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ABSTRACT

We study policy regret minimization in partially observable Markov games
(POMGs) between a learner and a strategic adaptive opponent who adapts to the
learner’s past strategies. We develop a model-based optimistic framework that
operates on the learner-observable process using joint MLE confidence set and
introduce an Observable Operator Model-based causal decomposition that disen-
tangles the coupling between the world and the adversary model. Under multi-step
weakly revealing observations and a bounded-memory, stationary and posterior-
Lipschitz opponent, we prove anO(

√
T ) policy regret bound. This work advances

regret analysis from Markov games to POMGs and provides the first policy regret
guarantee under imperfect information against an adaptive opponent.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable empirical success across a wide range of
challenging AI applications in recent decades (Mnih et al., 2015; Silver et al., 2016; 2017; Akkaya
et al., 2019; Deepmind, 2024; Guo et al., 2025). Many of these problems can be naturally formulated
as multi-agent reinforcement learning (MARL), where multiple learners interact in a dynamically
evolving environment jointly influenced by other learning agents (Zhang et al., 2021).

In many applications of MARL, the learner interacts with adaptive players in an asymmetric setting,
where the learner commits to a strategy at the beginning of each episode while the other agents sub-
sequently adjust their strategies in response to pursue their own objectives. In addition, the learner
is often required to make decisions despite lacking of complete information about the underlying
states. For example, consider a simplified economic game between a government (the learner) and a
population of companies (adaptive agents). The government announces tax policies, which are pub-
licly observable, and subsequently collects tax revenues based on the companies’ reported outcomes,
while the companies adapt their strategies to maximize profit conditional on the announced policies
(Zheng et al., 2020). Importantly, the government’s information is inherently limited: firms’ produc-
tion costs, demand conditions, investment and R&D plans, as well as potential collusive behavior
remain private and unobserved. Consequently, while the companies adapt their strategies based on
the observed sequence of tax policies, the government must optimize under partial observability of
the economic environment to achieve objectives such as maximizing social welfare.

Despite its prevalence, it remains largely unclear how to learn an optimal decision-making pol-
icy under partial observability when facing adaptive adversaries. Existing literature typically ad-
dresses adaptive adversaries and partial observability in isolation. For partial observability in multi-
agent settings, Liu et al. (2022b) study the problem of learning toward various equilibria—such as
Nash, Correlated Equilibrium, and Coarse Correlated Equilibrium—in Partially Observable Markov
Games (POMGs), a natural generalization of Markov games to partially observable settings. How-
ever, their framework evaluates learning success only through external regret, which compares the
learner’s strategy sequence against the adversary’s best response conditioned on that sequence. Ex-
ternal regret, however, fails to capture the counterfactual nature of adaptive agents: it ignores how
opponents might have responded differently had the learner followed an alternative strategy. To
address this limitation, Nguyen-Tang & Arora (2025; 2024) initiated the study of learning against
adaptive adversaries in Markov games under the notion of policy regret (Arora et al., 2012), which
evaluates the learner’s performance against the return they would have obtained by following an
alternative policy, given the adaptivity of the opponent to the alternative policy. Nevertheless, these
results do not extend to partial observability, a setting that is ubiquitous in MARL domains. It thus
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remains an open question how a learner can make decisions against adaptive adversaries without full
access to the underlying states.

In this paper, we develop the first unified theoretical and algorithmic framework for policy regret
minimization in partially observable Markov games (POMGs). Since learning in POMGs is noto-
riously challenging—even in terms of external regret (Papadimitriou & Tsitsiklis, 1987)—we focus
on a broad subclass of POMGs, namely weakly revealing POMGs, which are known to be tractable
for external regret minimization (Liu et al., 2022c). The weakly revealing condition requires only
that the joint observations of all agents disclose a nontrivial amount of information about the latent
states, a property that is satisfied in many real-world applications. We show that, for such rich class
of POMGs, under natural structural assumptions on the behavior of the adaptive adversaries, policy
regret minimization is sample-efficient. In particular, our key technical contributions are as follows:

1. We identify a rich class of adaptive-adversary behaviors that allow sample-efficient policy regret
minimization in multi-step weakly revealing POMGs. Our problem class is defined by the novel
posterior-Lipschitzness condition (see Assumption 1.3), which constrains the adversary’s poste-
rior response, together with the Eluder condition on the world and adversary channel operators,
arising from our novel causal decomposition of the Observable Operator Model (see Lemma 1.2).

2. We develop a unified algorithmic framework for policy regret minimization in weakly revealing
POMGs (see Algorithm 1). Our framework combines the optimistic MLE approach of (Liu et al.,
2023) with the mini-batch techniques of (Arora et al., 2012; Nguyen-Tang & Arora, 2024; 2025)
in a novel way, enabling simultaneous learning of both the world model and the adversary model
in multi-step weakly revealing POMGs.

3. For the proposed rich problem classes, we show that our unified algorithmic framework achieves
a policy regret bound in the order of Õ

(
H (m +

√
dC)
√
dET

)
, where T is the number of

episodes, m is the adversary’s memory, and H is the horizon of the POMG. Here, dE denotes
the joint Eluder dimension of the world and adversary model operators, capturing the intrinsic
complexity of exploration, while dC is the log-covering number of the joint world–adversary
model, measuring the richness of the overall model class. To the best of our knowledge, this is
the first result establishing a sublinear policy regret bound for POMGs.

1.1 OVERVIEW OF TECHNIQUES

Despite the modularity and simplicity of our algorithmic framework (and its apparent hindsight clar-
ity), establishing our theoretical guarantees requires overcoming major technical challenges arising
from the coupled dynamics of the world and adversary models. We address these challenges through
the following key novel ideas.

• Joint modeling via a single confidence set. In POMGs, the learner observes only its own tra-
jectory τA, where the effects of the environment dynamics (θ) and the opponent’s strategy (Φ)
are entangled. This creates an identifiability problem: outcomes cannot be uniquely attributed
to either stochasticity in the environment or the opponent’s choices. Thus, maintaining separate
confidence sets for θ and Φ is fundamentally unsound. To address this, our proposed algorithm
(see Algorithm 1) maintains a single joint confidence set C ⊆ Ξ over the full system parameter
ξ = (θ,Φ).

• Causal separation of world and wdversary models in the Observable Operator Model frame-
work. Building on the Observable Operator Model (OOM) results of (Liu et al., 2022a), our
Stackelberg setting introduces a challenge that their techniques cannot address. Specifically, each
per-step operator Jξ,π

h is a coupled black box, jointly dependent on ξ = (θ,Φ). Our main tech-
nical contribution is to prove that each operator Jξ,π

h admits a factorization Jξ,π
h = GΦ,π

h ◦W θ
h ,

where W θ
h depends only on the environment and GΦ,π

h only on the adversary and the learner’s
policy, thereby disentangling their effects in the OOM analysis (Lemma 1).

• Reduction from Stackelberg POMGs to an augmented POMDP. A key step in our anal-
ysis is reducing adaptive-adversary Stackelberg POMGs to an augmented POMDP with state
s′h = (sh, ζ, τA,h−1). Together with the causal decomposition introduced above and the mini-
batched design of (Nguyen-Tang & Arora, 2025), this reduction enables the application of Ob-
servable Operator Model (OOM) tools under α-weakly revealing observations. In turn, this yields
a solution to policy regret minimization in weakly revealing POMGs (Theorem 1).
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1.2 RELATED WORK

Policy regret minimization in MARL. Policy regret has been widely used to analyze learning
against adaptive adversaries in online learning (Arora et al., 2012) and repeated games (Arora et al.,
2018), and has only recently been extended to multi-agent RL. Existing results, however, are limited
to fully observable Markov games. In particular, Nguyen-Tang & Arora (2024) initiated the study of
policy regret in Markov games, establishing fundamental barriers and providing sufficient conditions
for achieving sublinear policy regret in tabular settings. Subsequently, (Nguyen-Tang & Arora,
2025) extended these results to Markov games with function approximation.

Partially observable Markov games (POMG). POMGs provide a general framework for model-
ing multi-agent sequential decision-making under uncertainty, extending single-agent POMDPs to
settings with multiple agents, each with their own partial perspective and objectives. Early work
by (Hansen et al., 2004) laid the foundational formalism for POMGs and explored dynamic pro-
gramming solutions, though scalability and sample efficiency remain significant challenges. Recent
research has sought to address these limitations directly; for instance, Liu et al. (2022b) investi-
gate sample-efficient reinforcement learning for weakly revealing POMGs, providing theoretical
guarantees for learning to minimize the external regret in this setting. Alongside these general ad-
vances, a substantial thread of literature has focused on finding equilibrium solutions, often under
simplifying assumptions such as myopic follower behavior (Zhong et al., 2021) or complete infor-
mation settings (Gerstgrasser & Parkes, 2023). The field has also seen a growing integration with
deep reinforcement learning, with algorithms like Multi-Agent PPO (MAPPO) (Lowe et al., 2017)
enabling empirical progress in complex environments. Brero et al. (2022) introduces the Stackel-
berg POMDP, a reinforcement learning framework for economic design that models the interaction
between a mechanism designer (leader) and strategic participants (followers) as a Stackelberg game.

2 PROBLEM SETUP AND PRELIMINARIES
We study two-player general-sum partially observable Markov games (POMGs) (Hansen
et al., 2004) in a tabular, episodic setting, which is fully specified by the tuple: M =
(H, S, A, B, OA, OB , T, E, ρ0, rA, rB), where H ∈ N is the horizon; the latent state space is
S with |S| = S; the learner (player A) and the opponent (player B) act in A and B with |A| = A,
|B| = B; the individual observation spaces are OA and OB with |OA| = OA, |OB | = OB . Let
O := OA × OB denote the joint observation at step h by oh = (oA,h, oB,h) ∈ O. The controlled
dynamics are given by the transition kernels Th(· | s, a, b) ∈ ∆S , ∀h ∈ [H], and the emission ker-
nels Eh(· | s) ∈ ∆O, ∀h ∈ [H]. The initial state is sampled from ρ0 ∈ ∆S . Rewards are bounded
and, for notational simplicity, depend only on local observations: for i ∈ {A,B} and h ∈ [H],
ri,h : Oi → [0, 1]. This specification covers cooperative, competitive (including zero-sum), and
mixed-motive interactions through the independent reward functions (rA, rB).

Interaction protocol. An episode starts with a random initial state s1 ∼ ρ0. At every step h
within the episode, a joint private observation oh = (oA,h, oB,h) ∼ Eh(· | sh) is drawn from
the emission kernel Eh conditioned on the current latent state sh. The learner (respecitvely, the
opponent) selects an action ah (respectively, bh) based on her respective private per-episode history
τA,h = (oA,1, aA,1, . . . , oA,h) (respectively, τB,h = (oB,1, aB,1, . . . , oB,h)). Note that in a POMG,
states are hidden from all the players and each player i ∈ {A,B} observes only her own historay
τi,h. The episode termnates after H steps.

Policies and value functions. A policy π = (π1, . . . , πh) for the learner is defined as a map:
πh : (OA ×A)h−1 ×OA → ∆(A), for all h ∈ [H], where ∆(A) is the set of all distributions over
A. A policy µ = (µ1, . . . , µH) for the adversary is defined similarly: µh : (OB × B)h−1 ×OB →
∆(B), ∀h ∈ [H]. We assume that the learner and the adversary select their policies from a restricted
class of policies, Π and Ψ, respectively.

The world model θ = (T,E) ∈ Θ characterizes the POMG with a transition kernel T and an
emission E. Let τ = {(τA,h, τB,h)}h∈[H] be a per-episode trajectory sample that consists of the
trajectory for the learner and the adversary, and Pπ,µ

θ be the trajectory distribution induced by the
world model θ, the learner’s policy π and the adversary’s policy µ. The learner’s episodic value is
defined as

V π,µ
θ := Eτ∼Pπ,µ

θ

[ H∑
h=1

rA,h(oA,h)
]
,

i.e., the total expected reward the learner accumulates over H steps under the world model θ, when
the learner follows policy π while the adversary follows policy µ.
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The second player as an adaptive adversary. We consider the adaptive adversaries, following the
framework of (Nguyen-Tang & Arora, 2024; 2025). In particular, an adaptive adversary is allowed
to adapt to the learner’s past strategies. That is, the adversary in episode t is characterized by a
deterministic response map

Rt : Πt → Ψ, (π1, . . . , πt) 7→ µt,

which depends on the entire learner policy history up to and including πt. For a policy π, let
[π]t := (π, . . . , π) denote the t-fold repetition.

This adaptive response generalizes the canonical Stackelberg game, where the defender (the learner)
commits a strategy and the follower (the adaptive adversary) selects her response strategy accord-
ingly, to the setting where the adversary can remember all the learner’s past strategies, not simply
the learner’s current-episode strategy as in Stackeberg games. That said, the adaptive adversary in
our model is more general and powerful than the defender’s response in Stackelberg games.

Policy regret minimization. We measure the learner’s performance against adaptive adversaries
using the notion of policy regret (Arora et al., 2012), which compares the learner’s cumulative
reward to that of the best fixed policy sequence in hindsight, accounting for the adaptive nature of
the adversary. In particular, the learner’s policy regret over a sequence of T policies π1, . . . , πT is

PR(T ) := sup
π∈Π

T∑
t=1

(
V

π,Rt([π]t)
θ∗ − V

πt,Rt(π
1,...,πt)

θ∗

)
,

where Rt([π]
t) is the adversary’s response under the counterfactual history in which the learner

plays π in episodes 1:t, and θ∗ is the groundtruth world model.

3 STRUCTURAL ASSUMPTIONS

Learning is intractable in general, without structural assumptions. In this section, we introduce
natural assumptions on the adversary behavior and the POMG.
3.1 ADVERSARY BEHAVIOR MODEL

It is now well-established that learning in Markov games against adaptive adversaries who are
memory-unbounded, non-stationary or unstructurally responsive is not sample-efficient (Nguyen-
Tang & Arora, 2024; 2025). Since Markov games are a subclass of POMGs, the learning hardness
for policy regret minimization extends from Markov games to POMGs. Thus, to ensure tractable
learning, we impose the following assumptions on the behavior of the adaptive adversary, extending
the similar assumptions by (Nguyen-Tang & Arora, 2024; 2025) for Markov games to POMGs.
Assumption 1. For brevity, write the policy block πu:v := (πu, . . . , πv) (with u ≤ v) and set
t̄ := max{1, t − m + 1}. The adversary response functions {Rt}t∈N satisfy the following
conditions:

1. m-memory bounded. There exist m≥0 and a mapping gt : Π
m→Ψ such that, for all t,

Rt(π
1:t) = gt

(
πt̄:t

)
.

2. Stationary. The reaction rule is time-invariant: there is a fixed g : Πm→Ψ with

Rt(π
1:t) = g

(
πt̄:t

)
for all t.

3. Posterior-Lipschitz. Given a learner policy block π1:m, let Pπ1:m,g,θ(τA, τB) denote the induced
joint trajectory distribution. For any step h and any adversary trajectory τB , define the posterior-
predictive policy

SτB (π
i
h) := EτA∼Pπ1:m,g,θ(·|τB)

[
πi
h(· | τA)

]
∈ RA.

where the expectation is with respect to the conditional law of τA given τB under the joint tra-
jectory measure Pπ1:m,g,θ.

Let g(· | τB , π1:m)h denote the distribution of the adversary’s action at step h induced by the
response rule g given private trajectory τB and learner policies π1:m. Then there exists a con-
stant L ≥ 0 such that, for any two policy blocks π1:m, ν1:m, any h ∈ [H], and any adversary
trajectory τB ,∥∥ g(· | τB , π1:m)h − g(· | τB , ν1:m)h

∥∥ ≤ L max
i∈[m]

∥∥SτB (πi
h)− SτB (νi

h)
∥∥.
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While the bounded-memory and stationarity assumptions directly follow prior work on Markov
games (Nguyen-Tang & Arora, 2024; 2025), our introduction of Posterior-Lipschitz is novel. This
condition requires that if two policy blocks of the learner induce similar posterior action distributions
given a fixed adversary trajectory, then the adversary’s response distributions must also be similar.
We define this condition using posterior predictives because, in partially observable Markov games
(POMGs), policies depend on histories, whereas in standard Markov games (MGs) it suffices to
consider Markov policies.

Finally, we parameterize the entire game using a joint model ξ = (θ,Φ), where θ represents the
world model parameters and Φ represents the parameters for the adversary channel g. We denote
ζ∗ = (θ∗,Φ∗) the groundtruth parameters and assume that the learner has access to Θ ∋ θ∗,Ψ ∋ Φ.
Remark 1. The norm ∥·∥ can be any norm on the corresponding finite-dimensional spaces. Since all
such norms are equivalent, a different choice would merely rescale the constant L. In the subsequent
proofs, we will adopt the ℓ1 norm.

As a running example, we consider a linear response adversary model, motivated by the linear model
considered initially in (Nguyen-Tang & Arora, 2025).
Example 1 (Linear response Adversary). There exist dadv ∈ Z>0, a nonnegative column-stochastic
matrix Φ⋆ ∈ RB×dadv

+ , and weights wπ
h(τB,h−1) ∈ Rdadv with ∥wπ

h(τB,h−1)∥1 = O(1) such that

gh(· | τB,h−1, π
[m]) = Φ⋆ wπ

h(τB,h−1) ∈ RB ∀h.

We note that if the weights wπ
h(τB,h−1) are L-Lipschitz with respect to π, then the adversary defined

above is also L-Posterior-Lipschitz.

3.2 MULTI-STEP WEAKLY REVEALING POMGS

Learning POMGs is notoriously intractable in general. In this paper, we consider policy regret mini-
mization in a rich class of POMGs that satisfy the weakly revealing conditions. Weakly revealing is
a standard identifiability condition in the POMDP (Liu et al., 2022a) and POMG (Liu et al., 2022b)
literature. Intuitively, over a length-κ observation window, distinct latent states induce distinguish-
able distributions of observable sequences under fixed action prefixes.

Fix an enumeration of the learner’s observation space OA with |OA| = OA. For a window length
κ ≥ 1, define the κ-step emission–action matrix M

(κ)
h ∈ R(Oκ

AAκ−1Bκ−1)×S by[
M

(κ)
h

]
((ah:h+κ−2, bh:h+κ−2), oh:h+κ−1), s

:= Pr(oh:h+κ−1 | sh = s, ah:h+κ−2, bh:h+κ−2) . (1)

Definition 1 (Multi-step (κ, ακ)-weakly revealing). A POMG is (κ, ακ)-weakly revealing if

min
h∈[H−κ+1]

σmin

(
M

(κ)
h

)
≥ ακ,

where σmin(·) denotes the smallest singular value. This tacitly requires Oκ
AA

κ−1Bκ−1 ≥ S so that
M

(κ)
h can have full column rank.

Remark 2 (Single-step weakly revealing). For each h ∈ [H], write the one-step emission kernel
Eh(· | s) as a matrix Oh ∈ ROA×S with entries [Oh]o,s = Pr(oh = o | sh = s). When κ =

1, we have M
(1)
h = Oh, so Definition 1 reduces to the single-step α-weakly revealing condition

minh∈[H] σmin(Oh) ≥ α1.

4 MAIN RESULTS

In this section, we present our algorithmic framework and theoretical analysis.
4.1 UNIFIED ALGORITHMIC FRAMEWORK VIA MINI-BATCHED OPTIMISTIC MLE

In this section, we introduce MOMLE, our novel model-based algorithm designed for Partially Ob-
servable Markov Games. The pseudocode is provided in Algorithm 1.

The core idea of MOMLE is to adapt and fundamentally redesign the high-level batched optimism
framework, previously developed for fully-observable Markov games Nguyen-Tang & Arora (2024),
to meet the unique challenges of partial observability. The shift from full observability to partial
observability necessitates a move from a hybrid value-and-model-based approach to a purely joint
model-learning strategy.

The high-level procedure of the algorithm follows a periodic pattern:

5
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Algorithm 1 MOMLE: Mini-batched Optimistic MLE
Require: Confidence parameters α, βt, number of batches K, adversary memory m, the learner’s

policy class Π, weakly revealing parameter κ.
1: Initialize:
2: World model confidence setW ← {θ ∈ Θ : σmin(M

(κ)
h ) ≥ α}

3: Adversary model class Ψ that parameterizes Assumption 1
4: Joint confidence set C ← Ξ :=W ×Ψ
5: History dataset D ← ∅
6: πcurrent ← arbitrary initial policy
7: for batch j = 1, . . . ,K do
8: Select optimistic policy-model pair (πnew, ξnew) ∈ argmax(π,ξ)∈Π×C V

π(ξ).
9: if πnew ̸= πcurrent then

10: Execute πnew for m− 1 episodes (warm-up phase, discard data).
11: πcurrent ← πnew.
12: end if
13: Execute πcurrent for ⌊T/K⌋ episodes.
14: Add all collected learner trajectory pairs (πcurrent, τA) to D.
15: Update the joint confidence set C based on the joint log-likelihood over all data in D:

C ←

ξ ∈ Ξ :
∑

(πi,τi
A
)∈D

log Pπi

ξ (τ i
A) ≥ sup

ξ′∈Ξ

∑
(πi,τi

A
)∈D

log Pπi

ξ′ (τ
i
A)− β


16: end for

• Optimistic planning (Line 8): At the start of batch j, search the current joint confidence set Cj−1

and pick a new optimistic policy–model pair that attains the largest predicted value.

• Data collection with warm up(Line 9-Line 14): For a newly selected policy, execute m −
1 warm-up episodes to stabilize the adversary’s response and discard the warm-up data. Once
stabilized, run the same policy for ⌊T/K⌋ episodes and collect all learner trajectories.

• Periodic updates (Line 15): At the end of each batch, the algorithm updates the joint model
confidence set using all historical data, based on the maximum likelihood principle.

Joint Modeling via a Single Confidence Set. A fundamental challenge in POMGs is that the
learner only has access to its own trajectory, τA, where the influence of the world dynamics (θ) and
the opponent’s strategy (Φ) are intrinsically entangled. This creates a severe identifiability challenge:
from the learner’s data alone, it is often impossible to uniquely attribute an observed outcome to
either the world’s stochasticity or the opponent’s strategic choice. Consequently, attempting to learn
two separate confidence sets for θ and Φ may fail to achieve sample-efficient learning. To resolve
this, the MOMLE algorithm employs a cornerstone strategy: it maintains a single, joint confidence
set C ⊆ Ξ over the entire system parameter space ξ = (θ,Φ).

This design is crucial and provides three key advantages. First, it aligns the learning task with
what is actually possible, by targeting the joint parameter ξ that is statistically identifiable from
the learner’s data. Second, it enables a valid application of the optimism principle directly on the
joint parameters that govern the true value V π(ξ). Third, by updating the confidence set based on
the joint log-likelihood

∑
(πi,τ i

A)∈D logPπi

ξ (τ iA), we ensure that the set of plausible models reliably
shrinks as more data is collected, leading to controlled regret. Here Pπ

ξ (τ) denotes the probability
of observable history τ under model ξ and policy π.

4.2 THEORETICAL ANALYSIS

Our regret analysis is built upon the framework of the Observable Operator Model (OOM). First
proposed by (Jaeger, 2000), OOMs provide an alternative parameterization for partially observable
systems that allows for a linear-algebraic treatment of their dynamics. This approach has recently
been central to proving the tractability of single-agent POMDPs (Liu et al., 2022a). We adapt this
framework to the Stackelberg POMG setting, where it enables a decomposition of the game’s com-
plex, coupled dynamics into tractable components.

6
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4.2.1 A REDUCTION FROM ANY POMG TO AN AUGMENTED POMDP
Consider the augmented hidden state s′h = (sh, ζ, τA,h−1) with fixed policy memory ζ = [π]m

and learner history τA,h−1. On the learner marginal, the per-step observation kernel and controlled
transition are defined by

O′
h(o|s′h) := OA

h (o|sh), T ′
h(s

′
h+1|s′h, ah) := P(s′h+1|s′h, ah),

where O′
h(o|s′h)) lifts the orginal emission matrix to the augmented hidden state and T ′

h(·|s′h, ah) is
the transition law induced by the following generator: From the current world state sh, the learner’s
observation oA,h is emitted. The adversary’s action is marginalized via the learner-projected re-
sponse and the world then transitions to sh+1 under control ah. Finally, the history τA,h−1 and
memory ζ in hidden state are updated deterministically.

Hence, the learner–observable process is a finite POMDP on S ′ with kernels (O′
h, T

′
h).

Remark 3. In the Stackelberg POMG, once the learner makes an action ah, the adversary’s re-
sponse can be folded into the environment, i.e.“adversary + world” becomes a single aggressive
world, which is a partially observable process with augmented state s′h, while the learner’s infor-
mation remains unchanged.

4.2.2 OPERATOR DECOMPOSITION

We extend the standard OOM results from finite POMDPs (Liu et al., 2022a) to our setting of
Stackeberg OOM, where we can construct a operator representation of POMG.
Lemma 1 (Stackelberg OOM Factorization Lemma). Fix a learner policy π. With the above as-
sumptions, the learner–observable process under any parameter ξ admits a finite-dimensional con-
trolled OOM representation. Specifically, there exist a nonnegative prediction state qξ0 ∈ ROA

+ and
nonnegative one-step operators Jξ,π

h (oh, ah) ∈ ROA×OA
+ satisfying:

1. (Factorization) For any marginal learner trajectory τA = (oA,1, a1, . . . , oA,H , aH),

Pπ
ξ (τA) = 1⊤Jξ,π

H (oA,H , aH) · · · Jξ,π
1 (oA,1, a1) q

ξ
0, 1 := (1, . . . , 1)⊤.

2. (Causal decomposition) Each one-step operator decomposes as

Jξ,π
h (oh, ah) = GΦ,π

h (oh, ah)W
θ
h , where

• W θ
h ∈ ROA×OA

+ , called the world channel (the “leader” who acts first), is a nonnegative
linear map, independent of (oA,h, ah), that advances the predictive vector on ROA

+ using
only the world parameters θ,

• GΦ,π
h (oA,h, ah) ∈ ROA×OA

+ , called the adversary channel (the “follower” who acts sub-
sequently), is a family of nonnegative linear maps indexed by (oA,h, ah), aggregating the
learner emission and the follower’s response under (Φ, π).

3. (Normalization) For all b ∈ ROA
+ ,

∑
(o,a) 1

⊤Jξ,π
h (o, a) q = 1⊤q, so

∑
(o,a) J

ξ,π
h (o, a) is

stochastic on ROA
+ .

4. (Stability) There exists c(α) = Õ(1/α) such that for all h and all v ∈ ROA ,

E
[∥∥∥Jξ,π

H (OH , AH) · · · Jξ,π
h+1(Oh+1, Ah+1) v

∥∥∥
1

∣∣∣ τh] ≤ c(ακ) ∥v∥1,

Here, ακ is the weakly-revealing parameter in Def. 1

After reducing the Stackelberg POMG to a learner-marginal POMDP, the standard OOM yields a
linear operator representation of the trajectory law. These operators also satisfy the standard Nor-
malization and Stability properties, ensuring they collectively define a valid probability model.

On the causal decomposition (vs. the standard result in (Liu et al., 2022a)). While we built
on the OOM result of (Liu et al., 2022a), our Stackelberg setting presents a unique challenge that
the techniques used in (Liu et al., 2022a) do not suffice. In particular, each per-step operator Jξ,π

h
is a coupled black box whose joint dependence on ξ = (θ,Φ). Our core technical idea is a causal
decomposition that opens this box, separating the world channel W θ from the adversary channel
GΦ,π . A detailed proof is given in Appendix C.1.
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4.3 ELUDER CONDITIONS

Our analysis for batch update is built upon the Eluder condition, a structural complexity measure
that generalizes the pigeonhole principle and the elliptical potential lemma, which are foundational
for proving sample efficiency in MDPs (Jin et al., 2018) and POMDPs (Liu et al., 2023).

More specifically, the batched nature of our algorithm requires a slightly stronger variant known as
the ℓ2-type Eluder condition (Xiong et al., 2023), and we refer the reader to Nguyen-Tang & Arora
(2025, Sec. 5.1) for additional background, examples, and a comparison with the standard Eluder
dimension.

Definition 2 (Eluder dimensions for the κ-length world operator class and the adversary operator
classes). Let κ ∈ N that represents the window length of the history, we define two classes of
scalar-valued functions that characterize the κ-length history-conditioned distribution errors:

• The world model operator classF [κ]
Θ := {(π, τh−1) 7→

∑h+κ−1
t=h

∥∥(W θ
t −W θ⋆

t ) qξ
⋆

t−1

∥∥2
1
: θ ∈ Θ}

• The adversary model operator class G[κ]Ψ := {(π, τh−1, o, a) 7→∑h+κ−1
t=h E(ot,at)∼p⋆( ·|τt−1;π)

∥∥(GΦ,π
t (ot, at)−GΦ⋆,π

t (ot, at)
)
qmid,⋆
t

∥∥2
1
: Φ ∈ Ψ}

where GΦ,π
h and W θ

h are the causal decomposition of Jξ,π
h , i.e., Jξ,π

h (o, a) = GΦ,π
h (o, a)W θ

h (see
Lemma 1), and

qξ
⋆

h−1(π, τh−1) :=
Jξ⋆,π
h−1 (oh−1, ah−1) · · · Jξ⋆,π

1 (o1, a1) b
ξ⋆

0

1⊤
(
Jξ⋆,π
h−1 (oh−1, ah−1) · · · Jξ⋆,π

1 (o1, a1) b
ξ⋆

0

) , qmid,⋆
h := W θ⋆

h bξ
⋆

h−1.

Let dimE(F [κ]
Θ ) and dimE(G[κ]Ψ ) be the Eluder dimension (Definition 3) of F [κ]

Θ and G[κ]Ψ .
Definition 3 (ℓ2-type Eluder dimension). Let F be a class of nonnegative scalar functions. We say
F has ℓ2-type Eluder dimension dimE(F ) = d if d is the smallest integer such that for any input
sequence x1:T , any model sequence {f i}Ti=1 ⊂ F , and any λ > 0, the following holds:

if ∀ t ∈ [T ] :

t−1∑
i=1

f t(xi) ≤ λ, then
t∑

i=1

f i(xi) ≤ C dλ log t,

where C > 0 is a universal constant.
Intuitively, if functions in F fit the past data well on average, then large squared errors can occur on
at most O(d log T ) rounds, so the total prediction error can be controlled by the Eluder dimension.

Similar to Example 1, we consider a linear world model as a running example to concretize the
discussions on our Eluder dimensions.
Example 2 (Linear World Model). There exist a nonnegative column-stochastic matrix W ⋆ ∈
ROκ

A×dw

+ , and weights uπ
h(τA,h−1) ∈ Rdw with ∥uπ

h(τA,h−1)∥1 ≤ 1 such that

qmid,⋆
h (π, τA,h−1) = W ⋆ uπ

h(τA,h−1) ∈ ROκ
A ∀h.

Lemma 2 (Eluder dimension for linear operator classes). Under Examples 1 and 2, the world and
adversary operator classes satisfy: dimE(F [κ]

Θ )) = Õ(dw Oκ
A

)
, and dimE(G[κ]Ψ ) = Õ(dadv B),

Proof see Appendix F.2.

4.4 POLICY REGRET BOUNDS

We now present the main theoretical contribution of this paper. The following theorem provides
an upper bound on the policy regret for the MOMLE algorithm (Algorithm 1) operating under the
key assumptions detailed in the problem setup. The theorem establishes that as long as the learning
problem satisfies the single step α-weakly revealing and the adversary is m-memory, stationary, and
posterior-Lipschitz, our algorithm can achieve sublinear policy regret.

Covering number. Let (X , d) be a pseudometric space. For any ε > 0, an ε-cover is a finite
subset Xε ⊆ X such that supx∈X infx′∈Xε

d(x, x′) ≤ ε. The ε-covering number is N(ε;X , d) :=
min{ |Xε| : Xε is an ε-cover of (X , d) }.
We are now ready to state our main theorem.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 1 (Policy Regret Bound for MOMLE). Fix any δ ∈ (0, 1). Set the joint confidence radius
in Algorithm 1 as follows:

β = c
(
logN(1/T ; Ξ, dΞ) + log(K/δ)

)
, where dΞ(ξ, ξ

′) := sup
π∈Π

∥∥Pπ
ξ − Pπ

ξ′
∥∥
1

for an absolute constant c > 0. With probability at least 1 − δ, choosing K =
⌈√

dE,[κ] T
⌉

batches in Algorithm 1 yields a total policy regret

PR(T ) = Õ
(
H (m+

√
β)

√
dE,[κ] T

)
,

where dE,[κ] := dimE(F [κ]
Θ )+dimE(G[κ]Ψ ) is the total Eluder dimension of the world and adversary

classes.

Corollary 1 (Instantiation for linear world & adversary). Under the linear model in Exam-
ples 1 and 2, choosing the K =

⌈√
dE,[κ] T

⌉
batches in Algorithm 1 yields a total policy regret:

PR(T ) = Õ
(
H (m+

√
β)

√
(dw Oκ

A + dadv B)T
)

.

Comparison with prior work. Specializing our POMG framework to the fully observable
Markov game setting yields the regret bound PR(T ) = Õ

(
H (m +

√
β)
√
dET

)
. The bound

preserves its mathematical structure, while the Eluder dimension dE simplifies to reflect the less
complex environment. We compare this result to the bound for the BOVL algorithm presented
in Nguyen-Tang & Arora (2025), which reports the policy–regret bound PR(T ) = O

(
V̄ (H +

m)
√
dE γ T log3 T

)
. The apparent difference in our results stems from two accounting choices: we

normalize the value scale such that V̄ = 1 and include the (m− 1)K warm-up episodes within the
total time horizon T . If we adopt the same conventions as Nguyen-Tang & Arora (2025) by retaining
the scale V̄ and excluding the warm-up period with an effective horizon of Teff = T − (m − 1)K,
our bound reduces to the same order as theirs.

Proof overview of Theorem 1. Our proof consists of the main four steps.

1. Optimism in Joint Confidence Sets (Appendix A and B) In each batch j, we maintain a joint
Maximum Likelihood Estimation (MLE) confidence set Cj for the world and adversary models.
On the high-probability event that the true model parameters ξ⋆ are within Cj for all batches, our
optimistic policy selection reduces the per-batch regret to a value difference. This difference is
further bounded by the Total Variation distance between the process distributions induced by the
optimistic model ξj and the true model ξ⋆.

2. Regret Decomposition via Causal Telescoping (Appendix C) We represent the learner-
observable process using OOMs, which permit a causal factorization of the one-step transition
operator into a world operator (Gh) and an adversary operator (Wh). A novel telescoping sum
decomposition then breaks down the TV distance into a sum of horizon-step errors stemming
from the world model estimation and the adversary model estimation.

3. From Likelihood Bounds to Quadratic Constraints (Appendix D) We translate the statistical
log-likelihood bound that defines the confidence set Cj into a powerful analytical tool. Leveraging
the weakly-revealing property of the environment, this bound is converted into a set of crucial
quadratic constraints on the ℓ1-norms of the operator errors.

4. Bounding Regret via a Batched Eluder Argument (Appendix E) Finally, we bound the cu-
mulative regret by summing the decomposed errors. We define a batch as “bad” if its operator
estimation error is large. The quadratic constraints ensure that a ”bad” batch is highly informa-
tive. An ℓ2-Eluder dimension argument then bounds the total number of possible “bad” batches.
This, combined with a simple bound for “good” batches, yields the final Õ(

√
T ) policy regret.

5 CONCLUSION AND DISCUSSION

In this work, we develop the first algorithmic framework and theoretical analysis for policy re-
gret minimization in multi-step weakly revealing partially observable Markov games. We establish
the first O(

√
T ) policy regret bound through a novel analysis framework that builds upon a joint

maximum likelihood estimation (MLE) algorithm and a decoupling argument based on the causal
decomposition of world and adversary models. Future research directions include extending our
framework to incorporate function approximation and expanding the class of learnable partially ob-
servable environments for policy regret minimization.
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Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforce-
ment learning not scary? In Conference on Learning Theory, pp. 5175–5220. PMLR, 2022a.
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–
384, 2021.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C Parkes,
and Richard Socher. The AI economist: Improving equality and productivity with AI-driven tax
policies. arXiv preprint arXiv:2004.13332, 2020.

Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Can reinforcement learning find
stackelberg-nash equilibria in general-sum markov games with myopic followers? arXiv preprint
arXiv:2112.13521, 2021.

11

https://openreview.net/forum?id=eZ5QyZV7zi


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Overview of Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem Setup and Preliminaries 3

3 Structural Assumptions 4

3.1 Adversary Behavior Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Multi-step Weakly Revealing POMGs . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Main Results 5

4.1 Unified Algorithmic Framework via Mini-batched Optimistic MLE . . . . . . . . . 5

4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2.1 A Reduction from any POMG to an Augmented POMDP . . . . . . . . . . 7

4.2.2 Operator Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Eluder Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Policy Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Conclusion and discussion 9

A Validity of Confidence Sets 13

A.1 Optimistic ε-net and MGF bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Markov + Union Bound and Batched Validity . . . . . . . . . . . . . . . . . . . . 13

B Policy Regret and Optimism 14

B.1 Optimism Replacement in the Batched Framework . . . . . . . . . . . . . . . . . 14

B.2 Same-Policy Value–Distribution Bound . . . . . . . . . . . . . . . . . . . . . . . 15

C POMG Telescoping via Operator Decomposition 15

C.1 Controlled OOM Representability and Stability . . . . . . . . . . . . . . . . . . . 15

C.2 Two-stage telescoping bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.3 From signatures to operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D Constraints for Operator Estimates from Batched OMLE 19

E Bounding Cumulative Regret via Batched Eluder Argument 21

E.1 Transporting historical operator constraints to the current batch . . . . . . . . . . . 21

E.2 Bounding the number of bad batches via Eluder dimension . . . . . . . . . . . . . 22

E.3 Final Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F Supplementary Explainations for Assumptions and Lemmas 24

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

F.1 Explainations for Posterior-Lipschitz . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.2 Proofs of Supporting Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

LLM USAGE STATEMENT

We utilized a large language model to assist with the writing and polishing of this manuscript.
Its role was strictly limited to improving the linguistic quality of the text by refining language,
enhancing readability, and ensuring clarity. All scientific contributions, including the core ideas,
research methodology, and proofs, were developed exclusively by the authors.

A VALIDITY OF CONFIDENCE SETS

We use the joint parameter ξ = (θ,Φ) and define, for each batch j,

Lj(ξ) :=
∑

(πi,τ i
A)∈Dj

logPπi

ξ (τ iA), Cj(β) :=
{
ξ ∈ Ξ : Lj(ξ) ≥ sup

ξ′∈Ξ
Lj(ξ

′)− β
}
.

Planning at the start of batch j+1 uses the projections

Wj+1 := {θ : ∃Φ s.t. (θ,Φ) ∈ Cj(β)}, Ψj+1 := {Φ : ∃ θ s.t. (θ,Φ) ∈ Cj(β)}.

A.1 OPTIMISTIC ε-NET AND MGF BOUND

Let d(ξ, ξ′) := supπ ∥Pπ
ξ − Pπ

ξ′∥1 be the TV metric over learner-observable trajectory laws and let
N(ε; Ξ, d) be the covering number. We take an optimistic ε-net Ξ̄ ⊂ Ξ with ε = T−1 and set

β = c
(
logN(T−1,Ξ, d) + log(K/δ)

)
,

which is the confidence radius used in Theorem1.
Lemma 3 (Joint MGF bound under optimistic discretization). Let DN = {(πi, τ iA)}Ni=1 be any
(possibly adaptive) sequence of policies and observed learner trajectories. Fix any ξ̄ ∈ Ξ̄ such that
supπ ∥Pπ

ξ̄
− Pπ

ξ⋆∥1 ≤ T−1. Then

E

[
exp

( N∑
i=1

log
Pπi

ξ̄
(τ iA)

Pπi

ξ⋆(τ
i
A)

)]
≤ e.

Proof. Identical in structure to Liu et al. (2022a, Prop. 13), replacing the single parameter θ
with the joint parameter ξ = (θ,Φ) and full trajectories by the learner-observable marginals τA
(marginalization preserves normalization). Let Fi be the history up to episode i−1 and define
ri := Pπi

ξ̄
(τ iA)/Pπi

ξ⋆(τ
i
A). By the tower property, E[ri | Fi] =

∑
τA

Pπi

ξ̄
(τA) ≤ 1 + T−1, hence

E[exp(
∑N

i=1 log ri)] = E[
∏N

i=1 E[ri | Fi]] ≤ (1 + T−1)N ≤ e.

A.2 MARKOV + UNION BOUND AND BATCHED VALIDITY

Proposition 1 (Validity of Batched Confidence Sets). Let the confidence parameter β be a constant
defined as β := c

(
log |Ξ̄| + log(K/δ)

)
. With probability at least 1 − δ, the true parameter ξ⋆ is

contained in the confidence set Cj(β) for all batches j ∈ {1, . . . ,K}.

Proof. Let Nj = |Dj | be the number of episodes collected up to the end of batch j. We apply
Lemma 3 to the dataset Dj for a fixed ξ̄ ∈ Ξ̄ and a fixed batch j ∈ {1, . . . ,K}. By Markov’s
inequality,

P

 ∑
(πi,τ i

A)∈Dj

log
Pπi

ξ̄
(τ iA)

Pπi

ξ⋆(τ
i
A)

> log(K|Ξ̄|/δ)

 ≤ E[exp(. . . )]
K|Ξ̄|/δ

≤ e · δ
K|Ξ̄|

.
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Taking a union bound over all j ∈ {1, . . . ,K} and all ξ̄ ∈ Ξ̄, the probability that the bound is
violated for any pair (j, ξ̄) is at most K · |Ξ̄| · e·δ

K|Ξ̄| = e · δ. Rescaling δ appropriately, we have that
with probability at least 1− δ, for all j ∈ {1, . . . ,K} and all ξ̄ ∈ Ξ̄:∑

(πi,τ i
A)∈Dj

log
Pπi

ξ̄
(τ iA)

Pπi

ξ⋆(τ
i
A)
≤ c(log |Ξ̄|+ log(K/δ)).

By the optimistic property of the discretization (Pξ ≤ Pξ̄), the bound also holds for all ξ ∈ Ξ. The
proposition’s claim then follows directly from the definition of Cj(β).

Corollary 2 (Validity for Planning on the Joint Confidence Set). Under the high-probability event
of Proposition 1, we have

ξ⋆ ∈ Cj(β) for all j ∈ {1, . . . ,K}.

Proof. Hence any planning step at the beginning of batch j+1 that optimizes an objective over the
joint confidence set Cj(β) is valid in the sense that the true parameter ξ⋆ is feasible.

B POLICY REGRET AND OPTIMISM

We fix the true joint parameter ξ⋆ = (θ⋆,Φ⋆). Let Rt(π
1, . . . , πt) denote the realized adversary in

round t, and let Rt([π]
t) denote the counterfactual response had the learner played the comparator

policy π for all the first t episodes. Per-step rewards lie in [0, 1] and the horizon is H .

B.1 OPTIMISM REPLACEMENT IN THE BATCHED FRAMEWORK

At the beginning of each batch j ∈ {1, . . . ,K}, the algorithm selects a fixed optimistic pair (πj , ξj)
from the confidence set Cj−1(β):

(πj , ξj) ∈ arg max
π∈Π, ξ∈Cj−1(β)

V π, R(π)(ξ),

and keeps (πt, ξt) = (πj , ξj) for all t ∈ Batchj .
Lemma 4 (Optimism per Batch). On the high-probability event that ξ⋆ ∈ Cj−1(β) for all batches
j ∈ {1, . . . ,K}, it holds for every batch j and every comparator policy π that, for all data-collection
rounds t ∈ Batchj ,

V π, Rt([π]
t)(ξ⋆) ≤ V πj , R(πj)(ξj).

Proof. Fix j and π. Consider any t ∈ Batchj belonging to the data-collection part of batch j (i.e.,
after the (m−1)-episode warm-up under πj). Along the counterfactual path [π]t, the last m policy
blocks are π. Along the counterfactual path [π]t, the last m policy blocks are all equal to π, so
by stationarity and m-memory the opponent’s response depends only on this repeated block and
we have Rt([π]

t) = R(π). Therefore V π, Rt([π]
t)(ξ⋆) = V π, R(π)(ξ⋆). Since ξ⋆ ∈ Cj−1(β) and

(πj , ξj) maximizes V π, R(π)(ξ) over Π × Cj−1(β), we have V π, R(π)(ξ⋆) ≤ V πj , R(πj)(ξj). This
holds for every such t.

Consequently, for t ∈ Batchj the executed policy is πj and the realized adversary isRt(π
1, . . . , πt);

thus

PR(T ) ≤
K∑
j=1

∑
t∈Batchj

(
V πj , R(πj)(ξj)− V πj , Rt(π

1,...,πt)(ξ⋆)
)
. (2)

Remark 4 (Within-batch stationarity). Each batch j begins with an (m−1)-episode warm-up under
πj . By stationarity, m-memory, and SLC, the opponent stabilizes to the fixed response Rξ⋆(πj) on
all data-collection rounds of batch j. Let nj denote the number of data-collection episodes in batch
j (excluding warm-up). Then

PR(T ) ≤
K∑
j=1

nj

(
V πj ,Rξ⋆ (πj)(ξj)− V πj ,Rξ⋆ (πj)(ξ⋆)

)
.
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where nj := |Batchj | = ⌊T/K⌋ denotes the number of data-collection episodes in batch j. If
warm-up rounds are included in regret, they add at most H(m−1)K.

B.2 SAME-POLICY VALUE–DISTRIBUTION BOUND

Lemma 5. Assume per-episode returns satisfy 0 ≤ R(τH) ≤ H . For any fixed policy π, any two
joint models ξ1, ξ2, and their corresponding opponent responsesR1,R2,

V π,R1(ξ1) − V π,R2(ξ2) ≤ H
∥∥Pπ,R1

ξ1
− Pπ,R2

ξ2

∥∥
1
.

Proof. Write V π,R(ξ) =
∑

τH
Pπ,R
ξ (τH)R(τH) with R(τH) ∈ [0, H]. Let ∆(τH) = Pπ,R1

ξ1
(τH)−

Pπ,R2

ξ2
(τH). Then

V π,R1(ξ1)− V π,R2(ξ2) =
∑
τH

∆(τH)R(τH) ≤
∑
τH

|∆(τH)| ∥R∥∞

≤ H
∑
τH

|∆(τH)| = H
∥∥Pπ,R1

ξ1
− Pπ,R2

ξ2

∥∥
1
.

Applying Lemma 5 to the inner term of equation 2 and using Remark 4 (i.e., Rt = Rξ⋆(πj) on
data-collection rounds) gives

PR(T ) ≤ H

K∑
j=1

nj ·
∥∥Pπj ,Rξj

(πj)

ξj
− Pπj ,Rξ⋆ (πj)

ξ⋆

∥∥
1
. (3)

C POMG TELESCOPING VIA OPERATOR DECOMPOSITION

Fix a learner policy π and work with marginal learner–trajectory prefixes τh = (o1, a1, . . . , oh, ah).
Within the data-collection rounds (i.e., after the (m−1)-episode warm-up), the response faced by
a fixed π is time-invariant by Remark 4. Thus the learner-observable process under π is time-
homogeneous on these rounds.

C.1 CONTROLLED OOM REPRESENTABILITY AND STABILITY

Proof of Lemma 1. The proof proceeds by establishing the equivalence of the POMG with a finite-
state POMDP, then leveraging this equivalence to derive the existence, causal decomposition, and
stability of its OOM/PSR representation.

Proof of Part 1 (Factorization) Consider the augmented hidden state s′h = (sh, ζ, τA,h−1), where
sh ∈ S is the world state, ζ = [π]m ∈ Zpol is the fixed policy memory within the batch, and
τA,h−1 ∈ (OA ×A)h−1 is the learner-side within-episode history. Within a batch, the learner uses
a fixed policy π and the adversary is stationary and posterior-Lipschitz. At step h:

1. (Adversary response) bh ∼ µ⋆(· | ζ, τA,h−1).

2. (Observation) oh ∼ OA
h (· | sh) (lift of the original emission to the augmented state).

3. (World transition) sh+1 ∼ Th(· | sh, ah, bh).

4. (Memory update) τA,h = (τA,h−1, oh, ah) and ζ ′ = ζ deterministically.

Define the joint one-step kernel of the learner observation and the next augmented state:

P(oh, s′h+1 | s′h, ah) =
∑
bh∈B

µ⋆(bh | ζ, τA,h−1)OA
h (oh | sh)Th(sh+1 | sh, ah, bh)

× 1{ζ ′ = ζ, τA,h = (τA,h−1, oh, ah)}.
(4)
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On the learner marginal, the per-step observation kernel and the controlled transition are the
marginals of equation 4:

O′
h(oh | s′h) := OA

h (oh | sh) =
∑
s′h+1

P(oh, s′h+1 | s′h, ah), (5)

T ′
h(s

′
h+1 | s′h, ah) := P(s′h+1 | s′h, ah) =

∑
o∈OA

P(o, s′h+1 | s′h, ah). (6)

With observation-based rewards rA,h : OA → [0, 1],

R′
h(s

′
h, ah) =

∑
o∈OA

OA
h (o | sh) rA,h(o). (7)

Therefore, within a batch the learner–observable process is a finite POMDP on

S ′ = S × Zpol ×
H−1⋃
k=0

(OA ×A)k,

and the joint law of (oh, s
′
h+1) depends only on (s′h, ah). By standard OOM results for finite

POMDPs in (Liu et al., 2022a), there exist a dimension d, an initial vector qξ0 ∈ Rd
+, and nonnegative

one-step operators Jξ,π
h (oh, ah) such that, for any learner trajectory τA = (o1, a1, . . . , oH , aH),

Pπ
ξ (τA) = 1⊤Jξ,π

H (oH , aH) · · · Jξ,π
1 (o1, a1) q

ξ
0. (8)

Proof of Part 2 (Causal Decomposition) Work on the augmented space of Part 1 with the step-h
distribution ηh over s′h = (sh, ζ, τh−1).

(i) World channel Ŵ θ
h . Given ηh and learner action ah, define a nonnegative kernel that propagates

the world state while indexing by a hypothetical opponent action bh:

(Ŵ θ
hηh)(s

′
h, sh+1, bh; ah) := ηh(s

′
h)Th(sh+1 | sh, ah, bh).

This map depends only on the world kernel Th and carries forward (sh, ζ, τh−1) for downstream
use.

(ii) Adversary channel ĜΦ,π
h (oh, ah). Acting on mh := Ŵ θ

hηh, it marginalizes bh using the adver-
sary response and emits the learner-side observation, while deterministically updating the history:

(ĜΦ,π
h (oh, ah)mh)(oh, s

′
h+1)

:=
∑
s′h

∑
bh

µΦ(bh | ζ, τh−1)OA
h (oh | sh)1{ζ ′ = ζ, τh = (τh−1, oh, ah)}mh(s

′
h, sh+1, bh; ah),

(9)

where s′h+1 = (sh+1, ζ
′, τh). This map carries all dependence on (Φ, π) through µΦ( · | ζ, τh−1)

and (ζ, τh−1) embedded in s′h.

Define the hidden-layer one-step joint kernel as the composition

K̂ξ,π
h (oh, ah) := ĜΦ,π

h (oh, ah) Ŵ
θ
h ,

so that for any s′h it yields Pπ
ξ (oh, s

′
h+1 | s′h, ah) (cf. equation 4 with µ∗ and OA

h ).

Transport to the predictive-state space. By finite-rank realization, there exist parameter-
independent linear maps Lh : Rd→R|S′| and Ph : R|S′|→Rd such that

Jξ,π
h (oh, ah) = Ph K̂ξ,π

h (oh, ah) Lh.

Insert an identity factorization I = QhRh on the hidden space with Qh,Rh linear and parameter-
independent, and set

W θ
h := Rh Ŵ θ

h Lh, GΦ,π
h (oh, ah) := Ph ĜΦ,π

h (oh, ah) Qh.

Then
Jξ,π
h (oh, ah) = GΦ,π

h (oh, ah)W
θ
h . (10)

which is the desired causal factorization.
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Proof of Part 3 (Normalization) Because the operators arise from conditional probability kernels
of a finite controlled POMDP, they are nonnegative and mass-preserving. Concretely, (Liu et al.,
2022a) shows that probabilities of historys and next-observations can be written as operator products
(their Eq. (36)), which for any fixed action a implies∑

o∈OA

1⊤Jξ,π
h (o, a) q = 1⊤q for all q ∈ Rd

+.

Equivalently,
∑

o J
ξ,π
h (o, a) is stochastic on Rd

+ for every a. If the learner randomizes actions
according to π(· | τh−1), then∑

a∈A
π(a | τh−1)

∑
o∈OA

1⊤Jξ,π
h (o, a) q = 1⊤q.

Proof of Part 4 (Stability) Under the κ-step ακ-weakly revealing assumption, the block OOM
telescoping argument of Liu et al. (2022a, Appx. F.1 and Lemma 31) applies verbatim to Jξ,π

h =

GΦ,π
h W θ

h . Hence there exists C(ακ) = Õ(poly(1/ακ)) such that, for any h ∈ {1, . . . , H − 1}, any
v ∈ Rd, and any prefix τh,

E
[∥∥∥Jξ,π

H (OH , AH) · · · Jξ,π
h+1(Oh+1, Ah+1) v

∥∥∥
1

∣∣∣ τh] ≤ C(ακ) ∥v∥1.

C.2 TWO-STAGE TELESCOPING BOUND

We derive a two-stage telescoping bound that separates, at each step, the world and adversary con-
tributions to the same-policy distributional gap. Let

T ξ,π
H (τA) := Jξ,π

H (oH , aH) · · · Jξ,π
1 (o1, a1).

Define unnormalized predictive states

qξ
⋆

h−1(τh−1) := Jξ⋆,π
h−1 (oh−1, ah−1) · · · Jξ⋆,π

1 (o1, a1) q
ξ⋆

0 , qmid,ξ⋆

h (τh−1) := W θ⋆

h qξ
⋆

h−1(τh−1).

Lemma 6 (κ-step two-stage telescoping under weakly revealing). Fix a policy π and two joint
models ξ = (θ,Φ) and ξ⋆ = (θ⋆,Φ⋆). Assume per-step factorization Jξ,π

t = GΦ,π
t W θ

t with
normalization (all maps are nonnegative and ℓ1-nonexpansive after summing over emitted sym-
bols), and assume the model is κ-step ακ-weakly revealing so that the κ-step controlled tail is
ℓ1-stable with constant C(ακ) = Õ(poly(1/ακ)). Partition the horizon into consecutive blocks
Ir = {hr, . . . ,min(hr + κ− 1, H)} with hr = (r− 1)κ+1. Let qξ

⋆

t−1 be the normalized predictive
state under (ξ⋆, π) and qmid,ξ⋆

t := W θ⋆

t qξ
⋆

t−1. Then the total-variation distance between trajectory
laws satisfies∥∥Pπ

ξ − Pπ
ξ⋆

∥∥
1
≤

∥∥qξ0 − qξ
⋆

0

∥∥
1

+ C(ακ)
∑
r

∑
t∈Ir

{∥∥(W θ
t −W θ⋆

t ) qξ
⋆

t−1

∥∥
1

+ E(ot,at)∼pπ
ξ⋆

(·|τt−1)

∥∥(GΦ,π
t −GΦ⋆,π

t

)
(ot, at) q

mid,ξ⋆

t

∥∥
1

}
.

Proof. For integers u ≤ v write Jξ
u:v := Jξ

v · · · Jξ
u and Jξ

u:u−1 := I . For each block Ir, the product-
difference identity gives

Jξ
hr:hr+κ−1 − Jξ⋆

hr:hr+κ−1 =
∑
t∈Ir

(
Jξ
t+1:hr+κ−1

) (
Jξ
t − Jξ⋆

t

) (
Jξ⋆

hr:t−1

)
. (11)

Using the per-step split

Jξ
t − Jξ⋆

t = (GΦ,π
t −GΦ⋆,π

t )W θ⋆

t︸ ︷︷ ︸
adversary

+GΦ,π
t (W θ

t −W θ⋆

t )︸ ︷︷ ︸
world

, (12)
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and applying the above to the nonnegative state qξ
⋆

hr−1, we obtain by the triangle inequality∥∥∥(Jξ
hr:hr+κ−1 − Jξ⋆

hr:hr+κ−1

)
qξ

⋆

hr−1

∥∥∥
1
≤

∑
t∈Ir

(
T adv
t,r + Tworld

t,r

)
, (13)

where

T adv
t,r :=

∥∥∥Jξ
t+1:hr+κ−1 (G

Φ,π
t −GΦ⋆,π

t )W θ⋆

t × Jξ⋆

hr:t−1 q
ξ⋆

hr−1

∥∥∥
1
,

Tworld
t,r :=

∥∥∥Jξ
t+1:hr+κ−1 G

Φ,π
t (W θ

t −W θ⋆

t )× Jξ⋆

hr:t−1 q
ξ⋆

hr−1

∥∥∥
1
.

Normalization implies
∑

(ot,at)
∥GΦ,π

t (ot, at)x∥1 ≤ ∥x∥1 for all x ≥ 0 (and similarly for GΦ⋆,π
t ).

By κ-step weakly revealing, there is C(ακ) such that for any v ≥ 0,

E
[∥∥Jξ⋆

t+1:hr+κ−1v
∥∥
1

∣∣∣ τt] ≤ C(ακ) ∥v∥1,
∥∥Jξ⋆

hr:t−1v
∥∥
1
≤ ∥v∥1. (14)

For the world term, set x := Jξ⋆

hr:t−1b
ξ⋆

hr−1 = qξ
⋆

t−1. Then

E
[
Tworld
t,r

]
≤ C(ακ)

∥∥GΦ,π
t (W θ

t −W θ⋆

t )x
∥∥
1
≤ C(ακ)

∥∥(W θ
t −W θ⋆

t ) qξ
⋆

t−1

∥∥
1
. (15)

For the adversary term, with qmid,ξ⋆

t := W θ⋆

t x,

E
[
T adv
t,r

]
≤ C(ακ)

∥∥(GΦ,π
t −GΦ⋆,π

t ) qmid,ξ⋆

t

∥∥
1
≤ C(ακ)

∑
(ot,at)

∥∥(GΦ,π
t −GΦ⋆,π

t

)
(ot, at) q

mid,ξ⋆

t

∥∥
1
.

(16)

Moreover, κ-step weakly revealing implies a lower bound on the conditional mass over supported
(ot, at), hence ∑

(ot,at)

∥∥(GΦ,π
t −GΦ⋆,π

t

)
(ot, at) q

mid,ξ⋆

t

∥∥
1

≤ C(ακ)E(ot,at)∼pπ
ξ⋆

(·|τt−1)

∥∥(GΦ,π
t −GΦ⋆,π

t

)
(ot, at) q

mid,ξ⋆

t

∥∥
1
,

(17)

absorbing this factor into C(ακ).

Finally, taking expectations in the block bound, summing over t ∈ Ir and over all r, and adding the
initial-state discrepancy yields the claimed inequality.

C.3 FROM SIGNATURES TO OPERATORS

Lemma 7 (Lipschitz Transfer). Assume Posterior-Lipschitz and the factorization Jξ,π
h = GΦ,π

h W θ
h

with normalization (Lemma 1). Then there exists LG = O(L) such that for any h, policies π, ν, and
v ∈ Rd

+,∑
(o,a)

∥∥(GΦ,π
h −GΦ,ν

h

)
(o, a) v

∥∥
1
≤ LG ∆σ(π, ν) ∥v∥1, ∆σ(π, ν) := max

i∈[m]

∥∥Si
τB (π)−S

i
τB (ν)

∥∥
1
.

The same bound holds with Φ replaced by Φ⋆.

Proof. By the causal factorization equation 10 and the adversary channel equation 9, together with
the finite-rank realization in Sec. C.1, there exist nonnegative linear maps R̃h(o, a, b) : Rd

+ → Rd
+

(independent of (Φ, π)) such that equation 18 holds.

GΦ,π
h (o, a) v =

∑
b

gh(b | τB ;π) R̃h(o, a, b) v (∀ v ∈ Rd
+). (18)

Since
∑

(o,a) J
ξ,π
h (o, a) is stochastic for every π, taking gh as a point mass gives∑

(o,a)

R̃h(o, a, b) is stochastic on Rd
+ ⇒

∑
(o,a)

∥R̃h(o, a, b) v∥1 ≤ ∥v∥1 (∀ v ∈ Rd
+). (19)
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By equation 18,(
GΦ,π

h −GΦ,ν
h

)
(o, a) v =

∑
b

[
gh(b | τB ;π)− gh(b | τB ; ν)

]
R̃h(o, a, b) v.

Summing over (o, a) and using equation 19,∑
(o,a)

∥∥(GΦ,π
h −GΦ,ν

h

)
(o, a) v

∥∥
1
≤

(∑
b

∣∣gh(b | τB ;π)− gh(b | τB ; ν)
∣∣) ∥v∥1.

By Posterior-Lipschitz,
∑

b |gh(b | τB ;π) − gh(b | τB ; ν)| ≤ L∆σ(π, ν), which proves the claim
with LG := L. The case Φ⋆ is identical.

D CONSTRAINTS FOR OPERATOR ESTIMATES FROM BATCHED OMLE

This section converts the high-probability joint-likelihood guarantee (Proposition 1) into quantitative
constraints on per-step operator errors.

Fix an arbitrary batch j ∈ {1, . . . ,K}. Work on the high-probability event where the optimistic
model ξj = (θj ,Φj) chosen for batch j satisfies ξj ∈ Cj−1(β). Hence, for the historical dataset
Dj−1, ∑

(πi,τ i
A)∈Dj−1

log
Pπi

ξ⋆(τ
i
A)

Pπi

ξj
(τ iA)

≤ β.

For any episode i and step h, let pξ(· | τh−1;π
i) ∈ ∆(OA × A) be the one-step conditional. Let

qξ
⋆

h−1(τh−1) be the normalized true prediction state and qmid,ξ⋆

h (τh−1) := W θ⋆

h qξ
⋆

h−1(τh−1).

Proposition 2 (Likelihood-to-Squared-TV Bound on Past Data). At the beginning of batch j, for
ξj ∈ Cj−1(β), ∑

(πi,τ i
A)∈Dj−1

H∑
h=1

E
τh−1∼Pπi

ξ⋆
KL

(
pξ⋆(· | τh−1;π

i) ∥ pξj (· | τh−1;π
i)
)
≤ β, (20)

∑
(πi,τ i

A)∈Dj−1

H∑
h=1

E
τh−1∼Pπi

ξ⋆

∥∥pξ⋆(· | τh−1;π
i)− pξj (· | τh−1;π

i)
∥∥2
1
≤ 2β. (21)

Proof. Taking expectation of the joint log-likelihood ratio under Pπi

ξ⋆ and using the chain rule,

EPπi

ξ⋆

[
log

Pπi

ξ⋆(τA)

Pπi

ξj
(τA)

]
=

H∑
h=1

E
τh−1∼Pπi

ξ⋆
KL

(
pξ⋆(· | τh−1;π

i) ∥ pξj (· | τh−1;π
i)
)
.

Summing over (πi, τ iA) ∈ Dj−1 gives equation 20. Pinsker’s inequality, applied conditionally on
each τh−1, yields ∥pξ⋆ − pξj∥21 ≤ 2KL(pξ⋆∥pξj ), which implies equation 21 after summing and
taking expectations.

Corollary 3 (Cross-signature propagation of adversary errors). For any step h, policies π, ν, and
v ∈ Rd

+,∑
(o,a)

∥∥(GΦ,π
h −GΦ⋆,π

h

)
(o, a) v

∥∥
1
≤

∑
(o,a)

∥∥(GΦ,ν
h −GΦ⋆,ν

h

)
(o, a) v

∥∥
1
+ 2LG ∆σ(π, ν) ∥v∥1,

where ∆σ(π, ν) := maxi∈[m] ∥Si
τB (π)− Si

τB (ν)∥1 and LG is from Lemma 7.

Proof. Triangle inequality: ∥GΦ,π
h − GΦ⋆,π

h ∥ ≤ ∥GΦ,π
h − GΦ,ν

h ∥ + ∥G
Φ,ν
h − GΦ⋆,ν

h ∥ + ∥GΦ⋆,ν
h −

GΦ⋆,π
h ∥. Apply Lemma 7 to the first and third terms.
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Lemma 8 (Conditional distribution Lipschitzness). For any prefix τh−1 and policy π,∥∥pξ⋆(· | τh−1;π)− pξ(· | τh−1;π)
∥∥
1
≤

∥∥ [Jξ,π
h − Jξ⋆,π

h ] qξ
⋆

h−1

∥∥
1
.

Proof. Let q := qξ
⋆

h−1 with 1⊤q = 1. By Lemma ??(1,3), pξ(· | τh−1;π) = 1⊤Jξ,π
h (·) q. Then

∥pξ⋆−pξ∥1 =
∑
(o,a)

∣∣1⊤(Jξ⋆,π
h −Jξ,π

h )(o, a) q
∣∣ ≤ ∑

(o,a)

∥∥(Jξ,π
h −J

ξ⋆,π
h )(o, a) q

∥∥
1
= ∥[Jξ,π

h −J
ξ⋆,π
h ] q∥1.

Lemma 9 (One-step causal split). For any prefix τh−1, policy π, and q := qξ
⋆

h−1 ≥ 0,∑
(oh,ah)

∥∥ [Jξ,π
h (oh, ah)− Jξ⋆,π

h (oh, ah)] q
∥∥
1
≤

∥∥ [W θ
h −W θ⋆

h ] q
∥∥
1︸ ︷︷ ︸

world

+ Ccm(ακ)E(oh,ah)∼pξ⋆ (·|τh−1;π)

∥∥ [GΦ,π
h (oh, ah)−GΦ⋆,π

h (oh, ah)] q
mid,ξ⋆

h

∥∥
1︸ ︷︷ ︸

adversary

,

where Ccm(ακ) = Õ(poly(1/ακ)) depends only on the κ-step weakly revealing condition.

Proof. Since Jξ,π
h = GΦ,π

h W θ
h ,

Jξ,π
h − Jξ⋆,π

h = GΦ,π
h (W θ

h −W θ⋆

h ) + (GΦ,π
h −GΦ⋆,π

h )W θ⋆

h .

Summing ℓ1-norms and using nonnegativity plus
∑

(o,a) J
ξ,π
h (o, a) stochastic (Lemma 1(3)),∑

(o,a)

∥GΦ,π
h (o, a) (W θ

h −W θ⋆

h )q∥1 ≤ ∥(W θ
h −W θ⋆

h )q∥1.

For the adversary term, for nonnegative f and full-support q′,
∑

(o,a) f(o, a) ≤
(max(o,a) 1/q

′(o, a))Eq′ [f(o, a)]. Take q′ = pξ⋆(· | τh−1;π) and f(o, a) = ∥(GΦ,π
h −

GΦ⋆,π
h )(o, a) qmid,ξ⋆

h ∥1. The κ-step weakly revealing condition yields the controlled-mass bound
max(o,a) 1/q

′(o, a) ≤ Ccm(ακ).

Proposition 3 (Operator Quadratic Constraints on Past Data). There exists C(ακ) =

Õ(poly(1/ακ)) such that, at the beginning of any batch j and for ξj = (θj ,Φj) ∈ Cj−1(β),∑
(πi,τ i

A)∈Dj−1

H∑
h=1

E
τh−1∼Pπi

ξ⋆

∥∥[W θj
h −W θ⋆

h ] qξ
⋆

h−1

∥∥2
1
≤ C(ακ)β, (22)

∑
(πi,τ i

A)∈Dj−1

H∑
h=1

E
τh−1∼Pπi

ξ⋆

(oh,ah)∼pξ⋆ (·|τh−1;π
i)

∥∥[GΦj ,π
i

h (oh, ah)−GΦ⋆,πi

h (oh, ah)] q
mid,ξ⋆

h

∥∥2
1
≤ C(ακ)β,

(23)

and an analogous bound holds for the initial prediction state.

Proof. From Proposition 2,∑
(πi,τ i

A)∈Dj−1

H∑
h=1

E
τh−1∼Pπi

ξ⋆

∥∥pξ⋆(· | τh−1;π
i)− pξj (· | τh−1;π

i)
∥∥2
1
≤ 2β. (24)

Fix (i, h). Let q := qξ
⋆

h−1 and qmid
h := W θ⋆

h q.

World channel. The κ-step weakly revealing assumption implies that the block emission map
M

(κ)
h (π) admits a right inverse with

∥∥M (κ) †
h

∥∥
1→1

≤ poly(1/ακ) on the cone of reachable pre-

dictive states, while controlled OOM guarantees
∥∥M (κ)

h

∥∥
1→1
≤ 1. Together these yield two-sided
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ℓ1 bounds between conditional-distribution errors and operator perturbations, i.e., a bi-Lipschitz
relation on reachable states. Hence there exists C̄θ(ακ) = Õ(poly(1/ακ)) with∥∥[W θj

h −W θ⋆

h ] q
∥∥
1
≤ C̄θ(ακ)

∥∥pξ⋆ − pξj
∥∥
1
. (25)

Squaring equation 25, taking expectation over τh−1 ∼ Pπi

ξ⋆ , summing over (i, h), and invoking
equation 24 gives equation 22 with constant 2 C̄θ(ακ)

2.

Adversary channel. Similarly, there exists C̃Φ(ακ) = Õ(poly(1/ακ)) such that for all (oh, ah) in
the support of pξ⋆(· | τh−1;π

i),∥∥[GΦj ,π
i

h (oh, ah)−GΦ⋆,πi

h (oh, ah)] q
mid
h

∥∥
1
≤ C̃Φ(ακ)

∥∥pξ⋆ − pξj
∥∥
1
. (26)

Squaring equation 26 and taking expectation over (oh, ah) ∼ pξ⋆(· | τh−1;π
i) yields

E(oh,ah)

∥∥[GΦj ,π
i

h −GΦ⋆,πi

h ] qmid
h

∥∥2
1
≤ C̃Φ(ακ)

2
∥∥pξ⋆ − pξj

∥∥2
1
.

Taking expectation over τh−1, summing (i, h), and using equation 24 gives equation 23 with con-
stant 2 C̃Φ(ακ)

2.

Finally set C(ακ) := 2max{C̄θ(ακ)
2, C̃Φ(ακ)

2}.

E BOUNDING CUMULATIVE REGRET VIA BATCHED ELUDER ARGUMENT

We adapt the batched “estimation-to-regret” bridge used by Nguyen-Tang & Arora (2024): operator
quadratic constraints obtained from past data (Proposition 3) are transported to the current batch and
then converted into a linear-in-K bound via an ℓ2-Eluder counting argument. The key method is a
“bad batch” analysis ensuring that large in-batch errors occur only Õ(Eluder dim) many times.

A batch j is bad if the optimistic model ξj = (θj ,Φj) has large in-batch squared error (on the true
distribution) under the fixed policy πj of that batch. Define

Eworld(j) :=
∑

t∈Batchj

H∑
h=1

E
τh−1∼P

πj
ξ⋆

∥∥∥[W θj
h −W θ⋆

h ] qξ
⋆

h−1

∥∥∥2
1
,

Eadv(j) :=
∑

t∈Batchj

H∑
h=1

E
τh−1∼P

πj
ξ⋆

(oh,ah)∼pξ⋆ (·|τh−1;πj)

∥∥∥[GΦj ,πj

h −G
Φ⋆,πj

h ] qmid,ξ⋆

h

∥∥∥2
1
.

Let C(ακ), β be from Proposition 3. Define

Kbad
world := {j : Eworld(j) > C(ακ)β},Kbad

adv := {j : Eadv(j) > C(ακ)β},Kbad := Kbad
world∪Kbad

adv .

E.1 TRANSPORTING HISTORICAL OPERATOR CONSTRAINTS TO THE CURRENT BATCH

Fix batch j and write π := πj . Let Vj−1 be the set of policies appearing in Dj−1, and choose a
nearest historical policy

νj ∈ arg min
ν∈Vj−1

∆σ(π, ν).

Lemma 10 (Historical to Current Operator Control at Batch j). There exist C∗(ακ), C
′
∗(ακ) =

Õ(poly(1/ακ)) such that
j−1∑
k=1

H∑
h=1

Eτh−1∼Pπk
ξ⋆

∥∥∥[W θj
h −W θ⋆

h ] qξ
⋆

h−1

∥∥∥2
1
≤ C∗(ακ)β, (27)

j−1∑
k=1

H∑
h=1

E τh−1∼Pπk
ξ⋆

(oh,ah)∼pξ⋆ (·|τh−1;π)

∥∥∥[GΦj ,π
h (oh, ah)−GΦ⋆,π

h (oh, ah)] q
mid,ξ⋆

h

∥∥∥2
1
≤ C∗(ακ)β

+C ′
∗(ακ)∆σ(π, νj)

2 Γj−1. (28)

where Γj−1 :=
∑j−1

k=1

∑H
h=1 Eτh−1∼Pπk

ξ⋆
∥qmid,ξ⋆

h ∥21 is finite.
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Proof. World part equation 27 is Proposition 3 applied to (θj , ·), so C∗(ακ) = C(ακ). For the
adversary part, Corollary 3 with v = qmid,ξ⋆

h gives∑
(o,a)

∥[GΦj ,π
h −GΦ⋆,π

h ](o, a) v∥1 ≤
∑
(o,a)

∥[GΦj ,νj

h −G
Φ⋆,νj

h ](o, a) v∥1 + 2LG ∆σ(π, νj) ∥v∥1.

Taking E(o,a)∼pξ⋆ (·|τh−1;π), squaring and using (a+ b)2 ≤ 2a2 + 2b2 yields

E∥[GΦj ,π
h −GΦ⋆,π

h ] v∥21 ≤ 2E∥[GΦj ,νj

h −G
Φ⋆,νj

h ] v∥21 + 8L2
G ∆σ(π, νj)

2 ∥v∥21.
Summing over k < j, h ≤ H and invoking Proposition 3 at νj proves equation 28 with C ′

∗(ακ) =

8L2
G (absorbing polynomial factors into Õ(poly(1/ακ))).

E.2 BOUNDING THE NUMBER OF BAD BATCHES VIA ELUDER DIMENSION

Proposition 4 (Cardinality of Bad Batches). Let F [κ]
Θ and F [κ]

Ψ be the κ-window world/adversary
error classes with ℓ2-Eluder dimensions d

(θ)
E,[κ] and d

(Φ)
E,[κ], respectively. On the high-probability

event of Proposition 1, ∣∣Kbad
world

∣∣ ≤ Õ(d(θ)E,[κ]

)
,

∣∣Kbad
adv

∣∣ ≤ Õ(d(Φ)
E,[κ]

)
.

Proof of Proposition 4. We give the full proof for
∣∣Kbad

world

∣∣; the adversary case is analogous after
transporting historical constraints to the current batch via Lemma 10.

Classes and per-batch error. Define the κ-window world error class

F [κ]
Θ :=

{
(π, τh−1) 7→

min(h+κ−1, H)∑
t=h

∥∥[W θ
t −W θ⋆

t ] qξ
⋆

t−1

∥∥2
1
: θ ∈ Θ

}
,

with ℓ1-Eluder dimension d
(θ)
E,[κ]. For batch j, define

E [κ]world(j) :=

H∑
h=1

E
τh−1∼P

πj
ξ⋆

min(h+κ−1, H)∑
t=h

∥∥[W θj
t −W θ⋆

t ] qξ
⋆

t−1

∥∥2
1

 .

By definition of bad batches, j ∈ Kbad
world iff E [κ]world(j) > C0, where we set C0 := C∗(ακ)β from

Proposition 3 (absorbing universal constants).

Step 1: Dyadic decomposition and per-level counting. For each integer i ≥ 1, let

Ki :=
{
j ∈ Kbad

world : E [κ]world(j) ∈ [C02
i−1, C02

i)
}
.

Write Ki = {j1 < · · · < jM} with M = |Ki|. Then
M∑

m=1

E [κ]world(jm) ≥ M C0 2
i−1. (29)

Step 2: Historical precondition for each selected model. Each θjm is selected using only the
historical data Djm−1. By Proposition 3 (world part),∑

k<jm

H∑
t=1

Eτt−1∼Pπk
ξ⋆

∥∥[W θjm
t −W θ⋆

t ] qξ
⋆

t−1

∥∥2
1
≤ C0.

Since each κ-window
∑min(h+κ−1,H)

t=h (·) overlaps any fixed step t at most κ times, the same histor-
ical budget controls the κ-window loss up to a factor κ:

∑
k<jm

H∑
h=1

Eτh−1∼Pπk
ξ⋆

min(h+κ−1, H)∑
t=h

∥∥[W θjm
t −W θ⋆

t ] qξ
⋆

t−1

∥∥2
1

 ≤ κC0, (30)
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which we absorb into C0 henceforth.

Thus, for the sequence {θjm}Mm=1, each element fits all past data with κ-window squared-loss budget
C0 by equation 30, yet incurs new loss at least C02

i−1 on its own batch by equation 29. The ℓ2-type
Eluder counting principle (applied to squared ℓ1 losses over F [κ]

Θ with dimension d
(θ)
E,[κ]) gives

M∑
m=1

E [κ]world(jm) ≤ Õ
(
d
(θ)
E,[κ] C0 2

i
)
. (31)

Comparing equation 29 and equation 31 yields |Ki| ≤ Õ
(
d
(θ)
E,[κ]

)
.

Step 3: Summation over levels. Let MaxError denote the maximum feasible E [κ]world(j) (polyno-
mially bounded). Then

Kbad
world ⊆

⌈log2(MaxError/C0)⌉⋃
i=1

Ki,

so ∣∣Kbad
world

∣∣ ≤ ∑
i

|Ki| ≤ Õ
(
d
(θ)
E,[κ]

)
,

absorbing the logarithmic factor into Õ(·).

Adversary case. Transport historical constraints to the current batch’s policy πj via Lemma 10:

∑
k<j

H∑
h=1

E τh−1∼Pπk
ξ⋆

(oh,ah)∼pξ⋆ (·|τh−1;πj)

min(h+κ−1, H)∑
t=h

∥∥[GΦj ,πj

t (ot, at)−G
Φ⋆,πj

t (ot, at)] q
mid,ξ⋆

t

∥∥2
1

 ≤ C̃0,

with C̃0 = C∗(ακ)β up to a constant depending on ακ and the covering radius used to select a
nearest historical policy. Applying the Eluder argument to

G[κ]Ψ :=
{
(π, τh−1, oh, ah) 7→

min(h+κ−1, H)∑
t=h

∥∥[GΦ,π
t (ot, at)−GΦ⋆,π

t (ot, at)] q
mid,ξ⋆

t

∥∥2
1
: Φ ∈ Ψ

}
,

whose ℓ2-Eluder dimension is d(Φ)
E,[κ], yields

∣∣Kbad
adv

∣∣ ≤ Õ(d(Φ)
E,[κ]

)
.

E.3 FINAL REGRET BOUND

We combine the preceding results by separating the contribution of bad and good batches. Recall
that on data-collection rounds of batch j the realized adversary is stationary (Remark 4), so the
per-round instantaneous regret equals

V πj , R(πj)(ξj)︸ ︷︷ ︸
optimistic value

− V πj , Rξ⋆ (πj)(ξ⋆)︸ ︷︷ ︸
true value

.

Lemma 11 (Regret on Bad Batches). Let Kbad be the set of bad batches. Then∑
j∈Kbad

∑
t∈Batchj

(
V πj , R(πj)(ξj)− V πj , Rξ⋆ (πj)(ξ⋆)

)
≤ Õ

(
(d

(θ)
E + d

(Φ)
E ) · T

K
·H

)
.

Proof. By Proposition 4, |Kbad| ≤ Õ(d(θ)E,[κ] + d
(Φ)
E,[κ]). For any batch j and any data-collection

round t ∈ Batchj , Lemma 5 with rewards in [0, 1] implies V πj , R(πj)(ξj) − V πj , Rξ⋆ (πj)(ξ⋆) ≤
H

∥∥Pπj ,R(πj)
ξj

− Pπj ,Rξ⋆ (πj)

ξ⋆

∥∥
1
≤ 2H. Hence the regret of one bad batch is at most 2H · |Batchj |,

and with |Batchj | ≍ T/K the stated bound follows.
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Lemma 12 (Regret on Good Batches). Let Kgood be the complement of Kbad. Then∑
j∈Kgood

∑
t∈Batchj

(
V πj , R(πj)(ξj)−V πj , Rξ⋆ (πj)(ξ⋆)

)
≤ Õ

(
H
√

(d
(θ)
E,[κ] + d

(Φ)
E,[κ])T C(ακ)β

)
.

Proof. Fix a good batch j. By Lemma 5 and Lemma 6, the per-round regret is bounded by H times
the same-policy total variation, which further splits into a world part and an adversary part (plus an
initial-state term that is accounted for identically). Summing linearly over all data-collection rounds
in good batches and applying Cauchy–Schwarz yields:

∑
j∈Kgood

∑
t∈Batchj

WorldErrort ≤
√
T

( ∑
j∈Kgood

Eworld(j)

)1/2

,

∑
j∈Kgood

∑
t∈Batchj

AdvErrort ≤
√
T

( ∑
j∈Kgood

Eadv(j)
)1/2

.

For a good batch j, definition of bad batch ensures that the optimistic model ξj has small in-batch
squared errors relative to the historical fit precondition from Proposition 3. As in ?, this lets us apply
the ℓ2-type Eluder counting principle over the sequence of good-batch rounds, giving∑

j∈Kgood

Eworld(j) ≤ Õ
(
d
(θ)
E,[κ] C(ακ)β

)
,

∑
j∈Kgood

Eadv(j) ≤ Õ
(
d
(Φ)
E,[κ] C(ακ)β

)
.

Combining the two components and multiplying by the factor H from Lemma 5 yields the claim.

Proof of Theorem 1. Let dE := d
(θ)
E,[κ] + d

(Φ)
E,[κ]. By Lemma 11 and Lemma 12, and adding the

warm-up cost H(m− 1)K (Remark 4),

PR(T ) ≤ Õ
(
H
√

dE T β
)︸ ︷︷ ︸

good batches

+ Õ
(
H dE T/K

)︸ ︷︷ ︸
bad batches

+ H(m− 1)K︸ ︷︷ ︸
warm-up

.

The first term is K-independent. Balancing the second and third terms by K =
⌈√

dE,[κ] T
⌉

yields

a combined contribution Õ
(
Hm

√
dE,[κ] T

)
, which together with the good-batch term gives the

stated regret bound.

F SUPPLEMENTARY EXPLAINATIONS FOR ASSUMPTIONS AND LEMMAS

F.1 EXPLAINATIONS FOR POSTERIOR-LIPSCHITZ

In this part, we will present a counterexample showing that in multi-step weakly revealing dynam-
ics, together with a bounded-memory and stationary opponent (without Posterior-Lipschitz), do not
suffice to guarantee sublinear policy regret in POMGs.

Theorem 2 (Counterexample under multi-step weakly revealing). Fix a horizon H ≥ 2 and an
action-set size |A| = A ≥ 2. There exists a two-player zero-sum POMG such that:

(i) The adversary is stationary and 1-memory, but not posterior-Lipschitz.

(ii) The world is (κ=2, α=1)-weakly revealing.

(iii) For any learning algorithm and any T ∈ N+, if the instance is drawn uniformly at random
from a finite family, then with probability at least 1/2 over the instance draw,

PR(T ) ≥ 1
2 min{AH−2, T }.
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Proof. World. Let S = {s1, s2, s3, s4}, |A| = A ≥ 2, and B = {bcoop, bpunish}. The observation
alphabet is O = {o0, o+, o−}. For all h ∈ [H],

Eh(· | s1) = Eh(· | s2) = δo0 , Eh(· | s3) = δo+ , Eh(· | s4) = δo− .

Thus s1, s2 are aliased in one step, while s3, s4 are distinguishable. The initial state is s1. The
learner receives reward 1 iff sH = s3, and 0 otherwise.

Transitions are controlled only by the adversary’s action; for any a ∈ A,

Th(· | s1, a, bcoop) = δs3 , Th(· | s2, a, bcoop) = δs4 ,

Th(· | s3, a, bcoop) = δs3 , Th(· | s4, a, bcoop) = δs4 ,

Th(· | s, a, bpunish) = δs4 for all s ∈ S.

For any h, consider the two-step emission matrix M
(2)
h with rows indexed by (oh, oh+1) and

columns by s ∈ S. Under bcoop, the two-step sequences are

s1 7→ (o0, o
+), s2 7→ (o0, o

−), s3 7→ (o+, o+), s4 7→ (o−, o−),

which yield a 4×4 identity submatrix of M (2)
h . Hence M (2)

h has full column rank and σmin(M
(2)
h ) =

1, so the world is (κ=2, α=1)-weakly revealing.

Adversary. Let Π denote the learner’s policy class. Consider deterministic “open-loop” policies
that fix the first H − 2 actions and are arbitrary afterwards:

Π̄ :=
{
π(u) : π

(u)
h (· | τA) = δuh

for all reachable τA, 1 ≤ h ≤ H − 2
}
,

where u = (u1, . . . , uH−2) ∈ AH−2. There are M := |Π̄| = AH−2 such policies.

Draw a “secret” sequence u⋆ uniformly from AH−2, let π⋆ ∈ Π̄ be the corresponding open-loop
policy, and let Π(u⋆) ⊆ Π be the set of policies that are behaviorally equivalent to π⋆ on all reachable
histories when the adversary plays bcoop in all steps.

Define a stationary response map g : Π→ Ψ by

g(π) =

{
µcoop, π ∈ Π(u⋆),

µpunish, otherwise,

where µcoop (µpunish) plays bcoop (bpunish) at every stage. Across episodes we set Rt(π
1:t) :=

g(πt). Then: Rt depends only on πt (so the adversary is 1-memory), the same g is used for all t
(stationary) .

On the other hand, g is not Posterior-Lipschitz. Indeed, fix any h and consider any τB,h =
(oB,1, bcoop, oB,2, bpunish, oB,3, bcoop, . . .), where the action (bcoop) and bpunish are alternated through-
out the episode and (oB,1, . . . , oB,h) is any feasible sequence of observations under the alternate
action sequences (bcoop, bpunish, . . . , ). Since τB,h above does not correspond to the scenario that
the adversary plays bcoop in all steps, there exist two policies π ∈ Π(u∗) and ν /∈ Π(u∗) such that
π(·|τA,h) = ν(·|τA,h), for all τA,h such that Pr(τA,h|τB,h) > 0. This clearly violates the Posterior-
Lipschitz condition.

Regret lower bound. For any π ∈ Π, letting V (π, µ) be the value under stationary adversary policy
µ, the transition structure implies

V (π, µcoop) = 1, V (π, µpunish) = 0.

Fix the instance u⋆ and take comparator π⋆ ∈ Π(u⋆). For every episode t,

V (π⋆, Rt([π
⋆]t)) = 1, V (πt, Rt(π

1:t)) = 1{πt ∈ Π(u⋆)}.

Hence

PR(T ) ≥
T∑

t=1

(
1− 1{πt ∈ Π(u⋆)}

)
=

T∑
t=1

1{πt /∈ Π(u⋆)}.
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We now bound from below the number of episodes with πt /∈ Π(u⋆) when u⋆ is drawn uniformly.
For any fixed π ∈ Π, there is at most one sequence u⋆ such that π ∈ Π(u⋆), so

Pr
u⋆

(
π ∈ Π(u⋆)

)
≤ 1

M , M = AH−2.

Moreover, as long as π1, . . . , πt−1 /∈ Π(u⋆), the adversary plays µpunish in episodes 1, . . . , t − 1.
Under this policy the state is sent to s4 at the first step and remains there, so the entire history
consists of the same observation stream (o0, o

−, . . . , o−), independent of u⋆. Thus, conditional on
{π1, . . . , πt−1 /∈ Π(u⋆)}, the instance u⋆ is still uniform and independent of πt, and

Pr
(
πt ∈ Π(u⋆)

∣∣π1, . . . , πt−1 /∈ Π(u⋆)
)
≤ 1

M .

Let T ′ := min{T,M/2}. By a union bound,

Pr
(
∃t ≤ T ′ : πt ∈ Π(u⋆)

)
≤ T ′

M ≤ 1
2 ,

so
Pr

(
∀t ≤ T ′ : πt /∈ Π(u⋆)

)
≥ 1

2 .

On this event,

PR(T ) ≥
T ′∑
t=1

1{πt /∈ Π(u⋆)} = T ′ ≥ 1
2 min{T,M} = 1

2 min{T,AH−2},

which proves the claim.

F.2 PROOFS OF SUPPORTING LEMMAS

Proof of Lemma 2. We prove the adversary case and the world case follows by the substitutions
(B, dadv,Φ

⋆, w) 7→ (OA, dw,W
⋆, u).

By Example 1, for any history τ the adversary response is linear: g(x) = Φ⋆w(τ), where the
operator Φ⋆ ∈ RB×dadv is unknown and the weights w(τ) ∈ Rdadv are bounded (e.g., w(τ) ∈
Rdadv , so ∥w(x)∥2 ≤ 1).

Fix any linear reparameterization that collects exactly the free entries of Φ⋆ into a vector θ ∈ Rd

with d = B dadv. Write this as θ = vec(Φ⋆) for some Φ⋆ ∈ RB×dadv . For each coordinate
i ∈ {1, . . . , B}, define the feature map

φ(τ, i) := ei ⊗ w(τ) ∈ Rd, ∥φ(τ, i)∥2 = ∥w(τ)∥2 ≤ 1,

and the corresponding scalar output yi(x) := e⊤i g(x). By construction,

yi(τ) = e⊤i g(τ) = e⊤i Φ̃
⋆w(τ) =

(
e⊤i ⊗ w(τ)⊤

)
vec(Φ̃⋆) = ⟨φ(τ, i), θ⟩.

Hence each coordinate belongs to a d-parameter linear class with bounded features. By Exam-
ple 4 of Russo & Van Roy (2013), the ε-eluder dimension of such a class is O

(
d log(1/ε)

)
. Ab-

sorbing logarithmic factors into Õ(·) yields dimE(G[κ]Φ ) = Õ(dadv B
)
. The same argument with

(OA, dw,W
⋆, u) gives dimE(F [κ]

θ ) = Õ(dw Oκ
A

)
.
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