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ABSTRACT

Representation learning models for graphs are a successful family of techniques that
project nodes into feature spaces that can be exploited by other machine learning
algorithms. Since many real-world networks are inherently dynamic, with interac-
tions among nodes changing over time, these techniques can be defined both for
static and for time-varying graphs. Here, we show how the skip-gram embedding
approach can be used to perform implicit tensor factorization on different tensor
representations of time-varying graphs. We show that higher-order skip-gram with
negative sampling (HOSGNS) is able to disentangle the role of nodes and time,
with a small fraction of the number of parameters needed by other approaches. We
empirically evaluate our approach using time-resolved face-to-face proximity data,
showing that the learned representations outperform state-of-the-art methods when
used to solve downstream tasks such as network reconstruction. Good performance
on predicting the outcome of dynamical processes such as disease spreading shows
the potential of this new method to estimate contagion risk, providing early risk
awareness based on contact tracing data. The source code and data are publicly
available at [link to anonymized repository].

1 INTRODUCTION

A great variety of natural and artificial systems can be represented as networks of elementary structural
entities coupled by relations between them. The abstraction of such systems as networks helps us
understand, predict and optimize their behaviour (Newman, 2003; Albert & Barabási, 2002). In this
sense, node and graph embeddings have been established as standard feature representations in many
learning tasks (Cai et al., 2018; Goyal & Ferrara, 2018). Node embedding methods map nodes into
low-dimensional vectors that can be used to solve downstream tasks such as edge prediction, network
reconstruction and node classification.

Node embeddings have proven successful in achieving low-dimensional encoding of static network
structures, but many real-world networks are inherently dynamic (Holme & Saramäki, 2012). Time-
resolved networks are also the support of important dynamical processes, such as epidemic or rumor
spreading, cascading failures, consensus formation, etc. (Barrat et al., 2008). Time-resolved node
embeddings have been shown to yield improved performance for predicting the outcome of dynamical
processes over networks, such as information diffusion and disease spreading (Sato et al., 2019),
providing estimation of infection and contagion risk when used with contact tracing data.

Since we expect having more data on proximity networks being used for contact tracing and as proxies
for epidemic risk (Alsdurf et al., 2020), learning meaningful representations of time-resolved proxim-
ity networks can be of extreme importance when facing events such as epidemic outbreaks (Kapoor
et al., 2020; Gao et al., 2020). The manual and automatic collection of time-resolved proximity graphs
for contact tracing purposes presents an opportunity for quick identification of possible infection
clusters and infection chains. Even before the COVID-19 pandemic, the use of wearable proximity
sensors for collecting time-resolved proximity networks has been largely discussed in the literature
and many approaches have been used to describe patterns of activity and community structure, and to
study spreading patterns of infectious diseases (Sapienza et al., 2015; Gauvin et al., 2014; Génois
et al., 2015).
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Here we propose a representation learning model that performs implicit tensor factorization on
different higher-order representations of time-varying graphs. The main contributions are as follows:
Given that the skip-gram embedding approach implicitly performs a factorization of the shifted
pointwise mutual information matrix (PMI) (Levy & Goldberg, 2014), we generalize it to perform
implicit factorization of a shifted PMI tensor. We then define the steps to achieve this factorization
using higher-order skip-gram with negative sampling (HOSGNS) optimization. We show how to
apply 3rd-order and 4th-order SGNS on different higher-order representations of time-varying graphs.
Finally, we show that time-varying graph representations learned via HOSGNS outperform state-
of-the-art methods when used to solve downstream tasks, even using a fraction of the number of
embedding parameters.

We report the results of learning embeddings on empirical time-resolved face-to-face proximity data
and using such representations as predictors for solving two different tasks: network reconstruction
and predicting the outcomes of a SIR spreading process over the time-varying graph. We compare
these results with state-of-the art methods for time-varying graph representation learning.

2 PRELIMINARIES AND RELATED WORK

Skip-gram representation learning. The skip-gram model was designed to compute word em-
beddings in WORD2VEC (Mikolov et al., 2013), and afterwards extended to graph node embeddings
(Perozzi et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016). Levy & Goldberg (2014) es-
tablished the relation between skip-gram trained with negative sampling (SGNS) and traditional
low-rank approximation methods (Kolda & Bader, 2009; Anandkumar et al., 2014), showing the
equivalence of SGNS optimization to factorizing a shifted PMI matrix (Church & Hanks, 1990). This
equivalence was later retrieved from diverse assumptions (Assylbekov & Takhanov, 2019; Allen et al.,
2019; Melamud & Goldberger, 2017; Arora et al., 2016; Li et al., 2015), and exploited to compute
closed form expressions approximated in different graph embedding models (Qiu et al., 2018). In
this work, we refer to the shifted PMI matrix also as SPMIκ = PMI− log κ, where κ is the number
of negative samples.

Random walk based graph embeddings. Given an undirected, weighted and connected graph
G = (V, E) with nodes i, j ∈ V , edges (i, j) ∈ E and adjacency matrix A, graph embedding
methods are unsupervised models designed to map nodes into dense d-dimensional representations
(d� |V|) (Hamilton et al., 2017). A well known family of approaches based on the skip-gram model
consists in sampling random walks from the graph and processing node sequences as textual sentences.
In DEEPWALK (Perozzi et al., 2014) and NODE2VEC (Grover & Leskovec, 2016), the skip-gram model
is used to obtain node embeddings from co-occurrences in random walk realizations. Although the
original implementation of DEEPWALK uses hierarchical softmax to compute embeddings, we will
refer to the SGNS formulation given by Qiu et al. (2018).
Since SGNS can be interpreted as a factorization of the word-context PMI matrix (Levy & Gold-
berg, 2014), the asymptotic form of the PMI matrix implicitly decomposed in DEEPWALK can
be derived (Qiu et al., 2018). Given the 1-step transition matrix P = D−1A, where D =
diag(d1, . . . , d|V|) and di =

∑
j∈V Aij is the (weighted) node degree, the expected PMI for a

node-context pair (i, j) occurring in a T -sized window is:

E[ PMIDEEPWALK(i, j) | T ] = log

(
1
2T

∑T
r=1 [p

∗(i)(Pr)ij + p∗(j)(Pr)ji]

p∗(i) p∗(j)

)
(2.1)

where p∗(i) = di
vol(G) is the unique stationary distribution for random walks (Masuda et al., 2017)

and vol(G) = ∑
i,j∈V Aij . We will use this expression in Section 3.2 to build PMI tensors from

higher-order graph representations.

Time-varying graphs and their algebraic representations. Time-varying graphs (Holme &
Saramäki, 2012) are defined as triples H = (V, E , T ) , i.e. collections of events (i, j, k) ∈ E ,
representing undirected pairwise relations among nodes at discrete times (i, j ∈ V , k ∈ T ). H
can be seen as a temporal sequence of static graphs {G(k)}k∈T , each of those with adjacency
matrix A(k) such that A(k)

ij = ω(i, j, k) ∈ R is the weight of the event (i, j, k) ∈ E . We can
concatenate the list of time-stamped snapshots [A(1), . . . ,A(|T |)] to obtain a single 3rd-order tensor
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Astat(H) ∈ R|V|×|V|×|T | which characterize the evolution of the graph over time. This representa-
tion has been used to discover latent community structures of temporal graphs (Gauvin et al., 2014)
and to perform temporal link prediction (Dunlavy et al., 2011). Indeed, beyond the above stacked
graph representation, more exhaustive representations are possible. In particular, the multi-layer
approach (De Domenico et al., 2013) allows to map the topology of a time-varying graph H into
a static network GH = (VH, EH) (the supra-adjacency graph) such that vertices of GH correspond
to pairs (i, k) ≡ i(k) ∈ V × T of the original time-dependent network. This representation can be
stored in a 4th-order tensor Adyn(H) ∈ R|V|×|V|×|T |×|T | equivalent, up to an opportune reshaping,
to the adjacency matrix A(GH) ∈ R|V||T |×|V||T | associated to GH. Multi-layer representations for
time-varying networks have been used to study time-dependent centrality measures (Taylor et al.,
2019) and properties of spreading processes (Valdano et al., 2015).

Time-varying graph representation learning. Given a time-varying graph H = (V, E , T ), we
define as temporal network embedding a model that learns from data, implicitly or explicitly, a
mapping function: f : (v, t) ∈ V × T 7→ v(t) ∈ Rd (2.2)
which project time-stamped nodes into a latent low-rank vector space that encodes structural and
temporal properties of the original evolving graph. Many existing methods learn node representations
from sequences of static snapshots through incremental updates in a streaming scenario: deep
autoencoders (Goyal et al., 2017), SVD (Zhang et al., 2018), skip-gram (Du et al., 2018) and random
walk sampling (Béres et al., 2019; Mahdavi et al., 2018; Yu et al., 2018). Another class of models
learn dynamic node representations by recurrent/attention mechanisms (Goyal et al., 2020; Li et al.,
2018; Sankar et al., 2020; Xu et al., 2020) or by imposing temporal stability among adjacent time
intervals (Zhou et al., 2018; Zhu et al., 2016). DYANE (Sato et al., 2019) and WEG2VEC (Torricelli et al.,
2020) project the dynamic graph structure into a static graph, in order to compute embeddings with
WORD2VEC. Closely related to these ones are Nguyen et al. (2018) and Zhan et al. (2020), which learn
node vectors according to time-respecting random walks or spreading trajectory paths. Moreover,
Kumar et al. (2019) proposed an embedding framework for user-item temporal interactions, and
Malik et al. (2020) suggested a tensor-based convolutional architecture for dynamic graphs.

Methods that perform well for predicting outcomes of spreading processes make use of time-
respecting supra-adjacency representations such as the one proposed by Valdano et al. (2015).
In this representation, random itineraries correspond to temporal paths of the original time-varying
graph. The supra-adjacency representation GH that we refer in Section 3.2, also used in DYANE,
with adjacency matrix A(GH), is defined by two rules:

1. For each event (i, j, t0), if i is also active at time t1 > t0 and in no other time-stamp between
the two, we add a cross-coupling edge between supra-adjacency nodes j(t0) and i(t1). In
addition, if the next interaction of j with other nodes happens at t2 > t0, we add an edge
between i(t0) and j(t2). The weights of such edges are set to ω(i, j, t0).

2. For every case as described above, we also add self-coupling edges (i(t0), i(t1)) and
(j(t0), j(t2)), with weights set to 1.

t0 t1 t2

i j

k
j

t0 t1 t2

i

k

self-coupling cross-coupling

Figure 1: A time-varying graphH with three intervals (left) and its corresponding time-respecting
supra-adjacency graph GH (right).

Figure 1 shows the differences between a time-varying graph and its time-aware supra-adjacency
representation, according to the formulation described above. DYANE computes, given a node i ∈ V ,
one vector representation for each time-stamped node i(t) ∈ V(T ) = {(i, t) ∈ V×T : ∃ (i, j, t) ∈ E}
of this supra-adjacency representation. Similar models that learn time-resolved node representations
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require a quantity O(|V| · |T |) of embedding parameters to represent the system in the latent
space. Compared with these methods, our approach requires a quantity O(|V|+ |T |) of embedding
parameters for disentangled node and time representations.

3 PROPOSED METHOD

Given a time-varying graphH = (V, E , T ), we propose a representation learning method that learns
disentangled representations for nodes and time slices. More formally, we learn a function:

f∗ : (v, t) ∈ V × T 7→ v, t ∈ Rd

through a number of parameters proportional to O(|V|+ |T |). This embedding representation can
then be reconciled with the definition in Eq. (2.2) by combining v and t in a single v(t) representation
using any combination function c : (v, t) ∈ Rd × Rd 7→ v(t) ∈ Rd.

Starting from the existing skip-gram framework for node embeddings, we propose a higher-order
generalization of skip-gram with negative sampling (HOSGNS) applied to time-varying graphs. We
show that it allows to implicitly factorize higher-order relations that characterize tensor representations
of time-varying graphs, in the same way that the classical SGNS decomposes dyadic relations
associated to a static graph. Similar approaches have been applied in NLP for dynamic word
embeddings (Rudolph & Blei, 2018), and higher-order extensions of the skip-gram model have
been proposed to learn context-dependent (Liu et al., 2015) and syntactic-aware (Cotterell et al.,
2017) word representations. Moreover tensor factorization techniques have been applied to include
the temporal dimension in recommender systems (Xiong et al., 2010; Wu et al., 2019), knowledge
graphs (Lacroix et al., 2020; Ma et al., 2019) and face-to-face contact networks (Sapienza et al., 2015;
Gauvin et al., 2014). But this work is the first to merge SGNS with tensor factorization, and then
apply it to learn time-varying graph embeddings.

3.1 HIGHER-ORDER SKIP-GRAM WITH NEGATIVE SAMPLING AS IMPLICIT TENSOR
FACTORIZATION

Here we address the problem of generalizing SGNS to learn embedding representations from higher-
order co-occurrences. We analyze here the 3rd-order case, giving the description of the general
N -order case in the Supplementary Information. Later in this work we will focus 3rd and 4th order
representations since these are the most interesting for time-varying graphs.

We consider a set of training samples D = {(i, j, k), i ∈ W, j ∈ C, k ∈ T } obtained by collecting
co-occurrences among elements from three setsW , C and T . While SGNS is limited to pairs of node-
context (i, j), hereD is constructed with three (or more) variables, e.g. sampling random walks over a
higher-order data structure. We denote as #(i, j, k) the number of times the triple (i, j, k) appears in
D. Similarly we use #i =

∑
j,k#(i, j, k), #j =

∑
i,k#(i, j, k) and #k =

∑
i,j #(i, j, k) as the

number of times each distinct element occurs in D, with relative frequencies PD(i, j, k) =
#(i,j,k)
|D| ,

PD(i) =
#i
|D| , PD(j) =

#j
|D| and PD(k) = #k

|D| .

Optimization is performed as a binary classification task, where the objective is to discern occurrences
actually coming from D from random occurrences. We define the likelihood for a single observation
(i, j, k) by applying a sigmoid (σ(x) = (1 + e−x)−1) to the higher-order inner product [[·]] of
corresponding d-dimensional representations:

P [ (i, j, k) ∈ D | wi, cj , tk ] = σ
(
[[wi, cj , tk]]

)
≡ σ

( ∑d

r=1
WirCjrTkr

)
(3.1)

where embedding vectors wi, cj , tk ∈ Rd are respectively rows of W ∈ R|W|×d, C ∈ R|C|×d
and T ∈ R|T |×d. In the 4th-order case we will also have a fourth embedding matrix S ∈ R|S|×d
related to a fourth set S. For negative sampling we fix an observed (i, j, k) ∈ D and independently
sample jN and kN to generate κ negative examples (i, jN , kN ). In this way, for a single occurrence
(i, j, k) ∈ D, the expected contribution to the loss is:

`(i, j, k) = log σ
(
[[wi, cj , tk]]

)
+ κ · E

jN ,kN∼PN

[
log σ

(
− [[wi, cjN , tkN ]]

)]
(3.2)
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where the noise distribution is the product of independent marginal probabilities PN (j, k) = PD(j) ·
PD(k). Thus the global objective is the sum of all the quantities of Eq. (3.2) weighted with the
corresponding relative frequency PD(i, j, k). The full loss function can be expressed as:

L = −
|W|∑
i=1

|C|∑
j=1

|T |∑
k=1

[
PD(i, j, k) log σ

(
[[wi, cj , tk]]

)
+ κ PN (i, j, k) log σ

(
− [[wi, cj , tk]]

)]
(3.3)

In Supplementary Information we show the formal steps to obtain Eq. (3.3) for the N -order case and
that it can be optimized with respect to the embedding parameters, satisfying the low-rank tensor
approximation of the multivariate shifted PMI tensor into factor matrices W,C,T:∑d

r=1
WirCjrTkr ≈ log

(
PD(i, j, k)

PN (i, j, k)

)
− log κ ≡ SPMIκ(i, j, k) (3.4)

3.2 TIME-VARYING GRAPH EMBEDDING VIA HOSGNS

While a static graph G = (V, E) is uniquely represented by an adjacency matrix A(G) ∈ R|V|×|V|, a
time-varying graphH = (V, E , T ) admits diverse possible higher-order adjacency relations (Section
2). Starting from these higher-order relations, we can either use them directly or use random
walk realizations to build a dataset of higher-order co-occurrences. In the same spirit that random
walk realizations give place to dyadic co-occurrences used to learn embeddings in SGNS, we use
higher-order co-occurrences to learn embeddings via HOSGNS.

As discussed in Section 3.1, the statistics of higher-order relations can be summarized in multivariate
PMI tensors, which derive from proper co-occurrence probabilities among elements. Once such PMI
tensors are constructed, we can again factorize them via HOSGNS. To show the versatility of this
approach, we choose PMI tensors derived from two different types of higher-order relations:

1. A 3rd-order tensor P(stat)(H) ∈ R|V|×|V|×|T | which gather relative frequencies of nodes
occurrences in temporal edges:

(P(stat))ijk =
ω(i, j, k)

vol(H) (3.5)

where vol(H) =
∑
i,j,k ω(i, j, k) is the total weight of interactions occurring in H.

These probabilities are associated to the snapshot sequence representation Astat(H) =
[A(1), . . . ,A(|T |)] and contain information about the topological structure ofH.

2. A 4th-order tensor P(dyn)(H) ∈ R|V|×|V|×|T |×|T |, which gather occurrence probabilities
of time-stamped nodes over random walks of the supra-adjacency graph GH (as used in
DYANE). Using the numerator of Eq. (2.1) tensor entries are given by:

(P(dyn))ijkl =
1

2T

T∑
r=1

[
d(ik)

vol(GH)
(Pr)(ik)(jl) +

d(jl)

vol(GH)
(Pr)(jl)(ik)

]
(3.6)

where (ik) and (jl) are lexicographic indices of the supra-adjacency matrix A(GH) cor-
responding to nodes i(k) and node j(l). These probabilities encode causal dependencies
among temporal nodes and are correlated with dynamical properties of spreading processes.

We also combined the two representations in a single tensor that is the average of P(stat) and P(dyn)

(P(stat|dyn))ijkl =
1

2

[
(P(stat))ijkδkl + (P(dyn))ijkl

]
(3.7)

where δkl = 1[k = l] is the Kronecker delta.

Figure 2 summarizes the differences between graph embedding via classical SGNS and time-varying
graph embedding via HOSGNS. Here, indices (i, j, k, l) correspond to (node, context, time, context-
time) in a 4th-order tensor representation ofH.

The above tensors gather empirical probabilities PD(i, j, k . . . ) corresponding to positive examples
of observable higher-order relations. The probabilities of negative examples PN (i, j, k . . . ) can be
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Figure 2: Representation of SGNS and HOSGNS with embedding matrices and operations on
embedding vectors. Starting from a random walk realization on a static graph G = (V, E), SGNS takes
as input nodes i and j within a context window of size T , and maximizes σ(wi · cj). HOSGNS starts
from a random walk realization on a higher-order representation of time-varying graphH = (V, E , T ),
takes as input nodes i(k) (node i at time k) and j(l) (node j at time l) within a context window of
size T and maximizes σ([[wi, cj , tk, sl]]). In both cases, for each input sample, we fix i and draw
κ combinations of j or j, k, l from a noise distribution, and we maximize σ(−wi · cj) (SGNS) or
σ(−[[wi, cj , tk, sl]]) (HOSGNS) with their corresponding embedding vectors (negative sampling).

obtained as the product of marginal distributions PD(i), PD(j), PD(k) . . . Computing exactly the
objective function in Eq. (3.3) (or the 4th-order analogous) is computationally expensive, but it can
be approximated by a sampling strategy: picking positive tuples according to the data distribution PD
and negative ones according to independent sampling PN , HOSGNS objective can be asymptotically
approximated through the optimization of the following weighted cross entropy loss:

L(bce) = − 1

B

[ B∑
(ijk... )∼PD

log σ
(
[[wi, cj , tk . . . ]]

)
+κ·

B∑
(ijk... )∼PN

log σ
(
−[[wi, cj , tk . . . ]]

)]
(3.8)

where B is the number of the samples drawn in a training step and κ is the negative sampling constant.
We additionally apply the warm-up steps explained in Supplementary Information to speed-up the
training convergence.

4 EXPERIMENTS

For the experiments we use time-varying graphs collected by the SocioPatterns collaboration
(http://www.sociopatterns.org) using wearable proximity sensors that sense the face-to-face proximity
relations of individuals wearing them. After training the proposed models (HOSGNS applied to
P(stat) , P(dyn) or P(stat|dyn)) on each dataset, embedding matrices W,C,T (and S in case of
P(stat)) are mapped to embedding vectors wi, cj , tk (and sl) where i, j ∈ V and k, l ∈ T , and we
use them to solve different downstream tasks: node classification and temporal event reconstruction.

4.1 EXPERIMENTAL SETUP

Datasets. We performed experiments with both empirical and synthetic datasets describing face-to-
face proximity of individuals. We used publicly available empirical contact data collected by the
SocioPatterns collaboration (Cattuto et al., 2010), with a temporal resolution of 20 seconds, in a
variety of contexts: in a school (“LYONSCHOOL”), a conference (“SFHH”), a hospital (“LH10”), a
highschool (“THIERS13”), and in offices (“INVS15”) (Génois & Barrat, 2018). This is currently the
largest collection of open datasets sensing proximity in the same range and temporal resolution used
by modern contact tracing systems. In addition, we used social interactions data generated by the
agent-based-model OpenABM-Covid19 (Hinch et al., 2020) to simulate an outbreak of COVID-19 in
a urban setting.
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We built a time-varying graph from each dataset, and for the empirical data we performed aggregation
on 600 seconds time windows, neglecting those snapshots without registered interactions at that time
scale. The weight of the link (i, j, k) is the number of events recorded between nodes (i, j) in a
certain aggregated window k. For synthetic data we maintained the original temporal resolution and
we set links weights to 1. Table 1 shows statistics for each dataset.

Table 1: Summary statistics about empirical and synthetic time-varying graph data. In order: number
of single nodes |V|, number of steps |T |, number of events |E|, number of active nodes |V(T )|,
average weight of events 1

|E|
∑
e∈E ω(e), nodes density |V

(T )|
|V||T | and links density 2|E|

|V|(|V|−1)|T | .

Dataset |V| |T | |E| |V(T )| Average Weight Nodes Density Links Density

LYONSCHOOL 242 104 44820 17174 2.806 0.6824 0.0148
Empirical SFHH 403 127 17223 10815 4.079 0.2113 0.0017
graphs LH10 76 321 7435 4880 4.448 0.2000 0.0081

THIERS13 327 246 35862 32546 5.256 0.4046 0.0027
INVS15 217 691 18791 22451 4.164 0.1497 0.0012

Synthetic OPENABM-COVID19-2k-100 2000 100 1243551 198537 1.0 0.9927 0.0062
graphs OPENABM-COVID19-5k-20 5000 20 632523 99966 1.0 0.9997 0.0025

Baselines. We compare our approach with several baseline methods from the literature of time-
varying graph embeddings, which learn time-stamped node representations: (1) DYANE (Sato et al.,
2019), which learns temporal node embeddings with DEEPWALK, mapping a time-varying graph into
a supra-adjacency representation; (2) DYNGEM (Goyal et al., 2017), a deep autoencoder architecture
which dynamically reconstructs each graph snapshot initializing model weights with parameters
learned in previous time frames; (3) DYNAMICTRIAD (Zhou et al., 2018), which captures structural
information and temporal patterns of nodes, modeling the triadic closure process. Details about
hyper-parameters used in each method can be found in the Supplementary Information.

4.2 DOWNSTREAM TASKS

Node Classification. The aim of this task is to classify nodes in epidemic states according to a SIR
epidemic process with infection rate β and recovery rate µ. We simulated 30 realizations of the SIR
process on top of each empirical graph with different combinations of parameters (β, µ). We used
similar combinations of epidemic parameters and the same dynamical process to produce SIR states
as described in Sato et al. (2019). Then we set a logistic regression to classify epidemic states S-I-R
assigned to each active node i(k) during the unfolding of the spreading process. We combine the
embedding vectors of HOSGNS using the Hadamard (element-wise) product wi ◦ tk. We compared
with dynamic node embeddings learned from baselines. For fair comparison, all models produce
time-stamped node representations with dimension d = 128 as input to the logistic regression.

Temporal Event Reconstruction. In this task, we aim to determine if an event (i, j, k) is in
H = (V, E , T ), i.e., if there is an edge between nodes i and j at time k. We create a random time-
varying graphH∗ = (V, E∗, T ) with same active nodes V(T ) and a number of |E| events that are not
part of E . Embedding representations learned fromH are used as features to train a logistic regression
to predict if a given event (i, j, k) is in E or in E∗. We combine the embedding vectors of HOSGNS
as follows: for HOSGNS(stat), we use the Hadamard product wi ◦ cj ◦ tk; for HOSGNS(dyn) and
HOSGNS(stat|dyn), we use wi◦cj ◦tk◦sk. For baseline methods, we aggregate vector embeddings to
obtain link-level representations with binary operators (Average, Hadamard, Weighted-L1, Weighted-
L2 and Concat) as already used in previous works (Grover & Leskovec, 2016; Tsitsulin et al., 2018).
For fair comparison, all models are required produce event representations with dimension d = 192.

Tasks were evaluated using train-test split. To avoid information leakage from training to test, we
randomly split V and T in train and test sets (Vtr,Vts) and (Ttr, Tts), with proportion 70%− 30%.
For node classification, only nodes in Vtr at times in Ttr were included in the train set, and only
nodes in Vts at times in Tts were included in the test set. For temporal event reconstruction, only
events with i, j ∈ Vtr and k ∈ Ttr were included in the train set, and only events with i, j ∈ Vts and
k ∈ Tts were included in the test set.
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4.3 RESULTS

In this section we first show downstream task performance results for the empirical datasets, leaving
results for synthetic datasets to Supplementary Information. Synthetic datasets are used here to
compare the performance of the different approaches in terms of training complexity, by measuring
the number of trainable parameters and the training time with fixed number of training steps.
All approaches were evaluated for both downstream tasks in terms of Macro-F1 scores in all datasets.
5 different runs of the embedding model are evaluated on 30 different train-test splits for both down-
stream tasks. We report the average score with standard error over all splits. In node classification,
every SIR realization is assigned to a single embedding run to compute prediction scores. In event
reconstruction, a different random realizationH∗ is assigned to each train-test subset.

Results for the classification of nodes in epidemic states are shown in Table 2. We report
here a subset of (β, µ) but other combinations are available on the Supplementary Information.
DYNGEM and DYNAMICTRIAD have low scores, since they are not devised to learn from graph dy-
namics. HOSGNS(stat) is not able to capture the graph dynamics due to the static nature of P(stat).
DYANE, HOSGNS(stat|dyn) and HOSGNS(dyn) show good performance, with these two HOSGNS
variants outperforming DYANE in most of the combinations of datasets and SIR parameters.

Table 2: Macro-F1 scores for classification of nodes in epidemic states according to different SIR
epidemic processes over empirical datasets. For each (β, µ) we highlight the two highest scores and
underline the best one.

(β, µ) Model Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.25, 0.002)

DYANE 78.1± 0.5 67.0± 1.2 52.5± 1.7 71.9± 0.6 64.3± 0.8
DYNGEM 58.7± 2.8 35.9± 1.1 34.5± 0.7 35.5± 1.2 58.8± 1.1
DYNAMICTRIAD 31.0± 0.4 28.8± 0.4 29.9± 0.3 30.3± 0.2 30.4± 0.2

HOSGNS(stat) 55.5± 0.8 57.3± 1.1 45.9± 0.9 46.9± 0.7 44.5± 0.7

HOSGNS(dyn) 79.2± 0.5 69.1± 1.1 59.6± 1.5 71.8± 1.2 64.6± 0.7

HOSGNS(stat|dyn) 77.4± 0.6 67.4± 1.2 59.7± 1.2 72.5± 0.7 64.2± 1.0

(0.125, 0.001)

DYANE 75.3± 0.4 71.6± 1.9 59.0± 1.8 72.4± 0.3 65.8± 0.6
DYNGEM 58.9± 2.9 37.0± 4.1 41.0± 1.4 32.5± 1.2 59.0± 1.2
DYNAMICTRIAD 31.2± 0.5 35.0± 3.3 30.5± 0.7 27.4± 0.3 29.5± 0.2

HOSGNS(stat) 56.8± 0.9 61.8± 2.4 49.1± 1.9 47.3± 0.6 45.9± 0.7

HOSGNS(dyn) 76.0± 0.4 71.5± 2.0 59.6± 2.0 74.2± 0.4 65.9± 0.6

HOSGNS(stat|dyn) 74.6± 0.4 70.2± 1.9 59.9± 2.3 74.8± 0.4 66.0± 0.6

(0.0625, 0.002)

DYANE 72.2± 0.6 64.9± 1.7 59.0± 1.2 68.0± 0.5 60.2± 0.5
DYNGEM 56.4± 2.7 35.9± 4.1 35.8± 1.2 32.9± 1.2 55.0± 0.6
DYNAMICTRIAD 29.5± 0.5 33.1± 2.5 29.6± 0.4 27.4± 0.3 28.4± 0.2

HOSGNS(stat) 55.5± 0.7 57.6± 2.2 49.4± 0.8 45.5± 0.4 43.6± 0.5

HOSGNS(dyn) 73.5± 0.5 65.7± 1.6 61.1± 1.2 69.5± 0.3 59.6± 0.5

HOSGNS(stat|dyn) 72.9± 0.6 66.3± 1.9 58.2± 1.1 68.5± 0.4 59.0± 0.7

Results for the temporal event reconstruction task are reported in Table 3. Temporal event reconstruc-
tion is not performed well by DYNGEM. DYNAMICTRIAD has better performance with Weighted-L1
and Weighted-L2 operators, while DYANE has better performance using Hadamard or Weighted-
L2. Since Hadamard product is explicitly used in Eq. (3.1) to optimize HOSGNS, all HOSGNS
variants show best scores with this operator. HOSGNS(stat) outperforms all approaches, setting
new state-of-the-art results in this task. The P(dyn) representation used as input to HOSGNS(dyn)

does not focus on events but on dynamics, so the performance for event reconstruction is slightly
below DYANE, while HOSGNS(stat|dyn) is comparable to DYANE. Results for HOSGNS models
using other operators are available in the Supplementary Information. We observe an overall good
performance of HOSGNS(stat|dyn) in both downstream tasks, being in almost all cases the second
highest score, compared to the other two variants which excel in one task but have lower performance
in the other.

Training Complexity. We report in Table 4 the number of trainable parameters and training time
duration for each considered algorithm, when applied to an empirical graph (LYONSCHOOL) and to
the synthetic ones. The proposed HOSGNS model requires a number of trainable parameters that is
orders of magnitude smaller than other approaches, with a training time considerably shorter as the
number of nodes increases, given a fixed number of training iterations. For this analysis, HOSGNS
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Table 3: Macro-F1 scores for temporal event reconstruction in empirical datasets. We highlight in
bold the two best scores for each dataset. For baseline models we underline their highest score.

Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE

Average 56.4± 0.4 52.9± 0.5 52.3± 0.6 51.0± 0.4 52.7± 0.4
Hadamard 89.7± 0.3 86.5± 0.3 74.6± 0.6 94.7± 0.1 94.1± 0.1
Weighted-L1 90.2± 0.2 83.3± 0.5 73.3± 0.7 94.7± 0.1 94.4± 0.2
Weighted-L2 90.6± 0.2 84.5± 0.5 72.0± 0.5 95.0± 0.1 94.8± 0.2
Concat 65.7± 0.4 53.8± 0.4 56.2± 0.6 57.0± 0.4 50.9± 0.4

DYNGEM

Average 57.7± 0.5 56.8± 0.7 54.8± 1.5 40.4± 1.5 42.8± 0.9
Hadamard 62.2± 0.4 55.1± 1.0 52.5± 1.6 40.8± 1.5 43.7± 1.0
Weighted-L1 58.4± 0.6 52.3± 0.7 50.9± 1.2 41.3± 1.6 44.8± 0.9
Weighted-L2 53.7± 0.6 47.0± 0.8 47.0± 1.3 39.2± 1.2 43.6± 0.6
Concat 60.4± 0.4 57.8± 0.3 48.9± 1.7 36.9± 1.3 45.7± 1.0

DYNAMICTRIAD

Average 51.7± 0.2 56.9± 0.4 60.2± 0.6 58.1± 0.2 56.1± 0.3
Hadamard 60.3± 0.3 58.9± 0.4 59.5± 0.5 62.2± 0.3 64.7± 0.3
Weighted-L1 79.1± 0.4 72.3± 0.4 75.5± 0.6 70.8± 0.3 78.1± 0.2
Weighted-L2 77.4± 0.4 73.4± 0.4 77.4± 0.5 72.4± 0.2 78.9± 0.3
Concat 52.2± 0.2 53.4± 0.3 55.9± 0.7 55.1± 0.2 53.2± 0.3

HOSGNS(stat) Hadamard 98.5± 0.1 98.8± 0.1 99.8± 0.1 99.6± 0.1 99.1± 0.1

HOSGNS(dyn) Hadamard 90.3± 0.2 80.9± 0.4 68.1± 0.7 93.5± 0.2 87.2± 0.2

HOSGNS(stat|dyn) Hadamard 91.8± 0.2 86.7± 0.4 73.6± 0.6 94.3± 0.1 89.0± 0.2

sampling was implemented by picking positive and negative examples from a corpus of random
walks sampled from a given graph. For HOSGNS(stat) random walks are sampled from the set
of temporal snapshots {G(k)}k∈T with window size T = 1, and for HOSGNS(dyn) random walks
are sampled from the supra-adjacency graph GH with window size T = 10. With these sampling
strategies, positive examples are drawn from the same probability distributions as defined in Eq. (3.5)
and Eq. (3.6).

Table 4: Number of trainable parameters and training time of each time-varying graph representation
learning model compared between LYONSCHOOL and synthetic datasets. The embedding dimension is
fixed to 128, technical specifications of the computing system and hyper-parameters configuration
are reported in Supplementary Information.

Model
LYONSCHOOL OPENABM-COVID19-2k-100 OPENABM-COVID19-5k-20

|V| = 242, |T | = 104 |V| = 2000, |T | = 100 |V| = 5000, |T | = 20
Tr. parameters Tr. time Tr. parameters Tr. time Tr. parameters Tr. time

DYANE 4,396,544 62s 50,825,472 1,014s 25,591,296 448s
DYNGEM 459,270 516s 1,867,428 10,765s 4,270,428 23,307s
DYNAMICTRIAD 3,221,632 1,131s 25,600,128 17,191s 12,800,128 12,625s
HOSGNS(stat) 75,264 316s 524,800 548s 1,282,560 724s
HOSGNS(dyn) 88,576 303s 537,600 565s 1,285,120 734s

We recall that HOSGNS, by learning disentangled representations of nodes and time intervals, uses a
number of parameters in the order ofO(|V|+ |T |), while models that learn node-time representations
(such as DYANE) need a number of parameters that is at least O(|V| · |T |). In the Supplementary
Information we include plots with two dimensional projections of these embeddings, showing that
the embedding matrices of HOSGNS approaches successfully capture both the structure and the
dynamics of the time-varying graph.

5 CONCLUSIONS

In this paper, we introduce higher-order skip-gram with negative sampling (HOSGNS) for time-
varying graph representation learning. We show that this method is able to disentangle the role of
nodes and time, with a small fraction of the number of parameters needed by other methods. The
embedding representations learned by HOSGNS outperform other methods in the literature and
set new state-of-the-art results for predicting the outcome of dynamical processes and for temporal
event reconstruction. We show that HOSGNS can be intuitively applied to time-varying graphs, but
this methodology can be easily adapted to solve other representation learning problems that involve
multi-modal data and multi-layered graph representations.
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