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Abstract
With growing privacy concerns and the enforce-
ment of data protection regulations, machine un-
learning has emerged as a promising approach
for removing the influence of forget data while
maintaining model performance on retain data.
However, most existing unlearning methods re-
quire access to the original training data, which
is often impractical due to privacy policies, stor-
age constraints, and other limitations. This
gives rise to the challenging task of source-free
unlearning, where unlearning must be accom-
plished without accessing the original training
data. Few existing source-free unlearning meth-
ods rely on knowledge distillation and model
retraining, which impose substantial computa-
tional costs. In this work, we propose the Data
Synthesis-based Discrimination-Aware (DSDA)
unlearning framework, which enables efficient
source-free unlearning in two stages: (1) Acceler-
ated Energy-Guided Data Synthesis (AEGDS),
which employs Langevin dynamics to model
the training data distribution while integrating
Runge–Kutta methods and momentum to enhance
efficiency. (2) Discrimination-Aware Multitask
Optimization (DAMO), which refines the feature
distribution of retain data and mitigates the gra-
dient conflicts among multiple unlearning objec-
tives. Extensive experiments on three benchmark
datasets demonstrate that DSDA outperforms ex-
isting unlearning methods, validating its effective-
ness and efficiency in source-free unlearning.

1. Introduction
Modern Machine Learning (ML) models rely on vast
amounts of data for training, which may contain sensitive
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or private information, posing significant privacy risks (Cao
& Yang, 2015; Nguyen et al., 2022; Liu et al., 2023a;b). To
mitigate these risks, multiple regulations, e.g., the European
Union’s General Data Protection Regulation (GDPR) (Voigt
& Von dem Bussche, 2017) and the California Consumer
Privacy Act (CCPA) (Pardau, 2018), mandate companies
and organizations to implement data deletion mechanisms
and grant individuals the right to be forgotten. This gives
rise to the field of machine unlearning, whose primary goal
is to ensure that the model eliminates all influence of the
data requested for deletion (i.e., forget data) while preserv-
ing model integrity and performance on the remaining data
(i.e., retain data).

Existing methods typically assume access to the training
data, utilizing gradient computation or weight adjustment
techniques to erase specific knowledge. Some methods
estimate the influence of training data on model param-
eters, using the Fisher Information Matrix (FIM) (Foster
et al., 2024; Golatkar et al., 2020) and Hessian (Mehta et al.,
2022), which are prohibitively expensive due to the high
dimensionality of the parameter space. Other methods re-
train (Bourtoule et al., 2021; Chundawat et al., 2023a) or
fine-tune (Tarun et al., 2023) the model with the training
data, intentionally degrading model performance on forgot
data while preserving its performance on retain data.

However, access to the original training data cannot be guar-
anteed in practical scenarios, due to privacy concerns, data
retention policies, or other constraints. For example, many
cloud platforms delete training data immediately after use to
address privacy concerns and storage limitations. Similarly,
in streaming data environments, real-time processing over-
writes old data with new inputs, preventing historical data
retention. Under these circumstances, inaccessible training
data makes most existing unlearning methods infeasible.
Consequently, there is a pressing need for unlearning with-
out the training data, relying solely on the original model
and limited auxiliary information (class labels) to perform
unlearning, referred to as source-free unlearning.

Source-free unlearning is an emerging yet underexplored
area, with only a few existing methods attempting to tackle
its challenges. Specifically, GKT (Chundawat et al., 2023b)
and ISPF (Zhang et al., 2024) both adopt the Data-Free
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Knowledge Distillation (DFKD) technique with a filtering
mechanism to selectively transfer knowledge from the origi-
nal model to a randomly initialized model. However, they
both require training a new model from scratch during the
distillation process, resulting in significant computational
costs.

Motivated by the limitations of existing methods, we
propose the Data Synthesis-based Discrimination-Aware
(DSDA) unlearning framework to achieve efficient and effec-
tive source-free unlearning, which consists of the following
two key stages:

(i) In the first stage, we overcome the unavailability of train-
ing data by proposing the accelerated energy-guided data
synthesis (AEGDS) method to generate synthetic datasets.
Specifically, we derive an energy function by reinterpreting
the output logits of the original model and employ Langevin
dynamics to implicitly model the training data distribution.
To further improve efficiency, we incorporate high-order
Runge–Kutta methods and momentum-based updates into
the sampling process, reducing redundant sampling steps
while preserving effectiveness.

(ii) In the second stage, we propose the Discrimination-
Aware Multitask Optimization (DAMO) method, which uti-
lizes the synthetic datasets for effective unlearning. Through
feature space visualization, we observe that traditional un-
learning losses disrupt feature distributions, causing retain
class samples to become widely dispersed, leading to per-
formance degradation. In light of this, we introduce a novel
unlearning objective, discriminative feature alignment ob-
jective, to improve intra-class compactness and inter-class
separability of retain classes, thereby improving model per-
formance. Additionally, to resolve gradient conflicts arising
from optimizing the triple objectives, i.e., forget, retain,
and feature alignment, we develop a multitask optimization
strategy, ensuring stability and balance in unlearning.

Our main contributions are summarized as follows:

•We propose DSDA, a novel two-stage framework for effi-
cient, source-free unlearning, addressing the limitations of
methods that rely on original data or incur high computa-
tional costs.

• For the first stage, we propose AEGDS to efficiently gen-
erate synthetic datasets as substitutes for the original data.
For the second stage, motivated by insights from feature
space analysis, we propose DAMO, an unlearning optimiza-
tion method that enhances feature distribution and resolves
gradient conflicts.

• Extensive experiments on three benchmark datasets
demonstrate DSDA’s superiority over existing methods
across multiple tasks.

2. Related Work
2.1. Deep Machine Unlearning

Existing deep unlearning methods can be categorized based
on their dependency on training data.

Methods Requiring Full Training Data. Many existing
methods depend on access to the complete training data.
Exact unlearning methods (Bourtoule et al., 2021; Yan et al.,
2022; Kim & Woo, 2022) remove the forget data from the
original dataset and retrain the model, incurring high com-
putational costs. Approximate unlearning methods bypass
complete retraining, with some methods leveraging Hessian
matrices (Sekhari et al., 2021; Mehta et al., 2022; Li et al.,
2023b) or Fisher Information Matrices (FIM) (Foster et al.,
2024; Golatkar et al., 2020) to estimate and reverse the in-
fluence of forget data on model parameters, while others
(Chundawat et al., 2023a; Thudi et al., 2022; Chen et al.,
2024; Li et al., 2023a) fine-tune the original model directly
using the training data.

Methods Requiring Partial Training Data. When retain
data is unavailable, Cha et al. (2024); Kim et al. (2024)
leverage Projected Gradient Descent (PGD) (Mądry et al.,
2017) to generate adversarial samples for the forget classes.
SCAR Bonato et al. (2025) substitutes external datasets for
the original data, and performs unlearning via Knowledge
Distillation (KD). When forget data is unavailable, UNSIR
(Tarun et al., 2023) generates noise matrices for the forget
classes with an error-maximization mechanism to induce
class-level unlearning. However, all these methods rely
on full or partial access to training data, which is often
infeasible in real-world scenarios.

Source-Free Unlearning. In the strictest setting of source-
free unlearning, where neither the forget nor retain data
is accessible, there are only few existing methods. GKT
(Chundawat et al., 2023b) represents the first source-free
unlearning method, applying DFKD within an adversarial
inversion-and-distillation framework. Building on GKT,
ISFP (Zhang et al., 2024) addresses the over-filtering issue
in DFKD by introducing inhibited synthesis to reduce the
generation of forgetting-related information. However, both
methods rely on DFKD, which necessitates costly and time-
consuming model retraining, limiting their practicality for
large-scale or real-time unlearning. In this work, we propose
the DSDA framework, which overcomes these limitations by
leveraging energy-guided data synthesis and efficient fine-
tuning through discrimination-aware multitask optimization.

2.2. Model Inversion

Model inversion (MI) aims to reconstruct training data by
exploiting the model’s outputs, gradients, or internal repre-
sentations (Mahendran & Vedaldi, 2015). Gradient-based
MI methods optimize synthetic data using techniques such
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as Momentum SGD or Adam (Kingma & Ba, 2014), mini-
mizing the loss between model predictions and ground truth
(Struppek et al., 2022; Yuan et al., 2023). Alternatively,
GMI (Zhang et al., 2020) employs Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014) to guide
data generation, with subsequent works (Yuan et al., 2023;
Nguyen et al., 2023; Chen et al., 2021) enhancing generator
performance by integrating additional information from the
target model. However, these methods are computation-
ally expensive, requiring either frequent gradient evalua-
tions or training of an auxiliary generator. In contrast, the
proposed AEGDS manipulates the model’s likelihood land-
scape through implicit distribution modeling (Chen et al.,
2021), achieving efficient model inversion for source-free
unlearning.

3. Method
In this section, we define the problem of source-free unlearn-
ing and introduce two key stages of the DSDA framework,
as illustrated in Figure 1. In the first stage, we propose
the AEGDS, a method that efficiently generates synthetic
datasets as substitutes for the original training data. In the
second stage, we propose the DAMO method to perform
unlearning using the synthetic datasets. DAMO incorpo-
rates a novel discriminative feature alignment objective and
resolves gradient conflicts from optimizing multiple unlearn-
ing objectives simultaneously through multitask optimiza-
tion, ensuring stable and balanced unlearning.

3.1. Preliminaries and Notations

First, we formulate machine unlearning problem as follows.
Let Dtrain = {(xtrain, ytrain)} ∈ X × Y denote the train-
ing dataset, where X and Y = {1, 2, ...,K} are input and
class label space, respectively. Let Cf denote the set of
classes we intend to forget in a pre-trained ML model and
Df denote the subset of training data corresponding to the
forget classes. Similarly, Cr denote the set of classes we
intend to retain, with the corresponding data subset Dr,
satisfying Dr = Dtrain\Df . A ML model, represented
by M(·; θ), generates classification probabilities for each
class, where θ is the set of model parameters. M can be de-
composed into two components: Mf , which represents the
collection of feature extraction layers, and M c, which repre-
sents the final classification layer. Let M(·; θo) denote the
original model trained on the complete dataset Dtrain. In
this paper, we address a challenging yet practical scenario of
source-free unlearning, where the unlearned model is gen-
erated directly from θo and class information in Cf , without
requiring access to Dtrain.

3.2. Accelerated Energy-Guided Data Synthesis

Since the original training data is inaccessible, we first in-
troduce an energy-guided mechanism to generate synthetic
datasets that approximate the distributions of the original
data. To further improve efficiency, we propose the AEGDS
mechanism, which integrates high-order numerical meth-
ods with momentum-based updates to reduce computational
overhead while preserving the integrity of the generated
samples.

Formalizing the Energy Function Energy-based models
(EBMs) define a probability distribution over data samples
using an energy function E(x), where the likelihood of a
sample is inversely proportional to its energy (Grathwohl
et al., 2019; LeCun et al., 2006). For an input x ∈ X , the
energy function E : X → R maps each data sample into an
energy value, which can be interpreted as an unnormalized
probability (Du & Mordatch, 2019). To approximate the
original data distribution for each class, the energy-based
model can be constructed from the original M(·, θo) based
on the observation that discriminative models inherently
follow an energy-based framework (Grathwohl et al., 2019).
Specifically, the energy function is derived from the logits
of the classifier, defined as:

Eθ(x, y) = − logM(x, θo)[y], (1)

where M(x, θo)[y] is the predicted probability of the sample
x belonging to class y.

Energy-Guided Data Synthesis (EGDS) By specifying
an energy function Eθ(x, y) for a target class y, we can then
perform data synthesis following the principles of Stochas-
tic Gradient Langevin Dynamics (SGLD) (Welling & Teh,
2011), which generates samples that align with the energy-
based model by iterative gradient-guided updates combined
with noise perturbations.

Theorem 3.1. Given the initial data probability q(x) and
the target probability p(x), one can determine the trans-
formation process via T (x) = x + ϵ by minimizing KL-
Divergence as shown:

min JLangevin = KL (qT (x)∥p(x))
where : T (x) = x+ ϵ

(2)

where ϵ denotes the searching direction and the optimal
solution on ϵ is given as ϵ = −α∇ϵ [KL (qT (x)∥p(x))]
where α denotes the step size on gradient descend.
The result can be further calculated as T (x) = x +
αEx∼q(x) [∇x log p(x)].

Proof. By taking the differentiation on KL (qT (x)∥p(x))
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Figure 1. Overview of the DSDA framework, comprising two stages: (1) Given the original model and forget class labels, construct an
energy function and generate synthetic datasets through AEGDS. (2) Synthetic datasets are then used to perform unlearning, incorporating
dual unlearning objectives and a novel discriminative feature alignment objective, with multitask optimization for model updates.

w.r.t ϵ, we can obtain the following results:

∇ϵ [KL (qT (x)∥p(x))] = ∇ϵ [KL (q(x)∥pT−1(x))]

= −Ex∼q(x) [∇ϵ log p(T (x))|det∇xT (x)|]
= −Ex∼q(x) [∇ϵ log p(T (x)) +∇ϵ log |det∇xT (x)|] .

For the first term on Langevin Dynamics, it can be further
calculated∇ϵ log p(T (x)) = ∇x log p(T (x))∇ϵT (x) and
∇ϵT (x) = I . Therefore, by considering the searching di-
rection ϵ with minimizing KL (qT (x)∥p(x)), we can con-
clude the result as: T (x) = x−∇ϵ [KL (qT (x)∥p(x))] =
x+ αEx∼q(x) [∇x log p(x)] .

Inspired by the valuable insights into Langevin dynam-
ics presented in Theorem 3.1, we propose a novel energy-
guided data synthesis mechanism, termed the EGDS mech-
anism. Specifically, we randomly initialize the synthetic
data x̂y

0 for a target class y and then update them iteratively
according to the principles of SGLD, where the sampling
process is carried out by constructing a Markov chain:

x̂y
t+1 = x̂y

t − αt∇xEθ(x̂
y
t , y) +

√
2αtϵt, (3)

where xy
t and ϵt are the sample and Gaussian noise at iter-

ation time step t, {αi}Nt=1 is the sequence of step size. As
demonstrated in (Welling & Teh, 2011), by appropriately
introducing noise and gradually reducing the step size, this
procedure will converge to the distribution defined by the
energy function. The pseudocode are shown in Algorithm 1

Accelerated Energy-Guided Data Synthesis (AEGDS)
Traditional Langevin dynamics sampling, which uses a
fixed time step sequence to update data states iteratively,
can be computationally expensive due to frequent gradient
evaluations and noise perturbations. While this stepwise
progression ensures theoretical soundness, it often results
in inefficient computations due to the computational cost
of performing gradient evaluations and noise perturbations
at every time step. To address this limitation, we propose
the AEGDS mechanism, which skips redundant time steps
while preserving sampling accuracy.

We begin by randomly initializing the synthetic data x̂y
0 and

selecting a sequence of time steps {ti}Ni=0, where ti+1−ti >
0. Starting with the previous data state x̂y

ti at time step ti,
the exact solution of x̂y

ti+1
at the subsequent time step ti+1

is given by:

x̂y
ti+1

= x̂y
ti − αti

∫ ti+1

ti

∇xEθ(x̂
y
t , y)dt

= x̂y
ti + αti

∫ ti+1

ti

sθ(x̂
y
t , y)dt,

(4)

where sθ(x, y) = −∇xEθ(x, y). In summary, the process
is equal to progressively moving the sample from the ini-
tial time step to tN , skipping intermediate steps while still
capturing the target distribution.

To numerically approximate the integral, we leverage a two-
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stage second-order Runge-Kutta method, which improves
accuracy by incorporating intermediate gradient evaluations,
reducing the errors of first-order approximations. Specif-
ically, the synthetic data at each time step ti is updated
following:

x′ = x̂y
ti + η∆tidi +

√
2αtiϵti ,

x̂y
ti+1

= x̂y
ti + αti∆ti

[(
1− 1

2η

)
di +

1

2η
d′i

]
+
√

2αtiϵti ,

(5)

where di = sθ(x̂
y
ti , y) (black arrow in Figure 1)), d′i =

sθ(x
′, y) (grey arrow in Figure 1)), ∆ti = ti+1− ti and η is

a weight parameter. We set η = 1, corresponding to Heun’s
second-order method (Ascher & Petzold, 1998).

To further accelerate the sampling process, we incorporate
Nesterov’s momentum (Nesterov, 1983) which can improve
convergence rates in gradient-based optimization. The mo-
mentum vi+1 at each time step is updated as:

vi+1 = γvi + αti v̂i+1, (6)

where v̂i+1 = 1
2di +

1
2d

′
i (blue arrow in Figure 1)), vi is

the previous momentum (yellow arrow in Figure 1)) and
γ is a momentum decay factor. The momentum term ef-
fectively leverages past gradients to accelerate convergence
and smooth the updates. We formulate the overall algo-
rithm for AEGDS in Algorithm 1. We leverage the AEGDS
mechanism to perform class-wise sampling with parallel
computing, generating synthetic data for each class in Cr
and Cf to form D̂r and D̂f .

3.3. Discrimination-Aware Multitask Optimization

After Section 3.2, we have obtained synthetic retain and
forget datasets D̂r and D̂f Then in this section, we propose
the DAMO method to fulfill the unlearning task . To begin
with, we observe from visualization of future space that the
separability and compactness of the retain classes are dis-
rupted during unlearning, which motivates the introduction
of the discriminative feature alignment objective. To further
resolve gradient conflicts among multiple objectives, we
develop a multitask optimization strategy for more balanced
and effective unlearning.

Dual unlearning objectives Following existing studies
(Golatkar et al., 2020), We decompose the unlearning pro-
cess into two distinct objectives, formalized as follows: The
retain objective ensures the model maintains performance
on the retain classes. This is expressed by the retain loss
function LR(D̂r; θ) = LCE(M(x̂r; θ), yr), where x̂r rep-
resents the synthetic data samples in D̂r and yr represents
the corresponding retain class labels. In contrast, the for-
get objective aims to degrade the model’s performance on

Algorithm 1 Data synthesis with EGDS/AEGDS

Input: Target class y, score function sθ, sequence of time
steps {ti}Ni=0, step size {αti}Ni=0, momentum decay
factor γ

1: Initialize: x̂y
0 ∼ N (0, I), v0 = 0

2: for i = 0 to N − 1 do
3: if adopt EGDS then
4: Sample ϵi ∼ N (0, I)
5: Update data: x̂y

i+1 ← x̂y
i +αisθ(x̂

y
i , y)+

√
2αiϵi

6: else if adopt AEDGS then
7: Sample ϵti ∼ N (0, I)
8: di ← sθ(x̂

y
ti , y)

9: x′ ← x̂y
ti +∆tidi +

√
2αti∆tiϵti

10: d′i ← sθ(x
′, y)

11: v̂i+1 ← 1
2di +

1
2d

′
i

12: Update momentum: vi+1 ← γvi + αti v̂i+1

13: Update data: x̂y
ti+1

← x̂y
ti + ∆tivi+1 +√

2αti∆tiϵti
14: end if
15: end for
Output: Generated sample x̂y

N (EDGS) or x̂y
tN (AEDGS)

the forget classes. This objective is expressed through a
forget loss function LF (D̂f ; θ) = −LCE(M(x̂f ; θ), yf ),
where x̂f and yf represent the synthetic forget data and their
class labels. The overall unlearning objective is then for-
mulated as a weighted combination of these two objectives:
LT (D̂r; D̂f ; θ) = λ1LR(D̂r; θ) + λ2LF (D̂f ; θ) , where λ1

and λ2 are hyper-parameters.

Discriminative Feature Alignment Objective However,
the above objectives exhibit notable limitations when di-
rectly optimized. Specifically, we fine-tune the original
model using LT to achieve unlearning. By comparing
the feature distributions of fine-tuned ResNet18 model on
CIFAR-10 (shown in Figure 2 (c)) with those of the original
and retrained ResNet18 models (shown in Figure 2 (a) and
(b)), we draw two key observations: (1) In the retrained
model, samples from the forgot classes are scattered near
the boundary of retain classes. Moreover, compared to the
original model, the retained class samples form compact
clusters with clearer separations between classes in the re-
trained model. (2) Conversely, in the unlearned model, the
forget class samples are more widely dispersed across mul-
tiple retained classes, which weakens both the inter-class
separability and the intra-class compactness of the retain
classes. As a result, the model’s performance declines due
to the disruption in feature distributions.

In light of the above observations and existing studies (Wang
et al., 2025), we propose the discriminative feature align-
ment objective to improve unlearning performance. This
objective is designed to simultaneously improve intra-class
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(a) Original model (b) Retrained model (c) ℒ! fine-tuned model (d) DAMO unlearned model

Figure 2. Feature space visualization of the original, retrained, fine-tuned (using LT ) and unlearned (using DAMO) ResNet18 models on
the CIFAR-10 dataset. Red dots indicate the samples from Cf , while dots in other colors represent retained samples from the Cr .

compactness by clustering samples of the same class and
enhance inter-class separability by pushing apart samples of
different classes in the feature space.

Specifically, given data sample x̂r belonging to class y, we
define the inter-class similarity as sjn = cTj h/(∥cj∥∥h∥) and
the intra-class similarity as sp = cTy h/(∥cy∥∥h∥), where
j ∈ Cr\{y}. Here, h = Mf (x̂r; θ) denotes the feature
vector of the data sample, and ci denotes the feature center
of class i. To achieve discriminative alignment, we introduce
the following loss function:

LDisc = log

1 + |Cr|−1∑
j=1

exp
(
δαj

ns
j
n

)
exp (−δαpsp)

 , (7)

where δ is a scale factor, αj
n, αp are weight factors con-

trolling the contribution of inter-class and intra-class simi-
larities, respectively. To ensure stability and prevent simi-
larity scores from deviating far from their optimal values,
we define the weight factors as αj

n = [sjn − On]+, αp =
[Op − sp]+, where []+ is the “cut-off at zero” operation that
ensures non-negativity.

Multitask Optimization for Unlearning Optimizing the
three unlearning objectives—forget, retain, and discrimina-
tive feature alignment— simultaneously is challenging due
to inherent conflicting gradients (Yu et al., 2020). These
conflicts prevent all objectives from being optimized si-
multaneously, leading to suboptimal performance, such as
over-forgetting or under-forgetting. Let gR = ∇θLR, gF =
∇θLF , and gDisc = ∇θLDisc be the gradients of the retain,
forget, and discriminative objectives, respectively. The com-
bined gradient is defined as gT = λ1gR+λ2gF +λ3gDisc.
A gradient conflict occurs when the combined gradient
gT misaligns with any individual gradient, expressed as
⟨gi,gT ⟩ < 0, i ∈ {R,F,Disc}. To address this conflict,
we propose a multitask optimization strategy for unlearn-
ing, which resolves gradient conflicts and balances three
unlearning objectives effectively.

Theorem 3.2. Given the gradients {gi}, i ∈ {R,F,Disc},
one can find an update direction d that minimizes gradi-
ent conflicts while remaining close to the initial combined
gradient gT as:

argmax
d

min
{
⟨gR, d⟩, ⟨gF , d⟩, ⟨gDisc, d⟩

}
,

s.t.∥d− gT ∥ ≤ c∥gT ∥,
(8)

where c ∈ [0, 1) is a hyper-parameter that controls the
extent of deviation from the weighted average gradient gT .

To further reduce computational complexity, we introduce
auxiliary weight variables w = (wR, wF , wDisc) ∈ R3, rep-
resenting the contributions of each gradient. These weights
satisfy

∑
i wi = 1 and wi ≥ 0. Equation (8) can now be

reformulated as:

max
d

min
w
⟨gw, d⟩, s.t.∥d− gT ∥ ≤ c∥gT ∥, (9)

where gw = wRgR +wFgF +wDiscgDisc represents the
weighted gradient direction.

Theorem 3.3. Given the optimization problem in Equa-
tion (9), one can obtain the optimal d by solving the follow-
ing Lagrangian:

min
λ≥0,∑

i wi=1,wi≥0

max
d

g⊤
wd−

λ

2
∥gT − d∥2 + λϕ

2
, (10)

where ϕ = c2∥gT ∥2 represents a constraint on the update
magnitude. The optimal solution can be expressed as d∗ =
gT + gw∗/λ∗, where w∗ = argmin∑wi=1,w≥0 g

⊤
wgT +√

ϕ∥gw∥, λ∗ = ∥gw∗∥/ϕ1/2.

Proof. We can derive the Lagrangian of Equation (9) as:

max
d

min
λ≥0,∑

i wi=1,wi≥0

g⊤
wd−

λ

2

(
∥gT − d∥2 − ϕ

)
, (11)

where ϕ = c2∥gT ∥2 represents a constraint on the up-
date magnitude. Base on Equation (11), we can derive
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Equation (10) due to the concavity of the objective with
respect to d and the linearity of its constraints, allowing
the interchange of max and min operations. Then, to solve
Equation (10), we first fix λ and w, and optimize the inner
maximization problem. The optimal solution d∗ is obtained
by setting the derivative with respect to d to zero:

∂

∂d

[
g⊤wd+ λg⊤T d− λ

2
∥d∥2

]
= gw + λgT − λd = 0. (12)

Therefore, we obtain d∗ = gT + gw/λ. Substituting d∗

back into the objective function, the outer minimization
problem simplifies to:

min
λ≥0,∑

i wi=1,wi≥0

g⊤wgT +
∥gw∥2

2λ
− λ

2
∥gT ∥2 +

λϕ

2
. (13)

Then, we compute λ by taking the derivative and solving
the resulting condition:

∂

∂λ

(
∥gw∥2

2λ
−

λ

2
∥gT ∥2 +

λϕ

2

)
= −

∥gw∥2

2λ2
−

∥gT ∥2

2
+

ϕ

2
. (14)

Setting the derivative to zero, the optimal λ∗ is given by
λ∗ = ∥gw∥/

√
ϕ. Substituting λ∗ back into the objective,

we obtain the optimal w∗ = argmin∑wi=1,w≥0 g
⊤
wgT +√

ϕ∥gw∥, validating the correctness of Theorem 3.3.

Finally, according to Theorem 3.3, the unlearned model can
be obtained by applying the optimal update direction to θo
iteratively, which resolves gradient conflicts and maintains
a balance among the unlearning objectives, thereby improv-
ing the overall unlearning performance. Additionally, to
clarify the shift in feature distributions after introducing the
discriminative feature alignment objective, we visualize the
feature space of the unlearned model using the proposed
DAMO method, as shown in Figure 2 (d). The results reveal
that the retained class samples exhibit both clear inter-class
separability and intra-class compactness, closely aligning
with the retrained model.

4. Experiments
In this section, we evaluate the effectiveness of DSDA across
three benchmark datasets and two model architectures. Ad-
ditionally, we conduct ablation experiments to analyze the
contribution of its three key components. Finally, we visual-
ize the synthetic data to verify its integrity and privacy.

4.1. Experiment Settings

Datasets and Tasks We conduct experiments on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and PinsFaceRecogni-
tion (Hereis, 2024) datasets. Following existing studies (Cha
et al., 2024; Foster et al., 2024), we adopt ResNet-18 (He
et al., 2016) as the backbone for CIFAR-10 and CIFAR-100,
and Vision Transformer (ViT) (Dosovitskiy et al., 2021) for
PinsFaceRecognition.

Baselines We compare the proposed DSDA with the origi-
nal model and the following unlearning methods: (1) Re-
train refers to training a model from scratch on the retain
data only. (2) SSD (Foster et al., 2024) selectively dampens
model parameters according to their importance to the for-
get data, as determined by FIM. (3) UNSIR (Tarun et al.,
2023) uses error-maximizing noise to approximate Df and
combines the noise with Df to fine-tune the original model.
(4) ADV+IMP (Cha et al., 2024) fine-tunes the original
model using adversarial examples. (5) LAU (Kim et al.,
2024) applys Partial-PGD and KD to the classification layer.
(6) SCAR (Bonato et al., 2025) modifies the feature vector
projections of surrogate forget data using metric learning
and KD. (7) GKT (Chundawat et al., 2023b) employs a
generator to maximize the information gap between teacher
and student model, and refines model weights through gated
knowledge transfer. (8) ISPF (Zhang et al., 2024) improves
upon GKT by introducing the Inhibited Synthetic and Post-
Filter methods.

Implementation Details We implement all experiments in
Python 3.9 and use the PyTorch library (Paszke et al., 2019).
All experiments are conducted on two NVIDIA RTX 3090
GPUs and repeated three times with different random seeds.
Both the original and retrained models are trained from
scratch using a multi-step learning rate scheduler, which
begins with a learning rate of 0.01, and optimized with the
Adam optimizer (Kingma & Ba, 2014). For a fair com-
parison, the batch sizes of all methods are set to 256 in
ResNet18 and 32 in ViT. We carefully tune all comparison
methods to achieve their best performance.

Evaluation Metrics Following existing studies (Tarun et al.,
2023; Cha et al., 2024; Foster et al., 2024), we adopt the
following four metrics to measure the overall performance
of an unlearning method. (1) Accuracy on forget data (Af )
evaluates the unlearned model’s performance on the forget
test data. (2) Accuracy on retain data (Ar) measures the
unlearned model’s performance on the retain test data. Af

and Ar of an unlearned model are expected to get close ac-
curacy with the retrained model. (3) Membership inference
attack (MIA) evaluates whether any information about the
forget data persists in the model. We follow the logistic
regression-based MIA implementation proposed in (Chun-
dawat et al., 2023a; Foster et al., 2024). (4) Execution time
(ET) measures the time (in seconds) required to produce the
unlearned model and complete the evaluation, assessing the
timeliness of the unlearning process.

4.2. Comparison with Baselines

To comprehensively evaluate DSDA’s performance, we
conduct single-class unlearning experiments across three
datasets (shown in Table 1) and multi-class unlearning exper-
iments on the CIFAR-10 dataset (shown in Table 2). Based
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Table 1. Evaluation results for single-class unlearning. Bolding indicates the best result and underlining indicates the second best result.

Method Dr

free
Df

free
CIFAR10 CIFAR100 PinsFaceRecognition

Ar(%) Af (%) MIA (%) ET (s) Ar(%) Af (%) MIA (%) ET (s) Ar(%) Af (%) MIA (%) ET (s)

Original - - 79.80 88.83 81.40 - 58.66 45.00 78.66 - 90.85 88.57 70.09 -
Retrained - - 77.90 0.00 11.46 1108.10 53.98 0.00 13.22 2243.88 90.89 0.00 0.82 1664.66

SSD x x 54.44 0.00 19.72 168.73 43.59 0.00 16.80 160.47 86.76 0.00 30.00 598.75
UNSIR x ✓ 75.74 0.00 70.48 659.08 40.77 0.00 60.60 173.30 78.21 9.23 20.49 566.96
ADV+IMP ✓ x 49.30 0.00 40.68 143.55 47.39 2.20 45.42 180.64 21.01 0.00 68.11 731.61
LAU ✓ x 78.37 0.20 33.78 113.10 42.95 0.00 24.00 112.67 87.84 0.00 64.10 201.37
SCAR ✓ x 76.13 1.69 12.50 468.29 48.94 10.00 7.80 452.40 60.35 0.00 21.15 1248.56

GKT ✓ ✓ 44.23 2.19 24.98 393.58 40.74 0.00 38.38 461.31 54.14 2.11 34.87 1941.10
ISPF ✓ ✓ 66.46 0.00 31.70 303.97 45.03 0.00 23.28 367.50 55.30 0.00 32.61 1303.22

DSDA (ours) ✓ ✓ 77.91 0.00 11.80 133.40 49.96 0.00 13.80 155.00 88.36 0.00 18.39 549.48

Table 2. Evaluation results for multi-class unlearning on CIFAR-100. k = |Cforget| denotes the number of forget classes. Bolding
indicates the best result and underlining indicates the second best result.

Method k=2 k=4 k=8

Ar(%) Af (%) MIA (%) ET (s) Ar(%) Af (%) MIA (%) ET (s) Ar(%) Af (%) MIA (%) ET (s)

Original 58.35 65.00 92.12 - 58.84 48.28 81.57 - 57.76 67.51 88.86 -
Retrained 56.23 0.00 33.21 1960.15 56.98 0.00 14.48 1592.25 57.15 0.00 31.69 1093.86

UNSIR 41.87 0.00 53.02 178.65 42.25 0.00 45.89 374.99 41.64 0.00 50.08 229.71
ADV+IMP 41.40 3.91 36.60 191.10 44.08 0.00 68.33 148.97 34.73 0.00 53.15 174.93
LAU 45.28 0.50 23.30 174.29 30.51 0.00 67.75 166.06 17.03 0.00 18.55 168.39
SCAR 52.01 13.50 28.10 136.79 42.39 13.50 34.00 302.61 40.89 25.00 35.18 322.40
GKT 40.57 0.00 33.65 568.81 32.74 0.00 37.95 895.39 25.39 0.00 39.38 973.95
ISPF 44.81 0.00 24.69 446.70 45.47 0.00 24.95 480.37 44.00 0.00 38.83 571.62

DSDA (ours) 49.55 0.00 33.28 157.25 50.28 0.00 17.80 147.01 49.56 0.00 28.29 162.55

on the objective of machine unlearning, we expect the per-
formance of a desirable unlearning method to be close to the
performance of the Retrain baseline. From the experimen-
tal results, we draw the following conclusions, considering
both unlearning effectiveness and efficiency.

Unlearn Effectiveness. (1) DSDA achieves complete re-
moval of forget data information, with Af reaching 0%
across all unlearning tasks, while also attaining the highest
Ar among all source-free unlearning methods. Additionally,
DSDA demonstrates the best or second-best accuracy per-
formance compared to all baselines. Note that this is not a
fair comparison, as source-free methods function without
the original training data, making their unlearning task more
challenging. (2) Several baselines, including ADV+IMP
and UNSIR, exhibit significantly higher MIA values than
Retrain, indicating potential leakage of forget data, despite
achieving desirable accuracy. DSDA achieves the best MIA
results, closely aligning with the retrained model, further
demonstrating its effectiveness in mitigating privacy risks.
(3) Moreover, as the number of forgotten classes increases,
LAU and GKT experience notable performance degradation.
In contrast, DSDA maintains robust performance regardless
of the number of forget classes, underscoring its scalability
and reliability in more complex unlearning scenarios.

Unlearn Efficiency. The ET results demonstrate that DSDA
significantly outperforms source-free baselines in unlearn-
ing efficiency, with an average improvement of 68.50%.

(b) PinsFaceRecognition(a) CIFAR-10

Figure 3. The results of ET vs. Ar under CIFAR-10 with ResNet18
and PinsFaceRecognition with ViT settings.

Furthermore, DSDA also surpasses most non-source-free
baselines in efficiency, despite the additional step of gener-
ating synthetic data to substitute the original training data.

Moreover, we analyze the relationship between Ar and ET
for source-free unlearning methods, as shown in Figure 3. In
the figure, the Ar values of DSDA remain constant before a
certain point, which is due to the model being frozen during
the data synthesis stage. The results demonstrate that DSDA
consistently achieves higher Ar than GKT and ISPF, while
reaching optimal performance more efficiently.

4.3. Ablation Study

We conduct ablation experiments on three key components
in the DSDA, to elucidate their contributions respectively.
Specifically, DSDA-w-EGDS represents DSDA without data
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Figure 4. The ablation results of Ar and ET on CIFAR-10 and
CIFAR-100 using ResNet18.

(a) Feature distribution of 
synthetic data and original data 

(b) Visualization of 
synthetic data

Figure 5. Visualization of feature distribution and synthetic data
for CIFAR-10. Round dots represent original data, square dots
represent synthetic data.

synthesis acceleration. DSDA-wo-disc represents DSDA
without the discrimination feature alignment objective, us-
ing only LF and LR. DSDA-wo-mt represents DSDA with-
out multi-task optimization, where model parameters are
updated directly using gT .

The results of Ar and ET on CIFAR-10 and CIFAR-100
datasets, as shown in Figure 4, provide several important
insights: (1) DSDA-w-EGDS requires significantly longer
ET than DSDA, highlighting the importance of AEGDS
in improving efficiency. Additionally, DSDA outperforms
DSDA-w-EGDS in Ar, due to the second-order Runge-
Kutta method reducing approximation errors. (2) DSDA-
wo-disc shows lower Ar compared to DSDA, underscoring
the critical role of the alignment objective in preserving
intra-class compactness and inter-class separability, which
in turn leads to better model performance. (3) DSDA-wo-
mt leads to lower Ar and higher ET, demonstrating that
multi-task optimization not only balances the unlearning
objectives but also accelerates the unlearning process.

4.4. Additional Analysis

Feature distribution of Synthetic Data. We visualize the
feature distribution of both the synthetic and original CIFAR-
10 dataset using the original model, as shown in Figure 5.
The results reveal that the synthetic data closely overlaps
with the original data in feature space, exhibiting nearly
identical distributions, which suggests that the proposed

AEGDS effectively models the original data distribution.

Visualization of Synthetic Data. To further evaluate the
privacy implications of the synthetic data, we visualize its
appearance in Figure 5 (b). The synthetic samples are visu-
ally indistinguishable, impossible for human observers to
extract any meaningful information, which ensures that the
synthetic data poses no privacy risks.

5. Conclusion
We propose DSDA, a novel source-free unlearning frame-
work, which addresses the critical challenges of inaccessible
training data and computational cost. The two key compo-
nents of DSDA, i.e. AEGDS and DAMO, enable the genera-
tion of synthetic data and refinement of feature distributions,
thereby ensuring both the removal of forgot knowledge and
the preservation of performance on retain data. Extensive ex-
periments on multiple benchmark datasets demonstrate that
DSDA outperforms existing unlearning methods in terms of
both efficiency and effectiveness. While DSDA is effective
in removing class-level information, it remains limited in
finer-grained unlearning scenarios, such as instance-wise or
attribute-wise unlearning. Exploring source-free unlearn-
ing methods tailored to such fine-grained unlearning tasks
presents an important direction for future work.
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