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ABSTRACT

Fairness in decision-making has been a long-standing issue in our society. Com-
pared to algorithmic fairness, fairness in human decisions is even more important
since there are processes where humans make the final decisions and that ma-
chine learning models inherit bias from the human decisions they were trained
on. However, the standard for fairness in human decisions are highly subjective
and contextual. This leads to the difficulty for testing “absolute” fairness in hu-
man decisions. To bypass this issue, this work aims to test relative fairness in
human decisions. That is, instead of defining what are “absolute” fair decisions,
we check the relative fairness of one decision set against another. An example
outcome can be: Decision Set A favors female over male more than Decision Set
B. Such relative fairness has the following benefits: (1) it avoids the ambiguous
and contradictory definition of “absolute” fair decisions; (2) it reveals the relative
preference and bias between different human decisions; (3) if a reference set of
decisions is provided, relative fairness of other decision sets against this reference
set can reflect whether those decision sets are fair by the standard of that reference
set. We define the relative fairness with statistical tests (null hypothesis and effect
size tests) of the decision differences across each sensitive group. Furthermore, we
show that a machine learning model trained on the human decisions can inherit
the bias/preference and therefore can be utilized to estimate the relative fairness
between two decision sets made on different data.

1 INTRODUCTION

Recently, much research has been focusing on mitigating the bias and discrimination in machine
learning algorithms. This is because machine learning algorithms are increasingly being used to make
decisions that affect people’s lives and sometimes the learned models behave in a biased manner that
gives undue advantages to a specific group of people (where those groups are determined by sex,
race, etc.). Such biased decisions can have serious consequences with machine learning algorithms
being used in deciding whether a patient gets released from hospital Kharpal (2018), which loan
applications are approved Olson (2011), which citizens get bail or sentenced to jail Angwin et al.
(2016), who get admitted/hired by universities/companies Dastin (2018).

With the emerging research effort on detecting and mitigating bias in machine learning algorithms,
bias and discrimination can be reduced for processes where the machine learning models and software
directly make the final decisions, such as loan approvals on Wonga.com Olson (2011). However,
there are processes where human makes the final decisions. For example, the human resource person
makes the final decision on which applicant gets an interview while a machine learning software
assists the process by ranking the applicants with its predictions Dastin (2018). Reducing bias in
machine learning models alone does not make these processes fair as long as the responsible human
continues to make biased final decisions. Furthermore, what is considered to be “absolute fair” for
human decisions are highly subjective and contextual Abu-Elyounes (2020). For example, should
universities admit students without considering gender/race or should they admit same percentage of
students from each gender/race group? These are often contradictory standards of fair decisions. To
name a few common ones, individual fairness Dwork et al. (2012) requires similar individuals (from
different sensitive groups) to be treated similarly, demographic parity Dwork et al. (2012) requires
the acceptance rates to be the same across different sensitive groups, other group fairness notions
such as equalized odds Hardt et al. (2016) require a ground truth decision set to evaluate. In many
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scenarios, these “absolute” fairness notions are contradictory and impossible to be satisfied at the
same time Friedler et al. (2021).

To bypass this issue, this work aims to test relative fairness in human decisions. That is, instead of
defining what are “absolute” fair decisions, we check the relative fairness of one decision set against
another. To do this, we focus on the differences between the two decisions sets— the relative fairness
is defined as the statistical parity of the differences between two sets of decisions over a certain
sensitive attribute. Detailed definition will be provided in Section 3.1. The intuition behind this
definition is that, the existence of such difference parity indicates that one decision set is constantly
overrating one sensitive group than another when compared to the other decision set. This definition
of relative fairness has the following benefits: (1) it avoids the ambiguous and contradictory definition
of what absolutely fair decisions are; (2) it reveals the relative preference and bias between different
human decisions; (3) if a reference set of decisions is provided, relative fairness of other decision
sets against this reference set can reflect whether those decisions sets are fair by the standard of that
reference set. Note that, this work does not evaluate relative fairness between decisions made for
different tasks or in different contexts. In the rest of the paper, when we say decisions made on
different data, we mean different data items from the same dataset (for the same task).

One limitation of the relative fairness defined in this paper is that it requires the two set of decisions
to be made on the same data. Even for the same task, such overlapping decisions are not always
available— e.g. there might be multiple HRs screening for the same job application, but one
application will only be screened by one HR. To overcome this limitation, we propose a testing
framework of the relative fairness between Human Y0’s decisions on data X0 and Human Y1’s
decisions on data X1 by (1) fitting a machine learning model f(X) with X0 and Y0; (2) testing the
relative fairness of the model’s predictions on data X1— f(X1) against Y1. Both theoretically and
empirically, we show that, the relative fairness of the model’s predictions f(X1) against Y1 could be
utilized to correctly estimate the relative fairness between Y0 and Y1.

1.1 MOTIVATION

In this section, we demonstrate the potential application of the proposed relative fairness with the
following example scenarios.

Scenario 1: Decisions from different humans are made on the same data. For example, multiple
human resource (HR) persons screen the same set of applicants. In this scenario, relative fairness
defined in Section 3.1 between pairs of HRs can be tested to learn about the relative biases/preferences.
If the HRs have reached consensus decisions, the relative bias between each HR and the consensus
decisions can also reflect the initial biases/preferences that HR need to reduce in the future.

Scenario 2: Decisions from different humans are made on different data (for the same task). For
example, screening decisions for the same job application from two consecutive years. The relative
fairness between the decisions of the second year and those of the first year can be tested by our
proposed algorithm in Section 3.3 to check whether they are consistent. Furthermore, this relative
fairness can also be utilized to achieve a specific fairness goal, e.g. increasing the female employee
rate over the last year.

1.2 CONTRIBUTIONS

The contributions of this work include:

• The definition of relative fairness that can be applied without the need of ground truth or the
standard of what “absolute” fairness is.

• Metrics measuring the violation of the proposed relative fairness.

• Two machine learning-based algorithms to estimate relative fairness between decisions made on
different data for the same task.

• The theoretical analyses of how the proposed relative fairness estimation algorithm works.

• The empirical results also demonstrate the consistency of the relative fairness metrics and the
effectiveness of estimating the relative fairness of human decisions with the proposed algorithm.
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• The code and data used in this work are publicly available1.

2 BACKGROUND AND RELATED WORK

Research on human decision fairness is difficult. This is because ground truth for human decisions is
impossible or prohibitively expensive to obtain, and so bias is hard to directly measure. For example,
Sap et al. Sap et al. (2019) study several datasets of social media posts annotated for the presence of
hate speech. They showed that when the posts are written in the African American English (AAE)
dialect or are authored by users who self identify as Black the posts are more likely to be labeled
(both by human annotators and the models learned from them) as hate speech than if they are not
written in AAE or are authored by users who self identify as White. Two different reasons could lead
to this finding— (1) the human annotators are biased towards AAE dialect or black post authors; or
(2) posts authored by users who self identify as Black or written in the AAE dialect tend to be more
offensive. If it is caused by the first reason, we want to fix such bias caused by annotators. If it is
caused by the second reason, the annotations should be considered correct. However, without the
ground truth, there is no way to know which reason leads to this finding.

Attempts have been made to estimate the ground truth by acquiring multiple annotations on the same
data. Several studies have shown that, for binary labeling, 3–10 annotators per item is sufficient
to obtain reliable labels (evaluated using inter-annotator agreement scores Artstein (2017) such as
Cohen’s kappa and Krippendorff’s alpha). Dawid and Skene Dawid & Skene (1979) used the EM
algorithm to iteratively estimate the ground ground labels, along with the (two sided) error rate of
each annotator, for binary labeling problems. This model has been later extended by other researchers
for other scenarios Kairam & Heer (2016); Carpenter (2008); Raykar et al. (2010); Weld et al. (2011);
Ipeirotis et al. (2010); Pasternack & Roth (2010); Felt et al. (2014); Hovy et al. (2013). Liu and
others have taken the more radical approach of treating the ground truth of each label not as a single
value, but as a distribution over the answers that a population of (mostly hidden) annotators would
provide, where the actual labels obtained are merely an observed sample of this hidden population’s
responses Liu et al. (2019); Weerasooriya et al. (2020; 2021). However, these approaches require
multiple annotations on the same data, which is expensive and does not scale up well.

Given the difficulty of obtaining the ground truth for human decisions. We would instead analyze
the relative bias between different annotators— the difference in preference/bias across annotators.
As an example, Price and Wolfers Price & Wolfers (2010) showed that, white NBA referees tend
to award more extra fouls towards black players than black NBA referees. In this case, we can say
that those white NBA referees has a relative bias of awarding more fouls towards black players than
white players when compared to black NBA referees. On the other hand, another study by Welch et
al. Welch et al. (1988) showed that black and white judges weighted case and offender information in
similar ways when making punishment decisions, although black judges were more likely to sentence
both black and white offenders to prison. In this case, the black judges do not have a relative bias
towards black or white offenders when compared to white judges.

Previously, there is no clear definition of relative fairness or relative bias. And these previous
studies analyzed data without strict controls. For example, Price and Wolfers Price & Wolfers (2010)
analyzed the data by regressing the number of fouls called per 48 minutes for each player-game
observation in which the referee participated, against an indicator variable for whether the offending
player is black. The data for each referee come from different games played by different players.
The conclusion can be misled by coincidences such as white players happened to commit more fouls
in games with black referees. To avoid such ambiguity, we define relative fairness as difference
parity— the differences between the two sets of decisions made on the same data are statistically
the same across different sensitive groups. This relative fairness definition has no assumption on
the task and thus is more general than the existing “absolute” fairness definitions. For example,
individual fairness Dwork et al. (2012) requires similar individuals (from different sensitive groups)
to be treated similarly, demographic parity Dwork et al. (2012) requires the acceptance rates to be the
same across different sensitive groups, other group fairness notions such as equalized odds Hardt
et al. (2016) require the ground truth decisions to evaluate. These “absolute” fairness notions are
often contradictory and impossible to be satisfied at the same time Friedler et al. (2021) but relative
fairness can be evaluated regardless these requirements.

1https://anonymous.4open.science/r/ContextualFairnessTesting-2B8C
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3 METHODOLOGY

3.1 RELATIVE FAIRNESS

We define the relative fairness as difference parity— the differences between the two sets of decisions
are statistically the same across different sensitive groups. Without loss of generality, we assume a
binary sensitive attribute in the following definition.

Definition 3.1. Relative fairness. Given a set of data X ∈ Rd with binary sensitive attribute
A(X) ∈ {0, 1}, and two sets of decisions on the data Y0(X), Y1(X) ∈ R, the two decision sets
are considered as relatively fair to each other if and only if the difference of the decisions on each
sensitive group share the same mean value:

µ(Y∆(A = 0)) = µ(Y∆(A = 1)) = µ

where
Y∆(A = a) = {Y0(x)− Y1(x)|A(x) = a, x ∈ X},

and µ(Y∆) is the mean of the underlying distribution of Y∆.

Following the above definition, two decision sets are considered as relatively fair if they are not
overestimating or underestimating any sensitive group compared to each other. Since every decision
is made independently, the differences of the decisions Y∆(A = a) are independent and identically
distributed (i.i.d.). Based on central limit theorem and the law of large numbers, the sampled mean of
Y∆(A = a) follows normal distribution in large samples:

Y ∆(A = a)− µ(Y∆(A = a))

s(Y ∆(A = a))

d→ N (0, 1). (1)

where s(Y ∆(A = a)) =
√

s2(Y∆(A=a))
|A(X)=a| is the sampled standard deviation of Y ∆(A = a) and

s(Y∆(A = a)) is the sampled standard deviation of Y∆(A = a).

Given equation 1, we define two relative bias metrics to measure 1) the probability of the difference
between Y ∆(A = 0) and Y ∆(A = 1) arise from random chance with null hypothesis testing Ander-
son et al. (2000); and 2) the strength of the difference with effect size testing Chow (1988). Welch’s
t-test Welch (1947) and Cohen’s d Cohen (2013) are applied to test the null hypothesis and effect size.

3.2 RELATIVE BIAS METRICS

Definition 3.2. Null hypothesis testing for relative bias. Given a set of data X with sensitive
attribute A(X) ∈ {0, 1}, and two sets of decisions on the data Y0(X), Y1(X), the relative bias t
(RBT) score of Y0 over Y1 on A(X) ∈ {0, 1} is calculated as equation 2.

RBT (Y0, Y1, A) =
Y ∆(A = 1)− Y ∆(A = 0)√

s2(Y ∆(A = 1)) + s2(Y ∆(A = 0))

DoF (Y0, Y1, A) =
(s2(Y ∆(A = 1)) + s2(Y ∆(A = 0)))2

(s2(Y ∆(A=1)))2

|A(X)=1|−1 + (s2(Y ∆(A=0)))2

|A(X)=0|−1

.

(2)

Definition 3.3. Effect size for relative bias. Given a set of data X with sensitive attribute A(X) ∈
{0, 1}, and two sets of decisions on the data Y0(X), Y1(X), the relative bias d (RBD) score of Y0

over Y1 on A(X) ∈ {0, 1} is calculated as equation 3.

RBD(Y0, Y1, A) =
Y ∆(A = 1)− Y ∆(A = 0)

s
(3)

where s =
√

(|A(X)=1|−1)s2(Y∆(A=1))+(|A(X)=0|−1)s2(Y∆(A=0))
|A(X)=1|+|A(X)=0|−2 is the pooled standard deviation.
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Table 1: Effect sizes Sawilowsky (2009).

Effect Size d Effect Size d
Very Small 0.01 Large 0.8

Small 0.2 Very Large 1.2

Medium 0.5 Huge 2.0

Relative bias: Utilizing the two metrics, Y0 is rela-
tively biased towards A = 1 compared to Y1 if the null
hypothesis is rejected at more than 95% confidence—
one tailed p ≤ 0.05 given the t value RBT (Y0, Y1, A)
and degree of freedom DoF (Y0, Y1, A), vice versa.
The magnitude of the relative bias will be determined
by the RBD value following the same magnitude
descriptor as Cohen’s d in Table 1.

Note that, in the binary classification setting Y0, Y1 ∈ {0, 1}, this definition of relative bias is related
to demographic parity since

Y ∆(A = 1)− Y ∆(A = 0) =(Y0(A = 1)− Y1(A = 1))− (Y0(A = 0)− Y1(A = 0))

=DP (Y0)−DP (Y1).

However, it is still different from DP (Y0)−DP (Y1) because relative bias also takes into considera-
tion the variance of the differences which is unavailable from the statistics of Y0 and Y1.

3.3 ESTIMATING RELATIVE FAIRNESS BETWEEN DECISIONS MADE ON DIFFERENT DATA

Problem statement: Given two non-overlapping data X0 and X1 drawn from the same distribution,
and two decision sets Y0(X0) and Y1(X1) made by different humans, test the relative fairness/bias
between the two decision sets over a certain sensitive attribute A.

3.3.1 BIASED BRIDGE

The first approach, biased bridge, utilizes a machine learning model f(x) to bridge the two decision
sets made on different data X0 and X1. Being trained on (X0, Y0(X0)), f(x) could make predictions
for both f(X0) and f(X1). Given that the errors of the model’s predictions are also i.i.d., their
sampled means should follow normal distribution in large samples:

E0(A = a)− µ(E0(A = a))

s(E0(A = a))

d→ N (0, 1) (4)

E1(A = a)− µ(E1(A = a))

s(E1(A = a))

d→ N (0, 1) (5)

where E0(A = a) = {f(x)− Y0(x)|A(x) = a} and E1(A = a) = {f(x)− Y1(x)|A(x) = a} are
the errors of f(x) compared to Y0 and Y1. Substract E0(A = a) from E1(A = a) we have

E1(A = a)− E0(A = a)√
s2(E1(A = a)) + s2(E0(A = a))

d→ N (0, 1). (6)

Given that

Y∆(A = a) = {Y0(x)− Y1(x)|A(x) = a} = E1(A = a)− E0(A = a),

we can estimate:

Y ∆(A = a)=̂E1(A(x) = a, x ∈ X1)− E0(A(x) = a, x ∈ X0)

s(Y ∆(A = a))=̂

√
s2(E1(A(x) = a, x ∈ X1)) + s2(E0(A(x) = a, x ∈ X0)).

(7)

As shown in Algorithm 1, the relative bias metrics can then be calculated as equation 2 and equation 3.
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Algorithm 1: Biased Bridge.
Input :(X0, A(X0), Y0(X0)).

(X1, A(X1), Y1(X1)).
f(x), a predictor.

Output :Relative bias of Y0 over Y1.

1 f(x).fit(X0, Y0(X0))
2 Estimate Y ∆(A = a) as equation 7
3 Estimate s(Y ∆(A = a)) as equation 7
4 return RBT(Y0, Y1, A), RBD(Y0, Y1, A)

Algorithm 2: Unbiased Bridge.
Input :(X0, A(X0), Y0(X0)).

(X1, A(X1), Y1(X1)).
f(x), a predictor.

Output :Relative bias of Y0 over Y1.

1 f(x).fit(X0, Y0(X0))
2 rbt = RBT(f(X1), Y1(X1), A)
3 rbd = RBD(f(X1), Y1(X1), A)
4 return rbt, rbd

3.3.2 UNBIASED BRIDGE

The second approach, unbiased bridge, utilizes the same machine learning model f(x) trained
on (X0, Y0(X0)). In this approach, we simply assume that f(x) has inherited every human bias
in Y0(X0). As a result, the predictions of f(X1) will be treated as Y0(X1) and will be used to
compare against Y1(X1) for relative fairness. As shown in Algorithm 2, RBT (Y0, Y1, A) and
RBD(Y0, Y1, A) are estimated as RBT (f(X1), Y1(X1), A) and RBD(f(X1), Y1(X1), A).

4 EXPERIMENT DESIGN

Table 2: Description of the datasets used in the experiments.

Dataset #Rows Sensitive Attributes A Class Labels Y
A = 0 A = 1

Adult Census Income 48,842 Sex-Female Sex-Male Y = 1 Y = 0
Dua & Graff (2017) Race-Nonwhite Race-White Income > 50K Income ≤ 50K
SCUT-FBP5500 5,500 Sex-Female Sex-Male Beauty Rating Y ∈ {1, 2, 3, 4, 5}Liang et al. (2018) Race-Asian Race-Caucasian

In this section, we design experiments on two datasets2 shown in Table 2 to explore:

• RQ1: Does the proposed relative fairness metrics consistently reflect the relative fairness between
two sets of decisions made on the same data?

• RQ2: Do the proposed frameworks, biased bridge and unbiased bridge, correctly estimate the
relative fairness between the decisions made on different data?

4.1 EXPERIMENT WITH SYNTHETIC RELATIVE BIAS

The Adult Census Income data only has one set of decisions Y0 which comes from ground truth. The
data is randomly split into 70% for training (X0) and 30% for testing (X1). After that, we manually
inject bias into the labels as Y1 where

P (Y1(A = a) = 1) = Y0(A = a) +N (λ(A) · s(Y0) · z(a), (λ(A) · s(Y0))
2)

where s(Y0) is the standard deviation of Y0, λ(A) is a parameter controlling the mean of the injected
bias to different sensitive groups, and

z(a) =
a−A

s(A)
.

A logistic regression model f(x) is trained on the biased training data Y1(X0). The training time is
less than 1 second on a single desktop. The learned model is then being utilized in unbiased bridge
and biased bridge to estimate the relative fairness between Y1 and Y0.

2Experimental results with injected bias on 7 more datasets are available at https://anonymous.
4open.science/r/ContextualFairnessTesting-2B8C.
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4.2 EXPERIMENT WITH REAL HUMAN DECISION BIAS

The SCUT-FBP5500 dataset has 5,500 face images and their beauty ratings from 60 different human
raters. In this experiment, we utilized the ratings from the first three humans (P1, P2, and P3) and the
average ratings of the 60 humans (Average) as four different decision sets. These ratings range from 1
(least beautiful to the rater) to 5 (most beautiful to the rater), therefore it is a regression problem. Note
that all the analyses and definitions in Section 3 apply to both regression and binary classification
problems. The image set is randomly split into 80% for training (X0) and 20% for testing (X1). A
VGG-16 model Simonyan & Zisserman (2014) with pre-trained weights on the ImageNet data is
transferred to predict the beauty ratings with the output layer being replaced as a dense layer of size
256 and a one node output layer. Each time, one VGG-16 model is trained to learn from the a specific
set of decisions on the training set X0. Then its predictions on the test set X1 are compared against
another set of decisions on the test set X1 to estimate relative fairness between these two sets of
decisions. These models are trained to minimize binary cross entropy loss for 1,000 epochs with
batch size = 10. The training time of adapting the VGG-16 model to one decision set was around 2.2
hours on four NVIDIA A100 Tensor Core GPUs.

5 EXPERIMENTAL RESULTS

Table 3 shows the experimental results on the Adult Census Income dataset with injected bias. Table 4
shows the experimental results on the SCUT-FBP5500 dataset with four decision sets (P1, P2, P3,
and Average). Each experiment is conducted only once due to the high computation cost and to better
simulate what will happen in practice. In these tables, “GT Train” represents the ground truth relative
fairness metrics calculated with Y0(X0) and Y1(X0) on the training data; “GT Test” represents the
ground truth relative fairness metrics calculated with Y0(X1) and Y1(X1) on the test data. “Biased
Bridge” and “Unbiased Bridge” represents the relative fairness metrics calculated by the proposed
frameworks in Algorithm 1 and 2. Every result reports the p value of the null hypothesis test in round
brackets, followed by the effect size testing result. One result is left in white background when no
significant relative bias is found (p value > 0.05); is colored in green if Y0 is found to favor A = 1

more when compared to Y1 (p value ≤ 0.05 and RBD>0); and is colored in red if Y0 is found to
favor A = 1 less when compared to Y1 (p value ≤ 0.05 and RBD<0). With results from the two
tables, we answer the two research questions from the previous section.

Table 3: Results on the Adult Census Income data. Results are shown with numbers of (p value) and
RBD value. Results with p value ≤ 0.05 are colored as green if RBD>0 or red if RBD<0.

λ(A)
GT Train GT Test Unbiased Bridge Biased Bridge
sex race sex race sex race sex race

λ(sex)=0, λ(race)=0 (0.50) 0.00 (0.50) 0.00 (0.50) 0.00 (0.50) 0.00 (0.45) -0.00 (0.43) -0.00 (0.47) -0.00 (0.45) -0.00
λ(sex)=0.1, λ(race)=0 (0.00) 0.20 (0.34) -0.01 (0.00) 0.20 (0.08) 0.04 (0.00) 0.12 (0.04) -0.04 (0.00) 0.08 (0.11) -0.03
λ(sex)=0.2, λ(race)=0 (0.00) 0.29 (0.29) 0.01 (0.00) 0.28 (0.38) 0.01 (0.00) 0.19 (0.42) 0.01 (0.00) 0.13 (0.44) 0.00
λ(sex)=-0.1, λ(race)=0 (0.00) -0.37 (0.00) -0.10 (0.00) -0.34 (0.00) -0.10 (0.00) -0.19 (0.00) -0.08 (0.00) -0.13 (0.02) -0.05
λ(sex)=-0.2, λ(race)=0 (0.00) -0.52 (0.00) -0.13 (0.00) -0.52 (0.00) -0.10 (0.00) -0.36 (0.00) -0.09 (0.00) -0.24 (0.01) -0.06
λ(sex)=0, λ(race)=0.1 (0.01) -0.04 (0.00) 0.24 (0.03) -0.04 (0.00) 0.25 (0.24) -0.01 (0.00) 0.11 (0.32) -0.01 (0.00) 0.07
λ(sex)=0, λ(race)=0.2 (0.03) -0.03 (0.00) 0.33 (0.00) -0.06 (0.00) 0.32 (0.21) -0.02 (0.00) 0.21 (0.30) -0.01 (0.00) 0.14
λ(sex)=0, λ(race)=-0.1 (0.00) -0.11 (0.00) -0.59 (0.00) -0.07 (0.00) -0.63 (0.01) -0.05 (0.00) -0.30 (0.05) -0.03 (0.00) -0.21
λ(sex)=0, λ(race)=-0.2 (0.00) -0.14 (0.00) -0.75 (0.00) -0.14 (0.00) -0.80 (0.00) -0.11 (0.00) -0.49 (0.00) -0.07 (0.00) -0.33
λ(sex)=0.2, λ(race)=0.2 (0.00) 0.27 (0.00) 0.34 (0.00) 0.29 (0.00) 0.32 (0.00) 0.19 (0.00) 0.23 (0.00) 0.13 (0.00) 0.16
λ(sex)=-0.2, λ(race)=-0.2 (0.00) -0.49 (0.00) -0.68 (0.00) -0.51 (0.00) -0.74 (0.00) -0.41 (0.00) -0.57 (0.00) -0.28 (0.00) -0.38
λ(sex)=0.2, λ(race)=-0.2 (0.00) 0.19 (0.00) -0.58 (0.00) 0.17 (0.00) -0.64 (0.00) 0.15 (0.00) -0.40 (0.00) 0.10 (0.00) -0.27
λ(sex)=-0.2, λ(race)=0.2 (0.00) -0.45 (0.00) 0.29 (0.00) -0.46 (0.00) 0.28 (0.00) -0.36 (0.00) 0.23 (0.00) -0.24 (0.00) 0.15

RQ1: Does the proposed relative fairness metrics consistently reflect the relative fairness
between two sets of decisions made on the same data?

As stated in Section 3.1, a relative bias is considered to be statistically significant when the p ≤ 0.05
given its null hypothesis test result. In Table 3, all of the 26 cells show consistent results between
“GT Train” and “GT Test”. This suggests that given the same form of injected bias, the relative biases
between the ground truth decisions and the synthetic decisions tested are always consistent when
tested on different data.

In Table 4, we observed that in most cases, the relative bias metrics between each pair of decision
makers (e.g. P1 vs. P2) are consistent on different data X0 and X1. For example, according to GT
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Table 4: Results on the SCUT-FBP5500 data. Results are shown with numbers of (p value) and RBD
value. Results with p value ≤ 0.05 are colored as green if RBD>0 or red if RBD<0.

Sex Race Sex Race Sex Race Sex Race
P1 P2 P3 Average

GT Train

P1

(0.50) 0.00 (0.50) 0.00 (0.00) -0.45 (0.00) -0.25 (0.00) -0.50 (0.01) -0.07 (0.00) -0.48 (0.00) -0.25
GT Test (0.50) 0.00 (0.50) 0.00 (0.00) -0.39 (0.00) -0.19 (0.00) -0.44 (0.03) -0.13 (0.00) -0.43 (0.00) -0.24
Unbiased Bridge (0.04) -0.11 (0.27) -0.04 (0.00) -0.58 (0.00) -0.28 (0.00) -0.57 (0.01) -0.18 (0.00) -0.68 (0.00) -0.36
Biased Bridge (0.10) -0.08 (0.44) -0.01 (0.00) -0.52 (0.00) -0.22 (0.00) -0.52 (0.03) -0.14 (0.00) -0.57 (0.00) -0.27
GT Train

P2

(0.00) 0.45 (0.00) 0.25 (0.50) 0.00 (0.50) 0.00 (0.04) -0.05 (0.00) 0.17 (0.00) 0.14 (0.00) 0.11
GT Test (0.00) 0.39 (0.00) 0.19 (0.50) 0.00 (0.50) 0.00 (0.16) -0.06 (0.17) 0.06 (0.07) 0.09 (0.48) -0.00
Unbiased Bridge (0.00) 0.40 (0.00) 0.22 (0.11) 0.07 (0.15) 0.07 (0.33) -0.03 (0.09) 0.09 (0.01) 0.15 (0.17) 0.06
Biased Bridge (0.00) 0.40 (0.00) 0.22 (0.12) 0.07 (0.15) 0.07 (0.37) -0.02 (0.08) 0.10 (0.01) 0.14 (0.16) 0.07
GT Train

P3

(0.00) 0.50 (0.01) 0.07 (0.04) 0.05 (0.00) -0.17 (0.50) 0.00 (0.50) 0.00 (0.00) 0.16 (0.00) -0.16
GT Test (0.00) 0.44 (0.03) 0.13 (0.16) 0.06 (0.17) -0.06 (0.50) 0.00 (0.50) 0.00 (0.02) 0.13 (0.11) -0.08
Unbiased Bridge (0.00) 0.45 (0.02) 0.14 (0.18) 0.05 (0.10) -0.08 (0.36) -0.02 (0.49) -0.00 (0.01) 0.14 (0.06) -0.11
Biased Bridge (0.00) 0.43 (0.01) 0.15 (0.20) 0.05 (0.29) -0.04 (0.40) -0.02 (0.33) 0.03 (0.03) 0.12 (0.25) -0.05
GT Train

Average

(0.00) 0.48 (0.00) 0.25 (0.00) -0.14 (0.00) -0.11 (0.00) -0.16 (0.00) 0.16 (0.50) 0.00 (0.50) 0.00
GT Test (0.00) 0.43 (0.00) 0.24 (0.07) -0.09 (0.48) 0.00 (0.02) -0.13 (0.11) 0.08 (0.50) 0.00 (0.50) 0.00
Unbiased Bridge (0.00) 0.36 (0.00) 0.23 (0.01) -0.13 (0.25) 0.05 (0.01) -0.14 (0.09) 0.10 (0.11) -0.07 (0.20) 0.06
Biased Bridge (0.00) 0.37 (0.00) 0.23 (0.05) -0.10 (0.27) 0.04 (0.02) -0.12 (0.10) 0.09 (0.30) -0.03 (0.23) 0.05

Train (P1, P2), P1 favors Female (Sex=0) over Male (Sex=1) when compared to P2 (p = 0.00 < 0.05,
RBD = −0.45) and also favors Asian (Race=0) over Caucasian (Race=1) when compared to P2
(p = 0.00 < 0.05, RBD = −0.25). According to GT Test(P1, P2), P1 favors Female (Sex=0) over
Male (Sex=1) when compared to P2 (p = 0.00 < 0.05, RBD = −0.39) and also favors Asian
(Race=0) over Caucasian (Race=1) when compared to P2 (p = 0.00 < 0.05, RBD = −0.19). These
two results are consistent. Out of 32 pairwise comparisons of GT Train and GT Test, 22 of them
are consistent while 10 are not. Given the randomness in splitting the training and testing data and
the fact that all ten inconsistencies do not have opposite relative bias results, overall, the proposed
relative fairness metrics consistently reflect the relative fairness in the SCUT-FBP5500 dataset.

To RQ1. The proposed relative fairness metrics consistently reflect the relative fairness between
two sets of decisions made on the same data in most cases.

Table 5: Confusion Matrices.

Adult Census Income SCUT-FBP5500
GT > 0 GT < 0 GT = 0 GT > 0 GT < 0 GT = 0

Unbiased Bridge
EST > 0 8 0 0 8 0 0
EST < 0 0 12 1 0 8 1
EST = 0 0 2 3 0 0 15

Biased Bridge
EST > 0 8 0 0 8 0 0
EST < 0 0 12 0 0 8 0
EST = 0 0 2 4 0 0 16

Table 6: Training Performances.

Data Train on MAE Sex Race

Adult Census Income

λ(sex)=0, λ(race)=0 0.20 (0.50) -0.00 (0.50) -0.00
λ(sex)=0.1, λ(race)=0 0.22 (0.50) -0.00 (0.50) -0.00
λ(sex)=0.2, λ(race)=0 0.25 (0.49) -0.00 (0.50) -0.00
λ(sex)=-0.1, λ(race)=0 0.24 (0.50) 0.00 (0.50) -0.00
λ(sex)=-0.2, λ(race)=0 0.28 (0.50) 0.00 (0.50) -0.00
λ(sex)=0, λ(race)=0.1 0.23 (0.50) -0.00 (0.50) -0.00
λ(sex)=0, λ(race)=0.2 0.26 (0.50) -0.00 (0.50) -0.00
λ(sex)=0, λ(race)=-0.1 0.24 (0.50) -0.00 (0.50) 0.00
λ(sex)=0, λ(race)=-0.2 0.26 (0.50) -0.00 (0.50) 0.00
λ(sex)=0.2, λ(race)=0.2 0.27 (0.49) -0.00 (0.50) -0.00
λ(sex)=-0.2, λ(race)=-0.2 0.30 (0.50) -0.00 (0.50) 0.00
λ(sex)=0.2, λ(race)=-0.2 0.27 (0.49) -0.00 (0.50) 0.00
λ(sex)=-0.2, λ(race)=0.2 0.29 (0.50) 0.00 (0.50) -0.00

SCUT-FBP5500

P1 0.02 (0.00) -0.21 (0.00) -0.40
P2 0.04 (0.17) -0.03 (0.49) 0.00
P3 0.02 (0.00) -0.11 (0.00) -0.20
Average 0.01 (0.00) -0.11 (0.19) 0.03

RQ2: Do the proposed frameworks, unbiased bridge and biased bridge, correctly estimate the
relative fairness between the decisions made on different data?
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Table 5 shows the confusion matrices of unbiased bridge and biased bridge estimations summarized
from Table 3 and Table 4. EST>0 means a positive relative bias is detected with p ≤ 0.05 and
RBD>0. EST<0 means a negative relative bias is detected with p ≤ 0.05 and RBD<0. EST=0
means no significant relative bias is detected (p > 0.05). GT>0 means either GT Train or GT Test has
confirmed the detected positive relative bias; GT<0 means either GT Train or GT Test has confirmed
the detected negative relative bias; GT = 0 means either GT Train or GT Test has confirmed that
no significant relative bias exits. From Table 5, we observe that biased bridge estimation has 100%
precision in detecting relative biases on both datasets. It also has 91% recall on the Adult Census
Income data and 100% recall on the SCUT-FBP5500 data. On the other hand, the unbiased bridge
estimation has 95% precision and 91% recall on the Adult Census Income data and 94% precision
and 100% recall on the SCUT-FBP5500 data. Overall, biased bridge estimation has better accuracy
in estimating the relative fairness between the decisions made on different data.

Table 6 shows the training performances of the logistic regression classifier on Adult Census Income
data and the VGG-16 regressor on SCUT-FBP5500 data. From this table we can see that, the logistic
regression classifier has no relative bias to its training data but has a large training error rate. On the
other hand, the VGG-16 regressor has low training error but significant relative bias to its training
data. Both high training error or significant relative bias to the training data can cause inaccurate
estimations from the unbiased bridge approach. This explains the better performance of biased bridge
estimation and the necessity of using it.

To RQ2. Overall, both approaches achieved good accuracy in estimating the relative fairness
between the decisions made on different data. However, biased bridge is a better estimation
algorithm since it takes into consideration of the training error and training relative biases.
The results also show that biased bridge estimation achieved 100% accuracy on the SCUT-
FBP5500 data and 92% accuracy on the Adult Census Income data.

6 CONCLUSION AND FUTURE WORK

In summary, this paper proposes relative fairness which checks whether one decision set is more
biased towards a certain sensitive group than another decision set. Such relative fairness alleviates
the need for defining what is considered to be absolutely fair. In addition, if there exists a reference
set of decisions that is well-accepted to be fair in certain context, relative fairness of other decisions
against that reference decision set can reflect their fairness in that context. In addition, two novel
machine learning-based approaches are proposed to enable the testing of relative fairness between
two decision sets made on different data. Assumptions and analyses are provided for when and how
the proposed approaches work. Empirical results on a real world dataset with ratings from multiple
humans and a dataset with synthetic biases showed that, the biased bridge approach achieved more
accurate estimation than the unbiased bridge approach since it takes into consideration of the training
error and training relative biases. This work suffer from several limitations:

Limitation 1 According to RQ1, even decisions from the same humans may not always have the
same trend of relative biases on different data. This suggests that the analysis of
relative fairness requires a sufficient amount of decision data points.

Limitation 2 According to RQ2, even the biased bridge estimation is not 100% accurate, there is
still room for improvement.

Limitation 3 The relative fairness and the two approaches are currently defined for binary sensitive
attributes. New definitions are required for continuous sensitive attributes.

Limitation 4 There is a risk of companies/humans using the relative fairness of their decisions
against one specific reference decision set to justify their fairness in the decision
making process. Without the definition of fairness for the context and external checking
of the reference decision set, relative fairness can be misleading— a decision set can
be biased when it is relatively fair against another biased decision set.

Overall, we believe that this work could benefit the community by presenting a new way of analyzing
relative human biases with the help of machine learning models.
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