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ABSTRACT

We study policy regret minimization in partially observable Markov games
(POMGs) between a learner and a strategic adaptive opponent who adapts to the
learner’s past strategies. We develop a model-based optimistic framework that
operates on the learner-observable process using joint MLE confidence set and
introduce an Observable Operator Model-based causal decomposition that disen-
tangles the coupling between the world and the adversary model. Under multi-step
weakly revealing observations and a bounded-memory, stationary and posterior-
Lipschitz opponent, we prove an O(\/T ) policy regret bound. This work advances
regret analysis from Markov games to POMGs and provides the first policy regret
guarantee under imperfect information against an adaptive opponent.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable empirical success across a wide range of
challenging Al applications in recent decades (Mnih et al., [2015} Silver et al.| 2016} [2017; |/Akkaya
et al.,|2019;Deepmind, 2024;|Guo et al., 2025). Many of these problems can be naturally formulated
as multi-agent reinforcement learning (MARL), where multiple learners interact in a dynamically
evolving environment jointly influenced by other learning agents (Zhang et al.l 2021)).

In many applications of MARL, the learner interacts with adaptive players in an asymmetric setting,
where the learner commits to a strategy at the beginning of each episode while the other agents sub-
sequently adjust their strategies in response to pursue their own objectives. In addition, the learner
is often required to make decisions despite lacking of complete information about the underlying
states. For example, consider a simplified economic game between a government (the learner) and a
population of companies (adaptive agents). The government announces tax policies, which are pub-
licly observable, and subsequently collects tax revenues based on the companies’ reported outcomes,
while the companies adapt their strategies to maximize profit conditional on the announced policies
(Zheng et al.| |2020). Importantly, the government’s information is inherently limited: firms’ produc-
tion costs, demand conditions, investment and R&D plans, as well as potential collusive behavior
remain private and unobserved. Consequently, while the companies adapt their strategies based on
the observed sequence of tax policies, the government must optimize under partial observability of
the economic environment to achieve objectives such as maximizing social welfare.

Despite its prevalence, it remains largely unclear how to learn an optimal decision-making pol-
icy under partial observability when facing adaptive adversaries. Existing literature typically ad-
dresses adaptive adversaries and partial observability in isolation. For partial observability in multi-
agent settings, |[Liu et al.| (2022b) study the problem of learning toward various equilibria—such as
Nash, Correlated Equilibrium, and Coarse Correlated Equilibrium—in Partially Observable Markov
Games (POMGs), a natural generalization of Markov games to partially observable settings. How-
ever, their framework evaluates learning success only through external regret, which compares the
learner’s strategy sequence against the adversary’s best response conditioned on that sequence. Ex-
ternal regret, however, fails to capture the counterfactual nature of adaptive agents: it ignores how
opponents might have responded differently had the learner followed an alternative strategy. To
address this limitation, Nguyen-Tang & Arora) (2025} 2024)) initiated the study of learning against
adaptive adversaries in Markov games under the notion of policy regret (Arora et al.,[2012), which
evaluates the learner’s performance against the return they would have obtained by following an
alternative policy, given the adaptivity of the opponent to the alternative policy. Nevertheless, these
results do not extend to partial observability, a setting that is ubiquitous in MARL domains. It thus
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remains an open question how a learner can make decisions against adaptive adversaries without full
access to the underlying states.

In this paper, we develop the first unified theoretical and algorithmic framework for policy regret
minimization in partially observable Markov games (POMGs). Since learning in POMGs is noto-
riously challenging—even in terms of external regret (Papadimitriou & Tsitsiklis) | 1987)—we focus
on a broad subclass of POMGs, namely weakly revealing POMGs, which are known to be tractable
for external regret minimization (Liu et al., 2022b). The weakly revealing condition requires only
that the joint observations of all agents disclose a nontrivial amount of information about the latent
states, a property that is satisfied in many real-world applications. We show that, for such rich class
of POMGs, under natural structural assumptions on the behavior of the adaptive adversaries, policy
regret minimization is sample-efficient. In particular, our key technical contributions are as follows:

1. We identify a rich class of adaptive-adversary behaviors that allow sample-efficient policy regret
minimization in multi-step weakly revealing POMGs. Our problem class is defined by the novel
posterior-Lipschitzness condition (see Assumption [I}3), which constrains the adversary’s poste-
rior response, together with the Eluder condition on the world and adversary channel operators,
arising from our novel causal decomposition of the Observable Operator Model (see Lemmal[I]2).

2. We develop a unified algorithmic framework for policy regret minimization in weakly revealing
POMGs (see Algorithm[I)). Our framework combines the optimistic MLE approach of (Liu et al,
2023)) with the mini-batch techniques of (Arora et al.} 2012} Nguyen-Tang & Aroral [2024;2025)
in a novel way, enabling simultaneous learning of both the world model and the adversary model
in multi-step weakly revealing POMGs.

3. For the proposed rich problem classes, we show that our unified algorithmic framework achieves
a policy regret bound in the order of @(H (m + Vde)VdeT ) where 7' is the number of

episodes, m is the adversary’s memory, and H is the horizon of the POMG. Here, dg denotes
the joint Eluder dimension of the world and adversary model operators, capturing the intrinsic
complexity of exploration, while d¢ is the log-covering number of the joint world—adversary
model, measuring the richness of the overall model class. To the best of our knowledge, this is
the first result establishing a sublinear policy regret bound for POMGs.

1.1 OVERVIEW OF TECHNIQUES

Despite the modularity and simplicity of our algorithmic framework (and its apparent hindsight clar-
ity), establishing our theoretical guarantees requires overcoming major technical challenges arising
from the coupled dynamics of the world and adversary models. We address these challenges through
the following key novel ideas.

* Joint modeling via a single confidence set. In POMGs, the learner observes only its own tra-
jectory 74, where the effects of the environment dynamics () and the opponent’s strategy (P)
are entangled. This creates an identifiability problem: outcomes cannot be uniquely attributed
to either stochasticity in the environment or the opponent’s choices. Thus, maintaining separate
confidence sets for § and @ is fundamentally unsound. To address this, our proposed algorithm
(see Algorithm [T)) maintains a single joint confidence set C C = over the full system parameter

&= (6,9).

Causal separation of world and wdversary models in the Observable Operator Model frame-
work. Building on the Observable Operator Model (OOM) results of (Liu et al.l [2022a)), our
Stackelberg setting introduces a challenge that their techniques cannot address. Specifically, each
per-step operator JfL”T is a coupled black box, jointly dependent on £ = (6, ). Our main techni-
cal contribution is a causal decomposition that disentangles this box, separating the world channel
W from the adversary channel G®".

Reduction from Stackelberg POMGs to an augmented POMDP. A key step in our anal-
ysis is reducing adaptive-adversary Stackelberg POMGs to an augmented POMDP with state
s, = (8n,¢,Ta,n—1). Together with the causal decomposition introduced above and the mini-
batched design of (Nguyen-Tang & Arora, 2025), this reduction enables the application of Ob-
servable Operator Model (OOM) tools under a-weakly revealing observations. In turn, this yields
a solution to policy regret minimization in weakly revealing POMGs.
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1.2 RELATED WORK

Policy regret minimization in MARL. Policy regret has been widely used to analyze learning
against adaptive adversaries in online learning (Arora et al.||2012) and repeated games (Arora et al.,
2018), and has only recently been extended to multi-agent RL. Existing results, however, are limited
to fully observable Markov games. In particular, Nguyen-Tang & Aroral(2024) initiated the study of
policy regret in Markov games, establishing fundamental barriers and providing sufficient conditions
for achieving sublinear policy regret in tabular settings. Subsequently, (Nguyen-Tang & Aroral
2025)) extended these results to Markov games with function approximation.

Partially observable Markov games (POMG). POMGs provide a general framework for model-
ing multi-agent sequential decision-making under uncertainty, extending single-agent POMDPs to
settings with multiple agents, each with their own partial perspective and objectives. Early work
by (Hansen et al., 2004) laid the foundational formalism for POMGs and explored dynamic pro-
gramming solutions, though scalability and sample efficiency remain significant challenges. Recent
research has sought to address these limitations directly; for instance, |Liu et al.|(2022b) investigate
sample-efficient reinforcement learning for weakly revealing POMGs, providing theoretical guaran-
tees for learning to minimize the external regret in this setting. Alongside these general advances,
a substantial thread of literature has focused on finding equilibrium solutions, often under simpli-
fying assumptions such as myopic follower behavior (Zhong et al.l 2021) or complete information
settings (Gerstgrasser & Parkes| 2023). The field has also seen a growing integration with deep
reinforcement learning, with algorithms like Multi-Agent PPO (MAPPO) (Lowe et al., |2017) en-
abling empirical progress in complex environments. Brero et al.| (2022)) introduces the Stackelberg
POMDP, a reinforcement learning framework for economic design that models the interaction be-
tween a mechanism designer (leader) and strategic participants (followers) as a Stackelberg game.
They prove that the optimal policy in this POMDP corresponds to the optimal Stackelberg strat-
egy under certain policy constraints, and they solve it using centralized training with decentralized
execution.

2 PROBLEM SETUP AND PRELIMINARIES

We study two-player general-sum partially observable Markov games (POMGs) (Hansen
et all 2004) in a tabular, episodic setting, which is fully specified by the tuple: M =
(H, S, A, B, Oa, Op, T, E, pg, 74, 7B), where H € N is the horizon; the latent state space is
S with |S| = S; the learner (player A) and the opponent (player B) act in A and B with | A| = A,
|B| = B; the individual observation spaces are O 4 and Op with |O4| = O4, |Op| = Op. Let
O := 04 x Op denote the joint observation at step h by o, = (04,1,08,,) € O. The controlled
dynamics are given by the transition kernels T}, (- | s,a,b) € Ag,Vh € [H], and the emission ker-
nels E, (- | s) € Ap,Vh € [H]. The initial state is sampled from py € As. Rewards are bounded
and, for notational simplicity, depend only on local observations: for i € {A, B} and h € [H],
rin O — [0,1]. This specification covers cooperative, competitive (including zero-sum), and
mixed-motive interactions through the independent reward functions (r4,73).

Interaction protocol. An episode starts with a random initial state s; ~ pg. At every step h
within the episode, a joint private observation o, = (04 n,08,n) ~ Ep(- | sp) is drawn from
the emission kernel E; conditioned on the current latent state sj. The learner (respecitvely, the
opponent) selects an action ay, (respectively, by ) based on her respective private per-episode history
Tan = (04,1,04.1,--.,04,) (respectively, 7p r, = (0B.1,0B.1,---,0B,1)). Note that in a POMG,
states are hidden from all the players and each player ¢ € {A, B} observes only her own historay
T;,n- The episode termnates after H steps.

Policies and value functions. A policy # = (m1,...,m,) for the learner is defined as a map:
7 (04 x AP x 04 — A(A), for all h € [H], where A(A) is the set of all distributions over
A. A policy pt = (p1,. .., pg) for the adversary is defined similarly: p, : (Op x B)"~! x Op —
A(B),Vh € [H]. We assume that the learner and the adversary select their policies from a restricted
class of policies, II and W, respectively.

The world model § = (T,E) € O characterizes the POMG with a transition kernel T and an
emission E. Let 7 = {(74,n,7B,1) }rhe[m) be a per-episode trajectory sample that consists of the

trajectory for the learner and the adversary, and IP;"" be the trajectory distribution induced by the
world model 6, the learner’s policy 7 and the adversary’s policy u. The learner’s episodic value is



Under review as a conference paper at ICLR 2026

defined as

H
Veﬂ-’p‘ = ETN]P" # [Z TAJL(OAyh)]v
h=1
i.e., the total expected reward the learner accumulates over H steps under the world model 6, when
the learner follows policy 7 while the adversary follows policy .

The second player as an adaptive adversary. We consider the adaptive adversaries, following the
framework of (Nguyen-Tang & Arora, [2024}|2025)). In particular, an adaptive adversary is allowed
to adapt to the learner’s past strategies. That is, the adversary in episode ¢ is characterized by a
deterministic response map

R, : ! —» 0, (w7t =

which depends on the entire learner policy history up to and including w¢. For a policy 7, let
[r]t := (m,...,m) denote the t-fold repetition.

This adaptive response generalizes the canonical Stackelberg game, where the defender (the learner)
commits a strategy and the follower (the adaptive adversary) selects her response strategy accord-
ingly, to the setting where the adversary can remember all the learner’s past strategies, not simply
the learner’s current-episode strategy as in Stackeberg games. That said, the adaptive adversary in
our model is more general and powerful than the defender’s response in Stackelberg games.

Policy regret minimization. We measure the learner’s performance against adaptive adversaries
using the notion of policy regret (Arora et al, 2012), which compares the learner’s cumulative
reward to that of the best fixed policy sequence in hindsight, accounting for the adaptlve nature of

the adversary. In particular, the learner’s policy regret over a sequence of T policies 7!, ..., w7 is
PR = sup Z ( v Re([x]?) _ Vﬂ:‘,Rt(wl ,,,,, 7rt))
mell 0 ’

t=1

where R;([r]") is the adversary’s response under the counterfactual history in which the learner
plays 7 in episodes 1:t, and 6* is the groundtruth world model.

3 STRUCTURAL ASSUMPTIONS

Learning is intractable in general, without structural assumptions. In this section, we introduce
natural assumptions on the adversary behavior and the POMG.

3.1 ADVERSARY BEHAVIOR MODEL

It is now well-established that learning in Markov games against adaptive adversaries who are
memory-unbounded, non-stationary or unstructurally responsive is not sample-efficient (Nguyen-
Tang & Aroral 2024} 2025)). Since Markov games are a subclass of POMGs, the learning hardness
for policy regret minimization extends from Markov games to POMGs. Thus, to ensure tractable
learning, we impose the following assumptions on the behavior of the adaptive adversary, extending
the similar assumptions by (Nguyen-Tang & Arora} 2024;[2025) for Markov games to POMGs.

Assumption 1. For brevity, write the policy block m" = (m*,...,7") (with u < v) and set
t := max{l, t — m + 1}. The adversary response functions {R;}ien satisfy the following
conditions:

1. m-memory bounded. There exist m >0 and a mapping g; : II"* — U such that, for all t,
Ry (ﬂ_l:t) = ¢ (ﬂ_fzt> )
2. Stationary. The reaction rule is time-invariant: there is a fixed g : II"™ — U with
Ri(nht) = g(?T{:t) forall t.

1:m

3. Posterior-Lipschitz. For any step h and two policy blocks © vi™, define the posterior-

predictive for any adversary trajectory T,

Sry(m) = E[mh(- | Ta) | 75 = 78] € R, i € [m].
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where the expectation is with respect to the conditional distribution T4 given Tp

Assume g is stationary and m-memory bounded. Then, there exists a constant L > 0 such that,
for any two policy blockst ™, v¥'™, any h € [H|, and adversary trajectory Tp,

loC Ira, ™0 = g( |76, n || < L max || Sy (mh) = Sep () ||

While the bounded-memory and stationarity assumptions directly follow prior work on Markov
games (Nguyen-Tang & Arora, [2024;2025), our introduction of Posterior-Lipschitz is novel. This
condition requires that if two policy blocks of the learner induce similar posterior action distributions
given a fixed adversary trajectory, then the adversary’s response distributions must also be similar.
We define this condition using posterior predictives because, in partially observable Markov games
(POMG:s), policies depend on histories, whereas in standard Markov games (MGs) it suffices to
consider Markov policies.

Finally, we parameterize the entire game using a joint model £ = (6, ®), where 6 represents the
world model parameters and ® represents the parameters for the adversary channel g. We denote
¢* = (6%, ®*) the groundtruth parameters and assume that the learner has access to © > 0*, ¥ > .

Remark 1. The norm ||-|| can be any norm on the corresponding finite-dimensional spaces. Since all
such norms are equivalent, a different choice would merely rescale the constant L. In the subsequent
proofs, we will adopt the {1 norm.

As arunning example, we consider a linear response adversary model, motivated by the linear model
considered initially in (Nguyen-Tang & Aroral 2025).

Example 1 (Linear response Adversary). There exist d,qy € Z~o, a nonnegative column-stochastic
matrix ®* € RfXda“V, and weights wT (1 1) € R%av with |wi (15 4-1)||1 = O(1) such that

gh('|TB,h—177T[m]) = ®*wp(tph-1) € RB Y h.

We note that if the weights w7 (7, ,—1) are L-Lipschitz with respect to , then the adversary defined
above is also L-Posterior-Lipschitz.

3.2 MULTI-STEP WEAKLY REVEALING POMGsS

Learning POMGs is notoriously intractable in general. In this paper, we consider policy regret mini-
mization in a rich class of POMGs that satisfy the weakly revealing conditions. Weakly revealing is
a standard identifiability condition in the POMDP (Liu et al.,2022a) and POMG (Liu et al.,|2022b)
literature. Intuitively, over a length-~ observation window, distinct latent states induce distinguish-
able distributions of observable sequences under fixed action prefixes.

Fix an enumeration of the learner’s observation space O 4 with |O4| = O 4. For a window length

& > 1, define the k-step emission—action matrix M,(f") € R(OZA™IB" xS by

[M;SH)]((ahthﬂ_mbh:hﬂ_Q),oh:h%_l)’s = Pr(onhtr—1 | 5h =8, Qhihr—2, bhihgn—2). (1)

Definition 1 (Multi-step (x, o )-weakly revealing). A POMG is (k, o, )-weakly revealing if

: . (k)
e in omin(Mp™) > .,

where omin () denotes the smallest singular value. This tacitly requires O["Z"‘A"”"_lB”‘_1 > S so that
M ,sﬁ) can have full column rank.

Remark 2 (Single-step weakly revealing). For each h € [H|, write the one-step emission kernel
En(- | s) as a matrix O, € RO4%S with entries [Op)os = Pr(op, = o | sp, = 5). When k =

1, we have M, ,(11) = Oy, so Definition |l| reduces to the single-step a-weakly revealing condition
minhe[H] Umin(©h) Z 1.

4 MAIN RESULTS

In this section, we present our algorithmic framework and theoretical analysis.

4.1 UNIFIED ALGORITHMIC FRAMEWORK VIA MINI-BATCHED OPTIMISTIC MLE

In this section, we introduce MOMLE, our novel model-based algorithm designed for Partially Ob-
servable Markov Games. The pseudocode is provided in Algorithm T}



Under review as a conference paper at ICLR 2026

Algorithm 1 MOMLE: Mini-batched Optimistic MLE

Require: Confidence parameters «, 3;, number of batches K, adversary memory m, the learner’s
policy class II, weakly revealing parameter &.
1: Initialize:

2: World model confidence set W < {0 € O : amm(M,(f")) > a}
3: Adversary model class ¥ that parameterizes Assumption

4: Joint confidence set C < = :=W x ¥

5: History dataset D < )
6
7
8

: Teurrent <— arbitrary initial policy
: forbatchj =1,..., K do
Select optimistic policy-model pair (7w, {new) € arg max(r ¢yerixe V7 (§).
9:  if Thew 7 Teurrent then

10: Execute ey, for m — 1 episodes (warm-up phase, discard data).
11: Teurrent <~ Tnew-
12 endif

13:  Execute meyrent for | T/ K | episodes.
14:  Add all collected learner trajectory pairs (Teyrrent, 74) to D.
15:  Update the joint confidence set C based on the joint log-likelihood over all data in D:

CeEe=: Y logPf (rh) > sup > logPg (th) — B
(w’i,TA)GD g'es (W'i,TZ)E’D

16: end for

The core idea of MOMLE is to adapt and fundamentally redesign the high-level batched optimism
framework, previously developed for fully-observable Markov games| Nguyen-Tang & Aroral (2024),
to meet the unique challenges of partial observability. The shift from full observability to partial
observability necessitates a move from a hybrid value-and-model-based approach to a purely joint
model-learning strategy.

The high-level procedure of the algorithm follows a periodic pattern:

 Optimistic planning (Line 8): At the start of batch j, search the current joint confidence set C;_1
and pick a new optimistic policy—model pair that attains the largest predicted value.

» Data collection with warm up(Line 9-Line 14): For a newly selected policy, execute m —
1 warm-up episodes to stabilize the adversary’s response and discard the warm-up data. Once
stabilized, run the same policy for | T/ K | episodes and collect all learner trajectories.

* Periodic updates (Line 15): At the end of each batch, the algorithm updates the joint model
confidence set using all historical data, based on the maximum likelihood principle.

Joint Modeling via a Single Confidence Set. A fundamental challenge in POMGs is that the
learner only has access to its own trajectory, 74, where the influence of the world dynamics (6) and
the opponent’s strategy (®) are intrinsically entangled. This creates a severe identifiability challenge:
from the learner’s data alone, it is often impossible to uniquely attribute an observed outcome to
either the world’s stochasticity or the opponent’s strategic choice. Consequently, attempting to learn
two separate confidence sets for § and ® may fail to achieve sample-efficient learning. To resolve
this, the MOMLE algorithm employs a cornerstone strategy: it maintains a single, joint confidence
set C C = over the entire system parameter space £ = (6, ®).

This design is crucial and provides three key advantages. First, it aligns the learning task with
what is actually possible, by targeting the joint parameter £ that is statistically identifiable from
the learner’s data. Second, it enables a valid application of the optimism principle directly on the
joint parameters that govern the true value V7 (). Third, by updating the confidence set based on
the joint log-likelihood Z(ﬂi ~1)eD log sz (74), we ensure that the set of plausible models reliably
shrinks as more data is collected, leading to controlled regret. Here P§ (7) denotes the probability
of observable history 7 under model £ and policy 7.
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4.2 THEORETICAL ANALYSIS

Our regret analysis is built upon the framework of the Observable Operator Model (OOM). First
proposed by (Jaeger, [2000), OOMs provide an alternative parameterization for partially observable
systems that allows for a linear-algebraic treatment of their dynamics. This approach has recently
been central to proving the tractability of single-agent POMDPs (Liu et al., 2022a). We adapt this
framework to the Stackelberg POMG setting, where it enables a decomposition of the game’s com-
plex, coupled dynamics into tractable components.

4.2.1 A REDUCTION FROM ANY POMG TO AN AUGMENTED POMDP

Consider the augmented hidden state s}, = (s, (,7a,,—1) With fixed policy memory ¢ = [r]™
and learner history 74 ,—1. On the learner marginal, the per-step observation kernel and controlled
transition are defined by

O (olsh) = Of(olsn),  Th(shyalsh,an) = P(shialsh, an),
where @), (ols},)) lifts the orginal emission matrix to the augmented hidden state and T} (-|s},, ap) is
the transition law induced by the following generator: From the current world state sy, the learner’s
observation 04 j is emitted. The adversary’s action is marginalized via the learner-projected re-
sponse and the world then transitions to sj41 under control a;. Finally, the history 74 ;-1 and
memory ¢ in hidden state are updated deterministically.
Hence, the learner—observable process is a finitt POMDP on S’ with kernels (O3, T}).

Remark 3. In the Stackelberg POMG, once the learner makes an action ay, the adversary’s re-
sponse can be folded into the environment, i.e. “adversary + world” becomes a single aggressive
world, which is a partially observable process with augmented state s}, while the learner’s infor-
mation remains unchanged.

4.2.2 OPERATOR DECOMPOSITION

We extend the standard OOM results from finite POMDPs (Liu et al., 2022a) to our setting of
Stackeberg OOM, where we can construct a operator representation of POMG.

Lemma 1 (Stackelberg OOM Factorization Lemma). Fix a learner policy w. With the above as-
sumptions, the learner—observable process under any parameter & admits a finite-dimensional con-

trolled OOM representation. Specifically, there exist a nonnegative prediction state qg € R%‘ and
nonnegative one-step operators J. ,f’”(oh, ap) € Rg“ xOa satisfying:
1. (Factorization) For any marginal learner trajectory T4 = (041,01, -..,0A,H,GH),

PE(ta) =1 J5  (0a,mr,am) -~ J2 ™ (0a1,a1) 65, 1:=(1,....,10)".

2. (Causal decomposition) Each one-step operator decomposes as

Jﬁ’ﬂ(oh,ah) = Gf’ﬂ(oh,ah)W,f, where

. W}? € Rg“ X0 called the world channel (the “leader” who acts first), is a nonnegative

linear map, independent of (04 1, an), that advances the predictive vector on Rg”‘ using
only the world parameters 0,

« Gy (oan an) € R{4%4, called the adversary channel (the “follower” who acts sub-
sequently), is a family of nonnegative linear maps indexed by (04 1, ap), aggregating the
learner emission and the follower’s response under (P, ).

3. (Normalization) For all b € R4, > (o) 17J5™(0,a)g = 17¢, so > (0.) Ji ™ (0,a) is
stochastic on RgA.
4. (Stability) There exists c(a) = O(1/a) such that for all h and all v € RO4,
E[|| 757 (O, An) - IE5 Onsr, Ansn) | 7] < etan) ol

Here, «,, is the weakly-revealing parameter in Def.[I|

After reducing the Stackelberg POMG to a learner-marginal POMDP, the standard OOM yields a
linear operator representation of the trajectory law. These operators also satisfy the standard Nor-
malization and Stability properties, ensuring they collectively define a valid probability model.

7
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On the causal decomposition (vs. the standard result in (Liu et al., [2022a)). While we built
on the OOM result of (Liu et al.l 2022a)), our Stackelberg setting presents a unique challenge that
the techniques used in (Liu et al., [2022a) do not suffice. In particular, each per-step operator J,f’”
is a coupled black box whose joint dependence on £ = (6, ®). Our core technical idea is a causal
decomposition that opens this box, separating the world channel W9 from the adversary channel
G®7™. A detailed proof is given in Appendix

4.3 ELUDER CONDITIONS

Our analysis for batch update is built upon the Eluder condition, a structural complexity measure
that generalizes the pigeonhole principle and the elliptical potential lemma, which are foundational
for proving sample efficiency in MDPs (Jin et al.| [2018) and POMDPs (Liu et al., [2023). More
specifically, the batched nature of our algorithm requires a slightly stronger variant known as the
£2-type Eluder condition in (Xiong et al., 2023;|Nguyen-Tang & Arora, 2025).

Definition 2 (Eluder dimensions for the x-length world operator class and the adversary operator
classes). Let k € N that represents the window length of the history, we define two classes of
scalar-valued functions that characterize the k-length history-conditioned distribution errors:

s The world model operator class fg] = {(m,mh_1) = oAt |(WE—wf") qf:luf :0 €0}

e The adversary model operator class g{{f] = {(m,Th-1,0,a) —
htr—1 3, o, idx||2 .
t:: E(Ot,at)~p*(-|n_1;7r)H(Gt F(Otvat) -Gy 7T(Ot>at)) qim *H1 10 e \IJ}

where G'™ and BY are the causal decomposition of JET, ie., Jfl"”(o, a) = Gg”r(o, a) Bf (see
Lemma [Zhi) and

: Ty T (on v an 1) Jf T (01, a1) B - R
qu—l(ﬂ—v Th-1) i= : 51 ™ : e : e\ Q}Ilmdy* =Wy bi—l'
(R S I o)

Let dimg, (]-"g]) and dimpg (g@) be the Eluder dimension (Deﬁnition offg] and Q,[;].

Definition 3 (¢s-type Eluder dimension). Let F' be a class of nonnegative scalar functions. We say
F has ls-type Eluder dimension dimg (F) = d if d is the smallest integer such that for any input

sequence xV'T, any model sequence {f'}L_, C F, and any \ > 0, the following holds:

t—1 t
ifvte[T): > fi(a') <A, then »_ fi(a') < CdAlogt,
=1

=1
where C' > 0 is a universal constant.

Similar to Example [T} we consider a linear world model as a running example to concretize the
discussions on our Eluder dimensions.

Example 2 (Linear World Model). There exist a nonnegative column-stochastic matrix W* &

Rif‘Xd’“, and weights uf (Ta,n—1) € R* with ||uf (ta,n-1)|l1 < 1 such that

G Tan 1) = WUl (Tan1) € RO Vh,

Lemma 2 (Eluder dimension for linear operator classes). Under Examples|l|and 2| the world and
adversary operator classes satisfy: dimg (]-_gﬁ])) = Ady OZ;), and dimE(g\[I'f]) = daav B),

Proof see Appendix|[F]

4.4 PoLICY REGRET BOUNDS

We now present the main theoretical contribution of this paper. The following theorem provides an
upper bound on the policy regret for the OPO-POMG algorithm (Algorithm [T)) operating under the
key assumptions detailed in the problem setup. The theorem establishes that as long as the learning
problem satisfies the single step a-weakly revealing and the adversary is m-memory, stationary, and
posterior-Lipschitz, our algorithm can achieve sublinear policy regret.

Covering number. Let (X, d) be a pseudometric space. For any ¢ > 0, an e-cover is a finite
subset Xz C X such that sup,¢ y infyex. d(z,2") < e. The e-covering number is N (¢; X, d) =
min{ |X.| : X. is an e-cover of (X, d) }.

We are now ready to state our main theorem.
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Theorem 1 (Policy Regret Bound for MOMLE). Fix any 0 € (0, 1). Set the joint confidence radius
in Algorithm[l|as follows:

B = c(log N(1/T;E,dz) + log(K /b)), where d=(¢,£) := sup ||Pf —Pg ||,
mell

for an absolute constant ¢ > 0. With probability at least 1 — 0, choosing K = L /dp T
batches in Algorithm[l)yields a total policy regret

PR(T) = (5(H (m+v/B) \/dE. (s T),

where dg | := dimp (fé”]) +dimpg (gﬁ;']) is the total Eluder dimension of the world and adversary
classes.

Corollary 1 (Instantiation for linear world & adversary). Under the linear model in Exam-
ples|l|and |2} choosing the K = [1 /dg () T | batches in Algorithm|l|yields a total policy regret:

PR(T) = 6(H (m + v/B) \/(dw O + duay B) T).
Comparison with prior work. Specializing our POMG framework to the fully observable
Markov game setting yields the regret bound PR(T) = 6(H (m+VB) Vv dET). The bound

preserves its mathematical structure, while the Eluder dimension dg simplifies to reflect the less
complex environment. We compare this result to the bound for the BOVL algorithm presented
in Nguyen-Tang & Arora| (2024), which reports the policy-regret bound PR(T) = O(V (H +

m)VdgyT log3 T ) . The apparent difference in our results stems from two accounting choices: we
normalize the value scale such that V = 1 and include the (m — 1) K warm-up episodes within the
total time horizon T'. If we adopt the same conventions as Nguyen-Tang & Arora|(2024)) by retaining
the scale V' and excluding the warm-up period with an effective horizon of Tog = T — (m — 1)K,
our bound reduces to the same order as theirs.

Proof overview of Theorem[I} Our proof consists of the main four steps.

1. Optimism in Joint Confidence Sets (Appendix [A] and [B) In each batch j, we maintain a joint
Maximum Likelihood Estimation (MLE) confidence set C; for the world and adversary models.
On the high-probability event that the true model parameters £* are within C; for all batches, our
optimistic policy selection reduces the per-batch regret to a value difference. This difference is
further bounded by the Total Variation distance between the process distributions induced by the
optimistic model &; and the true model £*.

2. Regret Decomposition via Causal Telescoping (Appendix [C) We represent the learner-
observable process using OOMs, which permit a causal factorization of the one-step transition
operator into a world operator (G) and an adversary operator (W},). A novel telescoping sum
decomposition then breaks down the TV distance into a sum of horizon-step errors stemming
from the world model estimation and the adversary model estimation.

3. From Likelihood Bounds to Quadratic Constraints (Appendix D) We translate the statistical
log-likelihood bound that defines the confidence set C; into a powerful analytical tool. Leveraging
the weakly-revealing property of the environment, this bound is converted into a set of crucial
quadratic constraints on the ¢;-norms of the operator errors.

4. Bounding Regret via a Batched Eluder Argument (Appendix [E) Finally, we bound the cu-
mulative regret by summing the decomposed errors. We define a batch as “bad” if its operator
estimation error is large. The quadratic constraints ensure that a ’bad” batch is highly informa-
tive. An {5-Eluder dimension argument then bounds the total number of possible “bad” batches.

This, combined with a simple bound for “good” batches, yields the final (5(\/T ) policy regret.

5 CONCLUSION AND DISCUSSION

In this work, we develop the first algorithmic framework and theoretical analysis for policy re-
gret minimization in multi-step weakly revealing partially observable Markov games. We establish
the first O(v/T) policy regret bound through a novel analysis framework that builds upon a joint
maximum likelihood estimation (MLE) algorithm and a decoupling argument based on the causal
decomposition of world and adversary models. Future research directions include extending our
framework to incorporate function approximation and expanding the class of learnable partially ob-
servable environments for policy regret minimization.
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LLM USAGE STATEMENT

We utilized a large language model to assist with the writing and polishing of this manuscript.
Its role was strictly limited to improving the linguistic quality of the text by refining language,
enhancing readability, and ensuring clarity. All scientific contributions, including the core ideas,
research methodology, and proofs, were developed exclusively by the authors.

A VALIDITY OF CONFIDENCE SETS

We use the joint parameter £ = (6, ®) and define, for each batch j,
Li© = Y 1ogP{ (rh). Ci(B):={6 €=+ L;(§) > sup L;(¢') - B}.
(wi,TA)EDj §'eE
Planning at the start of batch j+1 uses the projections
Wj+1 = {9 3P st (9,‘1)) S CJ(B)}, \I’j+l = {‘b ;30 s.t. (9,@) S Cj(ﬁ)}

A.1 OPTIMISTIC e-NET AND MGF BOUND

Let d(§,£') == sup, ||Pf — PZ ||1 be the TV metric over learner-observable trajectory laws and let
N (g; Z, d) be the covering number. We take an optimistic e-net = C = with ¢ = 7! and set

B = c(logN(Tfl,E,d) + log(K/cS)),

which is the confidence radius used in Theorendl]

Lemma 3 (Joint MGF bound under optimistic discretization). Let Dy = {(n*,7}4)}]_, be any
(possibly adaptive) sequence of policies and observed learner trajectories. Fix any £ € = such that

sSup, ||IP)75I 3 |1 < T~L. Then

£|sp((Y e PE (74 EOIEE

L
=1 5

Proof. Identical in structure to [Liu et al| (2022a, Prop. 13), replacing the single parameter 6
with the joint parameter £ = (0, ®) and full trajectories by the learner-observable marginals 74
(marginalization preserves normalization). Let JF; be the history up to episode i—1 and define

= }P’“ (TA)/]PE*(TA) By the tower property, E[r; | 7] = > | Pgl (ta) < 1+ T, hence
E[exp@:l logr)] = E[[T:L, Blri | FI < (1+T7H)Y <e. =

A.2 MARKOV + UNION BOUND AND BATCHED VALIDITY

Proposition 1 (Validity of Batched Confidence Sets). Let the confidence parameter 3 be a constant
defined as 3 := c(log|=| + log(K/6)). With probability at least 1 — 6, the true parameter £* is
contained in the confidence set C;(3) for all batches j € {1,...,K}.

Proof. Let N; = |D;| be the number of episodes collected up to the end of batch j. We apply
Lemma [3| to the dataset D; for a fixed £ € = and a fixed batch j € {1,...,K}. By Markov’s
inequality,

(%)

™ (r4) Elexp(...)]
3
B () > log(K|2|/6) | < KED

P Z log

(7, 74)€D;

e
<=
KIZ|

Taking a union bound over all j € {1,..., K} and all £ € =, the probability that the bound is

violated for any pair (4, £) is at most K - |Z| - ;I‘E‘ = e - J. Rescaling § appropriately, we have that

13
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with probability at least 1 — §, forall j € {1,..., K} and all £ € =:

£ (7h) _
>, log Pf,i = < c(log =] + log(K/9)).
(wi,75)€ED; & (TA)
By the optimistic property of the discretization (P¢ < Pg), the bound also holds for all § € =. The
proposition’s claim then follows directly from the definition of C;(3). O

Corollary 2 (Validity for Planning on the Joint Confidence Set). Under the high-probability event
of Proposition[l] we have

& eCi(B) forallje{1,...,K}.

Proof. Hence any planning step at the beginning of batch j+1 that optimizes an objective over the
joint confidence set C;(/3) is valid in the sense that the true parameter £* is feasible. O

B PoOLICY REGRET AND OPTIMISM

We fix the true joint parameter £* = (0*, ®*). Let Ry (!, ..., ) denote the realized adversary in
round ¢, and let R;([r]*) denote the counterfactual response had the learner played the comparator
policy  for all the first ¢ episodes. Per-step rewards lie in [0, 1] and the horizon is H.

B.1 OPTIMISM REPLACEMENT IN THE BATCHED FRAMEWORK

At the beginning of each batch j € {1, ..., K'}, the algorithm selects a fixed optimistic pair (7;, ;)
from the confidence set C;_1(f3):

m;, &) € ar max Vv R (g,
(m,83) 8 rert, 660, 1 (®) ©

and keeps (m;, &) = (m;,&;) for all t € Batch;.
Lemma 4 (Optimism per Batch). On the high-probability event that £* € C;_1(f) for all batches
je€{1,..., K}, it holds for every batch j and every comparator policy 7 that, for all data-collection
rounds t € Batch;,

v Rt([ﬂ]t)(g*) < V™ R(ﬂj)(gj).

Proof. Fix j and m. Consider any t € Batch; belonging to the data-collection part of batch
Jj (ie., after the (m — 1)-episode warm-up under 7;). Along the counterfactual path [r]’, the
last m policy blocks are m. By stationarity, m-memory, and signature-Lipschitz consistency
(SLC), the signature vectors coincide on all reachable 75, hence R ([r]) = R(w). Therefore

Ve Rel[71) (¢%) = v R (¢, Since £* € Cj_1(8) and (;,¢;) maximizes V™ R(™)(¢) over

IT x Cj_1(8), we have V™ R(m) (¢*) < V7i» R(7)(¢;). This holds for every such ¢. O
Consequently, for t € Batch; the executed policy is 7; and the realized adversary is Ry (7, ..., 7%);
th
us . o
PRI <Y Y. (Vo Riml(g) - v Rlrem(g)), @

j=1teBatch;

Remark 4 (Within-batch stationarity). Each batch j begins with an (m—1)-episode warm-up under
7. By stationarity, m-memory, and SLC, the opponent stabilizes to the fixed response Rex(m;) on
all data-collection rounds of batch j. Let n;j denote the number of data-collection episodes in batch
7 (excluding warm-up). Then

K
PR(T) < an (Vﬂj7R5*(ﬂg)(§j) — Vﬂjﬁs*(ﬂ;)(g*)) )
j=1

where n; = |Batch;| = |T/K| denotes the number of data-collection episodes in batch j. If
warm-up rounds are included in regret, they add at most H(m—1)K.

14
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B.2 SAME-POLICY VALUE-DISTRIBUTION BOUND

Lemma 5. Assume per-episode returns satisfy 0 < R(ty) < H. For any fixed policy m, any two
Joint models &1, €5, and their corresponding opponent responses R1, Ra,

VERI(gy) — VTR2(&) < H|BE™ — PR

1°

Proof. Write VT R(&) = 3 Pr™ (i) R(y) with R(ry) € [0, H]. Let A(r) = P (1) —
]P’g722 (g ). Then

VTRI(g) = V™R (g ZA (T#) Z |A(e)] |1 Rl

<H§]Am|fHWWm P ||

TH

I
O

Applying Lemma [3] to the inner term of equation [2] and using Remark [4| (i.e., Ry = Re+(7;) on
data-collection rounds) gives

<HZ% | g, " g e ®

C POMG TELESCOPING VIA OPERATOR DECOMPOSITION

Fix a learner policy 7 and work with marginal learner—trajectory prefixes 7, = (01, a1, ..., 0n, Gp)-
Within the data-collection rounds (i.e., after the (m—1)-episode warm-up), the response faced by
a fixed 7 is time-invariant by Remark Thus the learner-observable process under 7 is time-
homogeneous on these rounds.

C.1 CONTROLLED OOM REPRESENTABILITY AND STABILITY

Proof of Lemmall] The proof proceeds by establishing the equivalence of the POMG with a finite-
state POMDP, then leveraging this equivalence to derive the existence, causal decomposition, and
stability of its OOM/PSR representation.

Proof of Part 1 (Factorization) Consider the augmented hidden state s}, = (sp, (, 74 ,n—1), Where
sp € S is the world state, ¢ = [7]™ € Z,q is the fixed policy memory within the batch, and
Tah—1 € (04 % .A)h_1 is the learner-side within-episode history. Within a batch, the learner uses
a fixed policy 7 and the adversary is stationary and posterior-Lipschitz. At step h:

1. (Adversary response) by, ~ p* (- | {,Ta,p—1)-
2. (Observation) oy, ~ @f(~ | sp,) (lift of the original emission to the augmented state).
3. (World transition) sp4+1 ~ Th(- | Sh,an,bp).

4. (Memory update) Ta;, = (Ta,n—1, 0n, ap) and ¢’ = ¢ deterministically.

Define the joint one-step kernel of the learner observation and the next augmented state:

P(on, Shyr | Shoan) = Y p*(bn | ¢, 7an-1) O3 (on | 5n) Thl(snta | sn,an, br)
brLEB 4)

x Y =¢, Tan = (Tan—1,0n,a1)}
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On the learner marginal, the per-step observation kernel and the controlled transition are the
marginals of equation 4}

O;L(Oh ‘ 8;1) = @)ﬁ(oh | Sh) = Z ]P)(Ohas;z+1 | S;zaah)’ )
Shi1
/o I A / l _ / /
T3,(Shyr | Shyan) :=P(shyq | sh,an) = Z P(0, sht1 | Shyan). (6)
0€04y

With observation-based rewards 74 , : O4 — [0, 1],

R} (s),,ap) = Z O (o | sn)Tan(0). 7

IO

Therefore, within a batch the learner—observable process is a finite POMDP on
H-1
§' =8 x Zp0 ¥ U (04 x A)*,
k=0
and the joint law of (oy, s}, ,) depends only on (s},ar). By standard OOM results for finite
POMDPs in(Liu et al.,2022a)), there exist a dimension d, an initial vector qg € R, and nonnegative
one-step operators J}f’”(oh, ap,) such that, for any learner trajectory 74 = (01,a1,...,0H,aH),

PZ(ra) =1"J5  (on,an) - J3 " (01, a1) 5. ()

Proof of Part 2 (Causal Decomposition) Work on the augmented space of Part 1 with the step-h
distribution 7y, over s), = (sp,(, Th—1).

(i) World channel W,f . Given n;, and learner action ay, define a nonnegative kernel that propagates
the world state while indexing by a hypothetical opponent action by, :
(WEnn)(sh, Shv1,0n3 an) = nn(sp) Th(sn1 | Snsan, bn).-

This map depends only on the world kernel 7}, and carries forward (sy,, {, 7,—1) for downstream
use.

(ii) Adversary/observation channel @f’”(oh, ap). Acting on my, := ﬁ/\,‘f Np, it marginalizes by,
using the adversary response and emits the learner-side observation, while deterministically updating
the history:

(G (on, an)ma) (0n, $h1)

= ZZMtb(bh | ¢, 1) O (on | s1) HS' = ¢, mn = (Th—1, 00, an) } ma(sh, Shi1,bn; an),

s, bn
where s}, | = (snt1,(’, 7). This map carries all dependence on (®,7) through p® (- | ¢, 7h—1)
and (¢, 7,—1) embedded in s,.
Define the hidden-layer one-step joint kernel as the composition
Kfl’ﬂ(oh, ap) = Gf’”(oh, an) W,
so that for any s}, it yields P7 (op, s}, 1 | 8}, an) (cf. equationwith p* and O).
Transport to the predictive-state space. By finite-rank realization, there exist parameter-
independent linear maps £y, : R RISl and P, : RISl - R? such that
J}E’W(Oh, ah) = Py I?E”T(oh,ah) L.

Insert an identity factorization I = QR on the hidden space with Qj,, R}, linear and parameter-
independent, and set

W;f = Ry Wg L, G(}I:’W(Oh,ah) = Py éf’ﬂ(oh,ah) Q.

Then o
Ti ™ (on, an) = G (on, an) W,
which is the desired causal factorization.
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Proof of Part 3 (Normalization) Because the operators arise from conditional probability kernels
of a finite controlled POMDP, they are nonnegative and mass-preserving. Concretely, (Liu et al.,
2022a)) shows that probabilities of historys and next-observations can be written as operator products
(their Eq. (36)), which for any fixed action a implies

Z 1TJ,§’”(0,a)q =1'yqg forall ¢ € RY.
0€0

Equiva.lently, > JfL’W(o, a) is stochastic on Ri for every a. If the learner randomizes actions
according to 7(- | 7p—1), then

Zw(a|fh_1) Z lTJE’W(O,a)q =1'q.

acA 0€04

Proof of Part 4 (Stability) Under the x-step o,.-weakly revealing assumption, the block OOM
telescoping argument of [Liu et al.| (2022a, Appx. F.1 and Lemma 31) applies verbatim to .J ,f’” =

Gf’”W,?. Hence there exists C'(a,;) = O(poly(1/a,;)) such that, forany h € {1,..., H — 1}, any
v € RY, and any prefix 7y,

E[||J57 (O, An) -+ JE1 Onin, Ans) | | 7] < Clan) ol 0

C.2 TWO-STAGE TELESCOPING BOUND

We derive a two-stage telescoping bound that separates, at each step, the world and adversary con-
tributions to the same-policy distributional gap. Let

Tg’ﬂ(TA) = Jff(oH,aH) e Jf’”(ol,al).

Define unnormalized predictive states

* *7 *7 * mid7 * * *
G 1 (Th1) = Ty T (on-v,an—1) -~ Jf o) g5, @yt (the) = Wi gy (Thea)-
Lemma 6 (x-step two-stage telescoping under weakly revealing). Fix a policy m and two joint
models ¢ = (0,®) and & = (0*,®*). Assume per-step factorization J>™ = GF WY with
normalization (all maps are nonnegative and {1-nonexpansive after summing over emitted sym-
bols), and assume the model is k-step o-weakly revealing so that the k-step controlled tail is

(y-stable with constant C(cv,) = O(poly(1/ay.)). Partition the horizon into consecutive blocks
I = {hy,...,min(h, +x — 1, H)} with h, = (r — 1)k + 1. Let ¢-_, be the normalized predictive

state under (£*,m) and ¢;" e Wf* qfil. Then the total-variation distance between trajectory
laws satisfies
Uus T 5 E*
[P =P, < lla5 — a5 [,
+ Clax) Z Z {H(th -W g, |,

r tel,

+ E(ot,at)wg*(.m_l)u (ha G?*’ﬁ)(Ota ar) g™ H1}

Proof. For integers u < v write JS,, := J&---JS and J5,, | := I. For each block I,., the product-
difference identity gives

Jfgzr:hTJrnfl - Jfgzr:hTJrnfl = Z (Jf+l:hT+n71> (Jt5 - ‘]255 ) (Jfgzrztfl)' (9)
tel,
Using the per-step split
TP a =@ ey w Gt ol - w), (10)

adversary world

17
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and applying the above to the nonnegative state 92:717 we obtain by the triangle inequality

3 £* £* d 1d
H (Jhr:hrJrnfl - JhT:hTJrnfl) th,1 Hl S Z (thi’r\’ + Tt‘?,;)r )’ (1 ])
tel,
where
dv ,__ 3 @, o, 0* 1 £
Ty = ‘ St tiho 1 (G ™ =Gy M)W x Ih i1 th—l‘ X

world ,__ 3 D, 0 0* &* £
75 = H‘]t-‘rl:h,‘-‘rn—l Gy "Wy =Wy ) <y g th—lHl'

Normalization implies 3, ,,) G2 (04, a1) x|y < ||z||1 for all z > 0 (and similarly for Gf*’“)-
By k-step weakly revealing, there is C'(«v,;) such that for any v > 0,

E[H‘th—;lzhr‘rﬁ—lvnl

] <Clag) ol 15 ol < ol (12)
For the world term, set x := J}f:;tqbiiq = qfil. Then
E[T3] < Claw) |GF™ W) =W )z, < Claw) W) =W/ g, (3)

For the adversary term, with ¢/*" := W¢"z,

| < Cla) X (6= ) ona) <)

(o¢,a)

E[Ti] < Clan) [[(GET =GP ™) g%

(14)

Moreover, x-step weakly revealing implies a lower bound on the conditional mass over supported
(ot, at), hence

S GE - G e,
(ot,at) as)
< C(O(K) E(Omat)"vpg* (Te—1) H (G;D’ﬂ- _ G;I) »71') (Ota at) qin1d7§

1 3
absorbing this factor into C'(«,).

Finally, taking expectations in the block bound, summing over ¢ € I,. and over all r, and adding the
initial-state discrepancy yields the claimed inequality. O

C.3 FROM SIGNATURES TO OPERATORS

Lemma 7 (Signature-to-Operator Lipschitz Transfer). Assume SLC and the factorization Jfb’” =
Gf’”W;‘L) with normalization (Lemma . Then there exists Lg = O(L) such that for any h, policies
m, v, andv € Ri,

S OGRT=Gy ) (0,a)v]|, < Lo Ag(mv) [vll,  Ag(m,v) == max ||SL, (m)—Si, (v)],-

(o) i€[m)]

The same bound holds with ® replaced by ®*.

Proof. By Lemma [I[2)—(3) and the construction in Sec. [C.1] there exist nonnegative linear maps
Ry (0,a,b) : RE R4 (independent of (@, 7)) such that

Gy (0,a)v = Zgh(b | T5;7) Ru(0,a,b)v (Vv e RY). (16)
b

Since } -, ) Ji’” (0, a) is stochastic for every 7, taking gj, as a point mass gives

> Ru(o,a,b) is stochasticon RS = > " ||Ru(0,a,b) vl < lv]1 (Vv eR}).  (17)
(0,a) (0,a)

18
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By equation[T6]
(Gf’” - Gf’”)(ma)v = Z {gh(b | 7B57) — gn(b | TB;U):| Rp(0,a,b)v

b
Summing over (o, a) and using equation[17]

S NGEET = Gy ) (oa)v]], < (Z\gh(bITB;F)—gh(b|TB;V)\) [0l
b

(0,a)
By SLC, >, lgn(b | 783 ™) — gn(b | 785 V)| < L Ay(m,v), which proves the claim with L := L.

The case ®* is identical. O

D CONSTRAINTS FOR OPERATOR ESTIMATES FROM BATCHED OMLE
This section converts the high-probability joint-likelihood guarantee (Proposition[I]) into quantitative
constraints on per-step operator errors.

Fix an arbitrary batch j € {1,..., K}. Work on the high-probability event where the optimistic
model §; = (#;, ®;) chosen for batch j satisfies £; € C;_(/3). Hence, for the historical dataset

Dj_1,
>

(wi,7i)ED; 1

I[wr: )
s
ng (T4)

For any episode i and step h, let pe(- | 7h—1;7") € A(O4 x A) be the one-step conditional. Let
qi L (Th_1) be the normalized true prediction state and ¢}""" (i) = wp *qf:_l(Th_l).
Proposition 2 (Likelihood-to-Squared-TV Bound on Past Data). At the beginning of batch j, for

& €Ci—1(B),
Z ZErh INWKL(pé (e ) g, (| The1s 7)) < B, (18)
(wt,74)€D;_1 h=1
Z Z Tho1~PE i|lpe (| Tho1; ) = g, (- [ The1s ||1 < 28 (19)

(wi,74)€eD;_1 h=1

Proof. Taking expectation of the joint log-likelihood ratio under IP’g* and using the chain rule,

PE(ra)] & : ;
, 3 -3 _ , i , i
]E]P‘gl [1 Pﬂ- ( )] - ETh—1~1P’gf KL(pf*( | Th—1;T ) prg( ‘ Th—1;T ))

h=1
Summing over (7%, 7%,) € D;_ gives equation Pinsker’s inequality, applied conditionally on
each 75,1, yields ||per — pe, || < 2KL(pe« ||pe, ), which implies equation (19| after summing and
taking expectations. O

Corollary 3 (Cross-signature propagation of adversary errors). For any step h, policies 7, v, and
veERL,

Z H B <I>*,rr) (0,a UH1 Z H )(o,a)le + 2Lg Ay (m,v) |Jv]1,

(0,a)

where Ag(m,v) := max;e|m [|SL, (7) — SL_ (V)| and L is from Lemmal?]

Proof. Triangle inequality: |[G™ — GP || < |GE™ — G2V || + |GFY =GP + |G —
GS ™| Apply Lemmato the first and third terms. O

19



Under review as a conference paper at ICLR 2026

Lemma 8 (Conditional distribution Lipschitzness). For any prefix 7,1 and policy T,

Ipe- (- T nsim) = peCc I mneimll, < VR = I8 Tl aially

Proof. Letq := q,‘il with 17¢ = 1. By Lemma ??(1,3), pe(- | h—1;7) = lTJ,E’WC) q. Then

lpe-—pell = > 1T (S =T ™) 0,a) g < S (I =I5 N 0,a) g, = 5™ =I5 ™ alls.
(0,a) (0,a)
O

Lemma 9 (One-step causal split). For any prefix t,_1, policy w, and q := qg* >0,

h—1
ST 5 onan) = J; T (onsan)ldll, < || WE - W 4|,

(on,an) world
+ Ccm(am) ]E(oh,ah)~p5* (|Th—1;m) H [Gg’ﬂ(ohv ah) - Gf 7ﬂ—(Oha ah)]
adversary

where Cem(cv) = O(poly(1/a.)) depends only on the k-step weakly revealing condition.

Proof. Since Jo™ = GTWY,
T T = G = W)+ (@ - G W

Summing ¢;-norms and using nonnegativity plus Z o In < "™ (0, a) stochastic (Lemma ??(3)),

DGR (0, a) (Wi = Wi alh < I(W5 = Wi )l
(O’a)

For the adversary term, for nonnegative f and full-support ¢', 3 . f(o,a) <

(mao.) l/q’(q,a))Eq, [f(0,a)]. Take ¢ = pe-(- | mo1;7) and f(o,a) = [[(GpT —
Gy ™)(0,a) ¢ ||1. The r-step weakly revealing condition yields the controlled-mass bound
max(o,q) 1/¢'(0,a) < Cem (). -

Proposition 3 (Operator Quadratic Constraints on Past Data). There exists C(ay,) =
O(poly(1/aw)) such that, at the beginning of any batch j and for §; = (0;,®;) € C;_1(B),

> ZETh pg! ~WIEL T < Clan) B, (20)
(wi,74)€D;_1 h=1
H i w i
Y XE e G na) =G enanl g ) < Clan) 8
(mi,74)€D; 1 h=1 (oh,ah)fvpg*(»hh,l;ﬂi)
1)

and an analogous bound holds for the initial prediction state.

Proof. From Proposition 2}

H
E i
> 2B,

(wi,7i)eD;j_1 h=1

i in||2
per (- | Th1:7") — pe, (- | T3 )|} < 28 (22)

Fix (i, h). Let ¢ := ¢, and ¢ := W/" q.
World channel. The k-step weakly revealing assumption implies that the block emission map
M(K)(ﬂ') admits a right inverse with HM(H) i ||1%1 < poly(l/a,ﬁ) on the cone of reachable pre-

dictive states, while controlled OOM guarantees HM < 1. Together these yield two-sided

Hlal
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¢1 bounds between conditional-distribution errors and operator perturbations, i.e., a bi-Lipschitz
relation on reachable states. Hence there exists Cy(a,;) = O(poly(1/a,)) with

Qj * ~
Wy =willall, < Colaw) [lpe = pe, |- 23)
Squaring equation taking expectation over 7,1 ~ Pg* summing over (i,h), and invoking
equation [22| gives equation with constant 2 Cy(a,, )2.

Adversary channel. Similarly, there exists Co(ay) = O(poly(1/a.)) such that for all (o5, ap) in
the support of pe« ( | Th1;7"),

mid

* k3
IGy™ “(on an) — Gy (on,an)) 4

|1 < Colaw) Hpi* _pEjHr 24
Squaring equatlonand taking expectation over (op,, ar,) ~ pe« (- | Th—1; ") yields
Eonan G2 =G ™ 1@ ||} < Calan)? [l —pe, ;-

Taking expectation over 74,1, summing (i, k), and using equation 22] gives equation 21] with con-
stant 2 Ca ().

Finally set C'(a,.) := 2max{Cy(a,)?, Co ()%} O

E BOUNDING CUMULATIVE REGRET VIA BATCHED ELUDER ARGUMENT

We adapt the batched “estimation-to-regret” bridge used by ?: operator quadratic constraints ob-
tained from past data (Proposition [3) are transported to the current batch and then converted into a
linear-in- K bound via an ¢5-Eluder counting argument. The key method is a “bad batch” analysis

ensuring that large in-batch errors occur only O(Eluder dim) many times.

A batch j is bad if the optimistic model §; = (6;, ®;) has large in-batch squared error (on the true
distribution) under the fixed policy 7; of that batch. Define

5W01“1d E g The 1~]P’ J

t€Batch; h=1

. . 2
i} S\ L} LT mld’f*
Eadv (] Z ZE Tho1~Pd H[Ghj =G, Vg, H1
t€Batch; h=1 (0n,an)~pex (| Th—1;7;)
Let C(a.), 3 be from Proposition 3] Define

Ko =17 ¢ Eworta(d) > Cla) B}, K24Y = {j + Eaav(j) > Claw) B}, KP 1= Ka UKRAY.

worl,

2
Wh }qh 1’1

E.1 TRANSPORTING HISTORICAL OPERATOR CONSTRAINTS TO THE CURRENT BATCH

Fix batch j and write 7 := ;. Let V;_; be the set of policies appearing in D;_1, and choose a
nearest historical policy

€ A,
vj € arg g}l}ljnl (m,v).

Lemma 10 (Historical to Current Operator Control at Batch j). There exist Cy (), Cl(a) =
O(poly(1/ay)) such that
1

<.
|

H
ZEM 1Py E

* 2
Wh ]Q}ilel S C*(a/-c) 57 (25)
1h=1

b
Il

il £ " . « 12
SE e [ ona) — G o an)] g < Cuan) 8
k=1h=1 (Oh,ah,)Npg* ('|Th,—1;71')

+ 0 () Ag(m,15)* Ty (26)

H i 12 s g
where Tj_y = S0t S 1ET}L71NPz5||q£“ 2 is finite.
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Proof. World part equation [25] is Proposition [3| applied to (;,), so Ci(a;) = C(c,). For the
adversary part, Corollary |3|with v = qZ“d’g gives

T ™ ®;,v; % v;
YMGE™ =G o a)vll < DO NIGR = Gy (0.a) vl + 2L Ao (mvy) vl
(0,a) (0,a)
Taking E(, 4)

~pes (-rn_1;m)» Squaring and using (a + b)? < 2a? + 2b? yields

‘IZ' ST d* <I> RZ o* WV
E[|[G),"" = G, "l < 2E[|[G7 — G|+ 8LE Ao (m,vp)? |u]|T

Summing over k < j,h < H and invoking Proposition 3| at v; proves equation 26 with C,(c,,) =
8LZ, (absorbing polynomial factors into O(poly(1/a;))). O

E.2 BOUNDING THE NUMBER OF BAD BATCHES VIA ELUDER DIMENSION

Proposition 4 (Cardinality of Bad Batches). Let F&) and Fif! be the k-window world/adversary

error classes with {y-Eluder dimensions dg)[ﬁ] and d(E fn], respectively. On the high-probability
event of Proposition|[]]

|]Cbad | < O(d(a)

world E[n]) |Kbad = O(d(q)) )

adv E,[x]

Proof of Propositionl] We give the full proof for |ICbad
transporting historical constraints to the current batch via Lemma['ll)}

Classes and per-batch error. Define the k-window world error class
min(h+k—1, H)

* * 2
Fll = { ()= S W -w g e @},
t=h
with /1 -Eluder dimension dg)['ﬂ' For batch j, define
H min(h+x—1, H) . )
Evornali) = Z]Erh,wl?gi > I v el
h=1 t=h

By definition of bad batches, j € kP24 iff £ () > Cp, where we set Cy := C,(a) 3 from

o . > worl world \J
Proposition [3] (absorbing universal constants).

Step 1: Dyadic decomposition and per-level counting. For each integer 7 > 1, let
Kii= {4 € Kha s €lhai) € [Co2 ™, Co2") }.
Write IC; = {j1 < -+ < jar} with M = |K;|. Then

Zew’j}rld i) > MCy2it. Q7

Step 2: Historical precondition for each selected model. Each 6, is selected using only the
historical data D, _1. By Proposition [3|(world part),

H
Z Z B ~pTh H[Wtem - W *] i
¢

k<jm t=1

2
< Co.

Since each r-window (T LH) () gverlaps any fixed step ¢ at most x times, the same histor-

ical budget controls the x-window loss up to a factor x:

min(h+r—1, H)

H
SO EL | >l v
¢

k<jm h=1 t=h

2| < kG, (28)
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which we absorb into Cyy henceforth.

Thus, for the sequence {6, }/_,, each element fits all past data with x-window squared-loss budget

Cy by equation yet incurs new loss at least Cy2°~! on its own batch by equation The ¢5-type

Eluder counting principle (applied to squared ¢; losses over }'g ! with dimension dgg)[ﬂ]) gives

Z World 6(d(E9,)[K] Co2 Z) . (29)

m=1

Comparing equation [27|and equation 29|yields |K;| < 5(dg)[ﬁ]) .

Step 3: Summation over levels. Let MaxError denote the maximum feasible Eworl 4(7) (polyno-
mially bounded). Then
[log, (MaxError/Co)]

’Cborld C U ICi?

i=1

|]C\])avor1d’ < Z'IC74| < 6(d(E'0,)[K])’

SO

absorbing the logarithmic factor into O(-).

Adversary case. Transport historical constraints to the current batch’s policy 7; via Lemma

H min(h+k—1, H)
&5 ®* 7, ~
SYE |5 G a0 - G o | < G
k<jh=1 (Ohyah)"‘pg*(l"'h 1;75) t=h

with Cy = C.(ay)p up to a constant depending on «,; and the covering radius used to select a
nearest historical policy. Applying the Eluder argument to

min(h+k—1, H)

Vi {mmovona) > 3 IGFT(0na) = GF (o a)] g ||} @ e v,
t=h
whose />-Eluder dimension is df%ﬁ], yields |KChad| < @(dgbfﬁ]). O

E.3 FINAL REGRET BOUND

We combine the preceding results by separating the contribution of bad and good batches. Recall
that on data-collection rounds of batch j the realized adversary is stationary (Remark [, so the
per-round instantaneous regret equals

Vi R(Wj)(gj) — Vi Rs*(ﬂj)(g*) )

optimistic value true value

Lemma 11 (Regret on Bad Batches). Let K*® be the set of bad batches. Then

S Y (vermig) v rene) < O @) i) oa ).

jekbad teBatch;

Proof. By Proposition@ |KChad| < (5(d§g7)[ﬁ] + df’%{]). For any batch j and any data-collection
round t € Batch;, Lemma 5| with rewards in [0, 1] implies V7 R(T) (¢;) — Vi Rex (mi) (¢%) <
H ||P2j’R(7”) - IP’;Z’Rg* (5) ||, < 2H. Hence the regret of one bad batch is at most 2H - [Batch;|,
and with [Batch,;| < T/ K the stated bound follows. O
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Lemma 12 (Regret on Good Batches). Let K8°°d be the complement of KC°*3. Then

> (v (g -y Re®)(e) < O<HW” K]+dE[K]>TC<a~)5>-

j jekeood teBatch;

Proof. Fix a good batch j. By Lemma[5|and Lemmal[6] the per-round regret is bounded by H times
the same-policy total variation, which further splits into a world part and an adversary part (plus an
initial-state term that is accounted for identically). Summing linearly over all data-collection rounds
in good batches and applying Cauchy—Schwarz yields:

1/2
Z Z WorldError; < ( Z Eworld (J ) )

jeKeood teBatch; jeEICeoed

1/2
> Y Avmmn < VT (Y al)

jekeood teBatch; jeksood

For a good batch j, definition of bad batch ensures that the optimistic model §; has small in-batch
squared errors relative to the historical fit precondition from Proposition[3] As in ?, this lets us apply
the ¢5-type Eluder counting principle over the sequence of good-batch rounds, giving

> Ewera(i) < O(dY),, Claw) B), 3 Gaals) < Ody ), Clax) B).

]€K€°°d je}Cgood

IN

Combining the two components and multiplying by the factor H from Lemma [5] yields the claim.
O

Proof of Theorem([l} Let dg := dw |+ dE AP By Lemma |11| and Lemma and adding the
warm-up cost H(m — 1)K (Remark
PR(T) < (5(H\/m) + O(HdgT/K) + H(m - 1)K .
good batches bad batches warm-up
The first term is K-independent. Balancing the second and third terms by K = [/d [, T'| yields

a combined contribution (5(H m\/dE [x] T) , which together with the good-batch term gives the
stated regret bound. O

F PROOFS OF SUPPORTING LEMMAS IN THE MAIN PAPER

Proof of Lemmal2] We prove the adversary case and the world case follows by the substitutions
(B dadva o w) (OAa d'wa w> u)

By Example [1] for any history 7 the adversary response is linear: g(z) = ®*w(r), where the
operator ®* € RF*dadav js unknown and the weights w(7) € R%dv are bounded (e.g., w(7) €
Rt 50 |lw(z)|]2 < 1).

Fix any linear reparameterization that collects exactly the free entries of ®* into a vector § € R?
with d = Bd,q,. Write this as § = vec(®*) for some ®* € RBXdadv. For each coordinate
i €{1,..., B}, define the feature map

p(ri) == e;@w(t) € RY, o102 = w(n)]2 < 1,
and the corresponding scalar output y; () := e, g(z). By construction,
yi(r) = el g(r) = €] ®"w(r) = (¢f @w(r)")vec(d*) = (p(7,4),6).

Hence each coordinate belongs to a d-parameter linear class with bounded features. By Exam-
ple 4 of Russo & Van Roy| (2013), the e-eluder dimension of such a class is O(dlog(l/s)). Ab-

sorbing logarithmic factors into O(-) yields dim E(gﬁlf ]) = O(daav B). The same argument with
(Oa,dy, W*, u) gives dimE(]-'e[K’]) = (5(dw OZ).
O
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