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Abstract

This paper presents a novel Chunking-Free In-001
Context (CFIC) retrieval approach, specifically002
tailored for Retrieval-Augmented Generation003
(RAG) systems. Traditional RAG systems of-004
ten struggle with grounding responses using005
precise evidence text due to the challenges of006
processing lengthy documents and filtering out007
irrelevant content. Commonly employed solu-008
tions, such as document chunking and adapt-009
ing language models to handle longer contexts,010
have their limitations. These methods either011
disrupt the semantic coherence of the text or012
fail to effectively address the issues of noise013
and inaccuracy in evidence retrieval.014

CFIC addresses these challenges by circum-015
venting the conventional chunking process. It016
utilizes the encoded hidden states of docu-017
ments for in-context retrieval, employing auto-018
aggressive decoding to accurately identify the019
specific evidence text required for user queries,020
eliminating the need for chunking. CFIC is021
further enhanced by incorporating two decod-022
ing strategies, namely Constrained Sentence023
Prefix Decoding and Skip Decoding. These024
strategies not only improve the efficiency of025
the retrieval process but also ensure that the fi-026
delity of the generated grounding text evidence027
is maintained. Our evaluations of CFIC on a028
range of open QA datasets demonstrate its su-029
periority in retrieving relevant and accurate evi-030
dence, offering a significant improvement over031
traditional methods. By doing away with the032
need for document chunking, CFIC presents033
a more streamlined, effective, and efficient re-034
trieval solution, making it a valuable advance-035
ment in the field of RAG systems.036

1 Introduction037

Recently, retrieval-augmented generation (RAG)038

has marked a significant advancement in the field039

of natural language processing (NLP). This tech-040

nique has demonstrated remarkable effectiveness in041

reducing hallucination in text generation (Ji et al.,042
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Figure 1: Comparison of Chunking-Based and
Chunking-Free Methods. The left panel illustrates the
chunking-based method, involving chunking a lengthy
document into smaller passages followed by refinement
through passage ranking. The right panel depicts the
chunking-free method proposed in this paper, where
grounding text is directly decoded by LLMs without the
need for document chunking.

2023), particularly in knowledge-intensive tasks 043

like open-domain question answering (Wang et al., 044

2019; Lewis et al., 2020; Shuster et al., 2021a; 045

Komeili et al., 2022). An RAG system typically 046

consists of two components: the retriever and the 047

generator. Given an input query, the retriever first 048

identifies relevant evidence text, upon which the 049

generator then generates the answer. 050

The generator’s output should be grounded by 051

precise evidence text obtained by the retriever. 052

However, this poses challenges for most retrieval 053

systems, as they often retrieve lengthy documents 054

such as web pages. In practice, we only need spe- 055

cific grounding text from these documents to help 056

answer user queries. Using lengthy documents di- 057

rectly in the RAG system presents two difficulties. 058

First, generation models may struggle to handle the 059

extensive length of these documents. Second, irrel- 060

evant or distracting content within the documents 061

can lead the model astray from the main query, 062

resulting in inaccurate response generation (Gao 063

et al., 2024). 064

To address this issue, common approaches in- 065

volve chunking documents into smaller passages 066
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and employing strategies like reranking for rele-067

vance (Nogueira and Cho, 2020; Mao et al., 2021;068

Gao et al., 2024), or selecting passages based on069

other measurements (Asai et al., 2022; Jiang et al.,070

2023). However, the chunking process is often sub-071

optimal, as determining the granularity of the pas-072

sage chunking is challenging. Improper chunking073

can disrupt the semantics and result in incomplete074

and incoherent retrieved information (Dong et al.,075

2023). Another method involves adapting large lan-076

guage models (LLMs) to process longer contexts077

by training them on long contexts or implementing078

a sliding context window (Ratner et al., 2022; Xu079

et al., 2023a; Chen et al., 2023). While these meth-080

ods enable LLMs to handle longer texts, they do081

not fully address the issue of noise in the lengthy082

documents and cannot output the grounding text083

for the generated response (Kaddour et al., 2023).084

In this paper, we propose a Chunking-Free In-085

Context (CFIC) retrieval approach aimed at helping086

the RAG system mitigate information bias intro-087

duced by document chunking and irrelevant noisy088

text. Specifically, given an input query and a089

long grounding document, instead of refining the090

long documents with a chunking-based method, we091

leverage the document’s encoded hidden states to092

perform Chunking-free In-Context Retrieval. It cir-093

cumvents the traditional chunking process, allow-094

ing the retrieval system to auto-aggressively decode095

and pinpoint the precise evidence text to ground the096

response generation to a query. Figure 1 shows the097

comparison between the chunking-based method098

and the chunking-free method for grounding text099

retrieval. The chunking-free method demonstrates100

a superior ability to identify optimal evidence text,101

as it considers the entire document for a compre-102

hensive perspective.103

Concretely, CFIC involves encoding a document104

into transformer hidden states. When a user query105

is input, CFIC continues to encode the query along-106

side task instructions following the hidden states,107

subsequently generating grounding text. In prac-108

tice, we can cache the documents’ hidden states to109

further reduce computation1. Given the expectation110

for CFIC to process lengthy documents, it becomes111

imperative to adapt CFIC for handling long con-112

texts. Considering the trade-off between efficiency113

and effectiveness, in this paper, we adapt CFIC to114

1In a single-sided transformer model, the forward side is
auto-regressive; once an output token’s hidden state is com-
puted, it remains unchanged for subsequent forward steps,
allowing us to use these encoded states as a cache.

accommodate a 32k context, utilizing LLAMA2- 115

7B-chat as the foundational model. To achieve 116

this, we construct a dataset containing long doc- 117

ument, user query and precise text evidence to 118

training the foundation model via Supervised Fine- 119

Tuning (SFT). 120

Despite its promise, CFIC encounters two ma- 121

jor challenges: (1) Efficiency issue: the auto- 122

aggressive generation process involves executing 123

attention interactions for generating each new to- 124

ken, a procedure that becomes particularly time- 125

consuming with longer contexts due to the man- 126

agement of exponentially larger attention matrices. 127

This process requires substantial computational re- 128

sources (Kaplan et al., 2020), and (2) Faithfulness 129

issue: it is challenging to ensure the generation 130

model’s output remains faithful to the original in- 131

put context, given its open-ended decision bound- 132

ary (Li et al., 2022b). To address these, we propose 133

two decoding strategies that accelerate inference 134

and ensure that generated text evidence originates 135

from the corpus. These include: (1) utilizing sen- 136

tence prefixes as decoding candidates to shift the 137

model’s decision boundary from open-ended to 138

document-dependent generation and (2) upon lo- 139

cating the appropriate sentence prefix, bypassing 140

the decoding of intermediate tokens and directly 141

selecting sentence ends with the highest likelihood 142

of the [eos] token, thereby terminating the genera- 143

tion. Furthermore, to retrieve multiple text spans as 144

evidence, we sample several sentence prefixes with 145

the best likelihood as candidates and rank them by 146

sequence likelihood. By this means, CFIC not only 147

enhances the relevance and accuracy of retrieved 148

evidence text but also preserves the semantic in- 149

tegrity of the information, effectively addressing 150

major drawbacks of current retrieval systems. 151

We tested CFIF on the LongBench tasks (Bai 152

et al., 2023) including: (1) single-document ques- 153

tion answering with datasets like NarrativeQA, 154

Qasper, MulitfieldQA, and (2) multi-document QA 155

with datasets like Musqus and HotpotQA. The ex- 156

periment results verify the effectiveness of our 157

method. In summary, our contributions are as fol- 158

lows: (1) we propose a chunking-free in-context 159

retrieval method dedicated to the RAG system, aid- 160

ing in locating precise text evidence to answer user 161

queries; (2) we propose the CFIC model of which 162

the ability to find text evidence from long context 163

is enhanced via Supervised Fine-Tuning with self- 164

constructed dataset; (3) we design two decoding 165
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strategies that significantly improve the efficiency166

and accuracy of the CFIC’s decoding process.167

2 Related Work168

The RAG framework, initially introduced in the169

works of Lewis et al. (2020), aimed to enhance lan-170

guage models’ capacity for generating knowledge-171

based responses(Izacard and Grave, 2020; Chung172

et al., 2022; Yang et al., 2023). Subsequent re-173

search primarily focus on refining the RAG’s two174

core components. On the retrieval front, significant175

strides have been made towards more efficient and176

precise retrieval methods (Khandelwal et al., 2019;177

Nishikawa et al., 2022; Li et al., 2022a; Kang et al.,178

2023). For example, the arise of Dense Passage179

Retrieval significantly surpasses traditional sparse180

dense (Karpukhin et al., 2020). Parallel efforts181

on the generation side have concentrated on fine-182

tuning generative models to better harmonize with183

retrieved information, a notable example being the184

work of Izacard and Grave (2021b) in optimizing185

external knowledge utilization (Izacard and Grave,186

2021a; Chung et al., 2022; Kamalloo et al., 2023).187

Nevertheless, RAG encounters specific chal-188

lenges, especially in managing lengthy and com-189

plex retrieved documents. Researchers, including190

Mao et al. (2021), have developed chunking and191

reranking techniques to enhance passage relevance.192

Furthermore, Guu et al. (2020) introduced methods193

for jointly learning retriever and generator models,194

thereby improving the coherence and relevance of195

outputs. Addressing the issue of lengthy contexts196

in RAG has involved either refining contexts (Li197

et al., 2022a; Jiang et al., 2023) or adapting genera-198

tion models to handle extended contexts (Xu et al.,199

2023a; Ratner et al., 2022; Chen et al., 2023).200

Recent advancements in RAG predominantly201

incorporate large-scale language models (LLMs),202

such as GPT-3 and GPT-4, to augment language203

processing capabilities (Brown et al., 2020; Ope-204

nAI, 2023; Touvron et al., 2023a; Google, 2023).205

The integration of LLMs has paved the way for206

more contextually rich and nuanced generation,207

especially in aligning generated responses with208

human preferences (Ram et al., 2023; Liu et al.,209

2023b). In RAG systems employing LLMs, the210

accuracy of retrieved textual evidence is crucial211

for reducing hallucinations and incorporating exter-212

nal knowledge (Shuster et al., 2021b; Zhang et al.,213

2023b; Yao et al., 2023; Bang et al., 2023). How-214

ever, the challenge of processing long and noisy215

contexts persists (Liu et al., 2023a; Li et al., 2022a; 216

Xu et al., 2023b). This paper introduces a chunking- 217

free in-context retrieval approach that leverages 218

transformer hidden states to generate grounding 219

text evidence, treating evidence retrieval as a gen- 220

erative process. This method represents a more 221

streamlined and efficient retrieval solution for RAG 222

systems, marking a significant advancement over 223

previous retrieval methodologies. 224

3 Method 225

3.1 Preliminary 226

In a RAG system, the system takes a user query q as 227

input, retrieves text evidence A from a text corpus 228

C using a retriever θ(·) as external knowledge, and 229

utilizes a generation model ϕ(·) to produce the final 230

response T . This pipeline can be formalized as: 231

A = θ(q, C), T = ϕ(q,A). (1) 232

The retriever θ(·) can be either a standalone re- 233

triever (e.g., DPR (Karpukhin et al., 2020)) or a 234

commercial search engine (e.g., Google), and the 235

generation model ϕ(·) is usually a trained LM. 236

Based on Eq. (1), the quality of the generated text 237

T is bounded by the accuracy of the evidence A, 238

emphasizing the importance of accurately finding 239

the accurate text evidence. 240

In practice, most RAG systems’ retrievers can- 241

not accurately find exact text evidences, but only 242

retrieve lengthy documents (e.g., web pages or pre- 243

indexed articles) that contain the evidences. As 244

mentioned in Section 1, such lengthy documents 245

might bias the generated content. Thus, given 246

the retrieved evidence A, we usually select a few 247

useful text spans, called supporting text evidence 248

P = {p1, · · · , pk} ∈ A, to support the answer 249

generation for the input query q in a RAG system. 250

We define the process of finding supporting pas- 251

sages as a mapping function f(·): 252

P = {p1, · · · , pk} = f(A). (2) 253

The mapping function f(·) can take various forms, 254

such as chunking the text evidence A and priori- 255

tizing relevant chunks through re-ranking. In this 256

paper, we define the mapping function f(·) as a 257

generation process in which we directly generate 258

the supporting text evidence P conditioned on the 259

transformer hidden-states h = Trans(A) of the 260

lengthy document: 261

P = f(A) ∼ Generator(P|h, q). (3) 262
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Long Article  A

Input Query  q
What significant change 
occurred in Bach's style in 
the last decade of his life?

    Generator

In the last decades of his life, he 
reworked and extended many of 
his earlier compositions. He died of 
complications after eye surgery in 
1750 at the age of 65 [eos]

Bach’s own style shifted in the last 
decade of his life, showing an 
increased integration of polyphonic 
structures and canons and other 
elements of the stile antico.[eos]

Skip Decoding

……

Prefix 1: Bach’s own style …

Constrained Sentence Prefix Decoding

Prefix 2: In the last decades …

Prefix 3: In the Bach’s family … 

Prefix 4: Bach enriched … 

Prefix n: Throughout the 18th …

Hidden States
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w11

w21

w2
k

w1
k

w2
k

wk
k

… …

h

s

Figure 2: Overview of the proposed method: CFIC. The middle part shows the Constrained Sentence Prefix
Decoding strategy which ensures the generated text prefixes originate from the input article. The right part shows
the Skip Decoding strategy which bypasses decoding the intermediate tokens while terminating generation at the
position with the best likelihood of [eos] token. Gray tokens in the figure are bypassed during generation.

Compared to regular auto-regressive decoding,263

the above process is characterized by the fact that264

the generation target P contains text sourced from265

A. This means that once we determine the decod-266

ing prefix, we can skip the intermediate tokens and267

directly find the terminating position by comput-268

ing the probability of inserting [eos] token. This269

greatly improves inference efficiency while ensur-270

ing that the generated text accurately represents271

the source text. Additionally, a single supporting272

passage may not always be sufficient for question273

answering. Therefore, we can obtain multiple sen-274

tence prefixes as top-k candidates using sampling275

decoding. In this paper, our proposed model CFIC276

applies these ideas to generate the top-k supporting277

text evidence P , which are further discussed in the278

following sections.279

3.2 The Proposed Model: CFIC280

Figure 2 presents an overview of our proposed281

model, CFIC. The process begins with CFIC re-282

ceiving a user query. It then retrieves a long arti-283

cle as grounding evidence through a search engine284

(e.g., Google). Subsequently, CFIC combines the285

long document and the query into an input prompt,286

following the format outlined in Table 2. This in-287

put prompt is encoded into hidden states. Based on288

these hidden states, CFIC first identifies the top-k289

sentence prefix candidates using the Constrained290

Sentence Prefix Decoding strategy. This strategy291

ranks the sentence prefixes considering the gener-292

ation score (accumulated token log probabilities293

normalized by token length) of each sentence pre-294

fix. CFIC then skips the decoding of intermedi-295

ate tokens and terminates the generation process296

by locating the [eos] token position with the high-297

est likelihood (Skip Decoding). Consequently, we298

obtain k grounding evidence texts that can aid in 299

supporting downstream tasks. It is important to 300

note that this paper primarily focuses on pinpoint- 301

ing precise grounding text evidence within the long 302

document, rather than on the retrieval of the long 303

document. Therefore, we assess our CFIC and all 304

baseline models using the LongBech benchmark, 305

which provides pre-prepared long documents. In 306

the subsequent sections, we will introduce the two 307

proposed decoding strategies and then discuss the 308

training and inference processes of CFIC. 309

Constrained Sentence Prefix Decoding Nor- 310

mally, the generation process of an auto-aggressive 311

decoding model is as: 312

wn ∼
|w|∏
n=1

p(wn ∈ V|w<n,h), (4) 313

where h represents the hidden states of previous 314

tokens. The current token, denoted by wn, is se- 315

lected from the entire vocabulary V of the gener- 316

ation model. In the case of CFIC, the generation 317

target P consists of text spans that originate di- 318

rectly from the source context. Consequently, it is 319

possible to define a more constrained generation 320

space to ensure the faithfulness of the text produced. 321

Specifically, we suggest employing the prefix of 322

each sentence within the source context as genera- 323

tion constraints. This approach guarantees that the 324

text generated by CFIC can be traced back to the 325

input context. Thus, Eq. (4) can be modified as: 326

wn ∼
|w|∏
n=1

p(wn ∈ V̄|w<n,h), (5) 327

where V̄ denotes a token set contains each sen- 328

tence’s prefix. 329
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The sentence prefix serves as an position iden-330

tifier to facilitate the identification of the starting331

point of a supporting passage within the source332

context. To select the top-k candidate passages,333

it is essential to differentiate k distinct sentence334

prefixes. This is achieved through the constrained335

top-k sampling decoding, a process that entails336

selecting the next token wn from the top-k most337

likely tokens V̄k ∈ V̄ based on the token’s probabil-338

ity, p(wn|w<n). The sampling process terminate339

once the generated sentence prefixes are capable340

of uniquely identifying positions in the source con-341

text. The number of decoding steps required until342

termination is denoted by β, resulting in up to kβ343

prefix candidates after β steps. We denote the gen-344

erated sentence prefix by b. Subsequently, these345

prefix candidates are ranked according to the prefix346

sequence score s, which calculates the normalized347

accumulated log probability of tokens as follows:348

s =
1

|w|

|w|∑
n=1

log p(wn|w<n). (6)349

Finally, the k sentence prefixes with the highest350

scores are selected.351

Referring to Figure 2 for illustration, the decod-352

ing process initiates by sampling k tokens, such as353

[Bach, In, ..., Throughout], to represent the first set354

of candidate tokens. Given that multiple sentences355

in the long article begin with the tokens [Bach, In],356

the decoding of subsequent tokens is necessary.357

For sentences that start with "Bach", the decoding358

terminates at step β = 2. And for sentences begin-359

ning with "In", the decoding ends at step β = 3.360

Following this, we retain k = 2 sentence prefixes361

to identify the supporting passages.362

Skip Decoding Similarly, since the generation363

target originates exactly from the source text, once364

the generation prefix is determined, we can use the365

generated prefix as a position identifier to locate366

the original text in the source text. Subsequently,367

we can bypass decoding the intermediate tokens368

and directly compute the token probability p([eos])369

for the [eos] token after each sentence following370

the generated prefix. We select the position with371

the highest probability as the termination point.372

In practice, we calculate p[eos] after each sentence373

within a predefined token distance d. Formally,374

given a generated prefix b, we determine the termi-375

nation position as follows:376

w∗
[eos] = argmax

l∈L
p[eos](b⊕ l), |l| ≤ d, (7)377

where l represents the token sequence following 378

the prefix b with a maximum length of d. 379

Training and Inference As previously discussed, 380

we define the task of identifying supporting pas- 381

sages from a long source text for grounding down- 382

stream tasks as evidence generation. To this end, 383

it is crucial to enhance the generation model with 384

the capability to pinpoint precise textual evidence 385

within extensive texts. In this study, CFIC achieves 386

this through Supervised Fine-Tuning (SFT). We 387

employ a prompt, formed using the pair (q,A) as 388

outlined in Table 2, as the input, and use the text 389

evidence P as the target for generation. The model 390

is trained using the negative log-likelihood (NLL) 391

loss function: 392

L(q,A,P∗) = −
|P∗|∑
n=1

log p(P∗
n|P∗

<n, q,A). (8) 393

The training dataset is introduced in Section 4.1. 394

During the inference stage, given the input 395

(q,A), we apply Constrained Sentence Prefix De- 396

coding and Skip Decoding strategies to extract k 397

supporting passages. Should these passages exhibit 398

overlapping sections, we amalgamate such inter- 399

secting passages into a single cohesive passage. 400

Subsequently, these collated supporting passages 401

are utilized to ground downstream tasks. 402

4 Experiment 403

4.1 Datasets and Evaluation Metric 404

As mentioned above, we train the CFIC model us- 405

ing data that contains (q,A,P) triplets via SFT. 406

Most current datasets cannot provide such data 407

format. Thus, we use self-constructed SFT data 408

to train the CFIC model, and evaluate all base- 409

lines on the LongBench benchmark (Bai et al., 410

2023). Specifically, to construct the SFT train- 411

ing data, we first collect a corpus of lengthy ar- 412

ticles, including Wikipedia articles, novels, and 413

news articles. Subsequently, we randomly select 414

text spans from these articles and ask ChatGPT to 415

generate a query that can be answered by each text 416

span. As for evaluation, we choose five datasets 417

from LongBench including NarrativeQA (Kočiský 418

et al., 2017), Qasper (Dasigi et al., 2021), Multi- 419

FieldQA (Bai et al., 2023)), HotpotQA (Yang et al., 420

2018) and MuSiQue (Trivedi et al., 2022). Follow- 421

ing the LongBench benchmark, we use F1-score as 422

the evaluation metric. For further details of Long- 423
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Dataset SFT NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue

Num of Samples 25,652 200 200 150 200 200
Ave. Length 12,248 18,409 3,619 4,559 9,151 11,214

Table 1: Statistical information of the datasets utilized in this paper, where the average length indicates the word
count, typically smaller than the BPE-tokenized token length.

Below is an article, read the article
and answer my question after the article.
Now the article begins:
{Article}
Now the article ends.
Select several sentences from the article
to answer my question.
Question: {Question}

Table 2: Prompt template in training and evaluation.

Bench, please refer to Bai et al. (2023). We show424

the statistical information of all datasets in Table 1.425

4.2 Baseline Settings426

In this study, we focus on in-context retrieval within427

the Retrieval-Augmented Generation (RAG) sys-428

tem. As such, we employ stand-alone LLMs as429

generators. Specifically, we utilize Llama2-7B-430

chat-4k (Touvron et al., 2023b) and Vicuna-v1.5-431

7B-16k (Zheng et al., 2023) as our generators. To432

assess our chunking-free approach against the tradi-433

tional chunking-based methods, the baseline model434

settings are as follow:435

Chunking-Base Method Chunking-based meth-436

ods generally commence by segmenting a lengthy437

document into smaller passages using heuristic438

strategies, followed by reranking these passages439

with a ranking model. In our research, we investi-440

gate two prevalent chunking strategies: (1). Sliding441

Window Chunking (SW): This strategy involves di-442

viding the document into sentences and then group-443

ing these sentences into passages. Each passage444

is designed not to exceed a predefined maximum445

length of 256 words, with a stride of one sentence.446

(2). Paragraph-based Chunking (Para): Here, the447

document is split by paragraph markers (e.g., \n).448

We employ “bge-large-en-v1.5” (Xiao et al., 2023)449

and “llm-embedder” (Zhang et al., 2023a) as the450

ranking models. We utilize the SW and Para strate-451

gies to divide the document into passages, which452

are then reranked by the ranking models. The453

highest-ranking passages are chosen as the input454

context for the generators to support the QA tasks.455

Chunking-Free Method For the chunking-free456

models, we present the outcomes using Vicuna-457

v1.5-7B-16k (Zheng et al., 2023), LongChat- 458

7B-32k (Li et al., 2023), and LongAlpaca-7B- 459

32k (Chen et al., 2023) as baseline models. These 460

models refine lengthy documents into concise text 461

evidence, which then serves as context for gener- 462

ator to support QA tasks. To ensure a fair com- 463

parison, all baseline models provide a comparable 464

volume of textual evidence for downstream tasks, 465

maintaining consistency in the number of passages 466

or token length. We also explore the effectiveness 467

of feeding full articles into generators. We intro- 468

duce our inplementation details in Appendix A. 469

4.3 Main Results 470

Table 3 shows the main experiment results which 471

are the performance across different QA tasks using 472

various refined text evidence as context. From the 473

results we have the following findings: First, CFIC 474

significantly outperforms other LLMs in chunking- 475

free in-context retrieval tasks as CFIC is specifi- 476

cally optimized to select precise text evidence cru- 477

cial for grounding QA tasks. This underscores 478

the necessity and effectiveness of supervised fine- 479

tuning (SFT) in adpting the foundation model into 480

the in-context retrieval task. Second, Chunking- 481

based methods serve as strong baselines due to 482

their ability to extract passages directly from the 483

source context, whereas LLMs lacking SFT tend 484

to generate content that may not always align faith- 485

fully with the source material. CFIC, however, 486

consistently surpass all chunking-based baselines 487

across all datasets, indicating the potentiality of the 488

chunking-free in-context retrieval paradigm. Last, 489

Compared to using the entire article as context, 490

our CFIC model significantly improves the perfor- 491

mance of QA tasks across most datasets, except 492

for the NarrativeQA dataset. This improvement 493

evidences the critical role of identifying and utiliz- 494

ing the right and precise context in optimizing QA 495

task performance, demonstrating the CFIC model’s 496

efficiency in context filtering and utilization. As 497

for the NarrativeQA dataset, we find that Narra- 498

tiveQA’s precise text evidence frequently appears 499

at the start of lengthy articles, a location that LLMs 500

tend to prioritize their attention (Liu et al., 2023a). 501
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Llama2-7B-chat-4k Vicuna-v1.5-7B-16k
Model chunk nar qas mul hot mus nar qas mul hot mus

BGE SW 13.9 22.0 34.0 34.0 14.0 12.1 27.3 37.5 33.6 13.5
BGE Para 12.1 21.7 31.4 31.2 12.3 10.2 23.2 34.7 31.7 12.5
LLM-Embedder SW 14.1 23.2 34.3 33.8 14.6 13.2 27.4 39.1 31.6 12.6
LLM-Embedder Para 13.2 21.7 34.1 32.9 12.6 12.3 25.1 36.3 31.1 12.1

Vicuna-7B - 13.7 19.0 23.3 22.0 9.7 12.3 23.5 24.0 23.8 11.0
LongChat-7B - 12.2 19.7 29.5 27.9 9.6 11.1 21.9 32.4 30.2 9.7
LongAlpaca-7B - 12.8 19.3 26.8 28.8 10.3 11.2 21.2 25.2 27.2 10.2
CFIC-7B(Ours) - 18.3 27.7 41.2 34.0 14.7 17.5 31.0 39.8 33.8 16.2

Full Article - 18.7 19.2 36.8 32.8 9.4 19.4 26.1 38.5 25.3 9.8

Table 3: Main experiment results, which are the QA performance across various datasets, using different refined text
evidence as context. Following Bai et al. (2023), we use F1-score as the evaluation metric. The best results are in
bold and the secondary results are marked with underline.

This might explain why CFIC does not perform502

as well on this dataset, given that its approach to503

identifying precise evidence could inadvertently in-504

troduce errors, thereby diminishing its accuracy. In505

practice, however, that precise text evidence can be506

located throughout the entire length of an article,507

not just at the beginning.508

4.4 Discussion509

Ablation Study To assess the effectiveness of the510

design of CFIC, we conduct an ablation study by511

removing key components of the model, including:512

(1). Removal of Sentence Prefix Decoding Strategy513

(w/o prefix): we remove the constraint of limiting514

the decoding space to sentence prefixes. Instead,515

a beam search algorithm was employed to sample516

short sequences (each comprising 8 tokens) based517

on the input article. Subsequently, the top-k short518

sequences were matched back to the input article to519

identify starting prefixes. (2). Removal of Skip De-520

coding (w/o skip): we dispensed with the practice521

of bypassing intermediate tokens following the sen-522

tence prefix decoding. The model continued to de-523

code the remaining tokens up to a maximum length524

of 256 tokens. (3). Removal of Both Decoding525

Strategies (w/o both): the CFIC model was tasked526

to decode outputs using a greedy search algorithm,527

devoid of both the sentence prefix and skip decod-528

ing strategies. (4). Absence of SFT (LongAlpaca-529

7B): LongAlpaca-7B is a context-extended version530

of LLAMA2-7B-chat. We utilized LongAlpaca-7B531

as the base model, representing the variant of CFIC532

without task-specific SFT.533

The results of the ablation experiments are pre-534

sented in Table 4. Our findings can be summarized535

as follows: (1). The removal of any of the CFIC536

model components resulted in a notable degrada-537

Llama2-7B-chat-4k
Model nar qas mul hot mus

CFIC-7B 18.3 27.7 41.2 34.0 14.7
w/o prefix 16.4 26.0 39.3 33.0 12.5
w/o skip 15.8 27.0 37.6 30.1 11.6
w/o both 13.2 20.2 37.4 30.1 9.2

LongAlpaca-7B 12.8 19.3 26.8 28.8 10.3

Full Article 18.7 19.2 36.8 32.8 9.4

Table 4: Results of the ablation Study.

tion in performance, underscoring the collective 538

contribution of these elements to the model’s ef- 539

fectiveness. (2). The most substantial decrease in 540

performance was observed when SFT was omit- 541

ted. This suggests that the vanilla LLM struggles 542

to accurately locate precise grounding text from 543

lengthy documents, despite its enhanced capability 544

for processing extended contexts. (3). Removing 545

either the sentence prefix decoding or the skip de- 546

coding strategies led to an obvious reduction in 547

performance. This finding verifies our hypothesis 548

that these decoding strategies not only curtail de- 549

coding computational demands but also improve 550

the fedelity of the generated grounding text. 551

Choice of Decoding Length In our CFIC model, 552

as defined in Eq. (7), the generation process is ter- 553

minated upon locating the position of the [eos] 554

token within a predetermined distance d. This 555

distance is analogous to the maximum generation 556

length typically set in standard text generation 557

tasks, which governs the length of the decoded text. 558

The selection of d involves a careful balance: too 559

small a value may lead to excessively brief output 560

grounding text, offering scant information for sub- 561

stantiating downstream tasks. Conversely, a larger 562

d may result in longer output texts, potentially in- 563

troducing additional textual noise and necessitating 564
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Query: What hedge fund’s collapse in 1998 highlighted the need for regulation of derivatives?
Answer: Long Term Capital Management (LTCM)

CFIC-7B: In 1998, a trillion-dollar hedge fund called Long Term Capital Management (LTCM) was near collapse. Using
mathematical models to calculate debt risk, LTCM used derivatives to leverage $5 billion into more than $1 trillion. The
derivative transactions were not regulated, nor were investors able to evaluate LTCM’s exposures.

LongAlpaca-7B: The catastrophic financial events of recent months have proved them (Born and Sheila Bair) right. In 2010,
a documentary film Inside Job further alleged that derivatives regulation was ineffective from the Clinton administration on.

GPT-3.5-Turbo: The hedge fund whose collapse in 1998 highlighted the need for regulation of derivatives was Long Term
Capital Management (LTCM).

GPT-4: In 1998, a trillion-dollar hedge fund called Long Term Capital Management (LTCM) was near collapse. Using
mathematical models to calculate debt risk, LTCM used derivatives to leverage $5 billion into more than $1 trillion.

Table 5: Results of Case Study. The text colored with teal refers to the grounding evidence for the user query.
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Figure 3: The choice of Maximum Decoding Length.

increased computational resources to process the565

extended sequences.566

To investigate the optimal choice of decoding567

length d in CFIC, we conducted experiments with568

various settings of this parameter. The results of569

these experiments are depicted in Figure 3. Our570

findings substantiate the initial hypotheses: the per-571

formance across all tasks progressively improves572

and reaches its zenith at a d value of 256. Beyond573

this point, performance begins to wane, suggesting574

that a setting of d = 256 strikes an effective bal-575

ance for these tasks. This observation aligns with576

the intuition that a span of 256 tokens typically suf-577

fices to encapsulate a semantically complete and578

coherent unit of information.579

Case Study: CFIC v.s. GPTs OpenAI’s model580

APIs, including GPT-3.5 and GPT-4, serve as ro-581

bust baselines in the domain of LLM. However,582

they were excluded from the primary model com-583

parisons in our experiments for two primary rea-584

sons: (1). these APIs lack of control over decoding585

process resulting in the inability to manipulate their586

decoding mechanisms to align with our method-587

ological requirements. (2). The foundational mod-588

els of GPT-3.5 and GPT-4 are characterized by589

their vast parameter sizes (e.g., 175 billion param-590

eters), endowing them with exceptional language591

modeling capabilities, especially in handling ex-592

tended contexts. However, our focus with CFIC 593

is on applying LLMs with comparatively smaller 594

parameter sizes. This approach ensures more man- 595

ageable computational resource requirements and 596

enhances model scalability. 597

Despite these exclusions, we conducted a com- 598

parative case study, the results of which are pre- 599

sented in Table 5. This study reveals that our CFIC- 600

7B model consistently provided complete and rele- 601

vant grounding text evidence in response to queries. 602

In contrast, the other models exhibited limitations: 603

(1). LongAlpaca-7B failed to accurately locate ap- 604

propriate grounding text, resulting in the generation 605

of information irrelevant to the downstream tasks. 606

(2). GPT-3.5 is able to directly respond to queries, 607

it did not successfully identify precise grounding 608

text from the original source material. (3). Al- 609

though GPT-4 managed to retrieve grounding text 610

pertinent to the query, the information provided 611

was incomplete, lacking the necessary comprehen- 612

siveness to fully support the response logically. 613

5 Conclusion 614

This study introduces a Chunking-Free In-Context 615

(CFIC) retrieval method for the RAG system, ad- 616

dressing the challenges of processing lengthy docu- 617

ments and refining evidence retrieval. Unlike tradi- 618

tional chunking-based methods that either compro- 619

mise textual coherence or struggle with noise and 620

inaccuracies, CFIC leverages auto-aggressive de- 621

coding to pinpoint precise evidence directly, elim- 622

inating the reliance on chunking. CFIC incorpo- 623

rates Constrained Sentence Prefix Decoding and 624

Skip Decoding strategies to further enhances re- 625

trieval efficiency and accuracy. Through compre- 626

hensive evaluations on various open QA datasets, 627

CFIC has demonstrated remarkable improvements 628

in sourcing relevant and precise evidence to ground 629

language models. 630

8



Limitations631

This paper introduces a novel approach for632

Retrieval-Augmented Generation systems through633

the Chunking-Free In-Context (CFIC) retrieval634

method. Despite its advancements and effective-635

ness, there are certain limitations that warrant dis-636

cussion.637

One of the primary limitations stems from the638

training data used to develop our models. The639

dataset, self-constructed and annotated using Chat-640

GPT, may harbor annotation biases. Such biases641

could affect the model’s performance, particularly642

in its ability to generalize across different types643

of data or domains. While our approach excels in644

tasks requiring precise text evidence, it may offer645

limited assistance in scenarios demanding a high-646

level understanding of context, such as summariza-647

tion tasks. This limitation is due to the model’s648

focused capability on specific evidence retrieval649

rather than broader context comprehension.650

Additionally, in this study, we have set the max-651

imum length that CFIC can handle to 32k tokens.652

While this threshold accommodates a wide range653

of documents, it may not suffice for longer texts,654

such as novels, which exceed this limit. This con-655

straint is primarily dictated by the available compu-656

tational resources, highlighting a need for more effi-657

cient processing methods or greater computational658

power to extend CFIC’s applicability to longer doc-659

uments. With the increase in computational re-660

sources and advancements in model acceleration661

algorithms, we envision the future possibility of en-662

abling CFIC to handle even longer contexts. This663

could potentially extend to encoding the entire cor-664

pus, facilitating corpus-level in-context retrieval for665

each query.666

Ethical Impact667

The development of CFIC builds upon existing668

Large Language Models (LLMs), which are trained669

on vast, diverse text corpora. This foundation intro-670

duces potential risks associated with biases inher-671

ent in the original training data. These biases can672

manifest in the model’s outputs, influencing the673

quality and impartiality of the retrieved evidence.674

Furthermore, the long documents processed by675

CFIC are sourced from the web, a domain rife676

with its biases. The web’s text content reflects a677

wide array of perspectives, some of which may be678

skewed or unrepresentative of broader viewpoints.679

Given that CFIC is designed to process and retrieve680

information from these documents, there is a risk 681

that the model might inadvertently perpetuate or 682

amplify these biases without the capacity to discern 683

or mitigate them. 684
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A Implementation Detail 932

To train CFIC, we employed the “LLAMA2-7B- 933

chat” as the foundation model for our CFIC. Dur- 934

ing the training, we set the batch size to 1 per 935

GPU and the learning rate to 1e-5. We set the 936

gradient accumulation step as 8 and utilized the 937

AdamW optimizer with an epsilon value of 1e-8. 938

The model’s maximum length parameter was set 939

to 32768. We train the model for 600 steps on 8 * 940

Nvidia A800 80GB GPUs. For CFIC, We set the 941

number of sampled sentence prefixes as k = 3 and 942

the maximum decoding length as d = 256 (refers 943

to Eq. (7)). Besides, we use a warm-up strategy to 944

adjust the learning rate. To save GPU memory, we 945

employed DeepSpeed’s Stage 2 zero optimization 946

to save GPU memory. 947
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