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ABSTRACT

Detecting medical conditions from speech acoustics is fundamentally a weakly-
supervised learning problem: a single, often noisy, session-level label must be
linked to nuanced patterns within a long, complex audio recording. This task is
further hampered by severe data scarcity and the subjective nature of clinical an-
notations. While semi-supervised learning (SSL) offers a viable path to leverage
unlabeled data, existing audio methods often fail to address the core challenge
that pathological traits are not uniformly expressed in a patient’s speech. We
propose a novel, audio-only SSL framework that explicitly models this hierar-
chy by jointly learning from frame-level, segment-level, and session-level repre-
sentations within unsegmented clinical dialogues. Our end-to-end approach dy-
namically aggregates these multi-granularity features and generates high-quality
pseudo-labels to efficiently utilize unlabeled data. Extensive experiments show
the framework is model-agnostic, robust across languages and conditions, and
highly data-efficient—achieving, for instance, 90% of fully-supervised perfor-
mance using only 11 labeled samples. This work provides a principled ap-
proach to learning from weak, far-end supervision in medical speech analy-
sis. The code is available at https://anonymous.4open.science/r/
semi_pathological-93F8.

1 INTRODUCTION

The use of speech acoustics as a biomarker for disease detection presents a compelling yet challeng-
ing machine learning problem (Strimbu & Tavel, 2010; Califf, 2018). The core task is to learn a
function that maps a raw audio signal, which is a complex, high-dimensional time series, to a clini-
cal label. However, this problem is characterized by several fundamental constraints that complicate
standard supervised learning approaches. First, the field is plagued by severe data scarcity. An-
notating medical speech data requires costly expert knowledge from clinicians, making large-scale
dataset collection difficult (Niu et al., 2023; Koops et al., 2023; Wu et al., 2023a). Second, the labels
themselves are often inherently noisy. Clinical ratings, such as depression severity scores, can suffer
from significant inter-rater subjectivity, meaning the supervision signal is not a ground-truth value
but a noisy human assessment (Berisha & Liss, 2024).

The most distinctive challenge is the problem of weak, far-end supervision. In a typical screening
scenario, a single label (e.g., “depressed” or “not depressed”) is provided for an entire multi-turn
conversation. This session-level label is the only direct supervision signal. However, to model the
conversation, the audio must be processed into a sequence of fine-grained representations (e.g., at the
frame or clip level). A critical modeling assumption is that the pathological state is not uniformly
expressed throughout the session; a patient may not reveal symptomatic speech patterns in every
line of response. Thus, the model must learn to identify the most salient, discriminative segments
within a long sequence that led to the overall clinical assessment, without any direct segment-level
guidance (Zolnoori et al., 2023; Agbavor & Liang, 2022; Martı́nez-Nicolás et al., 2021).

Existing methods often sidestep this granularity issue by segmenting long recordings and treating
each segment as an independent sample (Wu et al., 2023b; Cheong et al., 2025; Li et al., 2025a),
implicitly assuming uniform expression of symptoms—an assumption that is frequently invalid (Li
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et al., 2025b; Han et al., 2023). Furthermore, the significant domain shift between general speech
tasks and clinical applications hinders the direct transfer of existing semi-supervised learning frame-
works (Diao et al., 2023; Park et al., 2020).

To address these core machine learning challenges, we propose a novel semi-supervised framework
designed for audio-based medical detection. Our approach explicitly models the hierarchy of in-
formation in a clinical conversation: from frame-level acoustics to clip-level utterances to the final
session-level diagnosis. We introduce a method to dynamically aggregate and weight these multi-
granularity representations to match the far-end supervision signal, effectively learning to pinpoint
critical segments within a session. By leveraging unlabeled data and explicitly modeling the sparse
nature of symptomatic expressions, our method achieves robust performance even with extremely
limited and noisy labeled data.

Experiments on two datasets incorporating depression and Alzheimer’s detection demonstrate that
with only approximately 11 labeled samples, our method can achieve 90% of the performance at-
tained using the full training dataset. We further validate its effectiveness across diverse languages,
medical conditions, and speech encoders, showing it matches fully-supervised performance using
only 30% of the labels. A key feature of our method is its ability to dynamically generate high-
quality pseudo-labels during training, efficiently leveraging unlabeled data without additional infer-
ence cost. This design enhances robustness, facilitates cross-lingual application, and aligns closely
with real-world clinical scenarios. The main contributions of our work are as follows:

• We propose a novel, audio-only, model-agnostic semi-supervised learning framework for
medical diagnosis from spoken dialogues. This framework is capable of simultaneously
modeling data at multiple granularities, thereby enabling more comprehensive data utiliza-
tion.

• We introduce a single-stage, end-to-end semi-supervised training method based on this
framework. This approach processes complete long-form audio dialogues in a single pass
and performs online updates of pseudo-labels to better leverage unlabeled data, all without
incurring additional inference cost.

• We validate the effectiveness of our method across diverse languages, medical conditions,
and speech encoder models. Our experiments demonstrate that with only 30% of the la-
beled data, our approach achieves performance comparable to its fully supervised counter-
part trained on 100% of the data.

2 PROBLEM STATEMENT

Figure 1: Pathological speech detection in
clinical diagnostic dialogues.

This section provides a formal definition of the semi-
supervised pathology detection task for speech-based
clinical dialogues (illustrated in Figure 1). We begin
by outlining the core formulation and the primary chal-
lenges inherent to this learning paradigm.

The problem is initially formulated as a C class semi-
supervised classification problem, where one class
represents healthy participants and the remaining C−1
classes correspond to specific pathological conditions.

The labeled and unlabeled datasets are denoted as
DL =

{
xl
i,y

l
i

}NL

i=1
and DU = {xu

i }
NU

i=1, respec-
tively, where both xl

i ∈ Rti×d and xu
i ∈ Rti×d

are speech-based clinical dialogue samples of vary-
ing lengths (Chen et al., 2023a). Generally, the dura-
tion of each sample varies and exhibits significant vari-
ance. NL and NU represent the number of samples in
the labeled and unlabeled data, respectively. The term
y ∈ {0, 1, 2, ..., C − 1} is the one-hot ground truth la-
bel, which is exclusively available for the labeled data
and indicates the class of the sample.
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For each sample xi ∈ {DL, DU} in the labeled and unlabeled data:

xi = {Ri,1, Ri,2, Ri,3, ..., Ri,n} (1)

Ri,j =
{
WS1

1 ,WS2
2 ,WS3

3 , ...WSm
m

}
(2)

Here, Ri,j denotes the j − th dialogue session in the i− th sample, and WSk

k represents the k− th
utterance from speaker Sk ∈ {INV, PAR} within that session. The speakers consisted of inves-
tigators and participants. The variable n is the total number of dialogue sessions in the sample xi,
while m is the number of utterances in a given session. Notably, the utterances within each dialogue
session are sequentially ordered. In contrast, different dialogue sessions are mutually independent,
and thus no specific order is maintained among them. This formulation presents several fundamental
challenges:

• Data Scarcity and Noisy Labels: The labeled set DL is typically small due to the high
cost of clinical annotations. Furthermore, the labels themselves often exhibit significant
noise and subjectivity due to inter-rater variance in clinical assessments.

• Session-Level Supervision with Sparse Manifestations: Each dialogue session xi re-
ceives only a single global label yi, despite consisting of thousands of acoustic frames
and multiple conversational turns. Critically, pathological speech patterns may be sparsely
distributed throughout the session—patients do not necessarily exhibit disease markers in
every utterance or response.

• Granularity Mismatch: The supervision signal operates at the session level, while mean-
ingful acoustic features must be extracted at much finer temporal resolutions (frame-level
or clip-level). The model must therefore learn to identify which specific segments within
a long dialogue are most indicative of the overall pathological condition, without explicit
segment-level guidance.

These challenges necessitate a learning framework that can handle weak, far-end supervision while
effectively leveraging unlabeled data to overcome annotation scarcity.

3 METHODS

We propose a novel semi-supervised learning framework that hierarchically models speech data at
three distinct granularities: session, clip, and frame levels (Figure 2). At the session-level, which
constitutes the main pipeline of our framework, the model is designed to process the entire audio
sample x. We adopt an architecture commonly used in instance learning, where each utterance WSk

k
is encoded individually. Subsequently, a multi-head attention mechanism is employed to aggregate
the features of each utterance. The resulting representation is then fed into a downstream detection
task to yield the final result.

At the clip-level, the model trained in the main pipeline is leveraged to generate pseudo-labels for
each utterance WSk

k . These pseudo-labels are then used to further train the audio encoder. This
process enables the model to effectively capture the characteristics of each utterance in the dialogue,
thereby facilitating the learning of sentence-level features by the audio encoder.

At the frame-level, we apply a Siamese network paradigm. By employing a contrastive loss, the
model is trained to perform finer-grained modeling of frame-level features.

3.1 SESSION-LEVEL

The primary workflow of our framework, highlighted in green in Figure 2, processes an entire sample
x to produce the final detection result. To address the memory constraints of loading a complete
sample at once, we partition each sample xi = {clip1, clip2, clip3, ..., clipn} into n clips. Each
clipi ∈ Rti is a vector sequence with a temporal length of ti. Each clipi is then individually fed
into an audio encoder E, to generate a corresponding embedding, embedi ∈ Rti×d. The resulting
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Figure 2: Model architecture overview. Our framework operates at three hierarchical levels: session-
level (global dialogue representation via Transformer), clip-level (utterance-level modeling via RNN
with pseudo-labels), and frame-level (acoustic feature consistency via MSE loss). The teacher-
student framework with Exponential Moving Average (EMA) updates enables dynamic pseudo-label
refinement during training.

embeddings may have varying temporal lengths t but share a constant feature dimension d. For
the audio encoder, standard architectures such as wav2vec2 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), or WavLM (Chen et al., 2022) can be employed. To further reduce the data scale,
the embedding embedi may optionally be passed through a temporal pooling layer, yielding a more
compact representation, embedi. Note that this step only reduces the temporal dimension t, while
the feature dimension d is preserved.

Following these steps, we obtain an encoded representation for each clip:

embedclipi = POOL(E(clipi)) (3)

Subsequently, learnable positional encodings are added to the clip-level embeddings. The clip-level
embeddings embedclip are first concatenated in their original sequential order to form a session-
level embedding. This embedding is subsequently fed into a multi-layer transformer (Vaswani et al.,
2017) to produce the final session-level representation embedaudio ∈ Rt×d. Building upon this
representation, a sample-level embedding is derived by aggregating features along the temporal di-
mension. This can be accomplished either by adding an additional layer to model global information
or by employing a temporal attention mechanism for fusion. Finally, for the specific downstream
task, a simple classification head is appended to the sample-level embedding to predict the final
labels. During this process, pseudo-labels are generated for unlabeled data and incorporated into
the training set. The model is then trained for the detection task in a supervised manner using the
cross-entropy loss function.

3.2 CLIP-LEVEL

The objective of this method is to fine-tune the session-level encoder E, enabling it to model finer-
grained data at the clip-level. This process is illustrated by the blue-highlighted portion of Figure 2.
Specifically, the embeddings embedclip obtained from the session-level, optionally after a pooling
operation, are fed as a sequence into a Recurrent Neural Network (RNN). Since a clip-level seg-
ment typically corresponds to a short sequence, such as a single utterance or a fixed-duration speech
segment, standard RNN architectures like Gated Recurrent Units (Chung et al., 2014) or Long Short-
Term Memory (Hochreiter & Schmidhuber, 1997) are employed to process this sequence and gen-
erate the final clip-level embedding:
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embedclipi
= RNN(clipi) (4)

The clip-level pseudo-labels are obtained directly from the main session-level pipeline and are sub-
sequently used to supervise the training via a cross-entropy loss function. In contrast to prior work,
this approach avoids the strong assumption that every utterance from a patient exhibits patholog-
ical features, while every utterance from a healthy individual is devoid of them. Moreover, this
method can be trained on data containing dialogue from both investigators and participants, without
requiring the explicit extraction of the participant’ utterances.

3.3 FRAME-LEVEL

The objective of this method is to enable the model to capture finer-grained features at the frame
level. To this end, we employ a siamese network paradigm, which consists of a student and a
teacher model that share an identical architecture (The region highlighted in red in Figure 2.). The
parameters of the teacher network are updated as an Exponential Moving Average (EMA) of the
student network’s parameters:

θteacher ← m · θteacher + (1−m) · θstudent (5)

Throughout the training process, the teacher network remains frozen; no gradients are backprop-
agated through it, and only the student network is trained. For a given input x, we generate two
distinct views by applying different data augmentations (one of which may be the identity transfor-
mation). These views are then fed into the teacher and student networks, respectively. The aug-
mentation strategy employs common audio techniques such as speed perturbation, pitch shifting,
and time masking. After being processed by the session-level pipeline of each network, we obtain
the embeddings embedteacher, embedstudent ∈ Rt×d. Since these embeddings originate from the
same sample, the objective is to enforce consistency between them. The loss function is therefore
defined as:

Lossframe = MSELoss(embedteacher, embedstudent) (6)

3.4 ONLINE SINGLE-STAGE TRAINING RECIPE

In contrast to conventional multi-stage semi-supervised learning methods, our approach operates
in a single stage, facilitating the online update of pseudo-labels. During the training process, after
an initial warm-up period of k0 steps, all pseudo-labels at both the audio- and clip-levels are re-
evaluated and updated every k steps. This update mechanism employs a threshold-based strategy:
unlabeled samples with model-predicted confidence scores exceeding a predefined threshold are
incorporated into the training set for the subsequent k steps. Conversely, samples with scores below
the threshold are excluded from (or optionally retained in) the training set for this duration.

In summary, the total loss for each training iteration is computed as a weighted sum of three dis-
tinct level-specific losses. The parameters of the teacher model are subsequently updated using the
parameters of the student model. The loss function is defined as:

Loss = αLosssession + βLossclip + γLossframe (7)

where α, β, and γ are the weighting coefficients for the respective loss components.

4 EXPERIMENTAL SETUP

To validate the efficacy of our proposed method, we conducted experiments targeting two distinct
pathological conditions: Depression and Alzheimer’s disease, using publicly available datasets in
different languages. We evaluated our method under semi-supervised settings with varying propor-
tions of labeled data, employing the Macro F1 Score to address class imbalance. Comprehensive
ablation studies were performed to analyze the contribution of each component, and we compare
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our approach against relevant baselines despite the limited prior work in audio-only semi-supervised
pathology detection.

Datasets To ensure fair comparison with prior work, we followed the same evaluation protocols
established in the original dataset publications. Detailed dataset statistics, preprocessing steps, and
experimental configurations are provided in Appendix A.

• Depression Detection: A Chinese EATD-Corpus dataset (Shen et al., 2022) of 162 partic-
ipants (30 depressed), with 3-fold cross-validation.

• Alzheimer’s Detection: An English ADReSSo21 dataset (Luz et al., 2021) with standard
train/test splits. The dataset comprises a total of 237 samples, including 122 positive sam-
ples.

Evaluation Protocol We adopted the Macro F1 Score as our primary metric to mitigate the effects
of class imbalance, particularly relevant for the depression detection task. For the semi-supervised
evaluation, we conducted experiments using varying proportions of labeled data (10%, 20%, 30%,
40%, 50%, and 100% of training samples) to comprehensively assess our method’s efficiency.

Training Details We employed the Adam optimizer with an initial learning rate of 2e-6 and a
weight decay of 1e-8. The batch sizes for both labeled and unlabeled data were set to 2, with 4
gradient accumulation steps. The primary data augmentation methods included speed perturbation
and time masking. The decay rate for the Exponential Moving Average (EMA) was set to 0.999.
For the model architecture, features were extracted from the 10th layer of all audio encoders. The
temporal pooling kernel size was set to 5. The transformer model comprised 3 blocks with 16
attention heads, while the RNN model consisted of a 2-layer bidirectional LSTM. Notably, as the
EATD-Corpus is a Chinese dataset, we used HuBERT and wav2vec2 models pre-trained on Chinese
speech datasets. Due to the unavailability of a WavLM model pre-trained on Chinese data, the
version we employed was pre-trained on an English dataset.

5 RESULTS AND ANALYSIS

We evaluate our method’s performance under varying proportions of labeled data against a session-
level baseline that excludes pseudo-labeling. The results demonstrate our framework’s effectiveness
across both depression and Alzheimer’s detection tasks, as shown in Table 1.

5.1 SEMI-SUPERVISED AND FULLY-SUPERVISED SETTING RESULTS

Data Efficiency. Our method exhibits remarkable data efficiency, achieving strong performance
with limited labeled data. For depression detection, our approach attained 90% of the fully-
supervised baseline’s performance using only 10% of the labels. Notably, with just 30% of the
labels, it nearly matched the baseline’s performance when trained on the full dataset. Similarly, for
Alzheimer’s detection, our method approached full-supervised performance with 30% of the data
and surpassed it with only 40%.

Performance Gains. Significant improvements over the baseline were observed across all label
proportions. In depression detection, a notable gain of 4.59% was achieved at the 50% label ratio.
The most substantial improvement for Alzheimer’s detection was a 4.38% increase at the challenging
10% label ratio, highlighting the method’s effectiveness in extremely low-data regimes.

Full Supervision Enhancement. Crucially, our method outperformed the baseline even in the
fully supervised setting (100% labels) for both disorders. This indicates that the integrated clip-
level and frame-level components provide substantial performance benefits beyond pseudo-labeling,
enhancing feature learning and representation robustness. These results collectively underscore
the dual advantage of our framework: effectively leveraging unlabeled data to mitigate annota-
tion scarcity while simultaneously enriching the model’s representational capacity through multi-
granularity analysis.
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Table 1: Performance comparison of our method versus the baseline across different labeled data
proportions for depression and Alzheimer’s detection. Results report Macro F1 scores (standard
deviation over 3 runs) under varying supervision levels (10%-100% of labeled data).

Method 100% 50% 40% 30% 20% 10%
Depression Detection

Baseline 59.53(1.51) 57.41(5.48) 55.78(7.14) 56.04(7.98) 55.00(7.25) 51.73(2.39)
Ours 63.26(1.34) 62.00(5.39) 58.51(9.00) 58.59(9.16) 57.70(9.07) 54.37(3.79)

Alzheimer’s Detection
Baseline 71.25(1.42) 70.18(1.12) 69.80(1.47) 67.79(1.49) 67.45(0.56) 65.09(0.55)
Ours 73.01(0.60) 71.35(0.60) 72.14(1.46) 70.11(0.52) 69.80(0.56) 69.47(0.62)

Comparisons with existing works. Additionally, we compare our method’s fully-supervised per-
formance against existing approaches to establish its competitiveness. As shown in Table 2 and Ta-
ble 3, our method achieves performance comparable to state-of-the-art methods on both depression
and Alzheimer’s detection tasks, despite not being specifically optimized for the fully-supervised
setting.

Table 2: Comparison on depression de-
tection. Methods marked with ∗ = re-
ported in original publications.

F1 Score
CAMFM∗(Xue et al., 2024) 0.73
ACMA∗(Iyortsuun et al., 2024) 0.65
DepressGEN∗(Liang et al., 2025) 0.69
Ours 0.68

Table 3: Comparison on Alzheimer’s
detection. Methods marked with ∗ = re-
ported in original publications.

F1 Score
Whisper-TL∗Wu et al. (2024) 0.77
CogniAlign∗Ortiz-Perez et al. (2025) 0.80
Wu et al. (2024)∗ 0.86
Ours 0.83

Pseudo-label Analysis. We analyze the evolution of pseudo-label quality throughout training
in Figure 3, showing a consistent upward trend in the proportion of correctly labeled samples
as the model converges. Our method can generate progressively higher-quality pseudo-labels.
Notably, in later training stages, the pseudo-label accuracy for the 20% - 40% labeled data
settings surpasses the performance of the one trained with 50% ground-truth labels (Table 1).

Figure 3: Evolution of pseudo-label accuracy dur-
ing training on depression detection.

This suggests that our framework effectively
creates a self-improving training cycle where
pseudo-labels eventually exceed the quality of
additional manual annotations.

Furthermore, the frame-level component pro-
vides inherent robustness against pseudo-label
noise. Since frame-level training operates inde-
pendently of pseudo-labels and focuses on low-
level acoustic patterns, it mitigates potential er-
ror propagation from incorrect session-level or
clip-level pseudo-labels. This multi-granularity
approach creates a balanced learning system
where each component complements the oth-
ers’ limitations.

5.2 ABLATION STUDY

We conduct comprehensive ablation studies to validate the contributions of each component in
our framework. The experiments are designed to address four key aspects: the efficacy of multi-
granularity modeling, the impact of encoder trainability, the robustness to different audio encoders,
and the handling of investigator speech.

Multi-granularity Modeling Efficacy Table 4 presents an incremental ablation of the three hi-
erarchical components. Each level consistently contributes to performance improvements across
all labeled data proportions, with the frame-level component yielding the most significant gains.
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This demonstrates the importance of fine-grained acoustic analysis for pathological speech detec-
tion. In the fully-supervised setting (100% labels), where the session-level pseudo-labeling is in-
active, the performance improvement validates the combined efficacy of clip-level and frame-level
components.

Table 4: Ablation study of hierarchical components on depression detection. Results show Macro F1
scores (mean±std) with incremental addition of session-level, clip-level, and frame-level modules.
“Ours-frozen” denotes training with frozen audio encoder.

100% 50% 40% 30% 20% 10%
Baseline 59.53(1.51) 57.41(5.48) 55.78(7.14) 56.04(7.98) 55.00(7.25) 51.73(2.39)
+Session-level - 60.55(6.11) 57.09(8.62) 58.25(9.55) 55.51(7.53) 52.95(3.09)
+Clip-level 60.78(4.52) 58.30(5.41) 56.11(8.34) 56.55(8.27) 55.52(7.75) 52.50(2.73)
+Frame-level 62.87(3.04) 60.31(7.33) 58.21(9.42) 58.21(9.42) 57.18(8.68) 54.21(3.17)
Ours-frozen - 60.29(5.61) 58.07(8.97) 60.37(5.23) 56.96(5.90) 52.82(2.45)
Ours 63.26(1.34) 62.00(5.39) 58.51(9.00) 58.59(9.16) 57.70(9.07) 54.37(3.79)

Encoder Trainability and Component Isolation To further isolate each component’s contribu-
tion, we conducted experiments with a frozen audio encoder. Under this condition, the clip-level
component (which operates directly on encoder outputs) is effectively disabled. The maintained per-
formance gain demonstrates the joint effectiveness of session-level and frame-level components.
Notably, trainable encoders generally yield greater improvements, highlighting the importance of
feature adaptation for medical speech tasks.

Table 5: Results of different audio encoders on depression detection
100% 50% 40% 30% 20% 10%

wav2vec2
Baseline 61.29(4.43) 58.76(3.98) 57.89(3.53) 57.26(3.46) 54.96(0.72) 54.32(6.79)
Ours 63.43(2.92) 59.75(3.80) 60.30(3.64) 57.85(4.06) 57.82(2.93) 55.45(2.54)

WavLM
Baseline 59.80(3.72) 56.98(6.63) 57.85(5.25) 58.31(4.16) 59.37(4.32) 53.37(7.59)
Ours 63.56(4.97) 60.39(4.63) 60.73(5.89) 59.42(5.57) 60.54(7.15) 59.62(5.22)

Architectural Robustness Across Encoders We evaluated our framework with three popular au-
dio encoders: wav2vec2, HuBERT, and WavLM (Tables 5 and 6). Our method achieves consistent
performance gains across all architectures, demonstrating its model-agnostic nature. An interest-
ing observation emerges with WavLM on the Chinese EATD-Corpus, where performance degrades
with more labeled data. We attribute this to cross-lingual transfer issues, as WavLM was primarily
pre-trained on English speech, highlighting the importance of language-matched pre-training.

Robustness to Investigator Speech As shown in Table 6, our method maintains performance im-
provements even when processing raw dialogues containing both participant and investigator speech.
This eliminates the need for error-prone preprocessing steps like speaker diarization, making our
framework more suitable for real-world clinical applications where clean speech segmentation is
challenging.

Table 6: Different audio encoders and inclusion of investigators’ speech segments on Alzheimer’s
Detection.

100% 50% 40% 30% 20% 10%
wav2vec2

Baseline 68.74(1.51) 65.69(1.40) 60.84(5.19) 58.74(6.09) 53.58(3.05) 50.36(10.17)
Ours 70.48(3.12) 65.91(0.83) 62.34(5.53) 64.51(2.29) 55.70(4.14) 53.61(3.01)

with investigator
Baseline 72.84(0.54) 72.68(1.41) 70.50(1.09) 68.21(2.20) 66.25(1.63) 66.93(0.47)
Ours 73.62(0.56) 72.92(0.98) 72.44(1.07) 69.76(0.01) 70.42(1.01) 69.72(0.52)
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6 RELATED WORK

Pathological speech analysis exhibits certain advantages in cross-lingual applicability and robust-
ness to transcription errors. While multi-modal methods exist that combine acoustic, text, and vi-
sual information (Cheong et al., 2025; Thallinger et al., 2025; Wu et al., 2024), they face significant
challenges, including error propagation from automatic speech recognition systems and limited gen-
eralization across languages and domains. Audio-only approaches offer a promising alternative by
learning pathological patterns directly from acoustic signals. This is particularly valuable given the
linguistic imbalance in available datasets, where most resources exist for high-resource languages
like English and Chinese, while low-resource languages remain underserved. By bypassing linguis-
tic content, these methods can achieve better cross-lingual transfer, making them more suitable for
global healthcare applications.

However, current audio-only methods (Feng & Chaspari, 2024; Chen et al., 2023b; Zhou et al., 2022;
Zhao et al., 2025) have predominantly focused on fully-supervised paradigms, typically employing
transfer learning from general-purpose self-supervised audio models. The semi-supervised learning
paradigm remains largely unexplored in this domain, despite its potential to address the critical chal-
lenge of limited labeled medical data. This gap is particularly notable given that semi-supervised
techniques have shown success in other audio domains but face unique challenges in medical ap-
plications due to the sparse nature of pathological patterns in speech. Our work addresses this gap
by proposing a novel semi-supervised framework specifically designed for audio-only pathological
speech detection, leveraging multi-granularity analysis to effectively utilize both labeled and unla-
beled data while maintaining cross-lingual applicability.

Semi-Supervised Learning (SSL) aims to enhance model performance by leveraging abundant un-
labeled data. Prevailing methods are generally based on consistency regularization (Sohn et al.,
2020), distribution alignment (Kim et al., 2020), and contrastive learning (Lee et al., 2022; Yang
et al., 2022). Most of these methods focus on selecting reliable pseudo-labels throughout the train-
ing process (Gan et al.). However, the direct application of these methods to the medical domain is
impeded by the multi-level and hierarchical nature of clinical dialogues. Furthermore, the reliance
on far-end supervision poses additional challenges to improving the quality of pseudo-labels.

7 LIMITATIONS

Despite its strong performance, our method has limitations, primarily stemming from its nature as
an audio-only approach. In contrast to multimodal systems, our model cannot leverage information
from other modalities. However, this unimodal design offers distinct advantages. Modeling solely
on acoustic information facilitates cross-domain generalization, reduces training data requirements,
and results in a more parameter-efficient model. Furthermore, it obviates challenges inherent in
multimodal approaches, such as potential modality conflicts.

8 CONCLUSION

In this work, we propose a novel, audio-only semi-supervised learning framework for medical diag-
nosis from speech-based clinical dialogues. Our method is uniquely designed to handle long-form
medical consultation dialogues, simultaneously modeling speech data at three distinct granularity
levels (session, segment, and frame) to ensure comprehensive data utilization. By dynamically gen-
erating high-quality pseudo-labels within a single-stage, end-to-end training process, our approach
effectively leverages large volumes of unlabeled data without incurring additional inference costs.
It avoids the limitations common in multi-modal methods. Our extensive experiments validate the
effectiveness of the proposed framework. The efficacy of our method across diverse languages, med-
ical conditions, and underlying speech encoders demonstrates its model-agnostic nature and strong
generalization capability.

ETHICS STATEMENT

The authors have read and adhere to the ICLR Code of Ethics. This work does not involve human
subjects, identifiable private data, or harmful applications. All datasets used are publicly available

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and were used in accordance with their original licenses and intended purposes. No external spon-
sorship or conflict of interest influenced the design or conclusions of this work.

REPRODUCIBILITY STATEMENT

All code and source files are provided in the supplementary material and will be publicly re-
leased. Additional implementation details can be found in the training details section and https:
//anonymous.4open.science/r/semi_pathological-93F8.

REFERENCES

Felix Agbavor and Hualou Liang. Predicting dementia from spontaneous speech using large lan-
guage models. PLOS digital health, 1(12):e0000168, 2022.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

Visar Berisha and Julie M Liss. Responsible development of clinical speech ai: Bridging the gap
between clinical research and technology. NPJ digital medicine, 7(1):208, 2024.

Robert M Califf. Biomarker definitions and their applications. Experimental biology and medicine,
243(3):213–221, 2018.

Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj,
and Marios Savvides. Softmatch: Addressing the quantity-quality trade-off in semi-supervised
learning. arXiv preprint arXiv:2301.10921, 2023a.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505–
1518, 2022.

Weidong Chen, Xiaofen Xing, Xiangmin Xu, Jianxin Pang, and Lan Du. Speechformer++: A
hierarchical efficient framework for paralinguistic speech processing. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 31:775–788, 2023b.

Jiaee Cheong, Aditya Bangar, Sinan Kalkan, and Hatice Gunes. U-fair: Uncertainty-based multi-
modal multitask learning for fairer depression detection. arXiv preprint arXiv:2501.09687, 2025.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Enmao Diao, Eric W Tramel, Jie Ding, and Tao Zhang. Semi-supervised federated learning for
keyword spotting. In 2023 IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), pp. 466–469. IEEE, 2023.

Kexin Feng and Theodora Chaspari. Robust and explainable depression identification from speech
using vowel-based ensemble learning approaches. In 2024 IEEE EMBS International Conference
on Biomedical and Health Informatics (BHI), pp. 1–8. IEEE, 2024.

Kai Gan, Bo Ye, Min-Ling Zhang, and Tong Wei. Semi-supervised clip adaptation by enforcing
semantic and trapezoidal consistency. In The Thirteenth International Conference on Learning
Representations.

Zhuojin Han, Yuanyuan Shang, Zhuhong Shao, Jingyi Liu, Guodong Guo, Tie Liu, Hui Ding, and
Qiang Hu. Spatial–temporal feature network for speech-based depression recognition. IEEE
Transactions on Cognitive and Developmental Systems, 16(1):308–318, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

10

https://anonymous.4open.science/r/semi_pathological-93F8
https://anonymous.4open.science/r/semi_pathological-93F8


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Ngumimi Karen Iyortsuun, Soo-Hyung Kim, Hyung-Jeong Yang, Seung-Won Kim, and Min Jhon.
Additive cross-modal attention network (acma) for depression detection based on audio and tex-
tual features. IEEE Access, 12:20479–20489, 2024.

Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. Dis-
tribution aligning refinery of pseudo-label for imbalanced semi-supervised learning. Advances in
neural information processing systems, 33:14567–14579, 2020.

Sanne Koops, Sanne G Brederoo, Janna N de Boer, Femke G Nadema, Alban E Voppel, and Iris E
Sommer. Speech as a biomarker for depression. CNS & Neurological Disorders-Drug Targets-
CNS & Neurological Disorders), 22(2):152–160, 2023.

Doyup Lee, Sungwoong Kim, Ildoo Kim, Yeongjae Cheon, Minsu Cho, and Wook-Shin Han. Con-
trastive regularization for semi-supervised learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3911–3920, 2022.

Yaqin Li, Chenjian Sun, and Yihong Dong. A novel audio-visual multimodal semi-supervised model
based on graph neural networks for depression detection. In ICASSP 2025-2025 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025a.

Yuanchao Li, Zixing Zhang, Jing Han, Peter Bell, and Catherine Lai. Semi-supervised cognitive
state classification from speech with multi-view pseudo-labeling. In ICASSP 2025-2025 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE,
2025b.

Wenrui Liang, Rong Zhang, Xuezhen Zhang, Ying Ma, and Wei-Qiang Zhang. Depressgen: Syn-
thetic data generation framework for depression detection. In Proc. Interspeech 2025, pp. 464–
468, 2025.

Saturnino Luz, Fasih Haider, Sofia De la Fuente, Davida Fromm, and Brian MacWhinney. Detecting
cognitive decline using speech only: The adresso challenge. arXiv preprint arXiv:2104.09356,
2021.

Israel Martı́nez-Nicolás, Thide E Llorente, Francisco Martı́nez-Sánchez, and Juan José G Meilán.
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A DATASET DETAILS

EATD-Corpus (Shen et al., 2022) is a publicly available Chinese depression dataset, which com-
prises audios and text transcripts extracted from the interviews of 162 volunteers. All the volunteers
have signed informed consents and guarantee the authenticity of all the information provided. Each
volunteer is required to answer three randomly selected questions and complete an SDS question-
naire. SDS is a commonly used questionnaire for psychologists to screen depressed individuals in
practice (Shen et al., 2022). The EATD-Corpus consists of 162 samples, totaling 2.26 hours of au-
dio data, which includes 132 samples from healthy controls and 30 from patients diagnosed with
depression. To ensure a fair comparison with prior studies, we employed a 3-fold cross-validation
scheme. We utilized only the audio data, partitioning all samples into three equal folds: two for
training and one for testing. Furthermore, to maintain the stability of the results, we augmented the
test set by reshuffling the data following the methodology of Shen et al. (2022), while the training
set was kept unchanged. The final results are reported as the average over the three folds.
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ADReSSo21 (Luz et al., 2021) is a publicly available English-language Alzheimer’s Disease dataset,
comprising two subsets for distinct sub-tasks. The dataset is balanced for age and gender and in-
cludes audio recordings from both investigators and participants. Each data contains recordings of a
picture description task (“Cookie Theft” picture from the Boston Diagnostic Aphasia Exam). Those
recordings have been acoustically enhanced (noise reduction through spectral subtraction) and nor-
malized. To ensure a fair comparison with prior work, we utilized only the audio data and adhered
to the Luz et al. (2021)’s splits for the training and test sets. A validation set was further partitioned
from the training set, and the final results are reported on the test set. We conducted multiple ex-
perimental runs with different random seeds. Furthermore, as the majority of previous studies have
focused on the first sub-task of ADReSSo21, namely the Alzheimer’s Disease classification task, we
also provide the results of our method on this sub-task for a direct comparison.

B TRAINING DETAILS

We employed the Adam optimizer with an initial learning rate of 2e-6 and a weight decay of 1e-8.
The batch sizes for both labeled and unlabeled data were set to 2, with 4 gradient accumulation steps.
The primary data augmentation methods included speed perturbation and time masking. The decay
rate for the Exponential Moving Average (EMA) was set to 0.999. For the model architecture,
features were extracted from the 10th layer of all audio encoders. The temporal pooling kernel
size was set to 5. The transformer model comprised 3 blocks with 16 attention heads, while the
RNN model consisted of a 2-layer bidirectional LSTM. Notably, as the EATD-Corpus is a Chinese
dataset, we used HuBERT and wav2vec2 models pre-trained on Chinese speech datasets. Due to
the unavailability of a WavLM model pre-trained on Chinese data, the version we employed was
pre-trained on an English dataset.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose that we used Gemini-2.5-Pro to assist in polishing the language and improving the clar-
ity of this paper. The model was used for grammar correction, sentence restructuring, and enhanc-
ing overall readability. All technical content, experimental design, results, and conclusions were
authored and verified solely by the human authors. The LLM did not contribute to the generation of
ideas, methods, or data analysis.
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