathcal{O}_A \times \mathcal{A})$ be the one-step conditional. Let
993 $q_{h-1}^{\xi^*}(\tau_{h-1})$ be the *normalized* true prediction state and $q_h^{\text{mid}, \xi^*}(\tau_{h-1}) := W_h^{\theta^*} q_{h-1}^{\xi^*}(\tau_{h-1})$.
994

995 **Proposition 2** (Likelihood-to-Squared-TV Bound on Past Data). *At the beginning of batch j , for
996 $\xi_j \in \mathcal{C}_{j-1}(\beta)$,*

$$997 \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}} \text{KL}(p_{\xi^*}(\cdot | \tau_{h-1}; \pi^i) \| p_{\xi_j}(\cdot | \tau_{h-1}; \pi^i)) \leq \beta, \quad (20)$$

$$998 \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}} \|p_{\xi^*}(\cdot | \tau_{h-1}; \pi^i) - p_{\xi_j}(\cdot | \tau_{h-1}; \pi^i)\|_1^2 \leq 2\beta. \quad (21)$$

1000 *Proof.* Taking expectation of the joint log-likelihood ratio under $\mathbb{P}_{\xi^*}^{\pi^i}$ and using the chain rule,
1001

$$1002 \mathbb{E}_{\mathbb{P}_{\xi^*}^{\pi^i}} \left[\log \frac{\mathbb{P}_{\xi^*}^{\pi^i}(\tau_A)}{\mathbb{P}_{\xi_j}^{\pi^i}(\tau_A)} \right] = \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}} \text{KL}(p_{\xi^*}(\cdot | \tau_{h-1}; \pi^i) \| p_{\xi_j}(\cdot | \tau_{h-1}; \pi^i)). \\ 1003$$

1004 Summing over $(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}$ gives equation 20. Pinsker's inequality, applied conditionally on
1005 each τ_{h-1} , yields $\|p_{\xi^*} - p_{\xi_j}\|_1^2 \leq 2 \text{KL}(p_{\xi^*} \| p_{\xi_j})$, which implies equation 21 after summing and
1006 taking expectations. \square

1007 **Corollary 3** (Cross-signature propagation of adversary errors). *For any step h , policies π, ν , and
1008 $v \in \mathbb{R}_+^d$,*

$$1009 \sum_{(o, a)} \|(G_h^{\Phi, \pi} - G_h^{\Phi^*, \pi})(o, a) v\|_1 \leq \sum_{(o, a)} \|(G_h^{\Phi, \nu} - G_h^{\Phi^*, \nu})(o, a) v\|_1 + 2L_G \Delta_\sigma(\pi, \nu) \|v\|_1, \\ 1010$$

1011 where $\Delta_\sigma(\pi, \nu) := \max_{i \in [m]} \|S_{\tau_B}^i(\pi) - S_{\tau_B}^i(\nu)\|_1$ and L_G is from Lemma 7.

1012 *Proof.* Triangle inequality: $\|G_h^{\Phi, \pi} - G_h^{\Phi^*, \pi}\| \leq \|G_h^{\Phi, \pi} - G_h^{\Phi, \nu}\| + \|G_h^{\Phi, \nu} - G_h^{\Phi^*, \nu}\| + \|G_h^{\Phi^*, \nu} - G_h^{\Phi^*, \pi}\|$. Apply Lemma 7 to the first and third terms. \square
1013

1026 **Lemma 8** (Conditional distribution Lipschitzness). *For any prefix τ_{h-1} and policy π ,*

$$1028 \quad \|p_{\xi^*}(\cdot \mid \tau_{h-1}; \pi) - p_{\xi}(\cdot \mid \tau_{h-1}; \pi)\|_1 \leq \| [J_h^{\xi, \pi} - J_h^{\xi^*, \pi}] q_{h-1}^{\xi^*} \|_1.$$

1030 *Proof.* Let $q := q_{h-1}^{\xi^*}$ with $\mathbf{1}^\top q = 1$. By Lemma ??(1,3), $p_{\xi}(\cdot \mid \tau_{h-1}; \pi) = \mathbf{1}^\top J_h^{\xi, \pi}(\cdot) q$. Then

$$1032 \quad \|p_{\xi^*} - p_{\xi}\|_1 = \sum_{(o, a)} |\mathbf{1}^\top (J_h^{\xi^*, \pi} - J_h^{\xi, \pi})(o, a) q| \leq \sum_{(o, a)} \| (J_h^{\xi, \pi} - J_h^{\xi^*, \pi})(o, a) q \|_1 = \| [J_h^{\xi, \pi} - J_h^{\xi^*, \pi}] q \|_1.$$

□

1036 **Lemma 9** (One-step causal split). *For any prefix τ_{h-1} , policy π , and $q := q_{h-1}^{\xi^*} \geq 0$,*

$$1038 \quad \sum_{(o_h, a_h)} \| [J_h^{\xi, \pi}(o_h, a_h) - J_h^{\xi^*, \pi}(o_h, a_h)] q \|_1 \leq \underbrace{\| [W_h^\theta - W_h^{\theta^*}] q \|_1}_{\text{world}} \\ 1040 \quad + C_{\text{cm}}(\alpha_\kappa) \mathbb{E}_{(o_h, a_h) \sim p_{\xi^*}(\cdot \mid \tau_{h-1}; \pi)} \underbrace{\| [G_h^{\Phi, \pi}(o_h, a_h) - G_h^{\Phi^*, \pi}(o_h, a_h)] q_h^{\text{mid}, \xi^*} \|_1}_{\text{adversary}},$$

1043 where $C_{\text{cm}}(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ depends only on the κ -step weakly revealing condition.

1045 *Proof.* Since $J_h^{\xi, \pi} = G_h^{\Phi, \pi} W_h^\theta$,

$$1047 \quad J_h^{\xi, \pi} - J_h^{\xi^*, \pi} = G_h^{\Phi, \pi} (W_h^\theta - W_h^{\theta^*}) + (G_h^{\Phi, \pi} - G_h^{\Phi^*, \pi}) W_h^{\theta^*}.$$

1049 Summing ℓ_1 -norms and using nonnegativity plus $\sum_{(o, a)} J_h^{\xi, \pi}(o, a)$ stochastic (Lemma 1(3)),

$$1051 \quad \sum_{(o, a)} \|G_h^{\Phi, \pi}(o, a) (W_h^\theta - W_h^{\theta^*}) q\|_1 \leq \|(W_h^\theta - W_h^{\theta^*}) q\|_1.$$

1053 For the adversary term, for nonnegative f and full-support q' , $\sum_{(o, a)} f(o, a) \leq (1/q'(o, a)) \mathbb{E}_{q'}[f(o, a)]$. Take $q' = p_{\xi^*}(\cdot \mid \tau_{h-1}; \pi)$ and $f(o, a) = \|(G_h^{\Phi, \pi} - G_h^{\Phi^*, \pi})(o, a) q_h^{\text{mid}, \xi^*}\|_1$. The κ -step weakly revealing condition yields the controlled-mass bound $\max_{(o, a)} 1/q'(o, a) \leq C_{\text{cm}}(\alpha_\kappa)$. □

1058 **Proposition 3** (Operator Quadratic Constraints on Past Data). *There exists $C(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ such that, at the beginning of any batch j and for $\xi_j = (\theta_j, \Phi_j) \in \mathcal{C}_{j-1}(\beta)$,*

$$1061 \quad \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}} \| [W_h^{\theta_j} - W_h^{\theta^*}] q_{h-1}^{\xi^*} \|_1^2 \leq C(\alpha_\kappa) \beta, \quad (22)$$

$$1064 \quad \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \sum_{h=1}^H \mathbb{E}_{\substack{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i} \\ (o_h, a_h) \sim p_{\xi^*}(\cdot \mid \tau_{h-1}; \pi^i)}} \| [G_h^{\Phi_j, \pi^i}(o_h, a_h) - G_h^{\Phi^*, \pi^i}(o_h, a_h)] q_h^{\text{mid}, \xi^*} \|_1^2 \leq C(\alpha_\kappa) \beta, \quad (23)$$

1069 and an analogous bound holds for the initial prediction state.

1071 *Proof.* From Proposition 2,

$$1073 \quad \sum_{(\pi^i, \tau_A^i) \in \mathcal{D}_{j-1}} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}} \| p_{\xi^*}(\cdot \mid \tau_{h-1}; \pi^i) - p_{\xi_j}(\cdot \mid \tau_{h-1}; \pi^i) \|_1^2 \leq 2\beta. \quad (24)$$

1076 Fix (i, h) . Let $q := q_{h-1}^{\xi^*}$ and $q_h^{\text{mid}} := W_h^{\theta^*} q$.

1077 *World channel.* The κ -step weakly revealing assumption implies that the block emission map $M_h^{(\kappa)}(\pi)$ admits a right inverse with $\|M_h^{(\kappa)\dagger}\|_{1 \rightarrow 1} \leq \text{poly}(1/\alpha_\kappa)$ on the cone of reachable pre-
1078 predictive states, while controlled OOM guarantees $\|M_h^{(\kappa)}\|_{1 \rightarrow 1} \leq 1$. Together these yield two-sided
1079

ℓ_1 bounds between conditional-distribution errors and operator perturbations, i.e., a bi-Lipschitz relation on reachable states. Hence there exists $\bar{C}_\theta(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ with

$$\| [W_h^{\theta_j} - W_h^{\theta^*}] q \|_1 \leq \bar{C}_\theta(\alpha_\kappa) \| p_{\xi^*} - p_{\xi_j} \|_1. \quad (25)$$

Squaring equation 25, taking expectation over $\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi^i}$, summing over (i, h) , and invoking equation 24 gives equation 22 with constant $2\bar{C}_\theta(\alpha_\kappa)^2$.

Adversary channel. Similarly, there exists $\tilde{C}_\Phi(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ such that for all (o_h, a_h) in the support of $p_{\xi^*}(\cdot | \tau_{h-1}; \pi^i)$,

$$\| [G_h^{\Phi_j, \pi^i}(o_h, a_h) - G_h^{\Phi^*, \pi^i}(o_h, a_h)] q_h^{\text{mid}} \|_1 \leq \tilde{C}_\Phi(\alpha_\kappa) \| p_{\xi^*} - p_{\xi_j} \|_1. \quad (26)$$

Squaring equation 26 and taking expectation over $(o_h, a_h) \sim p_{\xi^*}(\cdot | \tau_{h-1}; \pi^i)$ yields

$$\mathbb{E}_{(o_h, a_h)} \| [G_h^{\Phi_j, \pi^i} - G_h^{\Phi^*, \pi^i}] q_h^{\text{mid}} \|_1^2 \leq \tilde{C}_\Phi(\alpha_\kappa)^2 \| p_{\xi^*} - p_{\xi_j} \|_1^2.$$

Taking expectation over τ_{h-1} , summing (i, h) , and using equation 24 gives equation 23 with constant $2\tilde{C}_\Phi(\alpha_\kappa)^2$.

Finally set $C(\alpha_\kappa) := 2 \max\{\bar{C}_\theta(\alpha_\kappa)^2, \tilde{C}_\Phi(\alpha_\kappa)^2\}$. \square

E BOUNDING CUMULATIVE REGRET VIA BATCHED ELUDER ARGUMENT

We adapt the batched “estimation-to-regret” bridge used by Nguyen-Tang & Arora (2024): operator quadratic constraints obtained from past data (Proposition 3) are transported to the current batch and then converted into a linear-in- K bound via an ℓ_2 -Eluder counting argument. The key method is a “bad batch” analysis ensuring that large in-batch errors occur only $\tilde{\mathcal{O}}(\text{Eluder dim})$ many times.

A batch j is bad if the optimistic model $\xi_j = (\theta_j, \Phi_j)$ has large in-batch squared error (on the true distribution) under the fixed policy π_j of that batch. Define

$$\begin{aligned} \mathcal{E}_{\text{world}}(j) &:= \sum_{t \in \text{Batch}_j} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_j}} \| [W_h^{\theta_j} - W_h^{\theta^*}] q_{h-1}^{\xi^*} \|_1^2, \\ \mathcal{E}_{\text{adv}}(j) &:= \sum_{t \in \text{Batch}_j} \sum_{h=1}^H \mathbb{E}_{\substack{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_j} \\ (o_h, a_h) \sim p_{\xi^*}(\cdot | \tau_{h-1}; \pi_j)}} \| [G_h^{\Phi_j, \pi_j} - G_h^{\Phi^*, \pi_j}] q_h^{\text{mid}, \xi^*} \|_1^2. \end{aligned}$$

Let $C(\alpha_\kappa), \beta$ be from Proposition 3. Define

$$\mathcal{K}_{\text{world}}^{\text{bad}} := \{j : \mathcal{E}_{\text{world}}(j) > C(\alpha_\kappa)\beta\}, \mathcal{K}_{\text{adv}}^{\text{bad}} := \{j : \mathcal{E}_{\text{adv}}(j) > C(\alpha_\kappa)\beta\}, \mathcal{K}^{\text{bad}} := \mathcal{K}_{\text{world}}^{\text{bad}} \cup \mathcal{K}_{\text{adv}}^{\text{bad}}.$$

E.1 TRANSPORTING HISTORICAL OPERATOR CONSTRAINTS TO THE CURRENT BATCH

Fix batch j and write $\pi := \pi_j$. Let \mathcal{V}_{j-1} be the set of policies appearing in \mathcal{D}_{j-1} , and choose a nearest historical policy

$$\nu_j \in \arg \min_{\nu \in \mathcal{V}_{j-1}} \Delta_\sigma(\pi, \nu).$$

Lemma 10 (Historical to Current Operator Control at Batch j). *There exist $C_*(\alpha_\kappa), C'_*(\alpha_\kappa) = \tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$ such that*

$$\sum_{k=1}^{j-1} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_k}} \| [W_h^{\theta_j} - W_h^{\theta^*}] q_{h-1}^{\xi^*} \|_1^2 \leq C_*(\alpha_\kappa) \beta, \quad (27)$$

$$\begin{aligned} \sum_{k=1}^{j-1} \sum_{h=1}^H \mathbb{E}_{\substack{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_k} \\ (o_h, a_h) \sim p_{\xi^*}(\cdot | \tau_{h-1}; \pi)}} \| [G_h^{\Phi_j, \pi}(o_h, a_h) - G_h^{\Phi^*, \pi}(o_h, a_h)] q_h^{\text{mid}, \xi^*} \|_1^2 &\leq C_*(\alpha_\kappa) \beta \\ &\quad + C'_*(\alpha_\kappa) \Delta_\sigma(\pi, \nu_j)^2 \Gamma_{j-1}. \end{aligned} \quad (28)$$

where $\Gamma_{j-1} := \sum_{k=1}^{j-1} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_k}} \| q_h^{\text{mid}, \xi^*} \|_1^2$ is finite.

1134 *Proof.* World part equation 27 is Proposition 3 applied to (θ_j, \cdot) , so $C_*(\alpha_\kappa) = C(\alpha_\kappa)$. For the
 1135 adversary part, Corollary 3 with $v = q_h^{\text{mid}, \xi^*}$ gives
 1136

$$1137 \sum_{(o,a)} \|[G_h^{\Phi_j, \pi} - G_h^{\Phi^*, \pi}](o, a) v\|_1 \leq \sum_{(o,a)} \|[G_h^{\Phi_j, \nu_j} - G_h^{\Phi^*, \nu_j}](o, a) v\|_1 + 2L_G \Delta_\sigma(\pi, \nu_j) \|v\|_1.$$

1139 Taking $\mathbb{E}_{(o,a) \sim p_{\xi^*}(\cdot | \tau_{h-1}; \pi)}$, squaring and using $(a+b)^2 \leq 2a^2 + 2b^2$ yields
 1140

$$1141 \mathbb{E} \|[G_h^{\Phi_j, \pi} - G_h^{\Phi^*, \pi}] v\|_1^2 \leq 2 \mathbb{E} \|[G_h^{\Phi_j, \nu_j} - G_h^{\Phi^*, \nu_j}] v\|_1^2 + 8L_G^2 \Delta_\sigma(\pi, \nu_j)^2 \|v\|_1^2.$$

1142 Summing over $k < j, h \leq H$ and invoking Proposition 3 at ν_j proves equation 28 with $C'_*(\alpha_\kappa) =$
 1143 $8L_G^2$ (absorbing polynomial factors into $\tilde{\mathcal{O}}(\text{poly}(1/\alpha_\kappa))$). \square
 1144

1145 E.2 BOUNDING THE NUMBER OF BAD BATCHES VIA ELUDER DIMENSION

1146 **Proposition 4** (Cardinality of Bad Batches). *Let $\mathcal{F}_\Theta^{[\kappa]}$ and $\mathcal{F}_\Psi^{[\kappa]}$ be the κ -window world/adversary
 1147 error classes with ℓ_2 -Eluder dimensions $d_{E, [\kappa]}^{(\theta)}$ and $d_{E, [\kappa]}^{(\Phi)}$, respectively. On the high-probability
 1148 event of Proposition 1,*

$$1151 |\mathcal{K}_{\text{world}}^{\text{bad}}| \leq \tilde{\mathcal{O}}(d_{E, [\kappa]}^{(\theta)}), \quad |\mathcal{K}_{\text{adv}}^{\text{bad}}| \leq \tilde{\mathcal{O}}(d_{E, [\kappa]}^{(\Phi)}).$$

1152 *Proof of Proposition 4.* We give the full proof for $|\mathcal{K}_{\text{world}}^{\text{bad}}|$; the adversary case is analogous after
 1153 transporting historical constraints to the current batch via Lemma 10.
 1154

1155 **Classes and per-batch error.** Define the κ -window world error class
 1156

$$1158 \mathcal{F}_\Theta^{[\kappa]} := \left\{ (\pi, \tau_{h-1}) \mapsto \sum_{t=h}^{\min(h+\kappa-1, H)} \|[W_t^\theta - W_t^{\theta^*}] q_{t-1}^{\xi^*}\|_1^2 : \theta \in \Theta \right\},$$

1159 with ℓ_1 -Eluder dimension $d_{E, [\kappa]}^{(\theta)}$. For batch j , define
 1160

$$1163 \mathcal{E}_{\text{world}}^{[\kappa]}(j) := \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_j}} \left[\sum_{t=h}^{\min(h+\kappa-1, H)} \|[W_t^{\theta_j} - W_t^{\theta^*}] q_{t-1}^{\xi^*}\|_1^2 \right].$$

1164 By definition of bad batches, $j \in \mathcal{K}_{\text{world}}^{\text{bad}}$ iff $\mathcal{E}_{\text{world}}^{[\kappa]}(j) > C_0$, where we set $C_0 := C_*(\alpha_\kappa) \beta$ from
 1165 Proposition 3 (absorbing universal constants).
 1166

1167 **Step 1: Dyadic decomposition and per-level counting.** For each integer $i \geq 1$, let
 1168

$$1169 \mathcal{K}_i := \left\{ j \in \mathcal{K}_{\text{world}}^{\text{bad}} : \mathcal{E}_{\text{world}}^{[\kappa]}(j) \in [C_0 2^{i-1}, C_0 2^i) \right\}.$$

1170 Write $\mathcal{K}_i = \{j_1 < \dots < j_M\}$ with $M = |\mathcal{K}_i|$. Then
 1171

$$1172 \sum_{m=1}^M \mathcal{E}_{\text{world}}^{[\kappa]}(j_m) \geq M C_0 2^{i-1}. \quad (29)$$

1173 **Step 2: Historical precondition for each selected model.** Each θ_{j_m} is selected using only the
 1174 historical data \mathcal{D}_{j_m-1} . By Proposition 3 (world part),
 1175

$$1176 \sum_{k < j_m} \sum_{t=1}^H \mathbb{E}_{\tau_{t-1} \sim \mathbb{P}_{\xi^*}^{\pi_k}} \|[W_t^{\theta_{j_m}} - W_t^{\theta^*}] q_{t-1}^{\xi^*}\|_1^2 \leq C_0.$$

1177 Since each κ -window $\sum_{t=h}^{\min(h+\kappa-1, H)}(\cdot)$ overlaps any fixed step t at most κ times, the same historical
 1178 budget controls the κ -window loss up to a factor κ :
 1179

$$1180 \sum_{k < j_m} \sum_{h=1}^H \mathbb{E}_{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_k}} \left[\sum_{t=h}^{\min(h+\kappa-1, H)} \|[W_t^{\theta_{j_m}} - W_t^{\theta^*}] q_{t-1}^{\xi^*}\|_1^2 \right] \leq \kappa C_0, \quad (30)$$

1188 which we absorb into C_0 henceforth.
 1189

1190 Thus, for the sequence $\{\theta_{j_m}\}_{m=1}^M$, each element fits all *past* data with κ -window squared-loss budget
 1191 C_0 by equation 30, yet incurs *new* loss at least $C_0 2^{i-1}$ on its own batch by equation 29. The ℓ_2 -type
 1192 Eluder counting principle (applied to squared ℓ_1 losses over $\mathcal{F}_\Theta^{[\kappa]}$ with dimension $d_{E,[\kappa]}^{(\theta)}$) gives
 1193

$$1194 \sum_{m=1}^M \mathcal{E}_{\text{world}}^{[\kappa]}(j_m) \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\theta)} C_0 2^i). \quad (31)$$

1197 Comparing equation 29 and equation 31 yields $|\mathcal{K}_i| \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\theta)})$.
 1198

1199 **Step 3: Summation over levels.** Let MaxError denote the maximum feasible $\mathcal{E}_{\text{world}}^{[\kappa]}(j)$ (polyno-
 1200 mially bounded). Then
 1201

$$1202 \mathcal{K}_{\text{world}}^{\text{bad}} \subseteq \bigcup_{i=1}^{\lceil \log_2(\text{MaxError}/C_0) \rceil} \mathcal{K}_i,$$

1204 so

$$1205 |\mathcal{K}_{\text{world}}^{\text{bad}}| \leq \sum_i |\mathcal{K}_i| \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\theta)}),$$

1208 absorbing the logarithmic factor into $\tilde{\mathcal{O}}(\cdot)$.
 1209

1210 **Adversary case.** Transport historical constraints to the *current* batch's policy π_j via Lemma 10:
 1211

$$1212 \sum_{k < j} \sum_{h=1}^H \mathbb{E}_{\substack{\tau_{h-1} \sim \mathbb{P}_{\xi^*}^{\pi_k} \\ (o_h, a_h) \sim p_{\xi^*}(\cdot | \tau_{h-1}; \pi_j)}} \left[\sum_{t=h}^{\min(h+\kappa-1, H)} \|[G_t^{\Phi_j, \pi_j}(o_t, a_t) - G_t^{\Phi^*, \pi_j}(o_t, a_t)] q_t^{\text{mid}, \xi^*}\|_1^2 \right] \leq \tilde{C}_0,$$

1215 with $\tilde{C}_0 = C_*(\alpha_\kappa) \beta$ up to a constant depending on α_κ and the covering radius used to select a
 1216 nearest historical policy. Applying the Eluder argument to
 1217

$$1218 \mathcal{G}_\Psi^{[\kappa]} := \left\{ (\pi, \tau_{h-1}, o_h, a_h) \mapsto \sum_{t=h}^{\min(h+\kappa-1, H)} \|[G_t^{\Phi, \pi}(o_t, a_t) - G_t^{\Phi^*, \pi}(o_t, a_t)] q_t^{\text{mid}, \xi^*}\|_1^2 : \Phi \in \Psi \right\},$$

1222 whose ℓ_2 -Eluder dimension is $d_{E,[\kappa]}^{(\Phi)}$, yields $|\mathcal{K}_{\text{adv}}^{\text{bad}}| \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\Phi)})$. \square
 1223

1224 E.3 FINAL REGRET BOUND

1225 We combine the preceding results by separating the contribution of *bad* and *good* batches. Recall
 1226 that on data-collection rounds of batch j the realized adversary is stationary (Remark 4), so the
 1227 per-round instantaneous regret equals
 1228

$$1229 \underbrace{V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j)}_{\text{optimistic value}} - \underbrace{V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi^*)}_{\text{true value}}.$$

1232 **Lemma 11** (Regret on Bad Batches). *Let \mathcal{K}^{bad} be the set of bad batches. Then*
 1233

$$1234 \sum_{j \in \mathcal{K}^{\text{bad}}} \sum_{t \in \text{Batch}_j} \left(V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j) - V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi^*) \right) \leq \tilde{\mathcal{O}}\left((d_E^{(\theta)} + d_E^{(\Phi)}) \cdot \frac{T}{K} \cdot H \right).$$

1237 *Proof.* By Proposition 4, $|\mathcal{K}^{\text{bad}}| \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\theta)} + d_{E,[\kappa]}^{(\Phi)})$. For any batch j and any data-collection
 1238 round $t \in \text{Batch}_j$, Lemma 5 with rewards in $[0, 1]$ implies $V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j) - V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi^*) \leq$
 1239 $H \|\mathbb{P}_{\xi_j}^{\pi_j, \mathcal{R}(\pi_j)} - \mathbb{P}_{\xi^*}^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}\|_1 \leq 2H$. Hence the regret of one bad batch is at most $2H \cdot |\text{Batch}_j|$,
 1240 and with $|\text{Batch}_j| \asymp T/K$ the stated bound follows. \square
 1241

1242 **Lemma 12** (Regret on Good Batches). *Let $\mathcal{K}^{\text{good}}$ be the complement of \mathcal{K}^{bad} . Then*

$$1244 \quad \sum_{j \in \mathcal{K}^{\text{good}}} \sum_{t \in \text{Batch}_j} \left(V^{\pi_j, \mathcal{R}(\pi_j)}(\xi_j) - V^{\pi_j, \mathcal{R}_{\xi^*}(\pi_j)}(\xi^*) \right) \leq \tilde{\mathcal{O}} \left(H \sqrt{(d_{E,[\kappa]}^{(\theta)} + d_{E,[\kappa]}^{(\Phi)}) T C(\alpha_\kappa) \beta} \right).$$

1247 *Proof.* Fix a good batch j . By Lemma 5 and Lemma 6, the per-round regret is bounded by H times
1248 the same-policy total variation, which further splits into a *world* part and an *adversary* part (plus an
1249 initial-state term that is accounted for identically). Summing linearly over all data-collection rounds
1250 in good batches and applying Cauchy–Schwarz yields:
1251

$$1252 \quad \sum_{j \in \mathcal{K}^{\text{good}}} \sum_{t \in \text{Batch}_j} \text{WorldError}_t \leq \sqrt{T} \left(\sum_{j \in \mathcal{K}^{\text{good}}} \mathcal{E}_{\text{world}}(j) \right)^{1/2},$$

$$1256 \quad \sum_{j \in \mathcal{K}^{\text{good}}} \sum_{t \in \text{Batch}_j} \text{AdvError}_t \leq \sqrt{T} \left(\sum_{j \in \mathcal{K}^{\text{good}}} \mathcal{E}_{\text{adv}}(j) \right)^{1/2}.$$

1259 For a good batch j , definition of bad batch ensures that the optimistic model ξ_j has small in-batch
1260 squared errors relative to the historical fit precondition from Proposition 3. As in ?, this lets us apply
1261 the ℓ_2 -type Eluder counting principle over the sequence of *good-batch* rounds, giving

$$1263 \quad \sum_{j \in \mathcal{K}^{\text{good}}} \mathcal{E}_{\text{world}}(j) \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\theta)} C(\alpha_\kappa) \beta), \quad \sum_{j \in \mathcal{K}^{\text{good}}} \mathcal{E}_{\text{adv}}(j) \leq \tilde{\mathcal{O}}(d_{E,[\kappa]}^{(\Phi)} C(\alpha_\kappa) \beta).$$

1265 Combining the two components and multiplying by the factor H from Lemma 5 yields the claim. \square
1266

1268 *Proof of Theorem 1.* Let $d_E := d_{E,[\kappa]}^{(\theta)} + d_{E,[\kappa]}^{(\Phi)}$. By Lemma 11 and Lemma 12, and adding the
1269 warm-up cost $H(m-1)K$ (Remark 4),
1270

$$1271 \quad PR(T) \leq \underbrace{\tilde{\mathcal{O}}(H \sqrt{d_E T \beta})}_{\text{good batches}} + \underbrace{\tilde{\mathcal{O}}(H d_E T / K)}_{\text{bad batches}} + \underbrace{H(m-1)K}_{\text{warm-up}}.$$

1275 The first term is K -independent. Balancing the second and third terms by $K = \lceil \sqrt{d_{E,[\kappa]} T} \rceil$ yields
1276 a combined contribution $\tilde{\mathcal{O}}(H m \sqrt{d_{E,[\kappa]} T})$, which together with the good-batch term gives the
1277 stated regret bound. \square
1278

1279 F SUPPLEMENTARY EXPLANATIONS FOR ASSUMPTIONS AND LEMMAS

1282 F.1 EXPLANATIONS FOR POSTERIOR-LIPSCHITZ

1284 In this part, we will present a counterexample showing that in multi-step weakly revealing dynamics,
1285 together with a bounded-memory and stationary opponent (without Posterior-Lipschitz), do not
1286 suffice to guarantee sublinear policy regret in POMGs.

1287 **Theorem 2** (Counterexample under multi-step weakly revealing). *Fix a horizon $H \geq 2$ and an
1288 action-set size $|\mathcal{A}| = A \geq 2$. There exists a two-player zero-sum POMG such that:*

- 1289 (i) *The adversary is stationary and 1-memory, but not posterior-Lipschitz.*
- 1290 (ii) *The world is $(\kappa=2, \alpha=1)$ -weakly revealing.*
- 1291 (iii) *For any learning algorithm and any $T \in \mathbb{N}^+$, if the instance is drawn uniformly at random
1292 from a finite family, then with probability at least $1/2$ over the instance draw,*

$$1293 \quad PR(T) \geq \frac{1}{2} \min\{A^{H-2}, T\}.$$

1296 **Proof. World.** Let $\mathcal{S} = \{s_1, s_2, s_3, s_4\}$, $|\mathcal{A}| = A \geq 2$, and $\mathcal{B} = \{b_{\text{coop}}, b_{\text{punish}}\}$. The observation
 1297 alphabet is $\mathcal{O} = \{o_0, o^+, o^-\}$. For all $h \in [H]$,

$$1299 \quad E_h(\cdot | s_1) = E_h(\cdot | s_2) = \delta_{o_0}, \quad E_h(\cdot | s_3) = \delta_{o^+}, \quad E_h(\cdot | s_4) = \delta_{o^-}.$$

1300 Thus s_1, s_2 are aliased in one step, while s_3, s_4 are distinguishable. The initial state is s_1 . The
 1301 learner receives reward 1 iff $s_H = s_3$, and 0 otherwise.

1302 Transitions are controlled only by the adversary's action; for any $a \in \mathcal{A}$,

$$1304 \quad T_h(\cdot | s_1, a, b_{\text{coop}}) = \delta_{s_3}, \quad T_h(\cdot | s_2, a, b_{\text{coop}}) = \delta_{s_4}, \\ 1305 \quad T_h(\cdot | s_3, a, b_{\text{coop}}) = \delta_{s_3}, \quad T_h(\cdot | s_4, a, b_{\text{coop}}) = \delta_{s_4}, \\ 1307 \quad T_h(\cdot | s, a, b_{\text{punish}}) = \delta_{s_4} \quad \text{for all } s \in \mathcal{S}.$$

1308 For any h , consider the two-step emission matrix $M_h^{(2)}$ with rows indexed by (o_h, o_{h+1}) and
 1309 columns by $s \in \mathcal{S}$. Under b_{coop} , the two-step sequences are

$$1311 \quad s_1 \mapsto (o_0, o^+), \quad s_2 \mapsto (o_0, o^-), \quad s_3 \mapsto (o^+, o^+), \quad s_4 \mapsto (o^-, o^-),$$

1313 which yield a 4×4 identity submatrix of $M_h^{(2)}$. Hence $M_h^{(2)}$ has full column rank and $\sigma_{\min}(M_h^{(2)}) =$
 1314 1, so the world is $(\kappa=2, \alpha=1)$ -weakly revealing.

1315 **Adversary.** Let Π denote the learner's policy class. Consider deterministic “open-loop” policies
 1316 that fix the first $H - 2$ actions and are arbitrary afterwards:

$$1318 \quad \bar{\Pi} := \left\{ \pi^{(u)} : \pi_h^{(u)}(\cdot | \tau_A) = \delta_{u_h} \text{ for all reachable } \tau_A, 1 \leq h \leq H - 2 \right\},$$

1320 where $u = (u_1, \dots, u_{H-2}) \in \mathcal{A}^{H-2}$. There are $M := |\bar{\Pi}| = A^{H-2}$ such policies.

1322 Draw a “secret” sequence u^* uniformly from \mathcal{A}^{H-2} , let $\pi^* \in \bar{\Pi}$ be the corresponding open-loop
 1323 policy, and let $\Pi(u^*) \subseteq \Pi$ be the set of policies that are behaviorally equivalent to π^* on all reachable
 1324 histories when the adversary plays b_{coop} in all steps.

1325 Define a stationary response map $g : \Pi \rightarrow \Psi$ by

$$1327 \quad g(\pi) = \begin{cases} \mu_{\text{coop}}, & \pi \in \Pi(u^*), \\ \mu_{\text{punish}}, & \text{otherwise,} \end{cases}$$

1330 where μ_{coop} (μ_{punish}) plays b_{coop} (b_{punish}) at every stage. Across episodes we set $R_t(\pi^{1:t}) :=$
 1331 $g(\pi_t)$. Then: R_t depends only on π_t (so the adversary is 1-memory), the same g is used for all t
 1332 (stationary).

1333 On the other hand, g is not Posterior-Lipschitz. Indeed, fix any h and consider any $\tau_{B,h} =$
 1334 $(o_{B,1}, b_{\text{coop}}, o_{B,2}, b_{\text{punish}}, o_{B,3}, b_{\text{coop}}, \dots)$, where the action (b_{coop}) and b_{punish} are alternated through-
 1335 out the episode and $(o_{B,1}, \dots, o_{B,h})$ is any feasible sequence of observations under the alternate
 1336 action sequences $(b_{\text{coop}}, b_{\text{punish}}, \dots)$. Since $\tau_{B,h}$ above does not correspond to the scenario that
 1337 the adversary plays b_{coop} in all steps, there exist two policies $\pi \in \Pi(u^*)$ and $\nu \notin \Pi(u^*)$ such that
 1338 $\pi(\cdot | \tau_{A,h}) = \nu(\cdot | \tau_{A,h})$, for all $\tau_{A,h}$ such that $\Pr(\tau_{A,h} | \tau_{B,h}) > 0$. This clearly violates the Posterior-
 1339 Lipschitz condition.

1340 **Regret lower bound.** For any $\pi \in \Pi$, letting $V(\pi, \mu)$ be the value under stationary adversary policy
 1341 μ , the transition structure implies

$$1343 \quad V(\pi, \mu_{\text{coop}}) = 1, \quad V(\pi, \mu_{\text{punish}}) = 0.$$

1344 Fix the instance u^* and take comparator $\pi^* \in \Pi(u^*)$. For every episode t ,

$$1346 \quad V(\pi^*, R_t([\pi^*]_t)) = 1, \quad V(\pi_t, R_t(\pi^{1:t})) = \mathbf{1}\{\pi_t \in \Pi(u^*)\}.$$

1347 Hence

$$1348 \quad \text{PR}(T) \geq \sum_{t=1}^T (1 - \mathbf{1}\{\pi_t \in \Pi(u^*)\}) = \sum_{t=1}^T \mathbf{1}\{\pi_t \notin \Pi(u^*)\}.$$

1350 We now bound from below the number of episodes with $\pi_t \notin \Pi(u^*)$ when u^* is drawn uniformly.
 1351 For any fixed $\pi \in \Pi$, there is at most one sequence u^* such that $\pi \in \Pi(u^*)$, so
 1352

$$1353 \Pr_{u^*}(\pi \in \Pi(u^*)) \leq \frac{1}{M}, \quad M = A^{H-2}.$$

1355 Moreover, as long as $\pi_1, \dots, \pi_{t-1} \notin \Pi(u^*)$, the adversary plays μ_{punish} in episodes $1, \dots, t-1$.
 1356 Under this policy the state is sent to s_4 at the first step and remains there, so the entire history
 1357 consists of the same observation stream (o_0, o^-, \dots, o^-) , independent of u^* . Thus, conditional on
 1358 $\{\pi_1, \dots, \pi_{t-1} \notin \Pi(u^*)\}$, the instance u^* is still uniform and independent of π_t , and

$$1359 \Pr(\pi_t \in \Pi(u^*) \mid \pi_1, \dots, \pi_{t-1} \notin \Pi(u^*)) \leq \frac{1}{M}.$$

1360 Let $T' := \min\{T, M/2\}$. By a union bound,

$$1363 \Pr(\exists t \leq T' : \pi_t \in \Pi(u^*)) \leq \frac{T'}{M} \leq \frac{1}{2},$$

1364 so

$$1366 \Pr(\forall t \leq T' : \pi_t \notin \Pi(u^*)) \geq \frac{1}{2}.$$

1367 On this event,

$$1369 \text{PR}(T) \geq \sum_{t=1}^{T'} \mathbf{1}\{\pi_t \notin \Pi(u^*)\} = T' \geq \frac{1}{2} \min\{T, M\} = \frac{1}{2} \min\{T, A^{H-2}\},$$

1372 which proves the claim. □

F.2 PROOFS OF SUPPORTING LEMMAS

1377 *Proof of Lemma 2.* We prove the adversary case and the world case follows by the substitutions
 1378 $(B, d_{\text{adv}}, \Phi^*, w) \mapsto (O_A, d_w, W^*, u)$.
 1379

1380 By Example 1, for any history τ the adversary response is linear: $g(x) = \Phi^* w(\tau)$, where the
 1381 operator $\Phi^* \in \mathbb{R}^{B \times d_{\text{adv}}}$ is unknown and the weights $w(\tau) \in \mathbb{R}^{d_{\text{adv}}}$ are bounded (e.g., $w(\tau) \in R^{d_{\text{adv}}}$, so $\|w(\tau)\|_2 \leq 1$).

1383 Fix any linear reparameterization that collects exactly the free entries of Φ^* into a vector $\theta \in \mathbb{R}^d$
 1384 with $d = B d_{\text{adv}}$. Write this as $\theta = \text{vec}(\Phi^*)$ for some $\Phi^* \in \mathbb{R}^{B \times d_{\text{adv}}}$. For each coordinate
 1385 $i \in \{1, \dots, B\}$, define the feature map

$$1386 \varphi(\tau, i) := e_i \otimes w(\tau) \in \mathbb{R}^d, \quad \|\varphi(\tau, i)\|_2 = \|w(\tau)\|_2 \leq 1,$$

1388 and the corresponding scalar output $y_i(x) := e_i^\top g(x)$. By construction,

$$1390 y_i(\tau) = e_i^\top g(\tau) = e_i^\top \tilde{\Phi}^* w(\tau) = (e_i^\top \otimes w(\tau)^\top) \text{vec}(\tilde{\Phi}^*) = \langle \varphi(\tau, i), \theta \rangle.$$

1391 Hence each coordinate belongs to a d -parameter linear class with bounded features. By Exam-
 1392 ple 4 of Russo & Van Roy (2013), the ε -eluder dimension of such a class is $\mathcal{O}(d \log(1/\varepsilon))$. Ab-
 1393 sorbing logarithmic factors into $\tilde{\mathcal{O}}(\cdot)$ yields $\dim_E(\mathcal{G}_\Phi^{[\kappa]}) = \tilde{\mathcal{O}}(d_{\text{adv}} B)$. The same argument with
 1394 (O_A, d_w, W^*, u) gives $\dim_E(\mathcal{F}_\theta^{[\kappa]}) = \tilde{\mathcal{O}}(d_w O_A^\kappa)$.
 1395 □

1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403