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ABSTRACT

Diffusion models have achieved tremendous success in generating high-
dimensional data like images, videos and audio. These models provide powerful
data priors that can solve linear inverse problems in zero shot through Bayesian
posterior sampling. However, exact posterior sampling for diffusion models is
intractable. Current solutions often hinge on approximations that are either com-
putationally expensive or lack strong theoretical guarantees. In this work, we
introduce an efficient diffusion sampling algorithm for linear inverse problems that
is guaranteed to be asymptotically accurate. We reveal a link between Bayesian
posterior sampling and Bayesian filtering in diffusion models, proving the former
as a specific instance of the latter. Our method, termed filtering posterior sampling,
leverages sequential Monte Carlo methods to solve the corresponding filtering
problem. It seamlessly integrates with all Markovian diffusion samplers, requires
no model re-training, and guarantees accurate samples from the Bayesian posterior
as particle counts rise. Empirical tests demonstrate that our method generates better
or comparable results than leading zero-shot diffusion posterior samplers on tasks
like image inpainting, super-resolution, and motion deblur.

1 INTRODUCTION

Score-based diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; 2020; Ho et al.,
2020; Song et al., 2020b) have made remarkable strides in data synthesis over the past few years,
revolutionizing fields like image synthesis (Dhariwal & Nichol, 2021; Nichol et al., 2021; Ramesh
et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Zhang et al., 2023), video generation (Ho
et al., 2022b;a), audio synthesis (Kong et al., 2020; Chen et al., 2020) and molecular conformation
generation (Xu et al., 2022; Shi et al., 2021; Luo et al., 2021). As evidenced by their unparalleled
sample quality, diffusion models provide powerful data priors that can capture the intricacies of high
dimensional data distributions. Using such priors, we can deduce data from lossy measurements
through Bayesian posterior sampling. This enables many diffusion-based methods for solving linear
inverse problems without task-specific training (Song et al., 2020b; Chung et al., 2022c; Chung & Ye,
2022; Choi et al., 2021; Kawar et al., 2022; Chung et al., 2022a; Kawar et al., 2021; Bardsley et al.,
2014; Song et al., 2023a; Jalal et al., 2021). Examples of their applications include image inpainting,
colorization, super-resolution, motion deblur, and medical image reconstruction (Song et al., 2021).

Despite the empirical success of diffusion models in solving inverse problems, obtaining exact
Bayesian posterior samples for these models remains intractable, necessitating the use of approxima-
tions. Current methods for this approximate sampling can be broadly grouped into three categories.
The first approach modifies a standard diffusion sampling process by enforcing data consistency at
every time step, ensuring all intermediate samples align with observed, lossy data measurements
(Song et al., 2020b; Chung et al., 2022c; Chung & Ye, 2022; Choi et al., 2021; Kawar et al., 2022).
The second approach estimates the score function (i.e., the gradient of the log probability density) of
the Bayesian posterior (Song et al., 2020b), leveraging it to guide each diffusion sampling iteration
(Chung et al., 2022a; Kawar et al., 2021; Bardsley et al., 2014; Song et al., 2023a; Jalal et al., 2021;
Song et al., 2023b). Lastly, some methods train a neural network to minimize a statistical divergence
between its sample distribution and the true Bayesian posterior of the diffusion model (Graikos
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Figure 1: Several widely-used noisy measurements for images, and the recovered images by FPS.

et al., 2022; Feng et al., 2023; Feng & Bouman, 2023; Mardani et al., 2023). For the first two
strategies, while each individual sampling iteration is grounded in theoretical insights, assessing the
accumulated errors introduced over successive iterations poses a challenging theoretical question.
The third strategy requires training additional neural networks for each novel task, which causes
substantial computational overhead especially when applying the same diffusion prior to diverse
inverse problems.

To address these challenges, we introduce a novel family of methods that allow diffusion models to
tackle linear inverse problems in zero shot. We present a unique interpretation of Bayesian posterior
sampling in diffusion models and establish its equivalence to Bayesian filtering. This insight lets
us approach the Bayesian posterior sampling problem from a filtering perspective. Our proposed
framework, Filtering Posterior Sampling (FPS), transforms any filtering algorithm into a diffusion
posterior sampler. In particular, we devise an FPS algorithm based on particle filtering and sequential
Monte Carlo (Doucet et al., 2001). To minimize the variance of particle filters, we tailor the proposal
distribution at each sampling iteration. Our FPS algorithm sidesteps the need for costly optimization
or training new neural networks. It works in harmony with any stochastic Markovian sampler of
diffusion models and is easily adaptable to diverse linear inverse problems. As the particle count
increases, our algorithm yields better posterior samples, offering a flexible trade-off between compute
and sample quality.

Theoretically, we prove that our FPS algorithm correctly samples from the Bayesian posterior distri-
bution as the number of particles approaches infinity when both the score estimator and SDE solver
are perfect. To our knowledge, this is one of the first diffusion posterior sampling algorithms with a
global consistence guarantee for general Bayesian linear inverse problems, along with concurrent
works like Wu et al. (2023); Trippe et al. (2022). Furthermore, when using just one particle, we prove
that our algorithm provides a specific approximation of the Bayesian posterior’s score function at
each sampling iteration, elucidating the link between FPS and existing methodologies. Empirically,
we benchmark our FPS against current methods across various linear inverse problems in computer
vision, such as inpainting (Yeh et al., 2017), super-resolution (Ledig et al., 2017; Haris et al., 2018)
and motion deblur (Kupyn et al., 2019; Suin et al., 2020). In evaluations on both the FFHQ (Karras
et al., 2019) and ImageNet (Deng et al., 2009) datasets, our FPS surpasses most competing methods.

2 BACKGROUND

Linear Inverse Problems Linear inverse problems are pervasive in various scientific domains, with
examples like image inpainting, colorization, super resolution, deblurring, Computed Tomography,
and Magnetic Resonance Imaging. Given a datapoint x, its lossy measurement is denoted as
y = Ax + n. In this equation, x ∈ RD,y ∈ Rd,A ∈ Rd×D, and n ∼ N (0, σ2I) represents the
measurement noise with a known noise level σ > 0. The challenge of a linear inverse problem is to
recover x from the incomplete measurement y. As often D > d, this results in an ill-posed and under-
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determined problem. To narrow down the solution space, we usually require additional information
about x. A common assumption is the prior knowledge of the distribution over x, represented as
p(x). Given this, we can traverse the solution space of the linear inverse problem by sampling from
the posterior distribution p(x | y), formulated using Bayes’ rule as p(x | y) ∝ p(x)p(y | x), with
p(y | x) = N (y | Ax, σ2I).

Diffusion Models Diffusion models comprise a forward noising process and a backward denoising
process. In the discrete formulation (Sohl-Dickstein et al., 2015; Ho et al., 2020), the forward process
manifests as a Markov chain described by

q(x1:N | x0) =

N∏
k=1

q(xi | xk−1), with q(xk | xk−1) = N
(
akxk−1, b

2
kI

)
. (1)

The coefficients {ak}Nk=1 and {bk}Nk=1 are manually designed and may differ across various diffusion
formulations (Song et al., 2020b). Given that each Markov step q(xk | xk−1) is a linear Gaussian
model, the resultant marginal distribution q(xk | x0) = N (ckx0, d

2
kI) assumes a Gaussian form,

where {ck}Nk=1 and {dk}Nk=1 can be derived from {ak}Nk=1 and {bk}Nk=1. For sample generation, we
train a neural network, denoted by sθ(xk, tk), to estimate the score function∇xk

log q(xk | x0). The
backward process, which we assume to be a Markov chain, is typically represented as

pθ(xk−1 | xk) = N
(
ukx̂0(xk) + vksθ(xk, tk), w

2
kI

)
, (2)

where x̂0(xk) := (xk + d2ksθ(xk, tk))/ck is the predicted x0 derived by xk obtained from the
Tweedie’s formula. Here {uk}Nk=1, {vk}Nk=1 and {wk}Nk=1 can be computed from the forward
process coefficients {ak}Nk=1 and {bk}Nk=1 in Eq. (1). {tk}Nk=0 is the set of discrete timestamps where
t0 = 0, tN = T . The formulation in Eq. (2) encompasses many stochastic samplers of diffusion
models, including the ancestral sampler in DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020), the
predictor-corrector sampler in Song et al. (2020b), and the DDIM sampler in (Song et al., 2020a).

For variance preserving diffusion models (Ho et al., 2020), we have

ak =
√
αk, bk =

√
βk, ck =

√
αk, dk =

√
1− αk,

where αk := 1 − βk, αk :=
∏k

j=1 αj , and αk, βk follow the notations in Ho et al. (2020). To
represent DDPM sampling, we have:

uk =
√
αk−1, vk = −

√
αk(1− αk−1), wk =

√
βk ·

1− αk−1

1− αk
,

and for DDIM sampling (Song et al., 2020a), we have:

uk =
√
αk−1, vk = −

√
1− αk−1 − σ2

k ·
√
1− αk, wk = σk

where the conditional variance sequence {σk}Nk=1 can be arbitrary. Note that DDPM sampling is a
special case of DDIM when setting σ2

k = βk · (1− αk−1)/(1− αk). In this paper, we parameterize

σk = c ·
√
βk ·

1− αk−1

1− αk

with c being a tunable hyper-parameter.

3 BAYESIAN POSTERIOR SAMPLING AS BAYESIAN FILTERING

In the following part, we introduce Bayesian filtering and explain how it is related to Bayesian
posterior sampling. Bayesian filtering aims to infer latent variables from observations based on a
sequence of conditional probability distributions. For each time step k = 1, 2, . . . , N , we define the
latent state and its corresponding measurement as:

xk ∼ p(xk | xk−1), yk ∼ p(yk | xk).

The dynamic model of this system determines xk and yk depends on the distribution of measurements
given the state. As we can see, the sequence {xk}Nk=0 forms a Markov chain. The Bayesian filtering
problem seeks to sample from the distribution p(xk | y1:k).
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To derive the conditional distribution, a well-known iterative approach is utilized. Starting with the
known prior distribution p(x0), we employ the Chapman-Kolmogorov equation to obtain p(xk | y1:k)
from p(xk−1 | y1:k−1) as the “prediction” step

p(xk | y1:k−1) =

∫
p(xk | xk−1) · p(xk−1 | y1:k−1)dxk−1, (3)

and then use Bayes’ rule to compute p(xk | y1:k) as the “update” step:

p(xk | y1:k) =
p(yk | xk) · p(xk | y1:k−1)∫
p(yk | xk) · p(xk | y1:k−1)dxk

(4)

By iterating these two steps, we can solve the Bayesian filtering problem. For those system where
dynamics and measurements adhere to linear Gaussian distributions, Kalman filter (Kalman, 1960)
provides a closed form solution to the Bayesian filtering problem.

Back to our diffusion posterior sampling problem, the dynamic system’s backward process is given
by xk ∼ pθ(xk | xk+1), where pθ(xk | xk+1) is defined in Eq. (2). The forward process is described
by

xk = ak · xk−1 + bkzk (5)
where zk ∼ N (0, I) is a standard Gaussian noise independent of xk−1. Meanwhile, we construct
the {yk}Nk=0 sequence as:

y0 = y, yk = ak · yk−1 + bk ·Azk for k ⩾ 1. (6)

The noise sharing technique is also applied in Song et al. (2021), but with a different framework. Given
y ∼ N (Ax0, σ

2I), it is easy to show that yk ∼ N (Axk, c
2
kσ

2I) for ck = a1a2 . . . ak through
mathematical induction. This formulation establishes Bayesian posterior sampling as a reverse-time
Bayesian filtering problem, a well-studied topic with many existing solutions and algorithms. By
following the prediction and update steps in Bayesian filtering, we successively compute the marginal
posterior distribution pθ(xk | yk:N ) until we obtain pθ(x0 | y0:N ). This allows us to sample from
the Bayesian posterior pθ(x0 | y0) due to the following important observation:

We can generate a sample x0 from the Bayesian posterior distribution pθ(x0 | y0) by first
sampling from pθ(y1:N | y0) = q(y1:N | y0) before sampling from pθ(x0 | y0:N ). This is
because pθ(x0 | y0) =

∫
pθ(x0 | y0:N ) · pθ(y1:N | y0)dy1:N .

Here, q and pθ denote the probability distribution of the forward process and the backward process
respectively. That is, we can leverage any algorithm for Bayesian filtering to solve the Bayesian
posterior sampling problem whenever the prior is captured by a diffusion model.

4 FILTERING POSTERIOR SAMPLING (FPS)

In this section, we propose a specific algorithm for solving the Bayesian filtering problem associated
with a diffusion model. Due to the aforementioned connection between Bayesian filtering and
Bayesian posterior sampling, this algorithm can be directly employed to generate posterior samples
from a diffusion model for inverse problem solving. Our algorithm is based on particle filtering, but
has a tailored proposal distribution for variance reduction.

4.1 BACKWARD DIFFUSION PROCESS WITH LINEAR FILTERING

In the backward diffusion process, we first generate the sequence of {yk}Nk=0. Then, we recursively
sample xk−1 based on xk and yk−1 by solving Bayesian linear filtering.

Step 1: Generating Sequence {yk}Nk=0 There are two different ways to generate the sequence of
{yk}Nk=0. One leverages the forward process and the other depends on the backward process. For the
forward process, we apply Eq. (6) to obtain

yk = akyk−1 + bk ·Azk
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where zk ∼ N (0, I) is independent Gaussian noise, and the initial observation y0 = y is given.
When generating {yk}Nk=0 from the backward process, we apply DDIM sampling. Since we have
full access to y0, there is no need to predict ŷ0(yk) because ŷ0(yk) = y0. Therefore, we can sample
{yk}Nk=0 via the following recurrence relation:

yk−1 = uky0 + vkyk + wk ·Azk. (7)

where uk, vk, wk can be computed from ak, bk (see Section 2), and the initial observation yN

approximately follows N (0,AA⊤). As a result, the sequence {yk}Nk=0 is fully determined through
either direction, given by

q(y1:N | y0) =

N∏
k=1

q(yk | yk−1,y0) = q(yN ) ·
N∏

k=2

q(yk−1 | yk,y0). (8)

Remark 4.1. The generation of sequence {yk}Nk=0 from y0 is possible only in linear inverse problems.
Otherwise, for nonlinear inverse problems, Eq. (6) not longer works, and neither forward or backward
processes of {yk}Nk=0 is tractable.

Step 2: Backward Sequence of {xk}Nk=0 In the second step, we generate the backward sequence
of {xk}Nk=0 based on the measurement sequence {yk}Nk=0 generated in Step 1, which leads to
pθ(y1:N | y0) = q(y1:N | y0). Given that the last state xN is approximately a standard Gaussian,
we have

xN ∼ pθ(xN | yN ) ∝ pθ(xN ) · pθ(yN | xN ) with pθ(xN ) = N (0, I).

Since pθ(yN | xN ) = q(yN | xN )N (AxN , c2Nσ2 · I) where cN = a1a2 . . . aN , the posterior
distribution pθ(xN | yN ) is Gaussian and can be expressed in closed form.

Next, we progressively sample xk−1 conditioned on xk and yk−1. We know that pθ(yk−1 | xk−1) =
q(yk−1 | xk−1) = N (Axk−1, c

2
k−1σ

2 · I) with ck−1 = a1a2 . . . ak−1. In addition, pθ(xk−1 | xk)
is determined once we have the score function:

pθ(xk−1 | xk) = N (ukx̂0(xk) + vksθ(xk, tk), w
2
kI)

where x̂0(xk) := (xk+d2ksθ(xk, tk))/ck is the conditional expectation of x0 given xk, which can be
computed via Tweedie’s formula. Here, the choices of parameters ck, dk, uk, vk, wk are determined
from the process of unconditional diffusion sampling. For the DDPM and DDIM framework, we list
these parameters in Section 2. Now, we can compute the posterior distribution

pθ(xk−1 | xk,yk−1) ∝ pθ(xk−1 | xk) · pθ(yk−1 | xk−1). (9)

Here, we rely on the conditional independence of xk and yk−1 given xk−1. Since both pθ(xk−1 | xk)
and pθ(yk−1 | xk−1) are Gaussian, it is straightforward to conclude that pθ(xk−1 | xk,yk−1) is
also a Gaussian distribution with a tractable form. Given {yk}Nk=0, we can now sample from
pθ(xk−1 | xk,yk−1) recursively for k = N,N − 1, · · · , 1 to obtain {xk}Nk=0. This procedure
provides an approximate solution to the Bayesian filtering problem, and we call this algorithm
Filtering Posterior Sampling (FPS).

4.2 FURTHER ANALYSIS ON FPS

In this section, we analyze how FPS provides an approximate solution to the Bayesian filtering
problem. As discussed in Section 3, we recursively compute a prediction step and an update step to
calculate p(xk | yk:N ). For FPS, the following approximation is made:

pθ(xk,xk+1 | yk:N ) = pθ(xk+1 | yk:N )pθ(xk | xk+1,yk:N ) = pθ(xk+1 | yk:N )pθ(xk | xk+1,yk)

≈ pθ(xk+1 | yk+1:N ) · pθ(xk | xk+1,yk).
(10)

Here, we leverage the conditional independence between yk+1 and yk+2:N when xk+1 is given.
After taking integral on both sides of Eq. (10) with regard to xk+1, we have

pθ(xk | yk:N ) ≈
∫

pθ(xk+1 | yk+1:N ) · pθ(xk | xk+1,yk)dxk+1, (11)
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Figure 2: Illustration of FPS-SMC algorithm.

which means we skip the update step in FPS, and we make the approximation pθ(xk+1 | yk:N ) ≈
pθ(xk+1 | yk+1:N ). Here, we sample a single particle xk+1 from pθ(xk+1 | yk+1:N ) and then
another particle xk ∼ pθ(xk | yk:N ) by following the prediction step. Notice that Kalman filtering is
not applicable here because pθ(xk | xk+1) is not a linear Gaussian process, so Monte Carlo methods
are necessary for solving this Bayesian filtering problem.

One can derive additional theoretical insights by generalizing FPS to continuous-time Markov chains.
When we make the time step ∆t → 0 and consider the continuous limit of FPS, our backward
diffusion process converges to the following SDE:

dxt =

[
−β(t)

2
xt − β(t)∇xt log pθ,t(xt | yt)

]
dt+

√
β(t)dWt.

For the detailed proof, see Appendix D.1. According to this equation, FPS approximates the unknown
conditional score function ∇xt

log pθ,t(xt | y) with ∇xt
log pθ,t(xt | yt). Unlike the original

score-based SDE, yt is not sampled from a noisy version of y in FPS; instead, they are sampled from
a backward diffusion process.

4.3 FPS WITH SEQUENTIAL MONTE CARLO

To improve the approximation made by FPS, we propose a variant based on particle filtering and
sequential Monte Carlo. We call this improved method Filtering Posterior Sampling with Sequential
Monte Carlo (FPS-SMC).

To begin with, notice that

pθ(xk:N | yk:N ) ∝ pθ(yk | xk:N ,yk+1:N ) · pθ(xk:N | yk+1:N )

= pθ(yk | xk)p(xk | xk+1:N ,yk+1:N ) · pθ(xk+1:N | yk+1:N )

= pθ(yk | xk)pθ(xk | xk+1) · pθ(xk+1:N | yk+1:N )

=
pθ(yk | xk)pθ(xk | xk+1)

pθ(xk | xk+1,yk)
· pθ(xk | xk+1,yk)pθ(xk+1:N | yk+1:N ).

(12)

In particle filtering, we generate M i.i.d particles x(j)
N ∼ pθ(xN | yN ). After obtaining {x(j)

k+1}j∈[M ],

we move them backward for one step to obtain x
(j)
k ∼ pθ(xk | x(j)

k+1,yk) for j ∈ [M ]. Afterwards,

we randomly sample M particles with replacement, which we denoted as {x(j)
k }j∈[M ]. The particles

are re-sampled according to the following probability distribution

P
[
xk = x

(j)
k

]
:= ηj =

pθ(yk | x(j)
k )pθ(x

(j)
k | x

(j)
k+1)/pθ(x

(j)
k | x

(j)
k+1,yk)∑M

j=1 pθ(yk | x(j)
k )pθ(x

(j)
k | x

(j)
k+1)/pθ(x

(j)
k | x

(j)
k+1,yk)

. (13)

One important observation about the resampling weights is

pθ(yk | xk)pθ(xk | xk+1)

pθ(xk | xk+1,yk)
=

pθ(yk | xk)pθ(yk | xk+1)

pθ(yk | xk,xk+1)
= pθ(yk | xk+1).
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Based on this, we propose the FPS-SMC method with pseudo-code provided in Algorithm 1 and a
visual illustration given in Fig. 2. Clearly, FPS can be viewed as a special case of FPS-SMC with
particle size M = 1. Unlike FPS, FPS-SMC is consistent, meaning that the approximation error
converges to zero as the particle size M approaches infinity. Below we provide a rigorous statement
about the convergence of FPS-SMC.
Assumption 4.1. Assume the following two facts:

(1) Our score estimation is perfect, i.e: sθ(xt, t) = ∇xt
log pθ,t(xt).

(2) The time step T
N → 0, which means the backward diffusion ODE/SDE solver can provide

accurate solution without discretization error.

These two facts make sure that both our diffusion model and sampling procedure are perfect during
the backward Bayesian filtering.
Proposition 4.1. Denote pθ(x0:N | y0:N ) as the result of FPS-SMC algorithm with particle size M ,
and p∗(x0:N | y0:N ) as the solution of Bayesian filtering problem (which follows the forward diffusion
model). Under Assumption 4.1, we have pθ(xk | xk+1) = p∗(xk | xk+1) for ∀k = 0, 1, . . . , N − 1.
Then, we can conclude that:

pθ(x0 | y0)
w
⇀ p∗(x0 | y0) = q(x0 | y0) when M →∞,

where w
⇀ implies weak convergence.

Proof. See Appendix D.2.

This result proves the asymptotic consistency of FPS-SMC when M →∞, N →∞. We can also
derive finite sample bounds for W1 (pθ(x0 | y0), p

∗(x0 | y0)) with regard to the estimation error in
score models as well as the time step ∆t = T/N . A more comprehensive theoretical exploration of
these finite sample bounds remains a topic for our future research.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Algorithm 1 The Framework of FPS-SMC
1: Given: N,y, particle size M and the score

estimator sθ(·, ·).
2: Sample the {yk} sequence from q(y1:N | y0).

3: Sample M i.i.d samples x(j)
N ∼ pθ(xN | yN )

for j ∈ [M ].
4: for k = N,N − 1, . . . , 1 do
5: Generate M i.i.d samples x

(j)
k−1 ∼

pθ(xk−1 | x(j)
k ,yk−1) for j ∈ [M ].

6: Randomly pick M samples with replace-
ment from

{
x
(j)
k−1

}
j∈[M ]

, following the

probability distribution (13). Denote the
M new samples as {x(j)

k−1}j∈[M ].
7: end for
8: The output x0 is uniformly sampled from
{x(j)

0 }j∈[M ].

We evaluate our algorithms on the FFHQ-1k-
validation set (Karras et al., 2019) and the
ImageNet-1k-validation set (Deng et al., 2009),
both frequently used in inverse problem research
involving diffusion models. Each dataset con-
tains images of dimensions 256× 256× 3, nor-
malized to the range [0, 1]. These images serve
for testing various linear inverse problems. We
follow the experimental settings in Chung et al.
(2022a) to ensure a fair comparison. We assume
all the observations contain Gaussian noise of
mean zero and standard deviation σ = 0.05. In
our experiments for the FPS-SMC, we choose
a particle size of M = 20. Another hyper-
parameter we find important for FPS and FPS-
SMC is c, utilized during DDIM sampling. Our
empirical observations highlight the significant
influence of c on the smoothness of generated
images, so we tune c separately for different
tasks and datasets. For a more detailed analy-
sis, see Appendix F for an ablation study, and
Appendix E for a thorough description of all the five tasks we test in our experiments.

During the backward process of FPS, we set the number of time steps as N = 1000 and use the
pretrained score model from Chung et al. (2022a) for the FFHQ dataset, and the score model from
Dhariwal & Nichol (2021) for the ImageNet dataset. We use multiple metrics to evaluate the quality
of our generated images, including peak signal-to-noise ratio (PSNR), Fréchet Inception Distance
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Figure 3: Comparison between FPS-SMC and
Standard Particle Filtering (SPF) when par-
ticle size M = 20 on Inpainting (box) task
over FFHQ dataset.
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Figure 4: The relation between the particle
size M and the PSNR value, with 68% (×1
std) confidence interval added

(FID), structural similarity index (SSIM), and Learned Perceptual Patch Similarity (LPIPS) (Zhang
et al., 2018). These metrics enable a comprehensive assessment of image quality. All our experiments
are carried out on a single A100 GPU.

5.2 EXPERIMENTAL RESULTS

In Tables 1 and 2, we compare FPS and FPS-SMC against various baselines in terms of FID and
LPIPS. For additional quantitative results and comparisons in PSNR and SSIM, we relegate them to
Tables 3 and 4 in Appendix E. The results demonstrate that FPS outperforms baselines significantly
in tasks such as super resolution, inpainting (box), Gaussian deblurring, and motion deblurring. It is
remarkable that in the challenging inpainting (random) task, where a substantial 92% of all pixels are
masked out, FPS achieves the second-best performance. When assessing performance across the four
metrics, FPS emerges as the front-runner in three of them, with superior results compared to the other
baseline models.

5.3 ABLATION STUDY: INFLUENCE OF THE PARTICLE SIZE

In theory, we can solve the filtering problem with FPS-SMC more accurately when the particle size M
increases. By default, we apply M = 20 to all our experiments to make it computationally efficient.
Comparing FPS (where M = 1) and FPS-SMC (where M = 20), we observe that FPS-SMC has an
edge only with respect to the PSNR metric, but the difference in other three metrics SSIM, FID and
LPIPS is small. To rigorously study the variation of image quality as a function of particle size M ,
we focus on inpainting (box) over FFHQ 256× 256-1k validation set. As we can see in Fig. 4, PSNR
metric increases as the particle size M grows, but has diminishing returns once M reaches 100. For
the increasing running time of FPS-SMC for larger particle size M , we demonstrate in Appendix F.2
that it approximately holds that t(M) ∝

√
M . We also compare it with other popular methods, which

shows that the running time of FPS-SMC is at the average level.

5.4 ABLATION STUDY: FPS-SMC VERSUS STANDARD PARTICLE FILTERING

In Eq. (12), we observe that

pθ(xk:N | yk:N ) ∝ pθ(yk | xk) · pθ(xk | xk+1)pθ(xk+1:N | yk+1:N ),

which leads to the standard way for implementing particle filtering. After obtaining {x(j)
k+1}j∈[M ]

from previous steps, we generate M particles independently by simulating the unconditional backward
process: x(j)

k ∼ pθ(xk | x(j)
k+1) for j ∈ [M ]. Afterwards, we randomly sample M particles with

replacement according to the distribution P
[
xk = x

(j)
k

]
∝ pθ(yk | x(j)

k ). We name it as Standard
Particle Filtering (SPF). In theory, both FPS-SMC and SPF are consistent solvers for the Bayesian
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filtering problem. However, in SPF, the {xk}Nk=0 sequence can only get the measurement information
from the re-sampling step, which provides weak signals for xk to follow the measurement y. As a
result, we need a much larger particle size M to obtain reasonable performance for SPF, especially in
high dimensional spaces. In Fig. 3, we compare the performance between FPS-SMC and SPF when
M = 20. As we can see, the particles generated by SPF are almost completely independent of the
measurement. In contrast, we tailor the proposal distribution in FPS-SMC to significantly reduce the
variance, resulting in an effective algorithm with a smaller particle size.

Table 1: Quantitative results (FID, LPIPS) of our model and existing models on a various of linear
inverse problems on FFHQ 256× 256-1k validation dataset.

FFHQ Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS

FPS 26.66 0.212 26.13 0.141 30.03 0.248 35.21 0.265 26.18 0.221
FPS-SMC 26.62 0.210 26.51 0.150 29.97 0.253 33.10 0.275 26.12 0.227

DPS 39.35 0.214 33.12 0.168 44.05 0.257 21.19 0.212 39.92 0.242

DDRM 62.15 0.294 42.93 0.204 74.92 0.332 69.71 0.587 - -

MCG 87.64 0.520 40.11 0.309 101.2 0.340 29.26 0.286 - -

PnP-ADMM 66.52 0.353 151.9 0.406 90.42 0.441 123.6 0.692 - -

Score-SDE 96.72 0.563 60.06 0.331 109.0 0.403 76.54 0.612 - -

ADMM-TV 110.6 0.428 68.94 0.322 186.7 0.507 181.5 0.463 - -

Table 2: Quantitative results (FID, LPIPS) of our model and existing models on a various of linear
inverse problems on ImageNet 256× 256-1k validation dataset.

ImageNet Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS

FPS 47.32 0.329 33.19 0.204 54.41 0.396 42.68 0.325 52.22 0.370

FPS-SMC 47.30 0.316 33.24 0.212 54.21 0.403 42.77 0.328 52.16 0.365
DPS 50.66 0.337 38.82 0.262 62.72 0.444 35.87 0.303 56.08 0.389

DDRM 59.57 0.339 45.95 0.245 63.02 0.427 114.9 0.665 - -

MCG 144.5 0.637 39.74 0.330 95.04 0.550 39.19 0.414 - -

PnP-ADMM 97.27 0.433 78.24 0.367 100.6 0.519 114.7 0.677 - -

Score-SDE 170.7 0.701 54.07 0.354 120.3 0.667 127.1 0.659 - -

ADMM-TV 130.9 0.523 87.69 0.319 155.7 0.588 189.3 0.510 - -

6 CONCLUSION

We introduce Filtering Posterior Sampling (FPS), a novel approach addressing the challenges inherent
in diffusion models when solving linear inverse problems. FPS leverages a unique perspective
on Bayesian posterior sampling, establishing an equivalence with Bayesian filtering and thereby
enabling a transition from a sampling problem to a filtering one. Notably, our FPS algorithm employs
particle filtering and sequential Monte Carlo techniques without necessitating resource-intensive
optimizations or the training of supplementary neural networks. It offers compatibility with any
Markovian sampler and showcases versatility across diverse linear inverse problems. The flexibility
in compute-resource allocation in our method ensures an optimal balance between computational
effort and sampling quality. On a theoretical front, we demonstrated the global convergence guarantee
of our FPS method, marking a pioneering achievement in diffusion posterior sampling. Empirical
evaluations across multiple computer vision tasks, including inpainting, super-resolution, and motion
deblur further demonstrate the superiority of FPS over prevailing methods on benchmarks like FFHQ
and ImageNet. This research paves the way for enhanced efficiency and precision in leveraging
diffusion models for intricate linear inverse problems.
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A MORE BACKGROUND ON CONTINUOUS DIFFUSION MODELS

Continuous Diffusion Models In the continuous-time diffusion models (Song et al., 2020b),
Gaussian noise is sequentially injected to data in the forward process and then we create samples by
progressive denoising from noise in the backward process. Generally, the forward process follows a
stochastic differential equation (SDE) with the following form:

dxt = µ(xt, t)dt+ σ(t)dWt for t ∈ [0, T ]. (14)

data noise

(a) Unconditional Generative Model

data noise

Measurement: 

(b) Conditional Generative Model

Figure 5: Compared with the unconditional case, we replace the score function with the posterior
score function in the backward process.

Here, Wt(·) is the standard Brownian motion. µ(xt, t) and σ(t) are the drift term and the diffusion
term respectively. The diffusion process starts from x(0) ∼ pdata(x), the latent distribution of data,
and x(T ) ∼ pT (x), which is almost a pure Gaussian noise. As is stated in Anderson (1982), the
reverse of the diffusion process (Eq. (14)) is also a diffusion process, with the formulation:

dxt =
[
µ(xt, t)− σ(t)2∇xt

log pt(xt)
]
dt+ σ(t)dWt. (15)

Here, W t is a standard Brownian motion with time flows backwards from T to 0. ∇xt
log pt(xt)

is the score function of the noisy data distribution at time t, which is learned via denoising score
matching (Vincent, 2011). It is worth mentioned that Eq. (15) is not the only backward diffusion
process whose solution trajectories sampled at t follow the distribution pt(xt). Practically, a widely
used framework is the variance preserving SDE (VP-SDE) in Dhariwal & Nichol (2021):

dxt = −
β(t)

2
xtdt+

√
β(t)dWt. (16)

Here β(t) > 0 is the noise schedule, which is usually chosen as a linear function over t. A standard
Gaussian distribution can be achieved for t = T , i.e. xT ∼ N (0, I). Its corresponding backward
diffusion is:

dxt =

[
−β(t)

2
xt − β(t)∇xt log pt(xt)

]
dt+

√
β(t)dWt (17)

Conditional Diffusion Models For most existing conditional diffusion models, they analyze the
following SDE

dxt =

[
−β(t)

2
xt − β(t)∇xt

log pt(xt | y)
]

dt+
√

β(t)dWt (18)

where the score function∇xt log pt(xt) is replaced by the conditional score function∇xt log pt(xt |
y). The key problem falls onto the estimation of conditional score function without re-training.
According to the Bayes rule, it holds that:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log p(y|xt).

The first term is the unconditional score function, which can be estimated by our pretrained score
estimator. The second term does not have an explicit form even in the linear inverse problems. In the
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projection-type approaches such as Song et al. (2020b); Chung et al. (2022c); Chung & Ye (2022); ?,
the authors consider the noiseless case where n ≈ 0. After an unconditional update, they ignore the
posterior score function∇xt

log p(y|xt). Instead, they conduct a projection step to keep the model
consistency y = Ax still holds. SVD-type approaches Kawar et al. (2022) use SVD to simplify the
linear inverse problem to a component-wise unconditional diffusion model. Besides, another line of
works such as Chung et al. (2022a); Kawar et al. (2021); Bardsley et al. (2014); Song et al. (2023a);
Jalal et al. (2021) try different ways to provide a close approximation of∇xt log p(y|xt). Their main
idea is to use∇xt log pt(y | xt) ≈ ∇xt log pt(y | x̂0(xt)) to approximate the conditional score with
another explicit score. Jalal et al. (2021) utilize the approximation ∇xt

log pt(y | xt) ≈ A⊤(y−Axt)
σ2+γ2

t

where {γt} are hyper-parameters. Chung et al. (2022a) explicitly compute ∇xt log pt(y | x̂0(xt)),
based on which Song et al. (2023a) propose pt(y | xt) ≈ N (Ax̂0(xt), r

2
tAA⊤ + σ2I). Here,

x̂0(xt) = E[x0 | xt] = xt + σ2
t∇xt

log pt(xt)

is the score-based estimated initial data point x0 given its noisy version xt. Besides the mean
E[x0 | xt], its variance is additionally considered in Boys et al. (2023). Another way to approximate
the conditional score is directly tuning the score network (i.e. U-Net) over y, which is recently
proposed and implemented by Barbano et al. (2023); Chung et al. (2023).

Instead of approximating the conditional score function at each time step, we use a completely
different framework and apply Bayesian filtering model to approximate the posterior sampling
directly. This method is computationally efficient since we do not need to take derivative on estimated
score function.

Monte Carlo based Diffusion Models and Asymptotic Consistency A number of results are
proposed recently on Monte Carlo based conditional diffusion models, including several concurrent
works. Trippe et al. (2022) developed an efficient method SMCDiff to sample scaffolds from a
distribution conditioned on a given motif, which is a popular and pivotal task in protein design. This
prior work only considered the inpainting-type task, which is just a special type of linear inverse
problem. Besides, the proposed asymptotic consistency requires the perfect match between forward
and backward unconditional diffusion process, just like our Proposition 4.1. Based on this work,
Wu et al. (2023) introduced the Twisted Diffusion Sampler (TDS), a sequential Monte Carlo (SMC)
algorithm on conditional diffusion models as well. By using a constant {yk}Nk=0 sequence, there is
no explicit formulation on p(xk | xk+1,yk) for yk = y0. A tractable twisting function and Monte
Carlo based technique are needed to approximate the probability. For the asymptotic consistency,
several regularity conditions are required on the twisting function sequence. As a simultaneous work,
we use different methods to solve the same problem. By introducing an appropriately designed {yk}
sequence, we transform the posterior sampling problem into a Bayesian filtering problem where all
transition probabilities are explicit, which can be elegantly solved by variance reduced Sequential
Monte Carlo with asymptotic consistency holds. Another concurrent work proposed by Cardoso
et al. (2023) introduces Monte Carlo guided diffusion (MCGdiff) to solve Bayesian linear inverse
problems. Compared to Wu et al. (2023), a different proposal kernel is used on SMC.

Formulations of DDPM and DDIM In this part, we still use the notation {βk}Nk=1, {αk}Nk=1 and
{αk}Nk=1 introduced in Section 2. For the Denoising Diffusion Probabilistic Model (DDPM), the
forward process is Markovian with

q(x1:N | x0) =

N∏
k=1

q(xk | xk−1), where q(xk | xk−1) = N
(√

αkxk−1, β
2
kI

)
.

A direct corollary for the forward process is that q(xk | x0) = N
(√

αkx0, (1− αk)I
)
, which leads

to the following expression for xk:
xk =

√
αkx0 +

√
1− αk · ε where ε ∼ N (0, I).

With x0 added to the transition q(xk | xk−1,x0), we can keep the marginals unchanged but the
forward process not Markovian any more. For the backward process proposed in Denoising Diffusion
Implicit Model (DDIM) (Song et al., 2020a), we fix the prior pθ(xT ) = N (0, I) and we can generate
xk−1 from xk via:

xk−1 =
√
αk−1 ·

(
xk −

√
1− αkε

k
θ(xk)√

αk

)
+

√
1− αk−1 − σ2

k · ε
k
θ(xk) + σkεk.
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Here, εk ∼ N (0, I) is a standard Gaussian noise independent of xk and

εkθ(xk) ≈ −∇xk
log pk(xk)/

√
1− αk

is an approximated sample-dependent noise learned by score matching. Noise that different choices
of variance σk leads to different backward processes but all of them keep the trajectory with the same
marginal distributions pk(xk). When we choose σ2

k = βk · 1−αk−1

1−αk
for all k, the process degrades to

the case of DDPM.

B EXPLICIT FORMULATION OF FPS WITH DDIM PLUGGED IN

As a compliment of our framework described in the main text, we make explicit computation in
this section for FPS with DDIM plugged in. First, we introduce the duplex forward diffusion and
quantitatively show the connection between posterior sampling and the Bayesian filtering problem.

B.1 DUPLEX FORWARD DIFFUSION PROCESS

For the discrete case of diffusion models such as DDPM and DDIM, their forward diffusion can be
expressed as the following recursive linear Gaussian process:

xk =
√
1− βk · xk−1 +

√
βkzk (19)

where zk ∼ N (0, I) is a standard Gaussian noise independent with xk−1. Meanwhile, we make:

yk =
√
1− βk · yk−1 +

√
βkAzk. (20)

as the forward process for measurements where y0 = y is the initial measurement. Notice that these
two {zk} represent the exactly same noise vector. So, if we combine data and measurement as a pair,
the forward SDE can be defined in the following form:

d
(
xt

yt

)
= −β(t)

2

(
xt

yt

)
dt+

√
β(t)

(
ID 0
0 A

)
dWt.

Here, Wt is the standard 2D-dimensional Wiener process. After simple calculations over Equations
(19), (20), we can directly build connection between x0,y0 and xt,yt.
Proposition B.1. For the case of duplex forward diffusion process, we can simply represent it by:

xk =
√
αk · x0 +

√
1− αk · z, and yk =

√
αk · y0 +

√
1− αk ·Az, z ∼ N (0, ID).

We can also conclude that:
q(yk | xk) = N (Axk, σ

2αk · Id),
which means yk also follows a normal distribution with mean Axk and a decreasing variance
σ2αk. For the initial step k = 0, we have α0 = 1 and it degrades to the model consistency function
y0 = y = Ax0 + n where n ∼ N (0, σ2I).

Unlike x0 which we can only estimate, we do know y0, the initial measurement without any extra
noise, which makes the score function for yt tractable.
Proposition B.2. For the case of duplex forward diffusion process, the score function of yk is:

∇yk
log qk(yk) = −

1

1− αk
(AA⊤)−1 ·

(
yk −

√
αky0

)
.

According to Equation (20), the distribution of sequence {yk} given the measurement y = y0 is
tractable since the diffusion sampling is a Markov chain:

q(y1:N | y0) =

N∏
k=1

q(yk | yk−1).

For conditional sampling, we do not know the distribution of {xk}Nk=0 but know that of {yk}Nk=0.
Therefore, calculating the hidden Markov chain from the {yk}Nk=0 sequence is equivalent to solving
a reverse-time Bayesian filtering problem since we have access to pθ(yk | xk) = q(yk | xk) from
Proposition B.1 and pθ(xk−1 | xk) from score-based backward diffusion process.
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B.2 BACKWARD PROCESS OF FILTERING POSTERIOR SAMPLING

Step 1: Generating Sequence {yk}Nk=0 For the DDIM backward process with regard to {yk}Nk=0,
we have:

yk−1 =
√
αk−1ŷ0 +

√
(1− c)(1− αk−1)

1− αk
(yk − αkŷ0) +

√
c(1− αk−1) ·Aε.

where ε ∼ N (0, I) and ŷ0 = E[y0 | yk] is a posterior mean calculated by Tweedie’s formula (Efron,
2011; Kim & Ye, 2021). Here, ŷ0 = y0 since the ground truth measurement y0 is given and no
estimation or approximation is needed.

yk−1 =
√
αk−1y0 +

√
(1− c)(1− αk−1)

1− αk
(yk − αky0) +

√
c(1− αk−1) ·Aε. (21)

For yN , we have already proved that q(yN | y0) = N (
√
αNy0, (1− αN )A⊤A) in Proposition B.1.

Since αN converges to 0 for large enough N , therefore we can directly make the following sampling:

yN = AεN for εN ∼ N (0, I). (22)

Remark B.1. Since y0 is given in the case of linear inverse problems, it is also reasonable to
directly use the forward process of sequence {yk}Nk=0 where yk =

√
1− βk · yk−1 +

√
βkAzk

for zk ∼ N (0, I) since both the forward and backward sequences have exactly the same marginal
distributions qk(yk). In this paper, we use the backward process to make our model structurally
aligned.

Step 2: Generating Backward Sequence of {xk}Nk=0 Given the {yk}Nk=0 sequence given, we
continue generate the {xk}Nk=0 backward sequence by using the filtering method. In this section,
we provide the explicit Gaussian formulation of each pθ(xk−1 | xk,yk−1) by using Eq. (9), which
depends on the unconditional update model

pθ(xk−1 | xk) := N (µk(xk,θ),Σk)

we choose to plug in.

For example, for DDPM framework, we have:

µk(xk,θ) =
1
√
αk

xk +
βk√
αk
· sθ(xk, tk) and Σk =

βk(1− αk−1)

1− αk
· I,

where sθ(xk, tk) is the pretrained approximation for the score function∇xk
log pk(xk).

For the DDIM framework, we have a more general formulation with:

µk(xk,θ) =
1

αk
· (xk + (1− αk)sθ(xk, tk))−

√
(1− αk−1 − σ2

k) · (1− αk) · sθ(xk, tk).

and
Σk = σ2

k · I.

We have claimed that when σ2
k = βk(1−αk−1)

1−αk
, the DDIM framework becomes a DDPM. Therefore,

we apply the more general DDIM framework and make σ2
k = c(1− αk−1) with c ∈ [0, 1] left as a

tunable hyper-parameter, which makes:

µDDIM
k (xk,θ) =

1

αk
·(xk+(1−αk)sθ(xk, tk))−

√
(1− c)(1− αk−1) · (1− αk)·sθ(xk, tk) (23)

and the covariance matrix
ΣDDIM

k = c(1− αk−1) · I. (24)

After combining pθ(yk−1 | xk−1) and pθ(xk−1 | xk), the following conclusion can be obtained by
linear filtering.
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Proposition B.3. Under the case that

pθ(yk−1 | xk−1) = N (Axk−1, σ
2αk−1 · I) and pθ(xk−1 | xk) = N

(
µDDIM

k (xk,θ), Σ
DDIM
k

)
with µDDIM

k (xk,θ) and ΣDDIM
k defined in Equations (23), (24). We can conclude that:

pθ(xk−1 | xk,yk−1) = N (µFPS
k (xk,yk−1,θ), Σ

FPS
k )

where

ΣFPS
k =

((
ΣDDIM

k

)−1
+

1

σ2 · αk−1
·A⊤A

)−1

and

µFPS
k (xk,yk−1,θ) = ΣFPS

k ·
((

ΣDDIM
k

)−1
µDDIM

k (xk,θ) +
1

σ2 · αk−1
·A⊤yk−1

)
.

Till now, we have figured out all the details of FPS as well as its variant FPS-SMC. We rewrite the
pseudo-algorithms of FPS-SMC with DDIM plugged in as the following Algorithm 2. When the
particle size M = 1, it degrades to FPS.

Algorithm 2 The Framework of FPS-SMC with DDIM Plugged-in
1: Given: N,y, {αk}k∈[N ], c, particle size M and the score estimator sθ(·, ·).
2: yN = AεN ,x

(j)
N = εN εN ∼ N (0, I) for j ∈ [M ].

3: for k = N,N − 1, . . . , 1 do
4: pk ←

√
(1−c)(1−αk−1)

1−αk
, qk ←

√
c(1− αk−1)

5: yk−1 ←
√
αk−1y + pk(yk −

√
αky) + qkAεi

6: end for
7: for k = N − 1, . . . , 0 do
8: Sample x

(j)
k ∼ N (µFPS

k+1(x
(j)
k+1,yk, θ̂),Σ

FPS
k+1) for j = 1, 2, . . . ,M

where µFPS
k+1(xk+1,yk, θ̂),Σ

FPS
k+1 are defined in Proposition B.3.

9: Pick M samples with replacement from
{
x
(j)
k

}
j∈[M ]

with probability distribution (13). We

denote the sample set as
{
x
(j)
k

}
j∈[M ]

.

10: end for
11: The output x0 is uniformly sampled from {x(j)

0 }j∈[M ].

C PROOF OF PROPOSITIONS IN APPENDIX B

In this section, we provide detailed proofs for the three propositions stated in Section 3.

C.1 PROOF OF PROPOSITION B.1

According to the duplex forward diffusion framework,

xk =
√
αk · x0 +

√
1− αkz, yk =

√
αk · y0 +

√
1− αkAz.

We have:
yk −Axk =

√
αk · (y0 −Ax0).

Since y0 −Ax0 ∼ N (0, σ2 · Id), we can easily conclude that:

yk −Axk ∼ N (0, σ2αk · Id),

which is equivalent to:
yk ∼ N (Axk, σ

2αk · Id).
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C.2 PROOF OF PROPOSITION B.2

Given the fact that
yk ∼ N (

√
αky0, (1− αk) ·AA⊤),

the density function as well as the score function can be explicitly written as:

qk(yk) ∝ exp

(
−1

2
(yk − αky0)

⊤ (AA⊤)−1

1− αk
· (yk − αky0)

)
,

and
∇yk

log qk(yk) = −
1

1− αk
(AA⊤)−1 · (yk − αky0),

which comes to our conclusion.

C.3 PROOF OF PROPOSITION B.3

For simplicity, we denote

pθ(yk−1 | xk−1) = N (τ1,Σ1) and pθ(xk−1 | xk) = N (τ2,Σ2),

where τ1 = Axk−1, τ2 = µDDIM
k (xk,θ) and Σ1 = σ2αk−1 · I,Σ2 = ΣDDIM

k . Then,

pθ(xk−1 | xk,yk−1) ∝ pθ(xk−1,xk,yk−1) = pθ(xk−1 | xk) · pθ(yk−1 | xk−1) · pθ(xk).

Here, we use the fact that yk−1 and xk are independent given xk−1. Therefore:

pθ(xk−1 | xk,yk−1) ∝ pθ(xk−1 | xk) · pθ(yk−1 | xk−1),

which leads to:

pθ(xk−1 | xk,yk−1) ∝ exp

(
−1

2
(xk−1 − τ2)

⊤Σ−1
2 · (xk−1 − τ2)−

1

2
(yk−1 − τ1)

⊤Σ−1
1 · (yk−1 − τ1)

)
∝ exp

(
−1

2
x⊤
k−1Σ

−1
2 · xk−1 + τ⊤2 Σ−1

2 · xk−1 −
1

2
x⊤
k−1A

⊤Σ−1
1 Axk−1 + y⊤

k−1Σ
−1
1 ·Axk−1

)
= exp

(
−1

2
x⊤
k−1(Σ

−1
2 +A⊤Σ−1

1 A) · xk−1 + (Σ−1
2 τ2 +A⊤Σ−1

1 yk−1)
⊤xk−1

)
Therefore, we have pθ(xk−1 | xk,yk−1) = N (µFPS

k (xk,yk−1,θ),Σ
FPS
k ) where

ΣFPS
k = (Σ−1

2 +A⊤Σ−1
1 A)−1 =

(
(ΣDDIM

k )−1 +
1

σ2αk−1
A⊤A

)−1

,

µFPS
k (xk,yk−1,θ) = ΣFPS

k · (Σ−1
2 τ2 +A⊤Σ−1

1 yi−1)

= ΣFPS
k ·

((
ΣDDIM

k

)−1
µDDIM

k (xk,θ) +
1

σ2 · αk−1
·A⊤yk−1

)
,

which comes to our conclusion.

D THEORETICAL UNDERSTANDING OF FPS AND FPS-SMC

D.1 THE CONTINUOUS LIMIT OF FPS

In this section, we are going to reveal the theoretical properties of Filtering Posterior Sampling (FPS)
in the continuous setting where the time step ∆t→ 0. In the Diffusion Posterior Sampling (DPS),
the backward diffusion process has the following formulation:

dxt =

[
−β(t)

2
xt − β(t)∇xt

log pt(xt | y)
]

dt+
√

β(t)dWt.

Actually, when using diffusion models to solve inverse problem or posterior sampling, the SDE above
is the only framework to follow. The only difference is how to approximate∇xt

log pt(xt | y). Here,
we are going to theoretically answer the following question:
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For the continuous FPS, what is our actual approximation for ∇xt
log pt(xt | y)?

Notice that when ∆t→ 0, µDDIM
t and ΣDDIM

t have the following form:

ΣDDIM
t = β(t)∆t · I, µDDIM

t (xt) = xt +

(
β(t)

2
xt + β(t)∇xt

log pt(xt)

)
∆t,

which match the Euler-Maruyama form of the backward diffusion SDE. Then, for µFPS
t and ΣFPS

t ,
we have:

ΣFPS
t =

(
(ΣDDIM

t )−1 +
1

σ2 · αt
·A⊤A

)−1

= β(t)∆t · I,

and

µFPS
t = ΣFPS

t ·
((

ΣDDIM
t

)−1
µDDIM

t (xt) +
1

σ2 · αt
·A⊤yt

)
=

(
ΣDDIM

t (ΣFPS
t )−1

)−1 · µDDIM
t (xt) +

1

σ2 · αt
ΣFPS

t · (A⊤yt)

=

(
I − β(t)∆t

σ2 · αt
A⊤A

)
· µDDIM

t (xt) +
β(t)∆t

σ2 · αt
·A⊤yt

= xt +

(
β(t)

2
xt + β(t)∇xt log pt(xt)

)
∆t+

β(t)∆t

σ2 · αt
· (A⊤yt −A⊤Axt).

We have already known pθ(yt | xt) ∼ N (Axt, σ
2αt · I), it holds that:

∇xt
log p(yt | xt) =

1

σ2 · αt
· (A⊤yt −A⊤Axt).

Therefore, we can finally conclude that

µFPS
t = xt +

(
β(t)

2
xt + β(t)∇xt log pt(xt)

)
∆t+ β(t)∆t · ∇xt log p(yt | xt)

= xt +

(
β(t)

2
xt + β(t)∇xt

log pt(xt | yt)

)
∆t.

Therefore, when time step ∆t→ 0, the continuous limit of FPS should be

dxt =

[
−β(t)

2
xt − β(t)∇xt log pt(xt | yt)

]
dt+

√
β(t)dWt.

D.2 THE CONSISTENCY OF FPS-SMC

In this section, we are going to use the method of induction to prove the Proposition 4.1. Before the
official proof, I would like to introduce some useful properties on weak convergence over distributions.
For simplicity of notations, we denote p := pθ in this proof.

Lemma D.1. Assume a sequence of distributions over support set Ω satisfies pn
w
⇀ p∗ when n→∞.

c : Ω→ R+ is a continuous and bounded function over Ω. Then: denote

qn(x) =
c(x)pn(x)∫
c(x)pn(x)dx

and q∗(x) =
c(x)p∗(x)∫
c(x)p∗(x)dx

.

It holds that qn
w
⇀ q∗ when n→∞.

Lemma D.2. Assume a sequence of distributions over support set Ω satisfies pn
w
⇀ p∗ when n→∞.

q(x′ | x) is a conditional distribution. Denote

rn(x
′) =

∫
q(x′ | x)pn(x)dx and r∗(x′) =

∫
q(x′ | x)p∗(x)dx.

Then it holds that rn
w
⇀ r∗ when n→∞.
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Lemma D.3. Assume a sequence of distributions over support set Ω × Ω′ satisfies pn(x,x
′)

w
⇀

p∗(x,x′) when n→∞. Denote

qn(x) =

∫
pn(x,x

′)dx′ and q∗(x) =

∫
p∗(x,x′)dx′.

Then it holds that qn
w
⇀ q∗ when n→∞.

These three lemmas can be easily proved by the definition of weak convergence. According to
Assumption 4.1, we know that p(xk | xk+1) = p∗(xk | xk+1) holds for all k. Since p(yk | xk) =
p∗(yk | xk) is fixed and known in both forward and backward processes, we have:

p(xk | xk+1,yk) ∝ p(xk | xk+1)p(yk | xk) = p∗(xk | xk+1)p
∗(yk | xk) ∝ p∗(xk | xk+1,yk),

which leads to p(xk | xk+1,yk) = p∗(xk | xk+1,yk). Now we start proving:

p(xk | yk:N )
w
⇀ p∗(xk | yk:N ) when M →∞ (25)

by using the method of induction over k. We have known that {x(j)
N } are M i.i.d samples from

p∗(xN | yN ), which means Eq. (25) holds for k = N . If the equation holds for k + 1, then {x(j)
k+1}

are i.i.d samples from p(xk+1 | yk+1:N ). For each j ∈ [M ], we generate

x
(j)
k ∼ p(xk | x(j)

k+1,yk).

For each j, (x(j)
k ,x

(j)
k+1) follows the distribution

q(xk,xk+1 | yk:N ) := p(xk | xk+1,yk)·p(xk+1 | yk+1:N )
w
⇀ p∗(xk | xk+1,yk)·p∗(xk+1 | yk+1:N ).

The next step is the resampling, whose weights are c(x
(j)
k ,x

(j)
k+1) = p(yk | x(j)

k+1). Since p(yk |
xk+1) is a Gaussian distribution, the weight function c(·, ·) is continuous and bounded. For each
continuous bounded function f and each j ∈ [M ], by the Law of Large Numbers:

Ef(xk,xk+1) =

∑M
j=1 c(x

(j)
k ,x

(j)
k+1) · f(x

(j)
k ,x

(j)
k+1)∑M

j=1 c(x
(j)
k ,x

(j)
k+1)

a.s.→
∫
c(xk,xk+1)f(xk,xk+1) · q(xk,xk+1 | yk:N )dxkdxk+1∫

c(xk,xk+1) · q(xk,xk+1 | yk:N )dxkdxk+1

=

∫
f(xk,xk+1)r(xk,xk+1 | yk:N )dxkdxk+1

which implies p(xk,xk+1 | yk:N )
w
⇀ r(xk,xk+1 | yk:N ) where

r(xk,xk+1 | yk:N ) ∝ c(xk,xk+1) · q(xk,xk+1 | yk:N ).

By using Lemma D.1,

r(xk,xk+1 | yk:N )
w
⇀ r∗(xk,xk+1 | yk:N ) ∝ c(xk,xk+1)p(xk | xk+1,yk) · p∗(xk+1 | yk+1:N )

= p(yk | xk+1)p(xk | xk+1,yk) · p∗(xk+1 | yk+1:N ) ∝ p∗(xk,xk+1 | yk:N ),

and it finally leads to
p(xk,xk+1 | yk:N )

w
⇀ p∗(xk,xk+1 | yk:N ).

By Lemma D.3, it holds that:

p(xk | yk:N )
w
⇀ p∗(xk | yk:N ).

Now we finish the induction. Let k = 0, we have:

p(x0 | y0:N )
w
⇀ p∗(x0 | y0:N ).

After taking expectation over p(y1:N | y0) and using Lemma D.2:

p(x0 | y0)
w
⇀ p∗(x0 | y0),

which comes to our conclusion.
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E ADDITIONAL EXPERIMENTAL RESULTS

We first outline the configurations for the five tasks we cast as linear inverse problems in image
processing. (a) Inpainting task with random-type: we mask each pixel in the image at a 92%
probability, affecting all three RGB channels. (b) Inpainting task with box-type: we select a random
128 × 128 box-shaped region within the 256 × 256 image and mask out all the pixels within this
box, across all three RGB channels. (c) Super resolution: we downscale our 256 × 256 images
to 64 × 64 by employing bicubic downsampling with a factor of 4. (d) Gaussian deblurring and
motion deblurring: The shape of the Gaussian kernel is 61× 61 with its intensity to be 3.0, while for
motion deblurring, we apply a kernel of the same size, but with an intensity of 0.5. As we know, the
kernel of Gaussian deblurring is separable, which faciliates memory-efficient computation of linear
mappings in the form of (λI + A⊤A)−1. Following Kawar et al. (2022), we replace traditional
motion deblurring with anisotropic Gaussian deblurring in our experiments, mirroring the approach
used in DDRM.

Next, we present our additional experimental outcomes on the FFHQ 256× 256-1k validation dataset
and ImageNet 256× 256-1k validation dataset on the other two metrics, PSNR and SSIM, in Tables 3
and 4. The results show that our proposed methods achieve higher PSNR values compared to baseline
approaches. However, they do not surpass the best existing methods in terms of the SSIM metric.
Overall, our FPS and FPS-SMC methods exceed the performance of all current models on the majority
of relevant tasks when evaluated using PSNR, LPIPS and FID metrics. Moreover, we illustrate in 6 -
9 the generated figures by our two methods as well as the corresponding inputs and measurements for
inpainting (box), super resolution, Gaussian deblurring and inpainting (random) tasks on both FFHQ
and ImageNet datasets.

Observing the performance in the inpainting (random) task where 92% of all the pixels are masked
out, our methods successfully reconstruct most of the labels, which demonstrates their robustness in
handling high undersampling factors. Meanwhile, in the inpainting (box) task, while the generated
samples do not perfectly align with the labels, which is a common issue in this task due to the
absence of information in the masked image area, they remain structurally consistent and semantically
cohesive with the unmasked portions. Moreover, with the FFHQ dataset, our model’s capability to
generate human faces with varied facial expressions further validates its strength in preventing mode
collapse and maintaining diversity.

Table 3: Quantitative results (PSNR, SSIM) of our model and existing models on a various of linear
inverse problems on FFHQ 256× 256-1k validation dataset.

FFHQ Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FPS 27.48 0.807 24.17 0.865 26.45 0.773 26.79 0.820 26.70 0.828

FPS-SMC 28.10 0.807 24.70 0.862 26.54 0.773 27.33 0.819 27.39 0.826

DPS 25.67 0.852 22.47 0.873 24.25 0.811 25.23 0.851 24.92 0.859
DDRM 25.36 0.835 22.24 0.869 23.36 0.767 9.19 0.319 - -

MCG 20.05 0.559 19.97 0.703 6.72 0.051 21.57 0.751 - -

PnP-ADMM 26.55 0.865 11.65 0.642 24.93 0.812 8.41 0.325 - -

Score-SDE 17.62 0.617 18.51 0.678 7.12 0.109 13.52 0.437 - -

ADMM-TV 23.86 0.803 17.81 0.814 22.37 0.801 22.03 0.784 - -

F ABLATION STUDIES

F.1 FORWARD AND BACKWARD GENERATION OF y-SEQUENCE

In this section, we focus on the {yk}Nk=0-sequence employed in the filtering-based methods we
propose. To synchronize the {xk}Nk=0-sequence with the {yk}Nk=0-sequence, we construct our
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Table 4: Quantitative results (PSNR, SSIM) of our model and existing models on a various of linear
inverse problems on ImageNet 256× 256-1k validation dataset.

Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FPS 24.32 0.724 20.16 0.752 23.58 0.581 23.39 0.688 22.71 0.598

FPS-SMC 24.78 0.731 22.03 0.748 23.81 0.599 24.12 0.685 23.27 0.614

DPS 23.87 0.781 18.90 0.794 21.97 0.706 22.20 0.739 20.55 0.634
DDRM 24.96 0.790 18.66 0.814 22.73 0.705 14.29 0.403 - -

MCG 13.39 0.227 17.36 0.633 16.32 0.441 19.03 0.546 - -

PnP-ADMM 23.75 0.761 12.70 0.657 21.81 0.669 8.39 0.300 - -

Score-SDE 12.25 0.256 16.48 0.612 15.97 0.436 18.62 0.517 - -

ADMM-TV 22.17 0.679 17.96 0.785 19.99 0.634 20.96 0.676 - -

Figure 6: Examples for inpainting (box) and super resolution over FFHQ dataset

{yk}Nk=0-sequence by using a DDIM backward process framework, with an explicit unconditional
score function. Unlike existing posterior sampling methods such as DPS (Chung et al., 2022a) where
y1 = y2 = . . . = yN = y or conditional score-based generative models (Song et al., 2020b) that
sample yk ∼ N (y, σ2

kI), the noise introduced to y at each step in our methods is correlated as shown
in Eq. (26)

yk =
√
1− βk · yk−1 +

√
βk ·Azk, zk ∼ N (0, I) are independent with each other, (26)

It ensures that our generated sequence {yk}Nk=0 is continuous, with incremental noise added at each
step.

Here, we conduct separate experiments to demonstrate the contrast between these two different ways
of generating the {yk}Nk=0 sequence. In the FPS method proposed by us, we use DDIM backward
process to make Eq. (26) holds. Conversely, in the control group, the FPS with Independent Noise
(FPS-IN) model generates the {yk}Nk=0 sequence in a simpler manner by:

yk =
√
αky +

√
1− αk ·Azk, zk ∼ N (0, I) are independent with each other.

Meanwhile, to ensure the validity of our ablation study, we maintain all other experimental conditions
identical. From the following Table 5, we can see that in all the five tasks and both of the two datasets,
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Figure 7: Examples for Gaussian deblurring and inpainting (random) over FFHQ dataset

Figure 8: Examples for inpainting (box) and super resolution over ImageNet dataset

FPS consistently outperforms the control group, FPS-IN. This outcome affirms the significance of the
additive noise correlation in the {yk}Nk=0 sequence for the model’s performance.

Furthermore, we generate two sets of images by using FPS and the control group, FPS-IN, for the
inpainting (box) task, with the outcomes presented in Fig. 10. Both methods of generating {yk}Nk=0
sequence enable our model to perform effectively, creating well-composed images. Comparatively,
the images generated by FPS tend to be more accurate and closely match the unmasked portions of
the labels.
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Figure 9: Examples for Gaussian deblurring and inpainting (random) over ImageNet dataset

Table 5: Quantitative results (FID, LPIPS) of FPS and our control group, FPS-IN on FFHQ 256×256-
1k validation dataset and ImageNet 256× 256-1k validation dataset.

FFHQ Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS
FPS 26.66 0.212 26.13 0.141 30.03 0.248 35.21 0.265 26.18 0.221

FPS-IN 27.18 0.247 27.84 0.169 32.79 0.251 39.90 0.316 26.86 0.239

ImageNet Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS

FPS 47.32 0.329 33.19 0.204 54.41 0.396 42.68 0.325 52.22 0.370
FPS-IN 50.06 0.541 34.21 0.255 56.21 0.409 44.40 0.337 53.10 0.389

F.2 RUNNING TIME OF FPS-SMC WITH INCREASING PARTICLE SIZE

In this section, we compare the wall-clock running time of FPS and FPS-SMC with other popular
posterior sampling models. By using a single A100 GPU, the running time for each algorithm is listed
in Table 6. As we can see, although not the fastest, FPS provides running speed faster than average
for the posterior sampling in the inpainting (box) task of FFHQ dataset. Furthermore, we study the
running time of FPS-SMC with increasing particle size. Despite the fact that the computational cost
should be proportional to the particle size M , we can reduce the running time by batch-wise operators
while coding. According to Table 7, the running time t(M) approximately holds t(M) ∝

√
M .

F.3 INFLUENCE OF THE NOISE LEVEL IN DDIM FRAMEWORK

Within the DDIM unconditional generative framework, the noise level c ∈ [0, 1] serves as a pre-
determined hyper-parameter. According to our experiments, we notice that varying c leads to distinct
generated images, with each task presenting an optimal choice of c. Therefore, in this section, we
explore how the noise level c affects the quality of generated images. As evident in Figs. 11 and 12,
an excessively high c value results in over-smoothed images, while a very low c causes insufficient
smoothing, degrading image quality. We thus select task-specific c values, with our chosen parameters
detailed in Table 8.
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Figure 10: Comparison of FPS and the control group, FPS-IN under the inpainting (box) task on
FFHQ and ImageNet dataset

Table 6: Wall-clock running time for a single poste-
rior sampling on the inpainting (box) task of FFHQ-1k-
validation dataset, by using a single A100 GPU

Model Running time
(in seconds)

FPS (our paper) 33.07
Score-SDE (Song et al., 2020b) 32.93

DPS (Chung et al., 2022a) 70.42
DDRM (Kawar et al., 2022) 2.034
ΠGDM (Song et al., 2023a) 33.18
MCG (Chung et al., 2022b) 73.16

PnP-ADMM (Chan et al., 2016) 3.595

Table 7: The connection between the
running time of FPS-SMC and the
partcle size M , by using a single
A100 GPU

Particle Size Running time
(in seconds)

M = 1 (FPS) 33.07
M = 2 39.15
M = 5 57.88
M = 10 82.12
M = 20 116.90
M = 100 283.53

Table 8: Different c values we choose in various tasks over datasets FFHQ and ImageNet

Dataset Super
Resolution

Inpainting
(box)

Gaussian
Deblur

Inpainting
(random)

Motion
Deblur

FFHQ 0.3 0.95 0.3 0.95 0.3

ImageNet 0.15 0.25 0.3 0.25 0.3
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Figure 11: Generated FFHQ images by FPS with different noise level in inpainting (box) task

Figure 12: Generated ImageNet images by FPS with different noise level in super resolution task
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